JP2010170867A - Positive electrode active material for nonaqueous secondary battery, and charge and discharge method of nonaqueous secondary battery - Google Patents

Positive electrode active material for nonaqueous secondary battery, and charge and discharge method of nonaqueous secondary battery Download PDF

Info

Publication number
JP2010170867A
JP2010170867A JP2009012876A JP2009012876A JP2010170867A JP 2010170867 A JP2010170867 A JP 2010170867A JP 2009012876 A JP2009012876 A JP 2009012876A JP 2009012876 A JP2009012876 A JP 2009012876A JP 2010170867 A JP2010170867 A JP 2010170867A
Authority
JP
Japan
Prior art keywords
fef
positive electrode
secondary battery
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009012876A
Other languages
Japanese (ja)
Inventor
Junichi Niwa
淳一 丹羽
Kimitoshi Murase
仁俊 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2009012876A priority Critical patent/JP2010170867A/en
Publication of JP2010170867A publication Critical patent/JP2010170867A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode active material for a non-aqueous secondary battery which consists of FeF<SB>3</SB>and shows stable charge and discharge characteristics even if FeF<SB>3</SB>is decomposed, and provide a charge and discharge method which is suitable for the non-aqueous secondary battery using the positive electrode active material. <P>SOLUTION: The positive electrode active material consists of FeF<SB>3</SB>powder that is capable of intercalation and desorption of alkali metal ions. The FeF<SB>3</SB>powder is impalpable powder of half-width of 0.2 rad or more of diffraction peak in (012) plane by X-ray diffraction. In the non-aqueous secondary battery having the positive electrode containing this positive electrode active material, charge and discharge is carried out in a voltage range in which reversible redox to generate Fe from FeF<SB>3</SB>by discharge and to regenerate FeF<SB>3</SB>from Fe by charge is performed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン二次電池などの非水系二次電池に関するものであり、特に、非水系二次電池用正極活物質に関するものである。   The present invention relates to a non-aqueous secondary battery such as a lithium ion secondary battery, and more particularly to a positive electrode active material for a non-aqueous secondary battery.

リチウムイオン二次電池などの二次電池は、小型で大容量であるため、携帯電話やノートパソコンといった幅広い分野で用いられている。リチウムイオン二次電池は、リチウム(Li)を挿入および脱離することができる活物質を正極と負極にそれぞれ有する。そして、両極間に設けられた電解液内をLiイオンが移動することによって動作する。   Secondary batteries such as lithium ion secondary batteries are small and have a large capacity, and are therefore used in a wide range of fields such as mobile phones and notebook computers. A lithium ion secondary battery has an active material capable of inserting and removing lithium (Li) in each of a positive electrode and a negative electrode. And it operate | moves because Li ion moves in the electrolyte solution provided between both electrodes.

二次電池の性能は、二次電池を構成する正極、負極および電解質の材料に左右される。特に、活物質を形成する活物質材料の研究開発が活発に行われている。正極活物質には、遷移金属の酸化物あるいは複合酸化物が用いられることが多い。たとえば、特許文献1には、遷移金属(M)を含むLi4−bで表される正極活物質が開示されている。Mの具体例として、Co、Ni、Mn等の一般的な遷移金属の他、毒性が低く資源的に豊富で低廉なFeが用いられている。また、最近では、特許文献2および特許文献3に開示されているように、正極活物質として遷移金属ハロゲン化物を用いた二次電池も注目されている。特に、フッ化鉄(FeF)は、同じ遷移金属ハロゲン化物であるFeClよりも放電容量が大きい。これは、特許文献2の[0007]段落に記載のように、FeFでは、鉄とフッ素との間の結合が強いため、正極活物質が電解液中に溶解しにくく、Liイオン等が挿入されても正極活物質の分解が起こりにくいためである。 The performance of the secondary battery depends on the materials of the positive electrode, the negative electrode, and the electrolyte constituting the secondary battery. In particular, research and development of active material materials that form active materials are being actively conducted. As the positive electrode active material, an oxide or composite oxide of a transition metal is often used. For example, Patent Document 1 discloses a positive electrode active material represented by Li a M 2 O 4 -b F b containing a transition metal (M). As specific examples of M, Fe, which is low in toxicity and abundant in resources and inexpensive, is used in addition to general transition metals such as Co, Ni, and Mn. Recently, as disclosed in Patent Document 2 and Patent Document 3, a secondary battery using a transition metal halide as a positive electrode active material has attracted attention. In particular, iron fluoride (FeF 3 ) has a larger discharge capacity than FeCl 3 , which is the same transition metal halide. This is because, as described in paragraph [0007] of Patent Document 2, since FeF 3 has a strong bond between iron and fluorine, the positive electrode active material is difficult to dissolve in the electrolytic solution, and Li ions and the like are inserted. This is because the positive electrode active material is hardly decomposed even if it is used.

特開2006−190556号公報JP 2006-190556 A 特開平9−22698号公報Japanese Patent Laid-Open No. 9-22698 特開平9−55201号公報Japanese Patent Laid-Open No. 9-55201

正極活物質であるFeFにLiイオンが挿入されると、LiFeFを経て、さらなるLiの挿入によりFeとLiFとに分解するコンバージョン領域まで反応が進むと考えられる。しかし、前述のように、FeFはFeとFとの間の結合が強いため、コンバージョン領域までの反応は起こりにくい。また、コンバージョン領域から元のFeFを再生するのは困難であり、電池性能を低下させる原因となると考えられてきた。そのため、特許文献2および特許文献3では、充放電の電圧範囲として、コンバージョン領域まで反応を進ませないインターカレーション領域のみでの電圧範囲(リチウムイオン二次電池であれば4.5Vから2Vまで)でしか充放電をさせていなかった。この電圧範囲での充放電においては、FeFがLiを挿入・脱離して、FeF+xLi→LiFeFの反応のみが可逆的に行われ、FeとFとの結合が保たれる。つまり、放電時にはFe3+からFe2+までの還元、充電時にはFe2+からFe3+への酸化、が行われることとなる。 When Li ions are inserted into the positive electrode active material FeF 3 , it is considered that the reaction proceeds through LiFeF 3 to a conversion region where it is decomposed into Fe and LiF by further insertion of Li. However, as described above, since FeF 3 has a strong bond between Fe and F, reaction to the conversion region hardly occurs. In addition, it is difficult to regenerate the original FeF 3 from the conversion region, which has been considered to cause a decrease in battery performance. Therefore, in Patent Document 2 and Patent Document 3, the voltage range of charge / discharge is a voltage range only in an intercalation region that does not advance the reaction to the conversion region (from 4.5 V to 2 V in the case of a lithium ion secondary battery). ) Was only charged and discharged. In charging / discharging within this voltage range, FeF 3 inserts and desorbs Li, and only the reaction of FeF 3 + xLi → Li x FeF 3 is performed reversibly, and the bond between Fe and F is maintained. That is, reduction from Fe 3+ to Fe 2+ is performed during discharging, and oxidation from Fe 2+ to Fe 3+ is performed during charging.

