JP6688673B2 - Silicon oxide powder negative electrode material - Google Patents

Silicon oxide powder negative electrode material Download PDF

Info

Publication number
JP6688673B2
JP6688673B2 JP2016095100A JP2016095100A JP6688673B2 JP 6688673 B2 JP6688673 B2 JP 6688673B2 JP 2016095100 A JP2016095100 A JP 2016095100A JP 2016095100 A JP2016095100 A JP 2016095100A JP 6688673 B2 JP6688673 B2 JP 6688673B2
Authority
JP
Japan
Prior art keywords
powder
sio
negative electrode
electrode material
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016095100A
Other languages
Japanese (ja)
Other versions
JP2017204374A (en
Inventor
浩樹 竹下
浩樹 竹下
木崎 信吾
信吾 木崎
悠介 柏谷
悠介 柏谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2016095100A priority Critical patent/JP6688673B2/en
Publication of JP2017204374A publication Critical patent/JP2017204374A/en
Application granted granted Critical
Publication of JP6688673B2 publication Critical patent/JP6688673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池の負極形成に使用されるSiOx系粉末負極材に関し、より詳しくは、不可逆容量キャンセル処理を受けたSiOx系粉末負極材に関する。なお、本明細書では酸化珪素とSiOxは同義である。 The present invention relates to a SiO x powder negative electrode material used for forming a negative electrode of a lithium ion secondary battery, and more particularly to a SiO x powder negative electrode material that has been subjected to an irreversible capacity cancellation treatment. Note that in this specification, silicon oxide and SiO x have the same meaning.

SiOxは電気容量が大きく、優れたリチウムイオン二次電池用負極材であることが知られている。このSiOx系粉末負極材は、SiOx粉末、導電助剤及びバインダーを混合してスラリー化したものを、銅箔等からなる集電体上に塗布し乾燥させることで薄膜状の負極とされる。ここにおけるSiOx粉末は、例えば二酸化珪素と珪素との混合物を加熱して生成した一酸化珪素ガスを冷却し、析出させた後、細かく破砕することにより得られる。このような析出法で製造されるSiOx粉末は、非晶質の部分を多く含み、熱膨張係数を小さくして、サイクル特性を向上させることが知られている。 It is known that SiO x has a large electric capacity and is an excellent negative electrode material for lithium ion secondary batteries. This SiO x powder negative electrode material is formed into a thin film negative electrode by mixing a slurry made by mixing SiO x powder, a conductive additive and a binder, and applying it to a current collector made of copper foil or the like and drying. It The SiO x powder here is obtained, for example, by heating a mixture of silicon dioxide and silicon, cooling the generated silicon monoxide gas, depositing it, and then crushing it finely. It is known that the SiO x powder produced by such a precipitation method contains a large amount of an amorphous portion and has a small thermal expansion coefficient to improve cycle characteristics.

このようなSiOx系粉末負極材の問題点としては、初期効率の低さがあり、これを解消する手法として、Liドープが知られている。Liドープは、SiOx粉末と粉末リチウム源とを混合し、焼成することにより実施される(特許文献1〜4)。SiOxの粉末粒子にLiドープを行うと、充放電に寄与しないリチウム化合物(Li4SiO4等)が事前に生成され、初回充電時にこのリチウム化合物が生成されるのが抑制されることにより、初期効率の向上が図られる。この処理は不可逆容量のキャンセル処理と呼ばれている。 A problem with such a SiO x -based powder negative electrode material is low initial efficiency, and Li doping is known as a method for solving this problem. Li doping is carried out by mixing a SiO x powder and a powder lithium source and firing the mixture (Patent Documents 1 to 4). When Li-doping is performed on the SiO x powder particles, a lithium compound (Li 4 SiO 4 etc.) that does not contribute to charge and discharge is generated in advance, and by suppressing the generation of this lithium compound at the time of the first charge, The initial efficiency is improved. This processing is called irreversible capacity cancellation processing.

不可逆容量をキャンセルする以外の電池性能向上手段としては、SiOx粉末の粒子表面に導電性炭素を被覆するCコートがあり、これによりサイクル特性の向上が図られる。特許文献3ではLiドープ後にCコートが実施され、特許文献4ではCコート後にLiドープが実施されている。 As a means for improving battery performance other than canceling the irreversible capacity, there is a C coat that coats conductive carbon on the particle surface of the SiO x powder, which improves the cycle characteristics. In Patent Document 3, C coating is performed after Li doping, and in Patent Document 4, Li doping is performed after C coating.

また、Liドープ以外の不可逆容量キャンセル処理としては、Mgドープが知られている(特許文献5)。SiOx粉末にMgドープを行うと、充放電に寄与しないマグネシウム化合物(Mg2SiO4等)が事前に生成され、初回充電時にリチウム化合物が生成されるのが抑制されることにより、初期効率の向上が図られる。 In addition, Mg doping is known as an irreversible capacity canceling treatment other than Li doping (Patent Document 5). When Mg doping is performed on the SiO x powder, a magnesium compound (Mg 2 SiO 4 etc.) that does not contribute to charge and discharge is generated in advance, and the generation of a lithium compound at the time of the first charge is suppressed, thereby reducing the initial efficiency. Improvement is achieved.

加えて、Mg2SiO4等の珪酸マグネシウムは、Li4SiO4等の珪酸リチウムに比べて格子定数が大きいためにLiイオン伝導度が高い。このため、Mgドープを受けたSiOx系粉末負極材は、Liドープを受けたSiOx系粉末負極材と比べ、出力特性、具体的には急速充放電特性に優れることが報告されている。 In addition, since magnesium silicate such as Mg 2 SiO 4 has a larger lattice constant than lithium silicate such as Li 4 SiO 4, it has a high Li ion conductivity. For this reason, it has been reported that the Mg x -doped SiO x powder negative electrode material is superior to the Li-doped SiO x powder negative electrode material in output characteristics, specifically, rapid charge and discharge characteristics.

しかしながら、MgはLiに比べて重い。このため、Mgドープを受けたSiOx系粉末負極材は、Liドープを受けたSiOx系粉末負極材に比べて重量あたりの容量を低下させるという問題がある。 However, Mg is heavier than Li. Therefore, there is a problem that the Mg-doped SiO x powder negative electrode material has a lower capacity per weight than the Li-doped SiO x powder negative electrode material.

SiOx系粉末負極材の用途として現在は情報端末機器用電池が一般的であるが、将来的には自動車等の輸送機器用電池も考えられている。輸送機器用電池用途の場合、大容量電池の搭載が前提となるため、急速充放電特性の高さが大きな利点となる反面、重量あたりの容量の低さは大きな欠点となることから、初期特性やサイクル特性の高さのみならず、急速充放電特性の高さ、更には重量あたりの容量の大きさまでも含めた総合的な電池性能が求められることになる。 Currently, batteries for information terminal equipment are generally used as the applications of the SiO x powder negative electrode material, but batteries for transportation equipment such as automobiles are also considered in the future. In the case of batteries for transportation equipment, it is premised that a large-capacity battery is installed, so while high charge / discharge characteristics are a major advantage, low capacity per weight is a major drawback. In addition to high cycle characteristics, high charge / discharge characteristics, and overall battery performance, including high capacity per weight, is required.

