JP2008243735A - Solid electrolyte, its molding method, lithium ion secondary battery and its manufacturing method - Google Patents

Solid electrolyte, its molding method, lithium ion secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2008243735A
JP2008243735A JP2007085865A JP2007085865A JP2008243735A JP 2008243735 A JP2008243735 A JP 2008243735A JP 2007085865 A JP2007085865 A JP 2007085865A JP 2007085865 A JP2007085865 A JP 2007085865A JP 2008243735 A JP2008243735 A JP 2008243735A
Authority
JP
Japan
Prior art keywords
solid electrolyte
particles
negative electrode
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007085865A
Other languages
Japanese (ja)
Inventor
Shozo Morimoto
詔三 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arisawa Mfg Co Ltd
Original Assignee
Arisawa Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arisawa Mfg Co Ltd filed Critical Arisawa Mfg Co Ltd
Priority to JP2007085865A priority Critical patent/JP2008243735A/en
Publication of JP2008243735A publication Critical patent/JP2008243735A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolyte having low resistance, its molding method, a lithium ion secondary battery having low internal resistance using the solid electrolyte, and its manufacturing method. <P>SOLUTION: The lithium ion secondary battery has a positive electrode 10, a negative electrode 20, and the solid electrolyte 30 formed of a solid formed of fusion-bonding particles having a crystal phase interposed between the positive electrode 10 and the negative electrode 20. Preferably, the solid electrolyte 30 has a recess and projection on its surface, and the positive electrode 10 and/or the negative electrode 20 have/has a surface shape matching the recess and projection of the solid electrolyte 30. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体電解質およびその成形方法、並びに当該固体電解質を用いたリチウムイオン二次電池およびその製造方法に関するものである。   The present invention relates to a solid electrolyte and a forming method thereof, a lithium ion secondary battery using the solid electrolyte, and a method of manufacturing the same.

現在、携帯電話やノートパソコンで実用化されているリチウムイオン二次電池の電解質は、非水系電解液や、それを高分子ポリマーに保持させたゲル電解質からなる。これら非水系電解液は可燃性を有しており、爆発引火する可能性が高いという問題点があるために、電解質として無機材料からなる固体電解質を用いることが検討されている。   Currently, the electrolyte of a lithium ion secondary battery that is put into practical use in a mobile phone or a notebook computer is composed of a non-aqueous electrolyte solution or a gel electrolyte in which the polymer polymer is held. Since these non-aqueous electrolytes are flammable and have a problem of high possibility of explosion and ignition, it has been studied to use a solid electrolyte made of an inorganic material as an electrolyte.

一般に、固体電解質は粉末状あるいは粒子状のものとして供給される。この粉末状の固体電解質をシート状に成形する場合、従来、固体電解質の粉末と、当該粉末同士を接着させる材料とを混合して、シート状に成形していた(特許文献1参照)。
特開2001−126758号公報
In general, the solid electrolyte is supplied in the form of powder or particles. When this powdery solid electrolyte is formed into a sheet, conventionally, the solid electrolyte powder and a material for bonding the powders are mixed to form a sheet (see Patent Document 1).
JP 2001-126758 A

しかしながら、この場合、成形された固体電解質中に電気伝導に寄与しない材料が含まれることとなり、固体電解質内部の抵抗が高くなり、イオン伝導率が低下するという問題があった。一方で、接着材料を含まない粉末の集合体としての固体電解質では、粉末間の接触抵抗に起因して、同様に固体電解質内部の抵抗が高くなってしまうという問題がある。   However, in this case, the molded solid electrolyte contains a material that does not contribute to electric conduction, and there is a problem that the internal resistance of the solid electrolyte increases and the ionic conductivity decreases. On the other hand, the solid electrolyte as an aggregate of powder that does not contain an adhesive material has a problem that the resistance inside the solid electrolyte similarly increases due to the contact resistance between the powders.

本発明の目的は、抵抗の低い固体電解質およびその成形方法、並びに当該固体電解質を用いた内部抵抗の低いリチウムイオン二次電池およびその製造方法を提供することにある。   An object of the present invention is to provide a solid electrolyte having a low resistance and a molding method thereof, a lithium ion secondary battery having a low internal resistance using the solid electrolyte, and a method for producing the same.

上記の課題を解決するため、本発明に係る固体電解質は、結晶相を有する粒子が融着して成形されていることを特徴とする。   In order to solve the above-mentioned problems, the solid electrolyte according to the present invention is characterized in that particles having a crystalline phase are fused and formed.