一方、コンバージョン領域まで反応させると、FeFは分解されてFe3+からFeまで電解還元されるため、後に詳説するような二次電池の大幅な高容量化が期待される。しかし、これまで、FeFが容易に分解されるとともに、分解後のFeFが可逆的に再生されるという考えはなく、電池性能の観点からコンバージョン領域までの反応はむしろ回避されていた。 On the other hand, when the reaction is performed up to the conversion region, FeF 3 is decomposed and electrolytically reduced from Fe 3+ to Fe 0 , so that a large increase in capacity of the secondary battery as described in detail later is expected. However, up to now, there has been no idea that FeF 3 is easily decomposed and that the decomposed FeF 3 is reversibly regenerated, and the reaction up to the conversion region is rather avoided from the viewpoint of battery performance.

本発明は、上記問題点に鑑み、FeFからなり、FeFが分解されても安定した充放電特性を示す非水系二次電池用の正極活物質を提供することを目的とする。さらに、この正極活物質を用いた非水系二次電池に望ましい充放電方法を提供することを目的とする。 In view of the above problems, it consists FeF 3, and to provide a positive electrode active material for a nonaqueous secondary battery showing charge-discharge characteristics FeF 3 is stabilized be decomposed. Furthermore, it aims at providing the charging / discharging method desirable for the non-aqueous secondary battery using this positive electrode active material.

なお、一般に、「インターカレーション」は、層状物質の層間に電子供与体または電子受容体が電荷移動力によって挿入される現象をいう。また、「コンバージョン」には、物質変換などの意味がある。上記のFeFにおいては、構造中の空孔にLiが挿入される領域および挿入されたLiが脱離する領域をインターカレーション領域とする。また、Liが挿入されたLiFeFがさらにLiFとFeとに分解する領域およびLiFとFeとからLiFeFが再生される領域をコンバージョン領域とする。 In general, “intercalation” refers to a phenomenon in which an electron donor or electron acceptor is inserted between layers of a layered substance by a charge transfer force. “Conversion” has a meaning such as substance conversion. In the above-described FeF 3 , the region where Li is inserted into the vacancies in the structure and the region where the inserted Li is desorbed are defined as intercalation regions. A region where Li x FeF 3 into which Li is inserted is further decomposed into LiF and Fe and a region where Li x FeF 3 is regenerated from LiF and Fe are defined as a conversion region.

本発明の非水系二次電池用正極活物質は、アルカリ金属イオンを挿入・脱離可能なFeF粉末からなる非水系二次電池用正極活物質であって、
前記FeF粉末は、X線回折による(012)面の回折ピークの半値幅が0.2rad以上である微粉末であり、放電によりFeFからFeを生成し、充電によりFeからFeFを再生する可逆的な酸化還元を行うことを特徴とする。
The positive electrode active material for a non-aqueous secondary battery of the present invention is a positive electrode active material for a non-aqueous secondary battery made of FeF 3 powder capable of inserting and removing alkali metal ions,
The FeF 3 powder is a fine powder in which the half-width of the diffraction peak of the (012) plane by X-ray diffraction is 0.2 rad or more, and Fe is generated from FeF 3 by discharge, and FeF 3 is regenerated by charging. Reversible oxidation-reduction is performed.

また、本発明の非水系二次電池の充放電方法は、アルカリ金属イオンを挿入・脱離可能なFeF粉末を正極活物質として含む正極を備える非水系二次電池において、
前記FeF粉末は、X線回折による(012)面の回折ピークの半値幅が0.2rad以上である微粉末であり、放電によりFeFからFeを生成し、充電によりFeからFeFを再生する可逆的な酸化還元を行う電圧範囲で充放電を行うことを特徴とする。
Further, the non-aqueous secondary battery charging / discharging method of the present invention is a non-aqueous secondary battery comprising a positive electrode containing FeF 3 powder capable of inserting and removing alkali metal ions as a positive electrode active material.
The FeF 3 powder is a fine powder in which the half-width of the diffraction peak of the (012) plane by X-ray diffraction is 0.2 rad or more, and Fe is generated from FeF 3 by discharge, and FeF 3 is regenerated by charging. Charging / discharging is performed in a voltage range in which reversible oxidation-reduction is performed.

アルカリ金属イオンを挿入・脱離可能なFeFの結晶構造を図1に示す。FeFは、ペロブスカイト型フッ化物であり、構造中にカチオン空孔をもつ。カチオン空孔には、1モルのFeFに対してアルカリ金属イオン(たとえばLi)を最大で1モル挿入することができ、LiFeFとなる。このとき、理論容量は230mAh/gを越える。さらに、LiFeFは、Liイオンと反応し、最終的にはLiFとFeとに分解される。つまり、コンバージョン領域まで反応が進み、このとき理論的には700mAh/g以上の容量を示す。 FIG. 1 shows the crystal structure of FeF 3 into which alkali metal ions can be inserted and removed. FeF 3 is a perovskite type fluoride and has a cation vacancy in the structure. A maximum of 1 mol of alkali metal ions (for example, Li + ) can be inserted into 1 mol of FeF 3 in the cation vacancies, resulting in LiFeF 3 . At this time, the theoretical capacity exceeds 230 mAh / g. Furthermore, LiFeF 3 reacts with Li ions and is finally decomposed into LiF and Fe. That is, the reaction proceeds to the conversion region, and at this time, theoretically, the capacity is 700 mAh / g or more.

本発明者等は、FeF粉末を正極活物質として使用する場合に従来回避されていたコンバージョン領域まで放電を行うことで、二次電池容量を高められることに着目した。そして、コンバージョン領域まで反応しても、充放電が安定に行われるためには、微細なFeFを使用する必要があることを見出した。X線回折による(012)面の回折ピークの半値幅が0.2rad以上であるFeF粉末は、FeF結晶粒の大きさが細かい。そのため、放電終止電圧を従来よりも低くまで掃引することで、放電によりFeFが容易に分解されてFeが生成される。さらに、分解により生成されたFeからFeFが再生される。つまり、放電によりFeFからFeが生成され、充電によりFeからFeFが再生されて可逆的な酸化還元が安定して行われる。 The inventors of the present invention have focused on the fact that the secondary battery capacity can be increased by discharging to a conversion region that has been conventionally avoided when using FeF 3 powder as a positive electrode active material. Then, even if the reaction to conversion region, in order to charge and discharge is performed stably have found that it is necessary to use a fine FeF 3. The FeF 3 powder in which the half-value width of the diffraction peak of the (012) plane by X-ray diffraction is 0.2 rad or more has fine FeF 3 crystal grains. Therefore, by sweeping the discharge end voltage to a lower level than before, FeF 3 is easily decomposed by discharge and Fe is generated. Furthermore, FeF 3 is regenerated from Fe produced by the decomposition. That is, Fe is generated from FeF 3 by discharge, and FeF 3 is regenerated from Fe by charging, so that reversible oxidation-reduction is stably performed.