特許第2997741号公報Japanese Patent No. 2997741 特許第4702510号公報Japanese Patent No. 4702510 特許第4985949号公報Japanese Patent No. 4985949 特許第5411781号公報Japanese Patent No. 5411781 特許第4477522号公報Japanese Patent No. 4477522

本発明の目的は、初期特性やサイクル特性の高さのみならず、急速充放電特性の高さ、更には重量あたりの容量の大きさまでも含めた総合的な電池性能の向上に有効なSiOx系粉末負極材を提供することにある。 The object of the present invention is to improve not only the initial characteristics and the cycle characteristics but also the characteristics of the rapid charge / discharge characteristics, and further, the SiO x effective for improving the overall battery performance including the capacity per weight. An object is to provide a powdered negative electrode material.

上記目的を達成するために、本発明者はSiOx系粉末負極材に対するLiドープとMgドープの得失について詳細に比較検討した。その結果、以下の事実が判明した。 In order to achieve the above object, the present inventor conducted a detailed comparative study on the advantages and disadvantages of Li-doping and Mg-doping with respect to the SiO x -based powder negative electrode material. As a result, the following facts were revealed.

Liドープを受けたSiOx系粉末負極材は初期効率の改善に有効であるが、一方で空気、水、その他の溶媒に対する活性が高くなり、ハンドリング性を悪化させるだけでなく、バインダーを用いてスラリー化する際に、水系バインダーを用いた場合には溶媒である水がLiと反応し、また非水溶剤系バインダーであるポリイミドを使用した場合にもポリイミドがLiと反応することにより、スラリーの安定性が低下し、サイクル特性を悪化させる原因となる。 The Li-doped SiO x powder negative electrode material is effective in improving the initial efficiency, but on the other hand, the activity against air, water, and other solvents becomes high, which not only deteriorates the handling property, but also uses a binder. When making a slurry, water that is a solvent reacts with Li when an aqueous binder is used, and when a polyimide that is a non-aqueous solvent binder is used, the polyimide also reacts with Li to form a slurry. Stability is reduced, which causes deterioration of cycle characteristics.

これは、Li源とSiOxの反応が表面反応であるために、Liドープを受けたSiOxの表面に活性の高いLiが多く残っているためと考えられる。すなわち、SiOxとLiの表面反応においては、Li2Si25、Li2SiO3、Li4SiO4といった珪酸リチウム、更にはLiSi合金などが発生すると考えられるが、いずれもSiOxに比べて活性が高く、空気中のハンドリングにおいて注意を要するだけでなく、特に水系バインダー中での溶出及び副反応が現行の負極製造プロセス上では問題となり、特にサイクル特性の悪化の原因となるのである。 It is considered that this is because a large amount of highly active Li remains on the surface of the Li-doped SiO x because the reaction between the Li source and SiO x is a surface reaction. That is, in the surface reaction of the SiO x and Li, Li 2 Si 2 O 5 , Li 2 SiO 3, Li 4 lithium silicate such SiO 4, but further believed that such LiSi alloy occurs, both compared to the SiO x In addition to being highly active and requiring attention in handling in air, elution and side reactions especially in an aqueous binder become a problem in the current negative electrode manufacturing process and cause deterioration of cycle characteristics in particular.

これに対し、SiOxにMgをドープした際に生成するMgSiO3やMg2SiO4といった珪酸マグネシウムは、珪酸リチウムに比べ水や有機溶媒に対して安定であり、且つ珪酸リチウムと同等以上のLiイオン伝導性を有することから、SiOxへのMgドープは不可逆容量をキャンセルしつつ、また急速充放電特性を高めつつ、スラリー化した際の安定性を確保し、サイクル特性の確保に有効な手段と考えられる。 On the other hand, magnesium silicates such as MgSiO 3 and Mg 2 SiO 4 produced when SiO x is doped with Mg are more stable to water and organic solvents than lithium silicate, and have the same or higher Li content than lithium silicate. Since it has ionic conductivity, Mg doping to SiO x cancels the irreversible capacity and enhances the rapid charge and discharge characteristics, and also secures stability when slurried and is an effective means for securing cycle characteristics. it is conceivable that.

ただし、負極活物質そのものの特性としては、MgドープはLiドープやドープなしの場合に比べて悪化する。なぜなら、Mgドープの場合、充放電中の活物質の構造変化によるサイクル特性の悪化が懸念されるからであり、より具体的には、珪酸マグネシウムは充放電の過程でLiと反応して酸化マグネシウムと珪酸リチウムに分解するため、長期的にはサイクル特性悪化の懸念があるのである。   However, as the characteristics of the negative electrode active material itself, Mg doping is deteriorated as compared with the case of Li doping or undoped. This is because, in the case of Mg doping, there is concern that the cycle characteristics may deteriorate due to the structural change of the active material during charging / discharging, and more specifically, magnesium silicate reacts with Li during charging / discharging to react with magnesium oxide. Since it decomposes into lithium silicate, there is a concern that cycle characteristics will deteriorate in the long term.

換言するならば、Liドープはサイクル特性の悪化を招くが、それは活物質そのものの特性ではなく、スラリー化の工程でLiがバインダーと反応することによる特殊事情である。   In other words, Li doping causes deterioration of cycle characteristics, which is not a characteristic of the active material itself but a special circumstance due to Li reacting with the binder in the process of slurry formation.

これらのことから、本発明者はSiOx粉末に対するLiドープとMgドープの併用を立案した。LiドープとMgドープの併用によると、Mgドープのみの場合に比べてMgドープ量が減少することから重量あたりの容量が増加する。また、Liドープのみの場合に比べて急速充放電特性が向上する。そして何よりも、Liドープの弱点であるバインダーに対する反応性の高さをMgドープが補い、Liドープの長所である活物質としての特性の良さを引き出すことにより、何れの単独ドープの場合よりもサイクル特性を向上させ得ることが判明し、その結果として、初期特性やサイクル特性の高さのみならず、急速充放電特性の高さ、更には重量あたりの容量の大きさまでも含めた総合的な電池性能の向上に非常に有効なことが明らかになった。 Based on these facts, the present inventor has proposed the combined use of Li doping and Mg doping for SiO x powder. When both Li-doped and Mg-doped are used, the amount of Mg-doped is reduced as compared with the case of only Mg-doped, so that the capacity per weight is increased. Further, the rapid charge / discharge characteristics are improved as compared with the case of only Li doping. And above all, Mg-doping compensates for the high reactivity with respect to the binder, which is the weak point of Li-doping, and draws out the good characteristics as an active material, which is the advantage of Li-doping, so that the cycle is longer than in the case of any single dope. It has been found that the characteristics can be improved, and as a result, not only the height of initial characteristics and cycle characteristics but also the height of rapid charging / discharging characteristics, and further the total capacity including the capacity per weight is comprehensive. It became clear that it was very effective in improving the performance.

ちなみに、本来の目的である不可逆容量キャンセル効果及び初期効率に関しては両者の間に大きな差はない。   By the way, there is no big difference between the two with respect to the original purpose of the irreversible capacity canceling effect and the initial efficiency.