このような構成によれば、結晶相を有する粒子が融着していることから、単に粒子同士が接触している場合に比べて、接触抵抗が低くなる。また、電気伝導に寄与しない結着剤等の材料を含まずとも、1つの成形された固体電解質が構成されるため、そのような場合と比べて抵抗を低くすることができる。   According to such a configuration, since the particles having a crystal phase are fused, the contact resistance is lower than when the particles are simply in contact with each other. Moreover, since one molded solid electrolyte is comprised even if it does not contain materials, such as a binder which does not contribute to electrical conduction, resistance can be made low compared with such a case.

上記の課題を解決するため、本発明に係るリチウムイオン二次電池は、正極と、負極と、前記正極および負極の間に介在する、結晶相を有する粒子が融着して成形された固体電解質と、を含む。   In order to solve the above problems, a lithium ion secondary battery according to the present invention includes a positive electrode, a negative electrode, and a solid electrolyte formed by fusing particles having a crystalline phase interposed between the positive electrode and the negative electrode. And including.

このような構成によれば、結晶相を有する粒子が融着していることから、単に粒子同士が接触している場合に比べて、接触抵抗が低くなる。したがって、固体電解質の抵抗を低くできる。電気伝導に寄与しない結着剤等の材料を含まずとも、1つの成形された固体電解質が構成されるため、そのような場合と比べて抵抗を低くすることができる。固体電解質の抵抗を低くできることから、電池の内部抵抗の低抵抗化に繋がる。   According to such a configuration, since the particles having a crystal phase are fused, the contact resistance is lower than when the particles are simply in contact with each other. Therefore, the resistance of the solid electrolyte can be lowered. Even if a material such as a binder that does not contribute to electrical conduction is not included, one molded solid electrolyte is formed, so that the resistance can be lowered as compared with such a case. Since the resistance of the solid electrolyte can be lowered, the internal resistance of the battery is reduced.

前記固体電解質は、表面に凹凸が形成されており、前記正極および/または前記負極は、前記固体電解質の前記凹凸に合致した表面形状を有することが好ましい。電池の出力密度は、電極と固体電解質の接触面積にも関係している。このため、上記構成により、電池の出力密度を高めることができる。   The solid electrolyte preferably has irregularities formed on the surface thereof, and the positive electrode and / or the negative electrode preferably have a surface shape that matches the irregularities of the solid electrolyte. The power density of the battery is also related to the contact area between the electrode and the solid electrolyte. For this reason, the output density of a battery can be raised with the said structure.

さらに好ましくは、前記正極および/または前記負極は、シート状の集電体と、前記集電体の前記固体電解質側に設けられた、活物質の粒子を含む活物質層と、を有する。集電体の前記固体電解質側に配置された活物質層が活物質の粒子を含むことにより、当該粒子が固体電解質の表面の凹凸に充填され、その結果、活物質層の表面形状は、固体電解質の表面の凹凸に合致したものとなる。上記構成では、固体電解質の表面形状に合致した活物質層の表面形状を得るために、パターニング工程が不要となる。   More preferably, the positive electrode and / or the negative electrode include a sheet-like current collector and an active material layer including active material particles provided on the solid electrolyte side of the current collector. When the active material layer disposed on the solid electrolyte side of the current collector contains particles of the active material, the particles are filled in the irregularities on the surface of the solid electrolyte, and as a result, the surface shape of the active material layer is solid. It matches the unevenness of the electrolyte surface. In the above configuration, the patterning step is not required in order to obtain the surface shape of the active material layer that matches the surface shape of the solid electrolyte.

また、前記活物質層は、前記活物質の粒子と、前記固体電解質の粒子とを含み、前記活物質と前記固体電解質の粒子が融着していることが好ましい。これにより、活物質層と固体電解質との界面においてのみ活物質と固体電解質の粒子が接触している場合に比べて、活物質と固体電解質の粒子同士の接触面積を大きくすることができる。また、活物質と固体電解質の粒子とを融着させることにより、異粒子間の接触抵抗を低く抑えることができる。   The active material layer preferably includes the active material particles and the solid electrolyte particles, and the active material and the solid electrolyte particles are preferably fused. Thus, the contact area between the active material and the solid electrolyte particles can be increased as compared with the case where the active material and the solid electrolyte particles are in contact only at the interface between the active material layer and the solid electrolyte. Moreover, the contact resistance between different particles can be kept low by fusing the active material and the solid electrolyte particles.

上記の課題を解決するため、本発明に係る固体電解質の成形方法は、固体電解質の粉末を加熱した状態でプレスすることにより、前記粉末中の粒子を融着させて、固体電解質を成形することを特徴とする。   In order to solve the above problems, a method for forming a solid electrolyte according to the present invention includes pressing a solid electrolyte powder in a heated state to fuse particles in the powder to form a solid electrolyte. It is characterized by.