ペロブスカイト型フッ化物FeFの結晶構造を示す。The crystal structure of perovskite fluoride FeF 3 is shown. FeF粉末のX線回折図形である。2 is an X-ray diffraction pattern of FeF 3 powder. FeF粉末をアセチレンブラックとともにミリングして得られた混合粉末のX線回折図形である。2 is an X-ray diffraction pattern of a mixed powder obtained by milling FeF 3 powder together with acetylene black. FeF粉末をケッチェンブラックとともにミリングして得られた混合粉末のX線回折図形である。2 is an X-ray diffraction pattern of a mixed powder obtained by milling FeF 3 powder together with ketjen black. FeF粉末をケッチェンブラックとともに手攪拌して得られた混合粉末のX線回折図形である。The FeF 3 powder with Ketjen black is a X-ray diffraction pattern of the mixed powder obtained by hand stirring. 本発明の非水系二次電池を4.5V〜1.5V、0.03mAで充放電を行ったときの充放電曲線を示す。The charging / discharging curve when charging / discharging the non-aqueous secondary battery of this invention by 4.5V-1.5V and 0.03mA is shown. 従来の非水系二次電池を4.5V〜1.5V、0.03mAで充放電を行ったときの放電極線を示す。The discharge wire when a conventional non-aqueous secondary battery is charged and discharged at 4.5 V to 1.5 V and 0.03 mA is shown. 本発明の非水系二次電池を4.5V〜2.0V、0.03mAで充放電を行ったときの放電曲線を示す。The discharge curve when charging / discharging the non-aqueous secondary battery of this invention by 4.5V-2.0V and 0.03mA is shown. 従来の非水系二次電池を4.5V〜2.0V、0.03mAで充放電を行ったときの放電極線を示す。The discharge wire when a conventional non-aqueous secondary battery is charged and discharged at 4.5 V to 2.0 V and 0.03 mA is shown. 本発明の非水系二次電池を4.5V〜2.0V、0.1mAで充放電を行ったときの放電曲線を示す。The discharge curve when charging / discharging the non-aqueous secondary battery of this invention by 4.5V-2.0V and 0.1 mA is shown.

以下に、本発明の非水系二次電池用正極活物質および非水系二次電池の充電方法を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the positive electrode active material for a non-aqueous secondary battery and the method for charging the non-aqueous secondary battery of the present invention will be described.

[非水系二次電池用正極活物質]
本発明の非水系二次電池用正極活物質(以下「正極活物質」と略記)は、アルカリ金属イオンを挿入・脱離可能なFeF粉末からなる。FeF粉末は、X線回折による(012)面の回折ピークの半値幅が0.2rad以上、好ましくは0.3rad以上、さらに好ましくは0.4rad以上である。なお、半値幅は、23.7°付近の回折角度(2θ、CuKα線)に見られる(012)の最大強度をImaxとしたときに、Imax/2で算出される強度のところで測定される値とする。回折ピークの半値幅が0.2rad未満では、FeF結晶粒が大きすぎて、コンバージョン領域での反応が良好に行われない。半値幅は、その値が大きいほど粒径が小さいため、上限に特に限定はないが、あえて規定するのであれば1rad以下であるのが好ましい。
[Positive electrode active material for non-aqueous secondary batteries]
The positive electrode active material for non-aqueous secondary batteries of the present invention (hereinafter abbreviated as “positive electrode active material”) is made of FeF 3 powder capable of inserting and removing alkali metal ions. In the FeF 3 powder, the half width of the diffraction peak of the (012) plane by X-ray diffraction is 0.2 rad or more, preferably 0.3 rad or more, more preferably 0.4 rad or more. The full width at half maximum is measured at the intensity calculated by I max / 2, where I max is the maximum intensity of (012) seen at a diffraction angle (2θ, CuKα line) near 23.7 °. Value. If the half-value width of the diffraction peak is less than 0.2 rad, the FeF 3 crystal grains are too large, and the reaction in the conversion region is not performed well. The upper limit of the half-value width is not particularly limited because the larger the value, the smaller the particle diameter, but it is preferably 1 rad or less if deliberately defined.

また、FeF粉末の平均粒径を規定するのであれば、200nm以下、100nm以下さらには10nm以下が好ましい。平均粒径が200nm以下であれば、コンバージョン領域への分解反応およびコンバージョン領域からFeFの生成が可逆的に起こりやすくなるため好ましい。この可逆反応は平均粒径が小さいほど発生しやすいが、平均粒径が3μm未満のFeF粉末は、作製が困難であり容易に入手できない。なお、FeF粉末の平均粒径は、走査電子顕微鏡(SEM)写真から10個程度のFeF粒子の最大径(粒子を2本の平行線で挟んだとき平行線の間隔の最大値)を測定し、それらの算術平均値とする。 Also, if you define an average particle size of FeF 3 powder, 200 nm or less, more preferably not more than 10 nm 100 nm. An average particle size of 200 nm or less is preferable because the decomposition reaction into the conversion region and the generation of FeF 3 from the conversion region are likely to occur reversibly. This reversible reaction is more likely to occur as the average particle size is smaller. However, FeF 3 powder having an average particle size of less than 3 μm is difficult to produce and is not readily available. The average particle diameter of the FeF 3 powder is the maximum diameter of about 10 FeF 3 particles (maximum value of the interval between parallel lines when the particles are sandwiched between two parallel lines) from a scanning electron microscope (SEM) photograph. Measure and take the arithmetic average of them.

微細な結晶粒をもつFeF粉末は、ある程度の大きさのFeFをミリングしたり、FeFの前駆体を含む溶液を加熱するなどして前駆体を変換させたりして、得ることが可能である。ミリングしてFeF粉末を得る場合には、ミリング速度を200rpm〜600rpmさらには550rpm〜650rpmとするとよい。200rpm未満では、ミリングを長時間行ってもFeFが微細化され難いためである。また、ミリング時間を1時間〜24時間さらには5時間〜24時間とするとよい。1時間未満では微細化効果が乏しく、24時間を超えてミリングしても、微細化効果に大きな向上はないためである。 FeF 3 powder with fine crystal grains can be obtained by milling FeF 3 of a certain size or converting the precursor by heating a solution containing the FeF 3 precursor. It is. In the case of obtaining FeF 3 powder by milling, the milling speed may be 200 rpm to 600 rpm, further 550 rpm to 650 rpm. This is because if it is less than 200 rpm, FeF 3 is difficult to be miniaturized even if milling is performed for a long time. The milling time is preferably 1 to 24 hours, more preferably 5 to 24 hours. This is because if the time is less than 1 hour, the effect of miniaturization is poor, and even if milling is performed for more than 24 hours, the effect of miniaturization is not greatly improved.

なお、[充放電方法]の欄で詳説するが、本発明の正極活物質は、リチウムに対して4.5V〜1.5Vの間で放電電圧特性を示す。つまり、放電終止電圧を2.0V未満とすることで、コンバージョン領域への分解反応が起こる。その結果、放電容量は大きく増加する。   In addition, although it explains in full detail in the column of [Charging / discharging method], the positive electrode active material of this invention shows a discharge voltage characteristic between 4.5V-1.5V with respect to lithium. That is, when the discharge end voltage is less than 2.0 V, the decomposition reaction into the conversion region occurs. As a result, the discharge capacity is greatly increased.