本発明のSiOx系粉末負極材はかかる知見を基礎として完成されたものであり、リチウム二次電池の負極形成に使用されるSiOx系粉末負極材であって、LixMgySiOzの組成式で表され、ここでx、y及びzは正の実数であって下記条件を満たし、かつレーザ式回折式の粒度分布測定装置によって測定したメディアン径(D50)が0.5μm以上30μm以下であるものである。
0.5≦z≦1.5
z/5≦x+y≦z
z/100≦x かつz/100≦y
SiO x based powder negative electrode material of the present invention has been completed on the basis of these findings, a SiO x based powder negative electrode material for use in forming the negative electrode of a lithium secondary battery, the Li x Mg y SiO z It is represented by a composition formula, where x, y and z are positive real numbers and satisfy the following conditions, and the median diameter (D 50 ) measured by a laser diffraction type particle size distribution measuring device is 0.5 μm or more and 30 μm or more. It is the following.
0.5 ≦ z ≦ 1.5
z / 5 ≦ x + y ≦ z
z / 100≤x and z / 100≤y

すなわち、本発明のSiOx系粉末負極材は、LiとMgの両方がドープされたSiOx粉末であり、LiとMgの両方がドープされると、Mgドープ単独の場合に比べて重量あたりの容量が増加する。また、Liドープ単独の場合に比べて、珪酸化合物のLiイオン伝導度が高くなることにより急速充放電特性が向上する。そして何よりも、いずれのドープの場合に比べてもサイクル特性が向上する。 That is, the SiO x -based powder negative electrode material of the present invention is a SiO x powder doped with both Li and Mg, and when both Li and Mg are doped, the weight per unit weight is higher than that in the case of Mg doping alone. Capacity increases. Further, as compared with the case of Li doping alone, the Li ion conductivity of the silicic acid compound is increased, so that the rapid charge / discharge characteristics are improved. Above all, the cycle characteristics are improved as compared with the case of any of the dopes.

ここで、zはO量(O/Si比)である。これが0.5未満だと負極材がSiに近くなりすぎ、酸素に対する活性が高くなって安定性が低下し、反対にこれが1.5超だと酸素過多により初期効率が低下し、電池性能が低下する。したがって、zは0.5以上1.5以下とした。   Here, z is the O amount (O / Si ratio). If it is less than 0.5, the negative electrode material becomes too close to Si, and the activity against oxygen becomes high and the stability decreases. On the contrary, if it exceeds 1.5, the initial efficiency decreases due to excess oxygen and the battery performance becomes poor. descend. Therefore, z is set to 0.5 or more and 1.5 or less.

また、x+yはLiとMgの合計ドープ量である。これがz/5未満だとLiドープ及びMgドープによる不可逆容量キャンセル効果が薄く、反対にこれがz超だと活性の高いLi−Si合金やMg−Si合金が生成し、取り扱い上の問題を生じたり、スラリー溶媒及びバインダーとの反応性が高くなることにより電池性能に悪影響を与えたりする。したがって、x+yはz/5以上z以下とした。これはLiとMgの両方による不可逆容量キャンセル率が20〜100%であることを意味する。   Further, x + y is the total doping amount of Li and Mg. If it is less than z / 5, the irreversible capacity canceling effect due to Li doping and Mg doping is thin, while if it exceeds z, a highly active Li-Si alloy or Mg-Si alloy is generated, which causes a handling problem. The high reactivity with the slurry solvent and the binder may adversely affect the battery performance. Therefore, x + y is set to z / 5 or more and z or less. This means that the irreversible capacity cancellation rate due to both Li and Mg is 20 to 100%.

また、Liドープ量(Li/Si比)であるx、及びMgドープ量(Mg/Si比)であるyは、いずれもz/100以上であることが必要である。いずれか一方がz/100未満であると、併用の効果が薄い。Liドープ量及びMgドープ量がそれぞれ最低でも1%の不可逆容量キャンセル率を担うということである。好ましくはx及びyともにz/20以上である。   Further, both the Li doping amount (Li / Si ratio) x and the Mg doping amount (Mg / Si ratio) y need to be z / 100 or more. If either one is less than z / 100, the combined effect is small. This means that the Li doping amount and the Mg doping amount each bear an irreversible capacity cancellation rate of at least 1%. Both x and y are preferably z / 20 or more.

Liドープ量とMgドープ量の割合に関しては、Mgドープ量よりLiドープ量が多いことが望まれる。なぜなら、活物質としての素性はMgをドープしたSiOxよりLiをドープしたSiOxのほうが良いこと、Mgは比較的少量のドープでもLiのスラリー化工程での反応性の高さによる諸問題を効果的に抑制できること、Liの割合が大きいほどドープ元素の占める重量が小さくなり、重量あたりの容量が増大することなどによる。 Regarding the ratio of the Li doping amount and the Mg doping amount, it is desired that the Li doping amount is larger than the Mg doping amount. This is because it is better for SiO x feature is doped with Li from SiO x doped with Mg as an active material, Mg is the problems due to high reactivity in the slurry process of the Li even a relatively small amount of dope The reason is that the weight can be effectively suppressed, the weight occupied by the doping element becomes smaller as the proportion of Li increases, and the capacity per weight increases.

特に好ましいMgのドープ形態は、SiOx粉末粒子の表面に限定的にMgドープ層を形成することである。具体的には、粒子表面でのOに対するMgのモル比ys/zsを、粒子内部でのOに対するMgのモル比yi/ziの5倍以上とすること、すなわちys/zs≧(yi/zi)・5とすることである。そうすることにより、LiドープSiOxを効率的に安定化させることが出来、Mgドープ量の減少が可能となることにより、重量あたりの容量を増大させつつ、他の電池性能、特にサイクル特性の向上が可能となる。 A particularly preferred Mg-doped form is to form a limited Mg-doped layer on the surface of SiO x powder particles. Specifically, the molar ratio ys / zs of Mg to O on the surface of the particles should be 5 times or more the molar ratio yi / zi of Mg to O inside the particles, that is, ys / zs ≧ (yi / zi ) ・ 5. By doing so, Li-doped SiO x can be efficiently stabilized, and the amount of Mg-doped can be reduced, so that the capacity per weight can be increased and other battery performance, especially cycle characteristics, can be improved. It is possible to improve.

これら以外に重要な因子としてはSiOx粉末の粒子径がある。この粒子径は、大きすぎると充放電中の粒子の膨張の影響が大きくなりすぎてサイクル特性が悪化し、また小さすぎると表面積が大きくなりすぎて電解液との反応によるクーロン効率の低下、及び空気との反応性の増大を招くので、レーザ回折式の粒度分布測定装置によって測定したメディアン径(D50)で表して0.5μm以上30μm以下であることが必要であり、1μm以上15μm以下が好ましい。 An important factor other than these is the particle size of SiO x powder. If the particle size is too large, the effect of the expansion of the particles during charging / discharging becomes too large and the cycle characteristics deteriorate, and if too small, the surface area becomes too large and the Coulomb efficiency decreases due to the reaction with the electrolytic solution, and Since it causes an increase in reactivity with air, it is necessary that the median diameter (D 50 ) measured by a laser diffraction particle size distribution measuring device is 0.5 μm or more and 30 μm or less, and 1 μm or more and 15 μm or less. preferable.

