JP6079869B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6079869B2
JP6079869B2 JP2015506608A JP2015506608A JP6079869B2 JP 6079869 B2 JP6079869 B2 JP 6079869B2 JP 2015506608 A JP2015506608 A JP 2015506608A JP 2015506608 A JP2015506608 A JP 2015506608A JP 6079869 B2 JP6079869 B2 JP 6079869B2
Authority
JP
Japan
Prior art keywords
sio
negative electrode
substance
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015506608A
Other languages
Japanese (ja)
Other versions
JPWO2014148043A1 (en
Inventor
博之 南
博之 南
麻衣 横井
麻衣 横井
達哉 明楽
達哉 明楽
井町 直希
直希 井町
泰三 砂野
泰三 砂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Application granted granted Critical
Publication of JP6079869B2 publication Critical patent/JP6079869B2/en
Publication of JPWO2014148043A1 publication Critical patent/JPWO2014148043A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

シリコン(Si)、及びSiOxで表されるシリコン酸化物は、黒鉛などの炭素材料と比べて単位体積当りの容量が高いことから、負極活物質への適用が検討されている。特に、SiOxは、充電時にLi+を吸蔵した際の体積膨張率がSiに比べて小さいことから早期の実用化が期待される。例えば、特許文献1では、SiOxを黒鉛と混合して負極活物質とした非水電解質二次電池が提案されている。Since silicon oxide represented by silicon (Si) and SiO x has a higher capacity per unit volume than carbon materials such as graphite, application to a negative electrode active material is being studied. In particular, SiO x is expected to be put to practical use at an early stage because the volume expansion coefficient when Li + is occluded during charging is smaller than that of Si. For example, Patent Document 1 proposes a nonaqueous electrolyte secondary battery in which SiO x is mixed with graphite to form a negative electrode active material.

特開2011−233245号公報JP2011-233245A

しかしながら、SiOx等を負極活物質として用いた非水電解質二次電池は、黒鉛を負極活物質として用いた場合と比較すると、サイクル特性が著しく低下するという課題がある。However, the non-aqueous electrolyte secondary battery using SiO x or the like as the negative electrode active material has a problem that the cycle characteristics are significantly lowered as compared with the case where graphite is used as the negative electrode active material.

上記課題が発生する主な要因は、充放電におけるSiOx等の体積変化が黒鉛よりも大きいことと、SiOxと電解液との反応による不可逆容量の増加である。The main causes of the above problems are that the volume change of SiO x and the like during charging and discharging is larger than that of graphite, and the increase in irreversible capacity due to the reaction between SiO x and the electrolytic solution.

上記課題を解決すべく、本発明に係る非水電解質二次電池は、SiO(0<x<2)で表される物質を含む負極活物質を備え、前記一般式中のxの値を、表面ではx、中心部ではxとした場合、x<xであり、前記物質におけるx=(x+x)/2となる表面からの深さをz(μm)、前記物質の平均粒子径をR(μm)とした場合、0.05<z、0.025≦z/R≦0.4、R≦30であることを特徴とする。 In order to solve the above problems, a non-aqueous electrolyte secondary battery according to the present invention includes a negative electrode active material containing a material represented by SiO x (0 <x <2), and the value of x in the general formula is X s on the surface and x b in the center, where x b <x s and the depth of the substance from the surface where x = (x s + x b ) / 2 is expressed as z a (μm), When the average particle diameter of the substance is R (μm), 0.05 <z a , 0.025 ≦ z a /R≦0.4 , and R ≦ 30 .

本発明によれば、負極活物質としてSiOxを用いた非水電解質二次電池において、サイクル特性を改善することができる。According to the present invention, cycle characteristics can be improved in a nonaqueous electrolyte secondary battery using SiO x as a negative electrode active material.

実験4で用いた負極活物質粒子(25サイクル後)の断面を示す電子顕微鏡像である。It is an electron microscope image which shows the cross section of the negative electrode active material particle (after 25 cycles) used in Experiment 4.

以下、本発明の実施形態について詳細に説明する。本明細書において「略**」とは、「略同等」を例に挙げて説明すると、全く同一はもとより、実質的に同一と認められるものを含む意図である。   Hereinafter, embodiments of the present invention will be described in detail. In this specification, “substantially **” is intended to include not only exactly the same, but also those that are recognized as substantially the same, with “substantially equivalent” as an example.

本発明の実施形態の一例である非水電解質二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、非水溶媒を含む非水電解質とを備える。正極と負極との間には、セパレータを設けることが好適である。非水電解質二次電池の一例としては、正極及び負極がセパレータを介して巻回されてなる電極体と、非水電解質とが外装体に収容された構造が挙げられる。   A nonaqueous electrolyte secondary battery which is an example of an embodiment of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a nonaqueous electrolyte including a nonaqueous solvent. A separator is preferably provided between the positive electrode and the negative electrode. As an example of the non-aqueous electrolyte secondary battery, there is a structure in which an electrode body in which a positive electrode and a negative electrode are wound via a separator and a non-aqueous electrolyte are housed in an exterior body.

〔正極〕
正極は、正極集電体と、正極集電体上に形成された正極活物質層とで構成されることが好適である。正極集電体には、例えば、導電性を有する薄膜体、特にアルミニウムなどの正極の電位範囲で安定な金属箔や合金箔、アルミニウムなどの金属表層を有するフィルムが用いられる。正極活物質層は、正極活物質の他に、導電材及び結着剤を含むことが好ましい。
[Positive electrode]
The positive electrode is preferably composed of a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector. For the positive electrode current collector, for example, a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the positive electrode such as aluminum, or a film having a metal surface layer such as aluminum is used. The positive electrode active material layer preferably contains a conductive material and a binder in addition to the positive electrode active material.

正極活物質は、特に限定されないが、好ましくはリチウム含有遷移金属酸化物である。リチウム含有遷移金属酸化物は、Mg、Al等の非遷移金属元素を含有するものであってもよい。具体例としては、コバルト酸リチウム、リン酸鉄リチウムに代表されるオリビン型リン酸リチウム、Ni−Co−Mn、Ni−Mn−Al、Ni−Co−Al等のリチウム含有遷移金属酸化物が挙げられる。正極活物質は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。   The positive electrode active material is not particularly limited, but is preferably a lithium-containing transition metal oxide. The lithium-containing transition metal oxide may contain non-transition metal elements such as Mg and Al. Specific examples include lithium-containing transition metal oxides such as lithium cobaltate, olivine lithium phosphate represented by lithium iron phosphate, Ni—Co—Mn, Ni—Mn—Al, and Ni—Co—Al. It is done. These positive electrode active materials may be used alone or in combination of two or more.