[電極(正極)の構成および製造方法]
本発明の正極活物質は、非水系二次電池の正極活物質として使用可能である。正極は、上記本発明の正極活物質と、導電助材と、正極活物質および導電助材を結着する結着剤と、を含んで構成される。
[Configuration and production method of electrode (positive electrode)]
The positive electrode active material of the present invention can be used as a positive electrode active material for non-aqueous secondary batteries. A positive electrode is comprised including the positive electrode active material of the said invention, the conductive support material, and the binder which binds a positive electrode active material and a conductive support material.

正極活物質は、上記のFeF粉末である。なお、FeF粉末を主たる活物質材料とした上で、既に公知の正極活物質を添加して用いてもよい。具体的には、コバルト酸リチウム等である。これらのうち1種または2種以上を混合して用いることができる。 The positive electrode active material is the above-mentioned FeF 3 powder. In addition, after using FeF 3 powder as the main active material, a known positive electrode active material may be added and used. Specifically, lithium cobaltate or the like. Among these, one kind or a mixture of two or more kinds can be used.

導電助材としては、非水系二次電池の電極で一般的に用いられている材料を用いればよい。たとえば、カーボンブラック、アセチレンブラック、炭素繊維などの導電性炭素材料を用いるのが好ましく、これらの炭素材料の他にも、導電性有機化合物などの既知の導電助剤を用いてもよい。これらのうちの1種を単独でまたは2種以上を混合して用いるとよい。導電助材は、上記のFeF粉末とともにミリングして用いることで、さらに導電性が向上するため望ましい。導電助材の配合割合は、質量比で、正極活物質:導電助材=1:0.05〜1:2であるのが好ましい。導電助材が少なすぎると効率のよい導電ネットワークを形成できず、また、導電助材が多すぎると電極の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。 As a conductive support material, a material generally used for an electrode of a non-aqueous secondary battery may be used. For example, it is preferable to use a conductive carbon material such as carbon black, acetylene black, or carbon fiber. In addition to these carbon materials, a known conductive aid such as a conductive organic compound may be used. One of these may be used alone or in combination of two or more. The conductive aid is desirable because it is further milled together with the above-mentioned FeF 3 powder to further improve the conductivity. The blending ratio of the conductive additive is preferably a mass ratio of positive electrode active material: conductive additive = 1: 0.05 to 1: 2. This is because if the amount of the conductive aid is too small, an efficient conductive network cannot be formed, and if the amount of the conductive aid is too large, the moldability of the electrode is deteriorated and the energy density of the electrode is lowered.

結着剤は、特に限定されるものではなく、既に公知のものを用いればよい。たとえば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等の含フッ素樹脂など高電位においても分解しない樹脂を用いることができる。結着剤の配合割合は、質量比で、活物質:結着剤=1:0.05〜1:0.5であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。   The binder is not particularly limited, and a known one may be used. For example, a resin that does not decompose even at a high potential, such as a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, can be used. The blending ratio of the binder is preferably a mass ratio of active material: binder = 1: 0.05 to 1: 0.5. This is because when the amount of the binder is too small, the moldability of the electrode is lowered, and when the amount of the binder is too large, the energy density of the electrode is lowered.

本発明の正極活物質は、正極において活物質層として集電体に圧着された状態で用いられるのが一般的である。集電体は、金属製のメッシュや金属箔を用いることができる。たとえば、アルミニウムやアルミニウム合金等の高電位でも溶解しない金属からなる集電体を用いるとよい。   The positive electrode active material of the present invention is generally used in a state in which it is pressed against a current collector as an active material layer in the positive electrode. A metal mesh or metal foil can be used for the current collector. For example, a current collector made of a metal that does not melt even at a high potential, such as aluminum or an aluminum alloy, may be used.

電極の製造方法に特に限定はなく、一般的に実施されている非水系二次電池用電極の製造方法に従えばよい。たとえば、上記正極活物質に上記導電助材および上記結着剤を混合し、必要に応じ適量の有機溶剤を加えて、ペースト状の電極合材が得られる。この電極合材を、集電体の表面に塗布し、乾燥後、必要に応じプレス等を行い圧着させる。この製造方法によれば、作製された電極は、シート状の電極となる。このシート状の電極は、作製する非水系二次電池の仕様に応じた寸法に裁断して用いればよい。   There is no limitation in the manufacturing method of an electrode, What is necessary is just to follow the manufacturing method of the electrode for non-aqueous secondary batteries currently generally implemented. For example, the conductive additive and the binder are mixed with the positive electrode active material, and an appropriate amount of an organic solvent is added as necessary to obtain a paste-like electrode mixture. The electrode mixture is applied to the surface of the current collector, dried, and then pressed and pressed as necessary. According to this manufacturing method, the produced electrode becomes a sheet-like electrode. This sheet-like electrode may be cut into dimensions according to the specifications of the non-aqueous secondary battery to be produced.

[非水系二次電池]
本発明の非水系二次電池は、上記本発明の正極活物質を含む正極を備える。正極の構成および製造方法は、既に述べた通りである。負極は、アルカリ金属を挿入・脱離可能な材料からなる負極活物質を含む。負極は、たとえば、Li、Na等のアルカリ金属、アルカリ金属の合金の他、カーボンなどの層間にイオンが入るもの、金属など導電単体のイオンと合金を作るもの、などを活物質とするのが好ましい。負極は、上記の正極の製造方法に準ずる一般的な製造方法によって作製すればよい。
[Non-aqueous secondary battery]
The non-aqueous secondary battery of this invention is equipped with the positive electrode containing the positive electrode active material of the said invention. The configuration and manufacturing method of the positive electrode are as described above. The negative electrode includes a negative electrode active material made of a material capable of inserting and removing alkali metals. The negative electrode is made of, for example, an alkali metal such as Li or Na, an alloy of an alkali metal, an ion that enters between layers such as carbon, or an alloy that forms an alloy with ions of a single conductive element such as a metal. preferable. What is necessary is just to produce a negative electrode with the general manufacturing method according to said positive electrode manufacturing method.

本発明の非水系二次電池では、一般の二次電池と同様、正極および負極の他に、正極と負極の間に挟装されるセパレータ、非水電解液を備える。セパレータは、正極と負極とを分離し電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。また非水電解液は、有機溶媒に電解質であるアルカリ金属塩を溶解させたもので、有機溶媒としては、非プロトン性有機溶媒、たとえば高い電位差に耐えうる、若しくは被膜等を作成することで高電位差に耐えることのできるエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の1種またはこれらの2種以上の混合液を用いることができる。また、溶解させる電解質としては、LiPF、LiBF、LiAsF、LiI、LiClO、NaPF、NaBF、NaAsF等の既存の支持塩を用いることができる。また、非水系電解液の替わりにLiSを含むリチウムイオン導電能を有する無機化合物、ガラスなどの固体電解質も使用可能である。 The non-aqueous secondary battery of the present invention includes a separator and a non-aqueous electrolyte interposed between the positive electrode and the negative electrode in addition to the positive electrode and the negative electrode, as in the case of a general secondary battery. The separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used. The non-aqueous electrolyte is obtained by dissolving an alkali metal salt that is an electrolyte in an organic solvent. As the organic solvent, an aprotic organic solvent, for example, capable of withstanding a high potential difference or by forming a film or the like is used. One type of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, or the like that can withstand a potential difference, or a mixture of two or more types thereof can be used. As the electrolyte to be dissolved, existing supporting salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiI, LiClO 4 , NaPF 6 , NaBF 4 , NaAsF 6 can be used. Further, instead of the non-aqueous electrolyte, a solid electrolyte such as an inorganic compound having lithium ion conductivity and glass containing Li 2 S and glass can also be used.