また、粉末粒子の表面は、その少なくとも一部分を導電性の炭素によって被覆することが、電極中での導電性の観点から望ましく、その被覆量は、SiOx粉末全体の質量に対する炭素の重量比率で表して0.5〜20wt%であることが望ましい。被覆量が0.5wt%未満であると導電性付与の効果が乏しく、十分な充放電特性が得られない。反対に被覆量が20wt%を超えると粉末全体に占めるSiOx粉末の重量が少なくなることによる容量低下が懸念される。 Further, it is desirable that at least a part of the surface of the powder particles is coated with conductive carbon from the viewpoint of conductivity in the electrode, and the coating amount is a weight ratio of carbon to the mass of the entire SiO x powder. It is desirable that the content is 0.5 to 20 wt%. If the coating amount is less than 0.5 wt%, the effect of imparting conductivity is poor and sufficient charge / discharge characteristics cannot be obtained. On the other hand, if the coating amount exceeds 20 wt%, there is a concern that the capacity may be reduced due to the weight of the SiO x powder occupying the entire powder being reduced.

本発明のSiOx系粉末負極材は、LiドープとMgドープの併用により、Mgドープ単独の場合に比べて重量あたりの容量が増加し、またLiドープ単独の場合に比べて急速充放電特性が向上するのみならず、いずれのドープの場合に比べてもサイクル特性が向上することにより、初期特性やサイクル特性の高さ、急速充放電特性の高さ、更には重量あたりの容量の大きさまでも含めた総合的な電池性能の向上に有効である。 The SiO x -based powder negative electrode material of the present invention has a capacity per weight increased as compared with the case of Mg doping alone by the combined use of Li doping and Mg doping, and has a rapid charge / discharge characteristic as compared with the case of Li doping alone. Not only is it improved, but the cycle characteristics are also improved compared to the case of either dope, so that the initial characteristics and cycle characteristics are high, the rapid charge and discharge characteristics are high, and even the capacity per weight is large. It is effective in improving the overall battery performance including the above.

本発明のSiOx系粉末負極材に係る粉末粒子断面のSiについてのEDXマッピング図である。A EDX mapping diagram for Si powder particle cross sections of the SiO x based powder negative electrode material of the present invention. 同じくOについてのEDXマッピング図である。It is an EDX mapping figure about O similarly. 同じくMgについてのEDXマッピング図である。Similarly, it is an EDX mapping figure about Mg. 本発明の別のSiOx系粉末負極材に係る粉末粒子断面のSiについてのEDXマッピング図である。A EDX mapping diagram for Si powder particle cross sections according to another SiO x based powder negative electrode material of the present invention. 同じくOについてのEDXマッピング図である。It is an EDX mapping figure about O similarly. 同じくMgについてのEDXマッピング図である。Similarly, it is an EDX mapping figure about Mg.

以下に本発明の実施形態を説明する。本実施形態のSiOx系粉末負極材は次のようなドープ法により製造可能である。 Embodiments of the present invention will be described below. The SiO x powder negative electrode material of this embodiment can be manufactured by the following doping method.

第1のドープ法は、SiOx系粉末にLiをドープし、その粉末に更にMgをドープする方法である。具体的には、SiOx粉末と粉末Li源とを混合して焼成した後、その焼成粉末に粉末Mg源を混合して焼成する。或いは、SiOx粉末に電気化学的にLiをドープした後、その粉末に更に電気化学的にMgをドープする。 The first doping method is a method of doping SiO x powder with Li and further doping the powder with Mg. Specifically, after the SiO x powder and the powder Li source are mixed and fired, the powder Mg source is mixed with the fired powder and fired. Alternatively, after the SiO x powder is electrochemically doped with Li, the powder is further electrochemically doped with Mg.

第2のドープ法は、SiOx系粉末にMgをドープし、その粉末に更にLiをドープする方法である。具体的には、SiOx粉末と粉末Mg源とを混合して焼成した後、その焼成粉末に粉末Li源を混合して焼成する。或いは、SiOx粉末に電気化学的にMgをドープした後、その粉末に更に電気化学的にLiをドープする。 The second doping method is a method of doping Mg into the SiO x powder and further doping the powder with Li. Specifically, after the SiO x powder and the powder Mg source are mixed and fired, the powder Li source is mixed with the fired powder and fired. Alternatively, after the SiO x powder is electrochemically doped with Mg, the powder is further electrochemically doped with Li.

第3のドープ法は、SiOx系粉末にLiとMgを同時にドープする方法である。具体的には、SiOx系粉末に対して粉末Li源と粉末Mg源を混合して焼成する。 The third doping method is a method of simultaneously doping Li and Mg into SiO x powder. Specifically, the SiO x powder is mixed with a powder Li source and a powder Mg source and fired.

第4のドープ法は、SiOx系粉末の製造過程でLiとMgを同時に混合する方法である。具体的には、SiとSiO2系粉末と粉末Li源と粉末Mg源とを混合して減圧下で熱処理し、基材に蒸着させる。 The fourth doping method is a method of simultaneously mixing Li and Mg in the production process of the SiO x powder. Specifically, Si, a SiO 2 -based powder, a powder Li source, and a powder Mg source are mixed, heat-treated under reduced pressure, and vapor-deposited on a substrate.

いずれのドープ法によっても、LiドープとMgドープが併用されたSiOx系粉末負極材の製造が可能であるが、Mgドープ層を粒子表面に限定的に形成する観点からは、第1〜第3の方法が好ましい。 By any of the doping methods, it is possible to manufacture a SiO x powder negative electrode material in which Li doping and Mg doping are used in combination, but from the viewpoint of forming the Mg doped layer on the particle surface only, the first to the first Method 3 is preferred.

粉末Li源としては、水素化リチウム(LiH)、酸化リチウム(Li2O)、水酸化リチウム(LiOH)、炭酸リチウム(Li2CO3)などの使用が可能である。また、粉末Mg源としては、水素化マグネシウム(MgH2)、酸化マグネシウム(MgO)、水酸化マグネシウム(Mg(OH)2)、炭酸マグネシウム(MgCO3)などの使用が可能である。 As the powder Li source, lithium hydride (LiH), lithium oxide (Li 2 O), lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ) or the like can be used. As the powder Mg source, magnesium hydride (MgH 2 ), magnesium oxide (MgO), magnesium hydroxide (Mg (OH) 2 ), magnesium carbonate (MgCO 3 ), or the like can be used.

両ドープ前の粉末、又は両ドープ後の粉末、若しくは両ドープ間の粉末に対して、必要に応じて導電性炭素皮膜被覆のためのCコートを行う。このCコートは、炭素源として炭化水素ガスを用いた熱CVD法、例えばアルゴンとプロパンの混合ガス雰囲気中での加熱処理により行う。   The powder before the both dopes, the powder after the both dopes, or the powder between the both dopes is subjected to C coating for coating the conductive carbon film, if necessary. This C coating is performed by a thermal CVD method using a hydrocarbon gas as a carbon source, for example, a heat treatment in a mixed gas atmosphere of argon and propane.