導電材には、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料、及びこれらの2種以上の混合物などを用いることができる。結着剤には、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリビニルアセテート、ポリアクリロニトリル、ポリビニルアルコール、及びこれらの2種以上の混合物などを用いることができる。   As the conductive material, carbon materials such as carbon black, acetylene black, ketjen black, graphite, and a mixture of two or more of these can be used. As the binder, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl acetate, polyacrylonitrile, polyvinyl alcohol, and a mixture of two or more thereof can be used.

〔負極〕
負極は、負極集電体と、負極集電体上に形成された負極活物質層とを備えることが好適である。負極集電体には、例えば、導電性を有する薄膜体、特に銅などの負極の電位範囲で安定な金属箔や合金箔、銅などの金属表層を有するフィルムが用いられる。負極活物質層は、負極活物質の他に、結着剤を含むことが好適である。結着剤としては、正極の場合と同様にポリテトラフルオロエチレン等を用いることもできるが、スチレン−ブタジエンゴム(SBR)やポリイミド等を用いることが好ましい。結着剤は、カルボキシメチルセルロース等の増粘剤と併用されてもよい。
[Negative electrode]
The negative electrode preferably includes a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector. For the negative electrode current collector, for example, a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the negative electrode such as copper, or a film having a metal surface layer such as copper is used. The negative electrode active material layer preferably contains a binder in addition to the negative electrode active material. As the binder, polytetrafluoroethylene or the like can be used as in the case of the positive electrode, but styrene-butadiene rubber (SBR), polyimide, or the like is preferably used. The binder may be used in combination with a thickener such as carboxymethylcellulose.

負極活物質には、シリコン酸化物(SiOx)が用いられる。SiOx(0<x<2)は、例えば、非晶質のSiO2マトリックス中にSiが分散した構造を有する。負極活物質として、SiOxを単独で用いてもよいが、高容量化とサイクル特性向上の両立の観点から、充放電による体積変化がSiOxよりも小さい他の負極活物質と混合して用いることが好適である。充放電による体積変化がSiOxよりも小さい他の負極活物質は、特に限定されないが、好ましくは黒鉛やハードカーボン等の炭素系活物質である。Silicon oxide (SiO x ) is used for the negative electrode active material. SiO x (0 <x <2) has, for example, a structure in which Si is dispersed in an amorphous SiO 2 matrix. As the negative electrode active material, SiO x may be used alone, but from the viewpoint of achieving both high capacity and improved cycle characteristics, the volume change due to charge / discharge is mixed with other negative electrode active materials smaller than SiO x and used. Is preferred. Other negative electrode active materials whose volume change due to charge / discharge is smaller than that of SiO x are not particularly limited, but are preferably carbon-based active materials such as graphite and hard carbon.

SiOxを、充放電による体積変化がSiOxよりも小さい他の負極活物質と混合して用いる場合、例えば、SiOxを黒鉛と混合して用いる場合、SiOxと黒鉛との割合は、質量比で1:99〜20:80が好ましい。質量比が当該範囲内であれば、高容量化とサイクル特性向上を両立し易くなる。一方、負極活物質の総質量に対するSiOxの割合が1質量%よりも低い場合は、SiOxを添加して高容量化するメリットが小さくなる。When SiO x is used in combination with another negative electrode active material whose volume change due to charge / discharge is smaller than that of SiO x , for example, when SiO x is used in combination with graphite, the ratio of SiO x to graphite is A ratio of 1:99 to 20:80 is preferred. If the mass ratio is within the range, it is easy to achieve both higher capacity and improved cycle characteristics. On the other hand, when the ratio of SiO x to the total mass of the negative electrode active material is lower than 1% by mass, the merit of increasing the capacity by adding SiO x is reduced.

シリコン酸化物は、一般式SiO(0<x<2)で表され、上記式中のxの値を、表面ではx、中心部ではxとした場合、x<xであり、SiOのx=(x+x)/2となる表面からの深さをz(μm)、SiOの平均粒子径をR(μm)とした場合、0.05<z、0.025≦z/R≦0.4である。The silicon oxide is represented by the general formula SiO x (0 <x <2). When the value of x in the above formula is x s at the surface and x b at the center, x b <x s . , if the SiO x x = (x s + x b) / 2 and becomes a depth from the surface z a (μm), an average particle diameter of SiO x was R (μm), 0.05 <z a, 0.025 ≦ z a /R≦0.4.

SiOのxの値がx<xを満たすということは、SiOの中心部よりも表面に
おける酸素濃度が高いことを意味している。また、0.05<zであることは、酸素濃度の高い層の表面からの深さが0.05μmよりも大きいことを意味している。
That the value of x of SiO x satisfies x b <x s means that the oxygen concentration at the surface is higher than the central portion of SiO x . Further, it is 0.05 <z a, depth from the surface of the high oxygen concentration layer means that greater than 0.05 .mu.m.

/Rは、0.05〜0.3がより好ましい。z/Rが小さいと、即ち、酸素濃度の高い層の表面からの深さが、SiOの粒子径に対して小さすぎると、SiOと電解液との反応が起こりやすくなる傾向がある。z/Rが大きいと、即ち、酸素濃度の高い層の表面からの深さがSiOの粒子径に対して大きすぎると、SiO中のSiの酸化による活物質の容量低下が起こりやすくなる傾向がある。z a / R is more preferably 0.05 to 0.3. When z a / R is small, i.e., depth from the surface of the high oxygen concentration layer is too small for the particle size of the SiO x, tends to react easily occurs between the SiO x and the electrolyte . When z a / R is large, i.e., when the depth from the surface of the high oxygen concentration layer is too large for the particle diameter of SiO x, capacity reduction of the active material due to oxidation of Si in SiO x is likely to occur Tend to be.

は、0.1〜20μmがより好ましく、0.25〜10μm以上がより好ましく、さらに、0.5〜5.0μm以上がより好ましい。zが小さすぎると、SiO中のSiと電解液との反応が起こりやすくなる傾向がある。zが大きすぎると、SiO中の活物質の容量低下が起こりやすくなる傾向がある。The z a is more preferably from 0.1 to 20 μm, more preferably from 0.25 to 10 μm, and further preferably from 0.5 to 5.0 μm. If z a is too small, the reaction between Si in SiO x and the electrolytic solution tends to occur. When z a is too large, the capacity of the active material in SiO x tends to decrease.