非水系二次電池の形状に特に限定はなく、円筒型、積層型、コイン型等、種々の形状を採用することができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後、この電極体を非水電解液とともに電池ケースに密閉して電池となる。   The shape of the non-aqueous secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a stacked shape, and a coin shape can be employed. Regardless of the shape, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the space between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal is used for current collection. After connecting using a lead or the like, the electrode body is sealed in a battery case together with a non-aqueous electrolyte to form a battery.

以上説明した本発明の非水系二次電池は、放電によりFeFからFeを生成し、充電によりFeからFeFを再生する、可逆的な酸化還元を行う。たとえば、電解質イオンがLiであれば、放電によりLiが挿入されてFeFからLiFeF(0<y≦1)を経てLiFとFeとを生成し、充電によりLiFとFeとからLiFeF(0<y≦1)を経てFeFを再生する、可逆的な酸化還元を行う。このような可逆的な酸化還元を行う本発明の非水系二次電池は、1サイクル目の充放電で好ましくは400mAh/g以上さらに好ましくは500mAh/g以上、さらには700mAh/g以上の放電容量を示す。本発明の非水系二次電池の充放電方法について以下に説明する。 The non-aqueous secondary battery of the present invention described above performs reversible oxidation-reduction in which Fe is generated from FeF 3 by discharging and FeF 3 is regenerated from Fe by charging. For example, if the electrolyte ion is Li + , Li + is inserted by discharge to generate LiF and Fe from FeF 3 through Li y FeF 3 (0 <y ≦ 1), and from LiF and Fe by charging. Reversible oxidation-reduction is performed by regenerating FeF 3 via Li y FeF 3 (0 <y ≦ 1). The non-aqueous secondary battery of the present invention that performs such reversible oxidation-reduction is preferably a discharge capacity of 400 mAh / g or more, more preferably 500 mAh / g or more, and more preferably 700 mAh / g or more in the first charge / discharge cycle. Indicates. The charge / discharge method of the non-aqueous secondary battery of the present invention will be described below.

[充放電方法]
本発明の非水系二次電池では、放電によりFeFからFeを生成し、充電によりFeからFeFを再生する可逆的な酸化還元を行う電圧範囲で充放電を行う。本発明の正極活物質は、既に説明した通り、放電によりFeFが分解されてFeが生成されるため、放電終止電圧を従来よりも低くまで掃引するのが望ましい。たとえば、通常、リチウムを含む負極活物質を含む負極を備えるリチウムイオン二次電池では、電圧範囲を4.5V〜2.0Vとして充放電を行うが、本発明の正極活物質を用いたリチウムイオン二次電池では、放電終止電圧を2.0V未満さらには1.0V〜1.5Vとするのが望ましい。たとえば、電圧範囲を4.5V〜1.5Vの間で定電流放電するのがよい。
[Charging / discharging method]
In the non-aqueous secondary battery of the present invention, charge and discharge are performed in a voltage range in which Fe is generated from FeF 3 by discharge and reversible oxidation-reduction is performed to regenerate FeF 3 from Fe. As described above, the positive electrode active material of the present invention is desirably swept down to a discharge end voltage lower than before because FeF 3 is decomposed by discharge to generate Fe. For example, in a lithium ion secondary battery including a negative electrode containing a negative electrode active material containing lithium, charging / discharging is usually performed with a voltage range of 4.5 V to 2.0 V, but lithium ion using the positive electrode active material of the present invention In the secondary battery, it is desirable that the end-of-discharge voltage is less than 2.0V, more preferably 1.0V to 1.5V. For example, it is preferable to discharge at a constant current in the voltage range between 4.5V and 1.5V.

以上、本発明の非水系二次電池用正極活物質および非水系二次電池の充電方法の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the positive electrode active material for non-aqueous secondary batteries of this invention and the charging method of a non-aqueous secondary battery was described, this invention is not limited to the said embodiment. Without departing from the scope of the present invention, the present invention can be implemented in various forms with modifications and improvements that can be made by those skilled in the art.

以下に、本発明の非水系二次電池用正極活物質および非水系二次電池の充電方法の実施例を挙げて、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples of the positive electrode active material for a non-aqueous secondary battery and the method for charging a non-aqueous secondary battery according to the present invention.

[活物質の調製]
市販のFeF粉末(粉末#00とする)を準備した。粉末#00のX線回折(XRD)分析結果(CuKα使用)を図2に示す。このFeF粉末を導電助材とともに下記のように混合して粉末#01、02、C1およびC2を得た。導電助材には、アセチレンブラック(AB)およびケッチェンブラック(KB)を用いた。
[Preparation of active material]
A commercially available FeF 3 powder (referred to as powder # 00) was prepared. FIG. 2 shows the X-ray diffraction (XRD) analysis result (using CuKα) of powder # 00. This FeF 3 powder was mixed with a conductive additive as follows to obtain powders # 01, 02, C1 and C2. Acetylene black (AB) and ketjen black (KB) were used as conductive aids.

4.03gの粉末#00と4.07gのアセチレンブラックとをボールミルにより混合し、粉末#01を得た。混合は、ミリング速度を600rpm、ミリング時間を5時間とした。粉末#01のXRD分析結果を図3に示す。また、比較として、同じ配合割合で混合した粉末を1時間、手攪拌して#C1の粉末を得た。   4.03 g of powder # 00 and 4.07 g of acetylene black were mixed by a ball mill to obtain powder # 01. The mixing was performed at a milling speed of 600 rpm and a milling time of 5 hours. The XRD analysis result of powder # 01 is shown in FIG. For comparison, the powder mixed at the same blending ratio was manually stirred for 1 hour to obtain # C1 powder.

0.74gの粉末#00と0.73gのケッチェンブラックとをボールミルにより混合し、粉末#02を得た。混合は、ミリング速度を600rpm、ミリング時間を5時間とした。粉末#02のXRD分析結果を図4に示す。また、比較として、同じ配合割合で混合した粉末を1時間、手攪拌して#C2の粉末を得た。粉末#C2のXRD分析結果を図5に示す。   0.74 g of powder # 00 and 0.73 g of ketjen black were mixed by a ball mill to obtain powder # 02. The mixing was performed at a milling speed of 600 rpm and a milling time of 5 hours. The XRD analysis result of powder # 02 is shown in FIG. For comparison, the powder mixed at the same blending ratio was manually stirred for 1 hour to obtain # C2 powder. The XRD analysis result of powder # C2 is shown in FIG.