(実施例1)
本発明のSiOx系粉末負極材を第4のドープ法により製造した。具体的には以下のとおりである。
(Example 1)
The SiO x powder negative electrode material of the present invention was manufactured by the fourth doping method. Specifically, it is as follows.

Si粉末とSiO2粉末と粉末Li源であるLiO2粉末と粉末Mg源であるMgO粉末とをモル比で13:7:2:4の比率で混合した。その混合粉末を減圧下で1400℃で焼成して昇華させた。昇華したガスを石英の基材上に蒸着させた。蒸着物を回収して粉砕した。粉砕により得た粉末に対して、アルゴンとプロパンの混合ガスを炭素源とする熱CVDにより850℃でCコートを行った。 Si powder, SiO 2 powder, powder Li source LiO 2 powder, and powder Mg source MgO powder were mixed at a molar ratio of 13: 7: 2: 4. The mixed powder was calcined under reduced pressure at 1400 ° C. to be sublimated. The sublimed gas was deposited on a quartz substrate. The deposit was collected and crushed. The powder obtained by pulverization was subjected to C coating at 850 ° C. by thermal CVD using a mixed gas of argon and propane as a carbon source.

得られた粉末に対して、Si、O及びLiの各元素についての分析を行った。Si及びLiについては、ICP発光分光分析によって含有率を求めた。Oについては、LECO社製TC-436を使用して、不活性ガス融解−赤外線吸収法(inert gas fusion infrared absorption method;GFA )により含有率を測定した。その結果、蒸着物の組成はLixMgySiOz(x=0.2、y=0.2、z=1)であることが分かった。また、Cコート量は1.0wt%、メディアン径D50は6.13μmであった。 The obtained powder was analyzed for each element of Si, O and Li. The contents of Si and Li were determined by ICP emission spectroscopy. The content of O was measured by an inert gas fusion infrared absorption method (GFA) using TC-436 manufactured by LECO. As a result, it was found that the composition of the deposited material was Li x Mg y SiO z (x = 0.2, y = 0.2, z = 1). The C coating amount was 1.0 wt% and the median diameter D 50 was 6.13 μm.

得られた粉末は、Liドープ及びMgドープを受け、且つCコートを受けたSiO粉末である。この粉末に対して、BIB法により粉末粒子の断面を露出させ、その断面を電界放射型SEMで観察した。また、露出した粒子断面に対して5kVの電圧でSi、O、Mgの3元素についてEDXマッピングを行った。Si、O、MgについてのEDXマッピング結果を図1、図2、図3にそれぞれ示す。   The powder obtained is a SiO powder that is Li-doped and Mg-doped and C-coated. A cross section of powder particles was exposed to this powder by the BIB method, and the cross section was observed by a field emission SEM. In addition, EDX mapping was performed for the three elements of Si, O, and Mg at a voltage of 5 kV on the exposed particle cross section. The EDX mapping results for Si, O, and Mg are shown in FIGS. 1, 2, and 3, respectively.

EDXマッピングを行った粒子断面について、外接円の直径をDOとしたとき、粒子表面からDO/100までの領域内におけるSi、O、Mgの組成比を10点の平均で求めて、粒子表面でのOに対するMgのモル比ys/zsを求めた。また、粒子内部でのOに対するMgのモル比yi/ziを求めた。ys/zs=0.21、yi/zi=0.20であった。 For particle cross sections subjected to EDX mapping, when the diameter of the circumscribed circle and the D O, Si in the region from the particle surface to D O / 100, O, seeking the average of 10 points the composition ratio of Mg, particles The molar ratio ys / zs of Mg to O on the surface was determined. Further, the molar ratio yi / zi of Mg to O inside the particles was determined. It was ys / zs = 0.21 and yi / zi = 0.20.

ここで、粒子表面とは、粒子断面のEDXマッピングにおいて、粒子内部とSiの信号が0となる部分の境界のうち、粒子内部側の面をいう。また、粒子内部の組成比は、粒子表面からDO/5まで入ったところから、粒子表面からDO/2まで入ったところまでの範囲内で且つ粒子内にある点の領域から10点を無作為に選んで求めた。 Here, in the EDX mapping of the particle cross section, the particle surface refers to the surface on the particle inner side of the boundary between the inside of the particle and the portion where the Si signal is 0. The composition ratio inside the particle is within the range from the surface of the particle up to D O / 5 to the surface of the particle up to D O / 2, and 10 points from the area of the point inside the particle. Randomly selected and sought.

そして、Liドープ及びMgドープを受け、且つCコートを受けたSiO粉末を用いてリチウムイオン二次電池用負極を作製し、その電池性能を評価した。   Then, a negative electrode for a lithium-ion secondary battery was produced using the SiO powder that had been subjected to Li-doping and Mg-doping and also had been subjected to C-coating, and the battery performance thereof was evaluated.

具体的には、SiO粉末、ケッチェンブラック、及び非水溶剤系バインダーであるポリイミド前駆体を85:5:10の質量比で混合し、更にNMP(nメチルピロリドン)を加えて混練することでスラリーを作製した。そして、そのスラリーを厚さ40μmの銅箔上に塗布し、80℃で15分間予備乾燥し、直径11mmに打ち抜いた後、イミド化処理して負極とした。   Specifically, SiO powder, Ketjen black, and a polyimide precursor that is a non-aqueous solvent-based binder are mixed in a mass ratio of 85: 5: 10, and NMP (n-methylpyrrolidone) is further added and kneaded. A slurry was prepared. Then, the slurry was applied onto a copper foil having a thickness of 40 μm, pre-dried at 80 ° C. for 15 minutes, punched out to a diameter of 11 mm, and then imidized to obtain a negative electrode.

作製された負極を用いてリチウムイオン二次電池を作製した。二次電池おける対極にはリチウム箔を用いた。電解質にはエチレンカーボネート、及びジエチルカーボネートを1:1の体積比で混合した溶液に、LiPF6(六フッ化リンリチウム)を1モル/リットルの割合になるように溶解させた溶液を用いた。そして、セパレータに厚さ30μmのポリエチレン製多孔質フィルムを用いて、コインセルを作製した。 A lithium ion secondary battery was produced using the produced negative electrode. Lithium foil was used as the counter electrode in the secondary battery. As the electrolyte, a solution in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 and LiPF 6 (lithium phosphorus hexafluoride) was dissolved at a ratio of 1 mol / liter was used. Then, a coin cell was produced by using a polyethylene porous film having a thickness of 30 μm as the separator.

作製されたリチウムイオン二次電池に対して、二次電池充放電試験装置(株式会社ナガノ製)を用いて充放電試験を行った。充放電の条件を表1に示す。   A charging / discharging test was performed on the manufactured lithium ion secondary battery using a secondary battery charging / discharging test device (manufactured by Nagano Co., Ltd.). Table 1 shows the charging / discharging conditions.

この充放電試験により、初回充電容量、初回充電容量に対する初回放電容量の比(初期効率)、初回の放電容量に対する3回目の放電容量の比(レート特性)、初回の放電容量に対する50回目の放電容量の比(50回目維持率)をそれぞれ求めた。   By this charge / discharge test, the initial charge capacity, the ratio of the initial discharge capacity to the initial charge capacity (initial efficiency), the ratio of the third discharge capacity to the initial discharge capacity (rate characteristic), the 50th discharge to the initial discharge capacity. The capacity ratios (50th retention rate) were determined.