SiOの表面とは、SiOを電池に組み込んだ場合に、電解質と接触する部分を意味する。SiOの中心部とは、電池の中で電解質と接触しない部分であって、粒子の重心部を意味する。The surface of the SiO x, when incorporating SiO x battery, means a portion in contact with the electrolyte. The center part of SiO x is a part that does not come into contact with the electrolyte in the battery and means the center of gravity of the particles.

SiOの表面のxは、SiOの最表面から中心部に向かって30nmの深さまでの部分の値を意味する。SiOの中心部のxとは、粒子内部でSiOのxの値が一定値となる部分における値を意味する。 X s of the surface of the SiO x means a value of the portion from the outermost surface of the SiO x to a depth of 30nm towards the center. The x b of the central portion of the SiO x, refers to a value at a portion where the value of x in SiO x is a constant value inside the particles.

SiOの酸素濃度は、粒子の表面から内部に向かって連続的に減少している場合や酸素濃度の高い表面層と酸素濃度の低い中心部とに明確に分かれる場合が例示される。SiOの酸素濃度が、酸素濃度の高い表面層と酸素濃度の低い中心部とに分かれる場合には、表面層または/及び中心部において、酸素濃度が表面から内部に向かって連続的に減少している場合も含まれる。SiOの酸素濃度が粒子の表面から内部に向かって連続的に減少している場合は、例えば、粒子断面のSEM反射電子像を観察すると、暗い粒子表面から明るい中心部に向かって、連続的に明るさが変化している。SiOの酸素濃度が、酸素濃度の高い表面層と酸素濃度の低い中心部とに分かれる場合は、例えば、粒子断面のSEM反射電子像を観察すると、暗い表面部と明るい中心部とでコントラストが異なっている。Examples of the case where the oxygen concentration of SiO x continuously decreases from the surface of the particle toward the inside, or a case where the oxygen concentration is clearly divided into a surface layer having a high oxygen concentration and a central portion having a low oxygen concentration are exemplified. When the oxygen concentration of SiO x is divided into a surface layer having a high oxygen concentration and a central portion having a low oxygen concentration, the oxygen concentration continuously decreases from the surface toward the inside in the surface layer and / or the central portion. It is also included. When the oxygen concentration of SiO x continuously decreases from the surface of the particle toward the inside, for example, when an SEM reflected electron image of the particle cross section is observed, the oxygen concentration is continuously increased from the dark particle surface toward the bright center. The brightness has changed. When the oxygen concentration of SiO x is divided into a surface layer having a high oxygen concentration and a central portion having a low oxygen concentration, for example, when an SEM reflected electron image of the particle cross section is observed, the contrast between the dark surface portion and the bright central portion is observed. Is different.

SiOの酸素濃度が、酸素濃度の高い表面層と酸素濃度の低い中心部とに分かれる場合、SiOの最表面から、酸素濃度の高い表面層と酸素濃度の低い中心部との境界部までの距離は、zと略同等である。When the oxygen concentration of SiO x is divided into a surface layer with a high oxygen concentration and a central portion with a low oxygen concentration, from the outermost surface of SiO x to the boundary between the surface layer with a high oxygen concentration and the central portion with a low oxygen concentration Is approximately equal to z a .

SiO粒子の、表面からの深さ(z)と酸素濃度(x)との関係は、二次イオン質量分析法(SIMS)及び高周波誘導結合プラズマ(ICP)を用いて求めることが可能である。ICPでバルクSiOの酸素濃度を特定することができ、さらにSIMSでイオンエッチング法により表面から一定の厚さを除去し、残った表面のSiとOとを分析する操作を繰り返すことにより、zとxとの関係を求めることができる。SiO粒子の、表面からの深さ(z)と酸素濃度(x)との関係は、上記のほかに、イオンミリング法で粒子を切断し、EDS等を用いた粒子断面の組成分析より求めることが可能である。酸素濃度(x)は、粒子表面及び中心部のO/Siの強度比から算出することができる。The relationship between the depth (z) from the surface and the oxygen concentration (x) of the SiO x particles can be determined using secondary ion mass spectrometry (SIMS) and high frequency inductively coupled plasma (ICP). . The oxygen concentration of bulk SiO x can be specified by ICP, and a certain thickness is removed from the surface by ion etching with SIMS, and the operation of analyzing Si and O on the remaining surface is repeated, whereby z And x can be obtained. In addition to the above, the relationship between the depth (z) from the surface of the SiO x particle and the oxygen concentration (x) is obtained by cutting the particle by an ion milling method and analyzing the composition of the cross section of the particle using EDS or the like. It is possible. The oxygen concentration (x) can be calculated from the O / Si intensity ratio of the particle surface and the central part.

SiOxの平均粒径は、1〜30μmが好ましく、さらに1〜20μmが好ましく、さらに2〜15μmがより好ましい。本明細書において「平均粒径」とは、レーザー回折散乱法で測定される粒度分布において体積積算値が50%となる粒子径(体積平均粒子径;D50)を意味する。Dv50は、例えばHORIBA製「LA-750」を用いて測定できる。SiOxの平均粒径が小さいと、粒子表面積が大きくなるため、電解質との反応量が増大して容量が低下する傾向にある。一方、平均粒径が大きいと、充放電による体積変化量が大きくなる傾向にある。The average particle size of SiO x is preferably 1 to 30 μm, more preferably 1 to 20 μm, and even more preferably 2 to 15 μm. In the present specification, the “average particle diameter” means a particle diameter (volume average particle diameter; D 50 ) at which the volume integrated value becomes 50% in the particle size distribution measured by the laser diffraction scattering method. Dv 50 can be measured, for example, using “LA-750” manufactured by HORIBA. When the average particle size of SiO x is small, the particle surface area increases, so that the amount of reaction with the electrolyte increases and the capacity tends to decrease. On the other hand, when the average particle size is large, the volume change amount due to charge / discharge tends to increase.

SiOxは、その表面が電子導電性材料により被覆されていることが好適である。電子導電性材料は、SiOxよりも導電性の高い材料から構成される。電子導電性材料としては、電気化学的に安定なものが好ましく、炭素材料、金属、及び金属化合物からなる群より選択される少なくとも1種であることが好ましい。The surface of SiO x is preferably covered with an electron conductive material. The electron conductive material is made of a material having higher conductivity than SiO x . The electroconductive material is preferably electrochemically stable, and is preferably at least one selected from the group consisting of carbon materials, metals, and metal compounds.