粉末#01および#02の回折ピークが、粉末#00よりもブロードであることから、ミリングを行うことにより、結晶粒が微細となることがわかった。手で攪拌しただけの#C2の粉末では、粉末#00の回折ピークと大きな差は見られなかった。粉末#C1についてはXRD分析結果を割愛したが、粉末#C2と同様の結果が得られることが推測できる。図2〜図5のXRD分析結果から、(012)面の半値幅を求め、それぞれの粉末の粒径を見積もった。半値幅は、測定データからバックグラウンドを差し引き、ピークトップから垂線を下ろし、垂線の長さの半分の位置におけるピーク幅(半値全幅)として算出した。粒径は、シェラーの式を用いて算出した。シェラーの式は、t=(0.9λ)/(βcosθ)で表され、λ:CuKαの波長(1.542Å)、β:半値幅、θ:(012)のピーク位置(rad)、である。求めた半値幅および粒径を表1に示す。   Since the diffraction peaks of the powders # 01 and # 02 are broader than those of the powder # 00, it was found that the crystal grains became fine by milling. The # C2 powder that was only stirred by hand did not show a large difference from the diffraction peak of the powder # 00. Although the XRD analysis result was omitted for powder # C1, it can be estimated that the same result as that of powder # C2 was obtained. From the XRD analysis results of FIGS. 2 to 5, the half width of the (012) plane was obtained, and the particle size of each powder was estimated. The half width was calculated as the peak width (full width at half maximum) at a position half the length of the vertical line by subtracting the background from the measured data and dropping the vertical line from the peak top. The particle size was calculated using Scherrer's equation. Scherrer's equation is expressed by t = (0.9λ) / (βcos θ), where λ is the wavelength of CuKα (1.542 cm), β is the half-value width, and θ is the peak position (rad) of (012). . Table 1 shows the obtained half width and particle diameter.

また、それぞれの粉末を走査電子顕微鏡(SEM)で観察し、SEM像から平均粒径を求めた。平均粒径は、SEM像から10個程度のFeF粒子の最大径(粒子を2本の平行線で挟んだとき平行線の間隔の最大値)を測定し、それらの算術平均値を求めた。求めた平均粒径を表1に示す。 Moreover, each powder was observed with the scanning electron microscope (SEM), and the average particle diameter was calculated | required from the SEM image. The average particle diameter was determined by measuring the maximum diameter of about 10 FeF 3 particles (maximum value of the interval between parallel lines when the particles were sandwiched between two parallel lines) from the SEM image, and calculating the arithmetic average value thereof. . Table 1 shows the obtained average particle diameter.

Figure 2010170867
Figure 2010170867

[リチウムイオン二次電池用電極の作製]
上記#01の粉末を用いて電極(正極)を作製した。粉末#01に、所定の量の導電性バインダー(ABおよびポリテトラフルオロエチレン(PTFE)の混合物、“TAB”と略記)を混合し、適量の溶媒(エタノール)を添加して充分に混練してペースト状の電極合材を調製した。正極活物質(FeF粉末)、ABおよびPTFEの配合比は、質量比で42.9:52.4:4.9であった。次に、この電極合材を集電体(ニラコ株式会社製100mesh,アルミニウム製,厚さ:100μm)の両面に圧着し、乾燥後シート状の電極を得た。
[Production of electrodes for lithium ion secondary batteries]
An electrode (positive electrode) was prepared using the above powder # 01. A predetermined amount of a conductive binder (a mixture of AB and polytetrafluoroethylene (PTFE), abbreviated as “TAB”) is mixed with Powder # 01, and an appropriate amount of solvent (ethanol) is added and kneaded thoroughly. A paste-like electrode mixture was prepared. The compounding ratio of the positive electrode active material (FeF 3 powder), AB, and PTFE was 42.9: 52.4: 4.9 in terms of mass ratio. Next, this electrode mixture was pressure-bonded to both surfaces of a current collector (100 mesh, manufactured by Niraco Co., Ltd., thickness: 100 μm), and a sheet-like electrode was obtained after drying.

また、比較例として、粉末#01のかわりに粉末#C1を用い、上記と同様にしてシート状の電極を作製した。   As a comparative example, a sheet-like electrode was produced in the same manner as described above using powder # C1 instead of powder # 01.

[リチウムイオン二次電池の作製]
粉末#01を含む電極を正極としたリチウムイオン二次電池を作製した。正極に対向させる負極は、金属リチウム(厚さ500μm)とした。正極をφ13mm、負極をφ15mmに裁断し、セパレータ(ヘキストセラニーズ社製ガラスフィルター,celgard2400)を両者の間に挟装して電極体とした。この電極体にリードを付設した後、アルミニウム製の電池ケースに収納して保持した。また、電池ケースには、エチレンカーボネートとジエチルカーボネートとを1:1(体積比)で混合した混合溶媒にLiPFを1Mの濃度で溶解した非水電解質を注入した。電池ケースを密閉して、リチウムイオン二次電池#11(「電池#11」と略記)を得た。
[Production of lithium ion secondary battery]
A lithium ion secondary battery using the electrode containing powder # 01 as the positive electrode was produced. The negative electrode facing the positive electrode was metallic lithium (thickness: 500 μm). The positive electrode was cut to φ13 mm and the negative electrode was cut to φ15 mm, and a separator (Hoechst Celanese glass filter, celgard 2400) was sandwiched between them to form an electrode body. After attaching a lead to this electrode body, it was housed and held in an aluminum battery case. In addition, a non-aqueous electrolyte in which LiPF 6 was dissolved at a concentration of 1 M was injected into the battery case in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a ratio of 1: 1 (volume ratio). The battery case was sealed to obtain a lithium ion secondary battery # 11 (abbreviated as “battery # 11”).

また、比較例として、粉末#C1を含む正極を用い、上記と同様にしてリチウムイオン二次電池#11c(「電池#11c」と略記)を作製した。   Further, as a comparative example, a lithium ion secondary battery # 11c (abbreviated as “battery # 11c”) was produced in the same manner as described above using a positive electrode containing powder # C1.

[評価]
電池#11に対して充放電試験を行い、充放電特性を評価した。試験は、30℃の温度環境のもと、充電終止電圧4.5Vまで0.03mAの定電流で充電を行った後、放電終止電圧1.5Vまで0.03mAの定電流で放電を行った。充放電を繰り返し行い、電圧に対する正極活物質単位重量当たりの容量を測定した。1サイクル目の充放電特性を図6に示す。また、電池#11cについても、同様の充放電試験を行った。1〜5サイクル、10サイクルおよび20サイクル目の放電特性を図7に示す。
[Evaluation]
A charge / discharge test was performed on battery # 11 to evaluate charge / discharge characteristics. In the test, after charging at a constant current of 0.03 mA to a charge end voltage of 4.5 V under a temperature environment of 30 ° C., discharge was performed at a constant current of 0.03 mA to a discharge end voltage of 1.5 V. . Charging / discharging was repeated and the capacity per unit weight of the positive electrode active material with respect to voltage was measured. The charge / discharge characteristics of the first cycle are shown in FIG. Moreover, the same charge / discharge test was done also about battery # 11c. FIG. 7 shows the discharge characteristics at the 1st to 5th cycles, the 10th cycle and the 20th cycle.