(実施例2)
実施例1において、Si粉末とSiO2粉末と粉末Li源であるLiO2粉末と粉末Mg源であるMgO粉末との混合モル比で25:15:6:4とした。この比率が異なる以外は実施例1と同様の方法で、Liドープ・Mgドープを受けたCコートSiO粉末を作製した。
(Example 2)
In Example 1, the mixing molar ratio of Si powder, SiO 2 powder, LiO 2 powder as a powder Li source, and MgO powder as a powder Mg source was set to 25: 15: 6: 4. Li-doped / Mg-doped C-coated SiO powder was produced in the same manner as in Example 1 except that this ratio was different.

作製されたSiO粉末の組成はLixMgySiOz(x=0.3、y=0.1、z=1)である。また、Cコート量は1.5wt%、メディアン径D50は6.05μmである。粒子表面でのOに対するMgのモル比はys/zs=0.12、粒子内部でのOに対するMgのモル比はyi/zi=0.13である。 The composition of the produced SiO powder is Li x Mg y SiO z (x = 0.3, y = 0.1, z = 1). The C coating amount is 1.5 wt% and the median diameter D 50 is 6.05 μm. The molar ratio of Mg to O on the particle surface is ys / zs = 0.12, and the molar ratio of Mg to O inside the particle is yi / zi = 0.13.

(実施例3)
本発明のSiOx系粉末負極材を第1のドープ法により製造した。具体的にはSiOx(x=1)を析出法で作製し、粉砕した。そのSiO粉末にアルゴンとプロパンの混合ガスを炭素源とする熱CVDにより850℃でCコートを行った。そのCコートSiO粉末に対して、粉末Li源である水素化リチウムをSiOとのモル比がLi/O=0.35となるように混合した後、600℃で24時間焼成することによりLiドープを行った。
(Example 3)
The SiO x powder negative electrode material of the present invention was produced by the first doping method. Specifically, SiO x (x = 1) was prepared by a precipitation method and crushed. The SiO powder was C-coated at 850 ° C. by thermal CVD using a mixed gas of argon and propane as a carbon source. Lithium hydride, which is a powder Li source, was mixed with the C-coated SiO powder so that the molar ratio with SiO was Li / O = 0.35, and then the mixture was baked at 600 ° C. for 24 hours to perform Li doping. I went.

更に、LiドープしたCコートSiO粉末に、粉末Mg源である水素化マグネシウム粉末をモル比がMg/O=0.05となるように混合し、600℃で24時間焼成することによりMgドープを行った。この際、600℃へ昇温するときの昇温速度は300℃/Hrとした。この時点でのCコート量は0.8wt%、メディアン径D50は6.26μmである。 Further, magnesium-hydride powder, which is a powder Mg source, is mixed with Li-doped C-coated SiO powder so that the molar ratio is Mg / O = 0.05, and the mixture is baked at 600 ° C. for 24 hours to add Mg-doped powder. went. At this time, the temperature rising rate when the temperature was raised to 600 ° C. was 300 ° C./Hr. At this point, the C coating amount is 0.8 wt% and the median diameter D 50 is 6.26 μm.

Si、O、MgについてのEDXマッピング結果を図4、図5、図6にそれぞれ示す。これから求めた粒子表面でのOに対するMgのモル比はys/zs=0.3、粒子内部でのOに対するMgのモル比はyi/zi=0.001である。Mgドープ層が粒子表面に限定的に形成されていることは図6からも明らかである。   The EDX mapping results for Si, O, and Mg are shown in FIGS. 4, 5, and 6, respectively. The molar ratio of Mg to O on the particle surface obtained from this is ys / zs = 0.3, and the molar ratio of Mg to O inside the particle is yi / zi = 0.001. It is clear from FIG. 6 that the Mg-doped layer is formed only on the surface of the particles.

(実施例4)
実施例3において、CコートSiO粉末に対して、粉末Li源である水素化リチウムをSiOとのモル比がLi/O=0.37となるように混合した。また、LiドープしたSiO粉末に対して、粉末Mg源である水素化マグネシウム粉末をモル比がMg/O=0.03となるように混合した。Si、O、MgについてのEDXマッピング結果から求めた粒子表面でのOに対するMgのモル比はys/zs=0.22、粒子内部でのOに対するMgのモル比はyi/zi=0.001である。他は実施例3と同じである。
(Example 4)
In Example 3, lithium hydride as a powder Li source was mixed with the C-coated SiO powder so that the molar ratio with SiO was Li / O = 0.37. Further, magnesium hydride powder as a powder Mg source was mixed with Li-doped SiO powder so that the molar ratio was Mg / O = 0.03. The molar ratio of Mg to O on the particle surface was ys / zs = 0.22, and the molar ratio of Mg to O inside the particle was yi / zi = 0.001, which was obtained from the EDX mapping results of Si, O, and Mg. Is. Others are the same as in the third embodiment.

(実施例5)
実施例3において、CコートSiO粉末に対して、粉末Li源である水素化リチウムをSiOとのモル比がLi/O=0.39となるように混合した。また、LiドープしたSiO粉末に対して、粉末Mg源である水素化マグネシウム粉末をモル比がMg/O=0.01となるように混合した。Si、O、MgについてのEDXマッピング結果から求めた粒子表面でのOに対するMgのモル比はys/zs=0.09、粒子内部でのOに対するMgのモル比はyi/zi=0である。他は実施例3と同じである。
(Example 5)
In Example 3, lithium hydride as a powder Li source was mixed with the C-coated SiO powder so that the molar ratio with SiO was Li / O = 0.39. Further, magnesium hydride powder as a powder Mg source was mixed with Li-doped SiO powder so that the molar ratio was Mg / O = 0.01. The molar ratio of Mg to O on the particle surface obtained from the EDX mapping results for Si, O, and Mg is ys / zs = 0.09, and the molar ratio of Mg to O inside the particle is yi / zi = 0. . Others are the same as in the third embodiment.

(比較例1)
実施例3と同様の方法でCコートSiO粉末を作製した。すなわち、SiOx(x=1)を析出法で作製し、粉砕した後、そのSiO粉末に、アルゴンとプロパンの混合ガスを炭素源とする熱CVDにより850℃でCコートを行った。CコートSiO粉末におけるCコート量は1wt%、メディアン径D50は6.13μmである。このCコートSiO粉末の電池性能を実施例1と同じ方法で評価した。
(Comparative Example 1)
C-coated SiO powder was prepared in the same manner as in Example 3. That is, SiO x (x = 1) was prepared by a precipitation method, pulverized, and then the SiO powder was C-coated at 850 ° C. by thermal CVD using a mixed gas of argon and propane as a carbon source. The C coat amount in the C coat SiO powder is 1 wt%, and the median diameter D 50 is 6.13 μm. The battery performance of this C-coated SiO powder was evaluated by the same method as in Example 1.