上記炭素材料としては、カーボンブラックやアセチレンブラック、ケッチェンブラック、黒鉛、及びこれらの2種以上の混合物などを用いることができる。上記金属としては、負極において安定であるCu、Ni、及びこれらの合金などを用いることができる。上記金属化合物としては、Cu化合物、Ni化合物が例示できる。   Examples of the carbon material include carbon black, acetylene black, ketjen black, graphite, and a mixture of two or more thereof. As the metal, Cu, Ni, and alloys thereof that are stable in the negative electrode can be used. Examples of the metal compound include a Cu compound and a Ni compound.

SiOxの表面に対する電子導電性材料の被覆率は100%未満、より好ましくは5〜80%である。即ち、SiOxの表面は露出していることが好適である。上記被覆率が小さいと、SiOx粒子間の導電性が低くなる傾向にある。上記被覆率が大きいと、即ち、電子導電性材料の被覆率が100%であると、電子導電性材料と電解液との反応による副反応物が生成して、粒子に堆積しやすくなる傾向にある。The coverage of the electronic conductive material on the surface of SiO x is less than 100%, more preferably 5 to 80%. That is, it is preferable that the surface of SiO x is exposed. When the coverage is small, the conductivity between SiO x particles tends to be low. When the coverage is large, that is, when the coverage of the electronic conductive material is 100%, a side reaction product due to the reaction between the electronic conductive material and the electrolytic solution is generated and tends to be easily deposited on the particles. is there.

上記電子導電性材料は、SiOxの表面に付着していることが好適である。The electronic conductive material is preferably attached to the surface of SiO x .

SiOxの表面を被覆する電子導電性材料の平均厚みは、導電性の確保とSiOx等へのLi+の拡散性を考慮して、1〜200nmが好ましく、5〜100nmがより好ましい。The average thickness of the electron conductive material covering the surface of the SiO x, taking into account the Li + diffusion properties to the conductive secure and SiO x or the like is preferably 1 to 200 nm, 5 to 100 nm is more preferable.

電子導電性材料によりSiOxの表面を被覆する方法は、例えば、CVD法やスパッタリング法、電解メッキ法、無電解メッキ法及び石炭ピッチ法等を使用して形成できる。例えば、SiOx粒子の表面に炭素材料からなる被覆をCVD法により形成する場合、SiOx粒子と炭化水素系ガスを気相中にて加熱し、炭化水素系ガスの熱分解により生じた炭素をSiOx粒子上に堆積させる。炭化水素系ガスとしては、メタンガスやアセチレンガスを用いることができる。As a method for coating the surface of SiO x with an electronic conductive material, for example, a CVD method, a sputtering method, an electrolytic plating method, an electroless plating method, a coal pitch method, or the like can be used. For example, when a coating made of a carbon material is formed on the surface of SiO x particles by a CVD method, the SiO x particles and a hydrocarbon-based gas are heated in a gas phase, and carbon generated by thermal decomposition of the hydrocarbon-based gas is removed. Deposit on SiO x particles. As the hydrocarbon gas, methane gas or acetylene gas can be used.

SiOxの表面からzまでの領域が、リチウムシリケート相を備えることが好適である。SiOxの表面の酸素濃度が高いと、SiOx中のSiと電解液とが反応しやすくなり、これにより、リチウムシリケート相が形成される。SiOxの表面からzまでの領域がリチウムシリケート相を備えるようになると、以降のSiOxと電解液との反応が抑制される。リチウムシリケートは、Li4SiO4、Li2SiO3、Li2Si25、Li8SiO6等が例示される。It is preferable that the region from the surface of SiO x to z a comprises a lithium silicate phase. When the oxygen concentration on the surface of SiO x is high, Si in the SiO x easily reacts with the electrolytic solution, thereby forming a lithium silicate phase. When the region from the surface of SiO x to z a has a lithium silicate phase, the subsequent reaction between SiO x and the electrolytic solution is suppressed. Examples of the lithium silicate include Li 4 SiO 4 , Li 2 SiO 3 , Li 2 Si 2 O 5 , and Li 8 SiO 6 .

SiO(0<x<2)で表される物質を含む負極活物質を備え、前記一般式中のxの値を、表面ではx、中心部ではxとした場合、x<xであり、前記物質におけるx=(x+x)/2となる表面からの深さをz(μm)、前記物質の平均粒子径をR(μm)とした場合、0.05<z、0.025≦z/R≦0.4を満たすSiOは、例えば、以下の方法で得ることができる。一般式SiO(0<x<2)で表される物質を含む負極活物質を備え、前記物質の表面の5%〜80%が電子導電性材料により被覆され、前記電子導電性材料は、前記物質の表面に付着している非水電解質二次電池を、25サイクル以上充放電する。When a negative electrode active material containing a material represented by SiO x (0 <x <2) is provided and the value of x in the general formula is x s at the surface and x b at the center, x b <x a s, x in the material = (x s + x b) / 2 and becomes a depth from the surface z a (μm), if the average particle size of the material was R (μm), 0.05 < SiO x satisfying z a and 0.025 ≦ z a /R≦0.4 can be obtained, for example, by the following method. A negative electrode active material containing a substance represented by the general formula SiO x (0 <x <2) is provided, 5% to 80% of the surface of the substance is covered with an electronic conductive material, and the electronic conductive material is The nonaqueous electrolyte secondary battery adhering to the surface of the substance is charged and discharged for 25 cycles or more.

〔非水電解質〕
非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質(非水電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。非水溶媒には、例えば、エステル類、エーテル類、ニトリル類(アセトニトリル等)、アミド類(ジメチルホルムアミド等)、及びこれらの2種以上の混合溶媒などを用いることができる。
[Non-aqueous electrolyte]
The non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent. The nonaqueous electrolyte is not limited to a liquid electrolyte (nonaqueous electrolyte solution), and may be a solid electrolyte using a gel polymer or the like. Examples of non-aqueous solvents that can be used include esters, ethers, nitriles (acetonitrile, etc.), amides (dimethylformamide, etc.), and a mixture of two or more of these.

上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状カーボネート、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン等のカルボン酸エステル類などが挙げられる。   Examples of the esters include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate (DEC), methyl propyl carbonate, ethyl propyl carbonate, methyl isopropyl carbonate, and the like. Examples thereof include carboxylic acid esters such as chain carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and γ-butyrolactone.

上記エーテル類の例としては、1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、プロピレンオキシド、1,2−ブチレンオキシド、1,3−ジオキサン、フラン、1,8−シネオール等の環状エーテル、1,2−ジメトキシエタン、エチルビニルエーテル、エチルフェニルエーテル、1,2−ジエトキシエタン、1,2−ジブトキシエタン、ジエチレングリコールジメチルエーテル、1,1−ジメトキシメタン、1,1−ジエトキシエタン、トリエチレングリコールジメチルエーテル等の鎖状エーテル類などが挙げられる。   Examples of the ethers include cyclic ethers such as 1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, furan, and 1,8-cineol. , 2-dimethoxyethane, ethyl vinyl ether, ethyl phenyl ether, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, 1,1-dimethoxymethane, 1,1-diethoxyethane, triethylene glycol Examples include chain ethers such as dimethyl ether.