図6より、電池#11は、電圧範囲を4.5V〜1.5Vで充放電することで、高容量を示すことがわかった。すなわち、電池#11は、充放電によりコンバージョン領域での反応、つまりFeFの分解と再生とが可逆的に起こり高い容量を得られた。なお、図6の放電曲線によれば、電圧が2.0V付近を境にグラフの傾きが大きく変化した。これは、2.0V付近でLiFeFがLiFとFeとに分解されはじめたことを示している。 From FIG. 6, it was found that the battery # 11 exhibits a high capacity by charging and discharging at a voltage range of 4.5V to 1.5V. That is, in the battery # 11, a reaction in the conversion region, that is, decomposition and regeneration of FeF 3 occurred reversibly by charging and discharging, and a high capacity was obtained. In addition, according to the discharge curve of FIG. 6, the inclination of the graph changed greatly with the voltage near 2.0V. This indicates that LiFeF 3 started to be decomposed into LiF and Fe at around 2.0V.

一方、図7に示す電池#11cの放電曲線においても、電圧が2.0V付近を境にグラフの傾きが大きく変化した。しかし、放電容量が小さく、サイクル特性も低かった。これは、ミリングを行わなかったためFeF粉末の微細化が不十分であり、コンバージョン領域での反応が可逆に起こりにくかったためであると考えられる。 On the other hand, also in the discharge curve of the battery # 11c shown in FIG. 7, the slope of the graph changed greatly with the voltage near 2.0V. However, the discharge capacity was small and the cycle characteristics were low. This is presumably because the milling was not performed and the FeF 3 powder was not sufficiently refined and the reaction in the conversion region was difficult to occur reversibly.

次に、電池#11に対して、30℃の温度環境のもと、充電終止電圧4.5Vまで0.03mAの定電流で充電を行った後、放電終止電圧2.0Vまで0.03mAの定電流で放電を行った。充放電を繰り返し行い、電圧に対する正極活物質単位重量当たりの容量を測定した。1〜5サイクル、10サイクルおよび20サイクル目の放電特性を図8に示す。また、電池#11cについても、同様の充放電試験を行った。1〜5サイクル、10サイクルおよび20サイクル目の放電特性を図9に示す。   Next, the battery # 11 was charged with a constant current of 0.03 mA to a charge end voltage of 4.5 V under a temperature environment of 30 ° C., and then 0.03 mA to a discharge end voltage of 2.0 V. Discharge was performed at a constant current. Charging / discharging was repeated and the capacity per unit weight of the positive electrode active material with respect to voltage was measured. FIG. 8 shows the discharge characteristics at the 1st to 5th cycles, the 10th cycle and the 20th cycle. Moreover, the same charge / discharge test was done also about battery # 11c. FIG. 9 shows the discharge characteristics at the 1st to 5th cycles, the 10th cycle and the 20th cycle.

電池#11および#11cを4.5V〜2.0Vの電圧範囲で充放電しても、4.5V〜1.5Vの範囲で充放電した場合に比べて、放電容量は低かった。電池#11は、ミリングした粉末を用いたことで、電池#11cよりもサイクル特性は向上した。しかし、いずれも、コンバージョン領域での反応は起こらなかったため、低い容量に留まった。   Even when the batteries # 11 and # 11c were charged / discharged in the voltage range of 4.5V to 2.0V, the discharge capacity was low compared to the case where the batteries were charged / discharged in the range of 4.5V to 1.5V. Battery # 11 used the milled powder to improve the cycle characteristics over battery # 11c. However, in all cases, the reaction in the conversion area did not occur, so the capacity remained low.

また、電池#11に対して、30℃の温度環境のもと、充電終止電圧4.5Vまで0.1mAの定電流で充電を行った後、放電終止電圧2.0Vまで0.1mAの定電流で放電を行った。充放電を繰り返し行い、電圧に対する正極活物質単位重量当たりの容量を測定した。1〜5サイクル、10サイクルおよび20サイクル目の放電特性を図10に示す。   Further, the battery # 11 was charged at a constant current of 0.1 mA to a charge end voltage of 4.5 V under a temperature environment of 30 ° C., and then the constant of 0.1 mA to a discharge end voltage of 2.0 V was charged. Discharge was performed with current. Charging / discharging was repeated and the capacity per unit weight of the positive electrode active material with respect to voltage was measured. FIG. 10 shows the discharge characteristics at the 1st to 5th cycles, the 10th cycle and the 20th cycle.

電流値を0.1mAとし、電池#11の充放電の速度を速くしても、コンバージョン領域での可逆的な反応は良好に行われ、高い容量を安定して得ることができた。   Even when the current value was 0.1 mA and the charge / discharge speed of the battery # 11 was increased, a reversible reaction in the conversion region was satisfactorily performed, and a high capacity could be stably obtained.

Claims (11)