(比較例2)
比較例1で作製したCコートSiO粉末に対して、粉末Li源である水素化リチウムをSiOとのモル比がLi/O=0.40となるように混合した後、600℃で24時間焼成することによりLiドープを行った。このLiドープSiO粉末の電池性能を実施例1と同じ方法で評価した。
(Comparative example 2)
Lithium hydride that is a powder Li source was mixed with the C-coated SiO powder produced in Comparative Example 1 so that the molar ratio with SiO was Li / O = 0.40, and then calcined at 600 ° C. for 24 hours. By doing so, Li doping was performed. The battery performance of this Li-doped SiO powder was evaluated by the same method as in Example 1.

(比較例3)
Si粉末とSiO2粉末と粉末Mg源であるMgO粉末とをモル比で7:3:4の比率で混合して原料とした。これ以外は実施例1と同様の方法でMgドープSiO粉末を作製した。作製されたSiO粉末の組成はLixMgySiOz(x=0、y=0.4、z=1)である。また、Cコート量は1.5wt%、メディアン径D50は6.05μmである。粒子表面でのOに対するMgのモル比はys/zs=0.42、粒子内部でのOに対するMgのモル比はyi/zi=0.39である。このMgドープSiO粉末の電池性能を実施例1と同じ方法で評価した。
(Comparative example 3)
Si powder, SiO 2 powder, and MgO powder as a powder Mg source were mixed at a molar ratio of 7: 3: 4 to prepare a raw material. Except for this, the Mg-doped SiO powder was produced in the same manner as in Example 1. The composition of the produced SiO powder is Li x Mg y SiO z (x = 0, y = 0.4, z = 1). The C coating amount is 1.5 wt% and the median diameter D 50 is 6.05 μm. The molar ratio of Mg to O on the particle surface is ys / zs = 0.42, and the molar ratio of Mg to O inside the particle is yi / zi = 0.39. The battery performance of this Mg-doped SiO powder was evaluated by the same method as in Example 1.

実施例1〜5及び比較例1〜3において得られた各SiO粉末の初回放電容量、初期効率、50回目維持率及びレート特性を、各粉末の組成と共に表2に示す。   Table 2 shows the initial discharge capacity, initial efficiency, 50th maintenance rate and rate characteristics of each SiO powder obtained in Examples 1 to 5 and Comparative Examples 1 to 3, together with the composition of each powder.

比較例1で作製されたSiO粉末は、LiドープもMgドープも受けていない通常のCコートSiO負極材である。また、比較例2で作製されたSiO粉末は、Liドープのみを受けたCコートSiO負極材であり、比較例3で作製されたSiO粉末は、Mgドープのみを受けたCコートSiO負極材である。   The SiO powder produced in Comparative Example 1 is a normal C-coated SiO negative electrode material that is neither Li-doped nor Mg-doped. In addition, the SiO powder prepared in Comparative Example 2 is a C-coated SiO negative electrode material that is only Li-doped, and the SiO powder prepared in Comparative Example 3 is a C-coated SiO negative electrode material that is only Mg-doped. is there.

比較例2のLiドープを受けたSiO負極材は、比較例1の通常のSiO負極材に比べると、不可逆容量キャンセル効果により初期効率に優れる。ただし、スラリー化工程での副反応により50回目維持率、すなわちサイクル特性に著しく劣る。   The Li-doped SiO negative electrode material of Comparative Example 2 is superior in initial efficiency to the normal SiO negative electrode material of Comparative Example 1 due to the irreversible capacity canceling effect. However, due to a side reaction in the slurry forming step, the 50th maintenance rate, that is, the cycle characteristic is significantly deteriorated.

一方、比較例3のMgドープを受けたSiO負極材は、比較例2のLiドープを受けたSiO負極材に比べると、同等の初期効率を示しながら、スラリー化工程での安定性向上によりサイクル特性に優れ、しかも珪酸マグネシウムのLiイオン伝導度が高いことにより、急速充放電特性であるレート特性も優れる。しかしながら、Mgの原子量が大きいことにより初回放電容量(重量あたりの容量)は大きく減少する。   On the other hand, the Mg-doped SiO negative electrode material of Comparative Example 3 showed the same initial efficiency as that of the Li-doped SiO negative electrode material of Comparative Example 2, while improving the stability in the slurrying process. Since the characteristics are excellent and the Li ion conductivity of magnesium silicate is high, the rate characteristics, which are rapid charge / discharge characteristics, are also excellent. However, since the atomic weight of Mg is large, the initial discharge capacity (capacity per weight) is greatly reduced.

これらに対し、実施例1及び2で作製されたSiO粉末は、LiドープとMgドープを併用されたSiO負極材であり、合計ドープ量は同じであるものの、LiドープとMgドープの併用により、高い初期効率及びレート特性を確保しつつ、初回放電容量を増加させる効果があり、特に注目すべきは50回目維持率を大きく高める効果があることである。なかでも、実施例2のSiO負極材は、Mgドープ量を控えたことにより初回放電容量を増加させる効果が大きい。   On the other hand, the SiO powders produced in Examples 1 and 2 are SiO negative electrode materials in which Li-doping and Mg-doping are used in combination, and although the total doping amount is the same, the combined use of Li-doping and Mg-doping results in There is an effect of increasing the initial discharge capacity while ensuring high initial efficiency and rate characteristics, and what is particularly noteworthy is the effect of greatly increasing the 50th maintenance rate. Among them, the SiO negative electrode material of Example 2 has a large effect of increasing the initial discharge capacity by reducing the Mg doping amount.

実施例3〜5で作製されたSiO粉末も、LiドープとMgドープを併用されたSiO負極材であるが、Mgが粒子表面に偏在してその表面をコートしている。このため、Mgドープ量を更に控えてもなお同等以上の高い50回目維持率を示し、なおかつ、そのMgドープ量の制限により、初回放電容量を更に増加させている。   The SiO powders produced in Examples 3 to 5 are also SiO negative electrode materials in which both Li doping and Mg doping are used, but Mg is unevenly distributed on the particle surface and coats the surface. Therefore, even if the Mg doping amount is further reduced, the same or higher high 50th maintenance rate is still exhibited, and the initial discharge capacity is further increased by the limitation of the Mg doping amount.