非水溶媒としては、上記例示した溶媒のうち、少なくとも環状カーボネートを用いることが好ましく、環状カーボネートと鎖状カーボネートを併用することがより好ましい。また、非水溶媒には、各種溶媒の水素をフッ素等のハロゲン原子で置換したハロゲン置換体を用いてもよい。非水溶媒は、ビニレンカーボネートまたはフルオロエチレンカーボネートを含むことが好適である。   As the non-aqueous solvent, it is preferable to use at least a cyclic carbonate among the solvents exemplified above, and it is more preferable to use a cyclic carbonate and a chain carbonate in combination. Moreover, you may use the halogen substituted body which substituted hydrogen of various solvents with halogen atoms, such as a fluorine, as a non-aqueous solvent. The non-aqueous solvent preferably contains vinylene carbonate or fluoroethylene carbonate.

電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiPF、LiBF、LiAsF、LiN(SOCF、LiN(SOCF、LiPF6−x(C2n+1(1<x<6,nは1又は2)などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。リチウム塩の濃度は、非水溶媒1L当り0.8〜1.8molとすることが好ましい。The electrolyte salt is preferably a lithium salt. Examples of lithium salts include LiPF 6 , LiBF 4 , LiAsF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 5 ) 2 , LiPF 6-x (C n F 2n + 1 ) x (1 <x < 6, n is 1 or 2). These lithium salts may be used alone or in combination of two or more. The concentration of the lithium salt is preferably 0.8 to 1.8 mol per liter of the nonaqueous solvent.

〔セパレータ〕
セパレータには、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のポリオレフィンが好適である。
[Separator]
As the separator, a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric. As the material of the separator, polyolefin such as polyethylene and polypropylene is suitable.

以下、実施例により本発明をさらに説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to these Examples.

<実験1>
[正極の作製]
コバルト酸リチウム、アセチレンブラック、ポリフッ化ビニリデンを質量比で、95:2.5:2.5の割合で混合して、N−メチル−ピロリドン(NMP)に添加した。これを混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、正極合剤層形成用スラリーを調製した。上記スラリーを、アルミニウム箔の両面に塗布し、大気中105℃で乾燥し、圧延することにより正極を作製した。正極合剤層の充填密度は3.6g/mlであった。
<Experiment 1>
[Production of positive electrode]
Lithium cobaltate, acetylene black, and polyvinylidene fluoride were mixed at a mass ratio of 95: 2.5: 2.5 and added to N-methyl-pyrrolidone (NMP). This was stirred using a mixer (manufactured by Primics, TK Hibismix) to prepare a slurry for forming a positive electrode mixture layer. The slurry was applied to both surfaces of an aluminum foil, dried at 105 ° C. in the air, and rolled to produce a positive electrode. The packing density of the positive electrode mixture layer was 3.6 g / ml.

[負極の作製]
平均一次粒子径が5.0μmであるSiO(x=0.93、)を準備し、その表面に、メタンを使用し、熱CVD法で、SiO表面に対する炭素被覆率が5%となるように成膜した。このSiOと、黒鉛とを、質量比で5:95となるように混合したものを負極活物質として用いた。この負極活物質と、カルボキシメチルセルロース(CMC、ダイセルファインケム社製、♯1380、エーテル化度:1.0〜1.5)と、SBRとを、質量比で97.5:1.0:1.5となるように混合し、希釈溶媒としての水を添加した。これを混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、負極合剤層形成用スラリーを調製した。上記スラリーを、銅箔の両面上に塗布し、これを大気中105℃で乾燥し、圧延することにより負極を作製した。負極合剤層の充填密度は、1.60g/mlであった。
[Production of negative electrode]
SiO x (x = 0.93,) having an average primary particle size of 5.0 μm is prepared, methane is used on the surface, and the carbon coverage on the SiO x surface is 5% by the thermal CVD method. The film was formed as follows. And the SiO x, and graphite, was a mixture so 5:95 by mass ratio as the negative electrode active material. This negative electrode active material, carboxymethylcellulose (CMC, manufactured by Daicel Finechem, # 1380, degree of etherification: 1.0 to 1.5), and SBR were 97.5: 1.0: 1. 5 was added, and water as a diluent solvent was added. This was stirred using a mixer (manufactured by Primics, TK Hibismix) to prepare a slurry for forming a negative electrode mixture layer. The slurry was applied on both sides of a copper foil, dried at 105 ° C. in the atmosphere, and rolled to prepare a negative electrode. The packing density of the negative electrode mixture layer was 1.60 g / ml.

[非水電解液の調製]
六フッ化リン酸リチウムLiPFを、エチレンカーボネート(EC):ジエチルカーボネート(DEC)=3:7(容積比)となるように混合した混合溶媒に1.0モル/リットルとなるように添加して、非水電解液を調製した。
[Preparation of non-aqueous electrolyte]
Lithium hexafluorophosphate LiPF 6 was added to a mixed solvent mixed so that ethylene carbonate (EC): diethyl carbonate (DEC) = 3: 7 (volume ratio) to 1.0 mol / liter. Thus, a non-aqueous electrolyte was prepared.

[電池C1の作製]
上記各電極にタブをそれぞれ取り付け、タブが最外周部に位置するようにセパレータを介して上記正極及び上記負極を渦巻き状に巻回して巻回電極体を作製した。当該電極体をアルミニウムラミネートシートで構成される外装体に挿入して、105℃で2時間真空乾燥した後、上記非水電解液を注入し、外装体の開口部を封止して電池C1を作製した。電池C1の設計容量は800mAhである。
[Production of Battery C1]
A tab was attached to each of the electrodes, and the positive electrode and the negative electrode were wound in a spiral shape through a separator so that the tab was positioned on the outermost periphery, thereby preparing a wound electrode body. The electrode body is inserted into an exterior body made of an aluminum laminate sheet and vacuum-dried at 105 ° C. for 2 hours, and then the non-aqueous electrolyte is injected, and the opening of the exterior body is sealed to form the battery C1. Produced. The design capacity of the battery C1 is 800 mAh.