アルカリ金属イオンを挿入・脱離可能なFeF粉末からなる非水系二次電池用正極活物質であって、
前記FeF粉末は、X線回折による(012)面の回折ピークの半値幅が0.2rad以上である微粉末であり、放電によりFeFからFeを生成し、充電によりFeからFeFを再生する可逆的な酸化還元を行うことを特徴とする非水系二次電池用正極活物質。
A positive electrode active material for a non-aqueous secondary battery made of FeF 3 powder capable of inserting and removing alkali metal ions,
The FeF 3 powder is a fine powder in which the half-width of the diffraction peak of the (012) plane by X-ray diffraction is 0.2 rad or more, and Fe is generated from FeF 3 by discharge, and FeF 3 is regenerated by charging. A positive electrode active material for a non-aqueous secondary battery, characterized by performing reversible oxidation-reduction.
リチウムに対して4.5V〜1.5Vの間で放電電圧特性を示す請求項1記載の非水系二次電池用正極活物質。   The positive electrode active material for nonaqueous secondary batteries according to claim 1, wherein the positive electrode active material exhibits discharge voltage characteristics between 4.5 V and 1.5 V with respect to lithium. 前記FeF粉末は、平均粒径が100nm以下である請求項1または2記載の非水系二次電池用正極活物質。 The positive electrode active material for a non-aqueous secondary battery according to claim 1, wherein the FeF 3 powder has an average particle size of 100 nm or less. 前記FeF粉末は、平均粒径が10nm以下である請求項3記載の非水系二次電池用正極活物質。 The positive electrode active material for a non-aqueous secondary battery according to claim 3, wherein the FeF 3 powder has an average particle size of 10 nm or less. 前記FeF粉末はミリングにより形成されてなる請求項1〜4のいずれかに記載の非水系二次電池用正極活物質。 The positive electrode active material for a non-aqueous secondary battery according to claim 1, wherein the FeF 3 powder is formed by milling. ミリング速度は200〜600rpm、ミリング時間は1〜24時間である請求項5記載の非水系二次電池用正極活物質。   The positive electrode active material for a non-aqueous secondary battery according to claim 5, wherein the milling speed is 200 to 600 rpm, and the milling time is 1 to 24 hours. 請求項1に記載の非水系二次電池用正極活物質を含む正極を備える非水系二次電池。   A non-aqueous secondary battery comprising a positive electrode comprising the positive electrode active material for a non-aqueous secondary battery according to claim 1. リチウムを含む負極活物質を含む負極を備え、放電終止電圧が2.0V未満である請求項7記載の非水系二次電池。   The non-aqueous secondary battery according to claim 7, comprising a negative electrode containing a negative electrode active material containing lithium and having a discharge end voltage of less than 2.0V. アルカリ金属イオンを挿入・脱離可能なFeF粉末を正極活物質として含む正極を備える非水系二次電池において、
前記FeF粉末は、X線回折による(012)面の回折ピークの半値幅が0.2rad以上である微粉末であり、放電によりFeFからFeを生成し、充電によりFeからFeFを再生する可逆的な酸化還元を行う電圧範囲で充放電を行うことを特徴とする非水系二次電池の充放電方法。
In a non-aqueous secondary battery comprising a positive electrode containing FeF 3 powder capable of inserting and removing alkali metal ions as a positive electrode active material,
The FeF 3 powder is a fine powder in which the half-width of the diffraction peak of the (012) plane by X-ray diffraction is 0.2 rad or more, and Fe is generated from FeF 3 by discharge, and FeF 3 is regenerated by charging. A charge / discharge method for a non-aqueous secondary battery, wherein charge / discharge is performed in a voltage range in which reversible oxidation-reduction is performed.
リチウムを含む負極活物質を含む負極を備え、放電終止電圧が2.0V未満である請求項9記載の非水系二次電池の充放電方法。   The charging / discharging method of the non-aqueous secondary battery according to claim 9, comprising a negative electrode containing a negative electrode active material containing lithium and having a final discharge voltage of less than 2.0V. 前記電圧範囲を4.5V〜1.5Vとする請求項10記載の非水系二次電池の充放電方法。   The charging / discharging method of the non-aqueous secondary battery according to claim 10, wherein the voltage range is 4.5V to 1.5V.
JP2009012876A 2009-01-23 2009-01-23 Positive electrode active material for nonaqueous secondary battery, and charge and discharge method of nonaqueous secondary battery Pending JP2010170867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009012876A JP2010170867A (en) 2009-01-23 2009-01-23 Positive electrode active material for nonaqueous secondary battery, and charge and discharge method of nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009012876A JP2010170867A (en) 2009-01-23 2009-01-23 Positive electrode active material for nonaqueous secondary battery, and charge and discharge method of nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2010170867A true JP2010170867A (en) 2010-08-05

Family

ID=42702804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009012876A Pending JP2010170867A (en) 2009-01-23 2009-01-23 Positive electrode active material for nonaqueous secondary battery, and charge and discharge method of nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2010170867A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195093A (en) * 2011-03-15 2012-10-11 Mitsubishi Heavy Ind Ltd Positive electrode for secondary battery and secondary battery equipped with the same
JP2013182662A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Positive electrode active material for lithium secondary battery and lithium secondary battery
WO2014076946A1 (en) * 2012-11-13 2014-05-22 Jx日鉱日石エネルギー株式会社 Positive electrode material, production method for positive electrode material, and non-aqueous electrolyte battery
JP2015176656A (en) * 2014-03-13 2015-10-05 本田技研工業株式会社 positive electrode material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130265A (en) * 2006-11-17 2008-06-05 Kyushu Univ Surface coated metal fluoride electrode active material
JP2009016234A (en) * 2007-07-06 2009-01-22 Sony Corp Nonaqueous battery, and manufacturing method of nonaqueous battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130265A (en) * 2006-11-17 2008-06-05 Kyushu Univ Surface coated metal fluoride electrode active material
JP2009016234A (en) * 2007-07-06 2009-01-22 Sony Corp Nonaqueous battery, and manufacturing method of nonaqueous battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013021110; 菅野雅恵 他2名: 'リチウム二次電池正極活物質としての遷移金属フッ化物の電気化学特性' 日本化学会講演予稿集 , 2008, 561p *
JPN6013044671; Frederic Cosandey 他4名: 'EELS Spectroscopy of Fluorides and FeFx/C Nanocomposite Electrodes Used in Li-ion Batteries' Microscopy and Microanalysis 13, 2007, 87-95p *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195093A (en) * 2011-03-15 2012-10-11 Mitsubishi Heavy Ind Ltd Positive electrode for secondary battery and secondary battery equipped with the same
JP2013182662A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Positive electrode active material for lithium secondary battery and lithium secondary battery
WO2014076946A1 (en) * 2012-11-13 2014-05-22 Jx日鉱日石エネルギー株式会社 Positive electrode material, production method for positive electrode material, and non-aqueous electrolyte battery
JP2015176656A (en) * 2014-03-13 2015-10-05 本田技研工業株式会社 positive electrode material

Similar Documents

Publication Publication Date Title
JP5225615B2 (en) Lithium ion storage battery containing TiO2-B as negative electrode active material
CN106797022B (en) Potassium ion secondary battery or potassium ion capacitor
JP3769291B2 (en) Non-aqueous electrolyte battery
JP4595987B2 (en) Cathode active material
KR101354085B1 (en) Active material for non-aqueous-system secondary battery, non-aqueous-system secondary battery, and charging-discharging method for non-aqueous-system secondary battery
US20120231341A1 (en) Positive active material, and electrode and lithium battery containing the positive active material
CN109524605A (en) Mixed metal organic frame diaphragm for electrochemical cell
EP3183765A1 (en) Electroactive materials for metal-ion batteries
JP2007018883A (en) Negative electrode active material, nonaqueous electrolyte battery and battery pack
JP2007018882A (en) Nonaqueous electrolyte battery and battery pack
WO2012035648A1 (en) Active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6493409B2 (en) Non-aqueous electrolyte secondary battery
JP6039269B2 (en) Positive electrode active material for sodium ion secondary battery and sodium ion secondary battery using the same
CN108780923B (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
WO2011117992A1 (en) Active material for battery, and battery
CN112313817A (en) Positive electrode material and secondary battery
US9742027B2 (en) Anode for sodium-ion and potassium-ion batteries
JP5002872B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
JP4994628B2 (en) Nonaqueous electrolyte secondary battery
JP5851801B2 (en) Lithium secondary battery
JP2011071064A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery equipped with the negative electrode
JP2014089855A (en) Negative electrode active material for nonaqueous secondary battery use, and nonaqueous secondary battery
JP2010170867A (en) Positive electrode active material for nonaqueous secondary battery, and charge and discharge method of nonaqueous secondary battery
JP2013149451A (en) Lithium secondary battery
JP2011048946A (en) Negative electrode active material, nonaqueous electrolyte battery and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401