Claims (4)

リチウム二次電池の負極形成に使用される酸化珪素系粉末負極材であって、組成がLixMgySiOzで表され、ここでx、y及びzは正の実数であって下記条件を満たし、かつレーザ式回折式の粒度分布測定装置によって測定したメディアン径(D50)が0.5μm以上30μm以下である酸化珪素系粉末負極材。
0.5≦z≦1.5
z/5≦x+y≦z
z/100≦x かつz/100≦y
A silicon oxide-based powder negative electrode material used for forming a negative electrode of a lithium secondary battery, the composition of which is represented by Li x Mg y SiO z , where x, y, and z are positive real numbers and the following conditions are satisfied. A silicon oxide-based powder negative electrode material which is satisfied and has a median diameter (D 50 ) of 0.5 μm or more and 30 μm or less measured by a laser diffraction type particle size distribution measuring device.
0.5 ≦ z ≦ 1.5
z / 5 ≦ x + y ≦ z
z / 100≤x and z / 100≤y
請求項1に記載の酸化珪素系粉末負極材において、組成がx>yを満足する酸化珪素系粉末負極材。   The silicon oxide powder negative electrode material according to claim 1, wherein the composition satisfies x> y. 請求項1に記載の酸化珪素系粉末負極材において、組成がys/s≧(yi/zi)・5を満足する酸化珪素系粉末負極材。
ys/zsは粒子表面でのOに対するMgのモル比
yi/ziは粒子内部でのOに対するMgのモル比
The silicon oxide-based powder negative electrode material according to claim 1, wherein the composition satisfies ys / z s ≧ (yi / zi) · 5.
ys / zs is the molar ratio of Mg to O on the particle surface
yi / zi is the molar ratio of Mg to O inside the particle
請求項1に記載の酸化珪素系粉末負極材において、粉末粒子表面の少なくとも一部に導電性炭素皮膜を有し、当該導電性炭素皮膜中の炭素量が、粉末全体の質量に対する比率で表して0.5〜20wt%である酸化珪素系粉末負極材。

The silicon oxide-based powder negative electrode material according to claim 1, wherein at least a part of the surface of the powder particles has a conductive carbon coating, and the amount of carbon in the conductive carbon coating is expressed as a ratio to the mass of the entire powder. 0.5-20 wt% silicon oxide powder negative electrode material.

JP2016095100A 2016-05-11 2016-05-11 Silicon oxide powder negative electrode material Active JP6688673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016095100A JP6688673B2 (en) 2016-05-11 2016-05-11 Silicon oxide powder negative electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016095100A JP6688673B2 (en) 2016-05-11 2016-05-11 Silicon oxide powder negative electrode material

Publications (2)

Publication Number Publication Date
JP2017204374A JP2017204374A (en) 2017-11-16
JP6688673B2 true JP6688673B2 (en) 2020-04-28

Family

ID=60323410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016095100A Active JP6688673B2 (en) 2016-05-11 2016-05-11 Silicon oxide powder negative electrode material

Country Status (1)

Country Link
JP (1) JP6688673B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394389A (en) * 2016-10-19 2021-09-14 株式会社大阪钛技术 Silicon oxide-based negative electrode material and method for producing same
CN111418095A (en) * 2017-12-01 2020-07-14 大洲电子材料株式会社 Negative active material for non-aqueous electrolyte secondary battery comprising silicon oxide composite and method for preparing same
US11152613B2 (en) 2018-01-19 2021-10-19 Amprius, Inc. Stabilized, prelithiated silicon oxide particles for lithium ion battery anodes
WO2019189747A1 (en) * 2018-03-30 2019-10-03 株式会社大阪チタニウムテクノロジーズ Method for producing silicon oxide powder and negative electrode material
CN110970600B (en) * 2018-09-28 2023-06-30 贝特瑞新材料集团股份有限公司 Lithium ion secondary battery negative electrode material, and preparation method and application thereof
CN111293284B (en) * 2018-12-07 2023-02-28 贝特瑞新材料集团股份有限公司 Negative electrode material, preparation method and application thereof
WO2021118144A1 (en) 2019-12-11 2021-06-17 주식회사 엘지에너지솔루션 Anode active material, preparation method therefor, and anode and secondary battery each comprising same
EP4084133A4 (en) * 2019-12-26 2023-01-11 Ningde Amperex Technology Limited Negative electrode material and electrochemical device and electronic device containing same
US20230034396A1 (en) * 2019-12-31 2023-02-02 Amprius (Nanjing) Co., Ltd. Anode active material for batteries, and method for preparing same
WO2022059340A1 (en) * 2020-09-18 2022-03-24 株式会社村田製作所 Negative electrode active material for secondary batteries, negative electrode for secondary batteries, and secondary battery
CN112331854A (en) * 2020-10-30 2021-02-05 浙江锂宸新材料科技有限公司 Lithium magnesium silicate pre-lithiated silicon monoxide negative electrode material and preparation method and application thereof
CN114497470B (en) * 2020-11-13 2024-03-29 湖南中科星城石墨有限公司 Composite material and preparation method and application thereof
WO2023096443A1 (en) * 2021-11-29 2023-06-01 대주전자재료 주식회사 Silicon-carbon composite, method for preparing same, and negative electrode active material for lithium secondary battery comprising same
WO2024024273A1 (en) * 2022-07-29 2024-02-01 パナソニックエナジー株式会社 Secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997741B2 (en) * 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing the same
US7432015B2 (en) * 2004-02-25 2008-10-07 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
JP2007026983A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, its manufacturing method and lithium secondary battery using it
JP5369708B2 (en) * 2009-01-26 2013-12-18 旭硝子株式会社 Anode material for secondary battery and method for producing the same
JP5406799B2 (en) * 2010-07-29 2014-02-05 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
JP6013125B2 (en) * 2012-10-16 2016-10-25 住友金属鉱山株式会社 Method for producing lithium silicate compound and method for producing lithium ion battery
JP6079869B2 (en) * 2013-03-22 2017-02-15 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP6407804B2 (en) * 2015-06-17 2018-10-17 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery
JP6765984B2 (en) * 2016-03-16 2020-10-07 信越化学工業株式会社 Method for manufacturing negative electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing negative electrode for non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2017204374A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
JP6688673B2 (en) Silicon oxide powder negative electrode material
KR101970909B1 (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
JP6129404B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
US9601772B2 (en) Cathode active material for a nonaqueous electrolyte secondary battery and manufacturing method thereof, and a nonaqueous electrolyte secondary battery that uses cathode active material
JP2022518585A (en) Silicon composite negative electrode material, its preparation method and lithium ion battery
JP5450284B2 (en) Lithium titanate particles and manufacturing method thereof, negative electrode for lithium ion battery, and lithium battery
JP5610178B2 (en) Lithium composite compound particle powder and method for producing the same, non-aqueous electrolyte secondary battery
WO2011155523A1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JP5482977B2 (en) Non-aqueous electrolyte secondary battery lithium cobalt oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP4951638B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP5637102B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery
KR20130052500A (en) Composite, manufacturing method the composite, negative electrode active material including the composite, anode including the anode active material, and lithium secondary battery including the anode
JP2014123529A (en) Positive electrode material for lithium secondary battery
JP2022546323A (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including the same
WO2015199168A1 (en) Positive electrode active substance particle powder for non-aqueous electrolyte secondary battery, production method therefor, and non-aqueous electrolyte secondary battery
CN108352562B (en) Nonaqueous electrolyte secondary battery
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2015056382A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN115207298A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
TWI556494B (en) Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, lithium ion secondary battery, and method of producing positive electrode material for lithium ion secondary battery
JP2012094405A (en) Active material for nonaqueous electrolyte secondary battery, positive electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack
JP6749884B2 (en) Positive electrode material for lithium secondary batteries
JP5741969B2 (en) Lithium composite compound particle powder and method for producing the same, non-aqueous electrolyte secondary battery
KR102653877B1 (en) Composite silicon anode material for lithium secondary battery comprising lithium silicon matrix, manufacturing method therof and anode for lithium secondary battery comprising the same
JP5967101B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R150 Certificate of patent or registration of utility model

Ref document number: 6688673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250