<実験2>
平均一次粒子径が1.0μmであるSiO(x=0.93、)を用い、SiO表面に対する炭素被覆率が50%となるよう成膜したこと以外は、実験1と同様の方法で、電池C2を作製した。
<Experiment 2>
Except that SiO x (x = 0.93) with an average primary particle diameter of 1.0 μm was used and the film was formed so that the carbon coverage on the SiO x surface was 50%, the same method as in Experiment 1 was used. A battery C2 was produced.

<実験3>
SiOに対して10質量%の石炭ピッチを添加して、800℃で2時間、熱処理を行うことにより、SiO表面に対する炭素被覆率が50%となるよう成膜したこと以外は、実験1と同様の方法で、電池C3を作製した。
<Experiment 3>
By adding coal pitch of 10 wt% with respect to SiO x, except for two hours at 800 ° C., by performing heat treatment, the carbon coverage for SiO x surface is formed so as to be 50%, Experiment 1 A battery C3 was produced in the same manner as described above.

<実験4>
SiO表面に対する炭素被覆率が50%となるよう成膜したこと以外は、実験1と同様の方法で、電池C4を作製した。
<Experiment 4>
A battery C4 was produced in the same manner as in Experiment 1 except that the film was formed so that the carbon coverage with respect to the SiO x surface was 50%.

<実験5>
平均一次粒子径が20μmであるSiO(x=0.93、)を用い、SiO表面に対する炭素被覆率が50%となるよう成膜したこと以外は、実験1と同様の方法で、電池C5を作製した。
<Experiment 5>
A battery was prepared in the same manner as in Experiment 1 except that SiO x (x = 0.93) having an average primary particle diameter of 20 μm was used and the carbon coverage on the SiO x surface was 50%. C5 was produced.

<実験6>
SiO表面に対する炭素被覆率が80%となるよう成膜したこと以外は、実験1と同様の方法で、電池C6を作製した。
<Experiment 6>
A battery C6 was produced in the same manner as in Experiment 1 except that the film was formed so that the carbon coverage with respect to the SiO x surface was 80%.

<実験7>
SiO表面に炭素被覆しなかったこと以外は、実験1と同様の方法で、電池R1を作製した。
<Experiment 7>
A battery R1 was produced in the same manner as in Experiment 1 except that the SiO x surface was not coated with carbon.

<実験8>
SiO表面に対する炭素被覆率が100%となるよう成膜したこと以外は、実験1と同様の方法で、電池R2を作製した。
<Experiment 8>
A battery R2 was produced in the same manner as in Experiment 1 except that the film was formed so that the carbon coverage on the SiO x surface was 100%.

<実験9>
平均一次粒子径が1.0μmであるSiO(x=0.93、)を用い、SiO表面に対する炭素被覆率が100%となるよう成膜したこと以外は、実験1と同様の方法で、電池R3を作製した。
<Experiment 9>
Except that SiO x (x = 0.93,) with an average primary particle size of 1.0 μm was used and the film was formed so that the carbon coverage on the SiO x surface was 100%, the same method as in Experiment 1 was used. A battery R3 was produced.

<実験10>
平均一次粒子径が20μmであるSiO(x=0.93、)を用い、SiO表面に対する炭素被覆率が100%となるよう成膜したこと以外は、実験1と同様の方法で、電池R4を作製した。
<Experiment 10>
A battery was prepared in the same manner as in Experiment 1 except that SiO x (x = 0.93) having an average primary particle diameter of 20 μm was used and the carbon coverage on the SiO x surface was 100%. R4 was produced.

<電池性能評価>
電池C1〜C6及びR1〜R4について、サイクル特性評価を行い、表1に示した。
<Battery performance evaluation>
The batteries C1 to C6 and R1 to R4 were evaluated for cycle characteristics and are shown in Table 1.

[サイクル試験]
・ 充電;1.0Itの電流で電圧が4.2Vになるまで定電流充電を行い、その後電圧が4.2Vで0.05Itの電流になるまで定電圧充電を行った。
・ 放電;1.0Itの電流で電圧が2.75Vになるまで定電流放電を行った。
・ 休止;上記充電と上記放電との間の休止時間は10分とした。
1サイクル目の放電容量の80%に達するまでのサイクル数を測定し、サイクル寿命とした。なお、サイクル寿命は、電池C4のサイクル寿命を100とした指数である。
[Cycle test]
Charging: Constant current charging was performed at a current of 1.0 It until the voltage reached 4.2 V, and then constant voltage charging was performed at a voltage of 4.2 V until reaching a current of 0.05 It.
Discharge: Constant current discharge was performed until the voltage reached 2.75 V at a current of 1.0 It.
-Rest: The rest time between the charge and the discharge was 10 minutes.
The number of cycles to reach 80% of the discharge capacity at the first cycle was measured and defined as the cycle life. The cycle life is an index with the cycle life of the battery C4 as 100.

<z及びz/R>
不活性雰囲気下、25サイクル後及び100サイクル後の電池を分解し、負極を、イオンミリング装置を用いて切断し、切断面をSEMで観察すると共に、EDSを用いて組成分析を行い、SiO表面付近のO/Si比(x)、中心付近のO/Si比(x)を測定すると共に、x=(x+x)/2となる点の表面からの距離をz(μm)とした。また、レーザー回折散乱法で測定した平均粒子径(D50)をR(μm)とし、z/Rの値を算出した。また、電池C4の負極の断面SEM像を図1に示した。
<Z a and z a / R>
Under an inert atmosphere, the battery was disassembled after 25 cycles and after 100 cycles, the negative electrode was cut by ion milling apparatus, while observing the cut surface with SEM, it performs a composition analysis using EDS, SiO x The O / Si ratio (x s ) near the surface and the O / Si ratio (x b ) near the center are measured, and the distance from the surface of the point where x = (x s + x b ) / 2 is determined as z a ( μm). The average particle size measured by a laser diffraction scattering method (D 50) and R ([mu] m), and calculates the value of z a / R. Moreover, the cross-sectional SEM image of the negative electrode of battery C4 was shown in FIG.

Figure 0006079869
Figure 0006079869

表1から解るように、z/Rが0.025〜0.4を満たす電池C1〜C6は、R1〜R4と比較して、サイクル寿命が向上した。電池C4のサイクル寿命は、250サイクルであった。As can be seen from Table 1, the batteries C1 to C6 that satisfy z a / R of 0.025 to 0.4 have improved cycle life compared to R1 to R4. The cycle life of the battery C4 was 250 cycles.

電池C1〜C6で用いたSiO(25サイクル後)の表面層の酸素濃度は、電池R2〜R4で用いたSiO(25サイクル後)の酸素濃度(粒子内均一濃度)よりも高かった。即ち、電池C1〜C6で用いたSiO(25サイクル後)の表面層は、電池R2〜R4で用いたSiO(25サイクル後)の表面に比べて、活性なSiが少なかったと考えられる。SiO表面の活性なSiと電解液との反応が起こりにくくなり、副反応物が堆積しにくくなったことで、電池C1〜C6のサイクル寿命が向上したと考えられる。The oxygen concentration of the surface layer of SiO x (after 25 cycles) used in batteries C1 to C6 was higher than the oxygen concentration (uniform concentration in particles) of SiO x (after 25 cycles) used in batteries R2 to R4. That is, it is considered that the surface layer of SiO x (after 25 cycles) used in the batteries C1 to C6 had less active Si than the surface of SiO x (after 25 cycles) used in the batteries R2 to R4. It is considered that the cycle life of the batteries C1 to C6 is improved because the reaction between the active Si on the surface of the SiO x and the electrolytic solution is less likely to occur and the side reaction product is less likely to be deposited.

電池C1〜C6で用いたSiO(25サイクル後)の表面層には、リチウムシリケート相が存在することが、オージェ電子分光法により確認された。SiOの表面層にリチウムシリケート相が生成することにより、SiOxと電解液との反応がより一層抑制され、副反応物がより一層堆積しにくくなったことで、電池C1〜C6のサイクル寿命が向上したと考えられる。It was confirmed by Auger electron spectroscopy that a lithium silicate phase was present in the surface layer of SiO x (after 25 cycles) used in the batteries C1 to C6. By lithium silicate phase is formed on the surface layer of SiO x, reaction of the SiO x and the electrolytic solution is further suppressed, that side reaction products become less likely to further deposition cycle life of the battery C1~C6 Is thought to have improved.

電池C1〜C6で用いたSiO(25サイクル後)の表面層の酸素濃度は、電池R1で用いたSiO(25サイクル後)の表面層の酸素濃度よりも低かった。即ち、電池C1〜C6で用いたSiO(25サイクル後)の表面層は、電池R1で用いたSiO(25サイクル後)の表面に比べて、活性なSiが多かったと考えられる。それにも関わらず、電池R1のサイクル寿命が電池C1〜C6よりも大きく低下したのは、SiOの表面においてSiの酸化が進行しすぎたことにより、サイクル進行に伴う活物質自体の容量低下が起こったためであると考えられる。The oxygen concentration of the surface layer of SiO x (after 25 cycles) used in batteries C1 to C6 was lower than the oxygen concentration of the surface layer of SiO x (after 25 cycles) used in battery R1. That is, it is considered that the surface layer of SiO x (after 25 cycles) used in the batteries C1 to C6 contained more active Si than the surface of SiO x (after 25 cycles) used in the battery R1. Nevertheless, the cycle life of the battery R1 is significantly lower than that of the batteries C1 to C6 because the oxidation of Si proceeds too much on the surface of the SiO x , resulting in a decrease in capacity of the active material itself as the cycle progresses. It is thought that it was because it happened.

なお、電池C1、C2及びC6で用いた100サイクル後のSiOは、25サイクル後のSiOと比べて、z及びRは共に大きくなる傾向があったが、z/Rの値は殆ど変わっていなかった。In addition, the SiO x after 100 cycles used in the batteries C1, C2, and C6 tended to have both z a and R larger than the SiO x after 25 cycles, but the value of z a / R was It has hardly changed.

電池C1〜C6及びR1〜R4のサイクル試験は、上述した条件で行ったが、一般に知られているサイクル試験の充放電条件であれば、表1と同等の結果が得られると考えられる。即ち、充放電時の定電流値が0.2It〜20It、充電終止電圧が4.2〜4.7V及び放電終止電圧が2.0〜3.1Vであれば、表1と同等の結果が得られると考えられる。   Although the cycle tests of the batteries C1 to C6 and R1 to R4 were performed under the above-described conditions, it is considered that the same results as in Table 1 can be obtained if the charge / discharge conditions of the generally known cycle test are used. That is, if the constant current value during charging / discharging is 0.2 It to 20 It, the charge end voltage is 4.2 to 4.7 V, and the discharge end voltage is 2.0 to 3.1 V, the result equivalent to Table 1 is obtained. It is thought that it is obtained.

<実験11>
SiO表面に対する炭素被覆率が50%となるよう成膜し、非水電解液にビニレンカーボネートを2質量%添加したこと以外は、実験1と同様の方法で、電池C7を作製した。
<Experiment 11>
A battery C7 was produced in the same manner as in Experiment 1, except that the carbon coverage on the SiO x surface was 50% and that 2% by weight of vinylene carbonate was added to the non-aqueous electrolyte.

<実験12>
SiO表面に対する炭素被覆率が50%となるよう成膜し、非水電解液にフルオロエチレンカーボネートを2質量%添加したこと以外は、実験1と同様の方法で、電池C8を作製した。
<Experiment 12>
A battery C8 was produced in the same manner as in Experiment 1, except that the carbon coverage on the SiO x surface was 50% and that 2% by mass of fluoroethylene carbonate was added to the non-aqueous electrolyte.

<電池性能評価>
電池C7、C8について、上記のサイクル特性評価を行い、表2に示した。
<Battery performance evaluation>
The battery C7 and C8 were subjected to the above cycle characteristic evaluation and are shown in Table 2.

Figure 0006079869
Figure 0006079869

表2から解るように、電解液がビニレンカーボネートやフルオロエチレンカーボネートを含むと、サイクル寿命が向上する。SiO表面に緻密な皮膜が形成されることで、SiOの表面と電解液との反応や、SiO表面を被覆する炭素と電解液との反応が抑制されて、副反応物の生成と堆積が抑制されたことによるものと考えられる。


As can be seen from Table 2, when the electrolytic solution contains vinylene carbonate or fluoroethylene carbonate, the cycle life is improved. By dense film on SiO x is formed on the surface of the reaction and with the surface of the SiO x and the electrolyte, the reaction between the carbon and the electrolyte covering the SiO x surface is suppressed, and generation of side reaction products This is thought to be due to the suppression of deposition.


Claims (4)

一般式SiO(0<x<2)で表される物質を含む負極活物質を備える非水電解質二次電池であって、
前記一般式中のxの値を、前記物質の表面ではx、前記物質の中心部ではxとした場合、x<xであり、前記物質におけるx=(x+x)/2となる最表面からの深さをz(μm)、前記物質の平均粒子径をR(μm)とした場合、0.05<z、0.025≦z/R≦0.4、R≦30である、非水電解質二次電池。
A nonaqueous electrolyte secondary battery comprising a negative electrode active material containing a material represented by a general formula SiO x (0 <x <2),
When the value of x in the general formula is x s at the surface of the substance and x b at the center of the substance, x b <x s and x = (x s + x b ) / in the substance When the depth from the outermost surface to be 2 is z a (μm) and the average particle diameter of the substance is R (μm), 0.05 <z a , 0.025 ≦ z a /R≦0.4 , R ≦ 30 , a non-aqueous electrolyte secondary battery.
前記物質の表面が電子導電性材料により被覆され、
前記物質の表面に対する前記電子導電性材料の被覆率は100%未満であり、
前記電子導電性材料は、前記物質の表面に付着している、請求項1に記載の非水電解質二次電池。
The surface of the substance is coated with an electronically conductive material;
The coverage of the electronic conductive material on the surface of the substance is less than 100%,
The non-aqueous electrolyte secondary battery according to claim 1, wherein the electronic conductive material is attached to a surface of the substance.
前記物質の表面に対する前記電子導電性材料の被覆率が、5%〜80%である、請求項2に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 2, wherein a coverage of the electronic conductive material on a surface of the substance is 5% to 80%. 前記物質の表面からzまでの領域が、リチウムシリケート相を備える、請求項1〜3のいずれか1項に記載の非水電解質二次電池。


The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein a region from a surface of the substance to za includes a lithium silicate phase.


JP2015506608A 2013-03-22 2014-03-18 Nonaqueous electrolyte secondary battery Active JP6079869B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013059222 2013-03-22
JP2013059222 2013-03-22
JP2013068548 2013-03-28
JP2013068548 2013-03-28
PCT/JP2014/001536 WO2014148043A1 (en) 2013-03-22 2014-03-18 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP6079869B2 true JP6079869B2 (en) 2017-02-15
JPWO2014148043A1 JPWO2014148043A1 (en) 2017-02-16

Family

ID=51579740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015506608A Active JP6079869B2 (en) 2013-03-22 2014-03-18 Nonaqueous electrolyte secondary battery

Country Status (4)

Country Link
US (1) US20160049639A1 (en)
JP (1) JP6079869B2 (en)
CN (1) CN105074973A (en)
WO (1) WO2014148043A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6853616B2 (en) * 2015-03-24 2021-03-31 株式会社東芝 Electrodes for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries, and battery packs
JP6688673B2 (en) * 2016-05-11 2020-04-28 株式会社大阪チタニウムテクノロジーズ Silicon oxide powder negative electrode material
JP6969483B2 (en) * 2018-04-09 2021-11-24 トヨタ自動車株式会社 Lithium-ion secondary battery and its manufacturing method
JP7259690B2 (en) * 2019-10-02 2023-04-18 トヨタ自動車株式会社 Composite active material
CN111180692B (en) * 2019-12-31 2021-10-08 安普瑞斯(南京)有限公司 Negative electrode active material for battery and preparation method thereof
JP7443851B2 (en) 2020-03-17 2024-03-06 大同特殊鋼株式会社 Powder material for negative electrode of lithium ion battery and its manufacturing method
JP7364125B2 (en) * 2021-10-25 2023-10-18 Dic株式会社 Composite active materials for secondary batteries and secondary batteries
WO2023162961A1 (en) * 2022-02-25 2023-08-31 パナソニックエナジー株式会社 Negative electrode for secondary batteries, and secondary battery
WO2023199543A1 (en) * 2022-04-13 2023-10-19 パナソニックIpマネジメント株式会社 Composite active material particles, battery, and method for producing composite active material particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373653A (en) * 2001-06-15 2002-12-26 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery
JP2005085717A (en) * 2003-09-11 2005-03-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119176A (en) * 2002-09-26 2004-04-15 Toshiba Corp Negative electrode active material for nonaqueous electrolyte rechargeable battery, and nonaqueous electrolyte rechargeable battery
KR101578262B1 (en) * 2012-07-24 2015-12-28 주식회사 엘지화학 Porous silicon based electrode active material and secondary battery comprising the same
KR101634843B1 (en) * 2012-07-26 2016-06-29 주식회사 엘지화학 Electrode active material for secondary battery
JP2015232921A (en) * 2012-09-27 2015-12-24 三洋電機株式会社 Negative electrode for lithium secondary battery, and lithium secondary battery
JP6092558B2 (en) * 2012-09-27 2017-03-08 三洋電機株式会社 Method for producing negative electrode active material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373653A (en) * 2001-06-15 2002-12-26 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery
JP2005085717A (en) * 2003-09-11 2005-03-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JPWO2014148043A1 (en) 2017-02-16
WO2014148043A1 (en) 2014-09-25
US20160049639A1 (en) 2016-02-18
CN105074973A (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP6079869B2 (en) Nonaqueous electrolyte secondary battery
JP6407727B2 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery using the negative electrode active material, and nonaqueous electrolyte secondary battery using the negative electrode
JP6685937B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6744291B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2016035289A1 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6314990B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the negative electrode active material
WO2015098023A1 (en) Negative electrode for non-aqueous electrolyte secondary cell
JP2009238663A (en) Nonaqueous secondary battery
JPWO2017056364A1 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2005340056A (en) Nonaqueous electrolyte secondary battery
JP5528564B2 (en) Nonaqueous electrolyte secondary battery
WO2012111545A1 (en) Non-aqueous electrolyte secondary battery
JP2013110105A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery including the negative electrode
WO2020003595A1 (en) Nonaqueous electrolyte secondary battery
JP7499443B2 (en) Non-aqueous electrolyte secondary battery
WO2016151979A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
JP2019149348A (en) Nonaqueous electrolyte secondary battery and manufacturing method of the nonaqueous electrolyte secondary battery
JP2007207465A (en) Nonaqueous electrolyte secondary battery
JP2021118149A (en) Negative electrode active substance for nonaqueous electrolyte secondary battery, negative electrode material for nonaqueous electrolyte secondary battery, and lithium ion secondary battery
JP5941999B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using them
JP5933252B2 (en) Non-aqueous secondary battery
JP2015179606A (en) Negative electrode active material for lithium ion secondary batteries, manufacturing method thereof, and lithium ion secondary battery arranged by use of negative electrode active material
WO2021039119A1 (en) Nonaqueous electrolyte secondary battery
JP6459953B2 (en) Lithium ion battery
JP2014146518A (en) Nonaqueous electrolyte for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170102

R151 Written notification of patent or utility model registration

Ref document number: 6079869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350