このような構成によれば、粒子の表面層が僅かに融けた状態で接合(融着)されて、固体電解質の成形品が得られる。したがって、電気伝導に寄与しない接着剤を用いずとも固体電解質の粉末から固体電解質の成形品が得られる。   According to such a configuration, the particle surface layer is bonded (fused) in a slightly melted state, and a solid electrolyte molded product is obtained. Accordingly, a solid electrolyte molded product can be obtained from the solid electrolyte powder without using an adhesive that does not contribute to electrical conduction.

上記の課題を解決するため、本発明に係るリチウムイオン二次電池の製造方法は、固体電解質の粉末を加熱した状態でプレスすることにより、前記粉末中の粒子を融着させて、固体電解質を成形する工程と、前記固体電解質の両側に正極および負極を加熱圧着する工程と、を有する。   In order to solve the above-described problems, a method for manufacturing a lithium ion secondary battery according to the present invention includes pressing a solid electrolyte powder in a heated state to fuse particles in the powder to obtain a solid electrolyte. A step of forming, and a step of thermocompression bonding the positive electrode and the negative electrode on both sides of the solid electrolyte.

このような構成によれば、粒子の表面層が僅かに融けた状態で接合(融着)されて、固体電解質の成形品が得られ、この固体電解質の両側に正極および負極が加熱圧着されて、リチウムイオン二次電池が製造される。したがって、電気伝導に寄与しない接着剤を用いずとも固体電解質の粉末から固体電解質の成形品を製造でき、当該固体電解質を用いてリチウムイオン二次電池が製造される。   According to such a configuration, the surface layer of the particles is joined (fused) in a slightly melted state to obtain a solid electrolyte molded product, and the positive electrode and the negative electrode are thermocompression bonded to both sides of the solid electrolyte. A lithium ion secondary battery is manufactured. Therefore, a molded product of the solid electrolyte can be manufactured from the powder of the solid electrolyte without using an adhesive that does not contribute to electrical conduction, and a lithium ion secondary battery is manufactured using the solid electrolyte.

前記固体電解質を成形する工程において、前記固体電解質の粉末を前記固体電解質の転移点温度以上であり、軟化点温度以下の温度に加熱した状態でプレスすることが好ましい。固体電解質の転移点温度以上に加熱することにより、粉末中の粒子の結晶化および融着が可能となる。また、軟化点温度を超えて加熱してしまうと、結晶構造が変化して導電率が低下することがあるので、軟化点温度以下の温度に加熱することが好ましい。   In the step of forming the solid electrolyte, the solid electrolyte powder is preferably pressed in a state of being heated to a temperature not lower than the transition temperature of the solid electrolyte and not higher than the softening temperature. By heating above the transition temperature of the solid electrolyte, the particles in the powder can be crystallized and fused. In addition, if the heating exceeds the softening point temperature, the crystal structure may change and the electrical conductivity may decrease, so it is preferable to heat to a temperature below the softening point temperature.

前記固体電解質を成形する工程において、減圧下において前記固体電解質の粉末を加熱した状態でプレスする。これにより、固体電解質粒子間の空隙を減少させることができ、より緻密な融着が可能となる。緻密な融着は、固体電解質粒子の接触面積の増大に繋がり、固体電解質の抵抗を低くすることができる。   In the step of forming the solid electrolyte, the solid electrolyte powder is pressed in a heated state under reduced pressure. Thereby, the space | gap between solid electrolyte particles can be reduced, and a denser fusion | fusion is attained. Dense fusion leads to an increase in the contact area of the solid electrolyte particles, and can reduce the resistance of the solid electrolyte.

本発明の固体電解質によれば、固体電解質の抵抗を低くすることができる。また、本発明のリチウムイオン二次電池によれば、固体電解質の抵抗を低くすることで、電池の内部抵抗を低くすることができる。また、本発明の固体電解質の成形方法によれば、接着剤を用いずに、低い抵抗を有する固体電解質を簡易に成形することができる。さらに、本発明のリチウムイオン二次電池の製造方法によれば、内部抵抗の低いリチウムイオン二次電池を製造することができる。   According to the solid electrolyte of the present invention, the resistance of the solid electrolyte can be lowered. Moreover, according to the lithium ion secondary battery of this invention, the internal resistance of a battery can be made low by making resistance of a solid electrolyte low. Further, according to the method for molding a solid electrolyte of the present invention, a solid electrolyte having low resistance can be easily molded without using an adhesive. Furthermore, according to the manufacturing method of the lithium ion secondary battery of this invention, a lithium ion secondary battery with low internal resistance can be manufactured.

以下に、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

<リチウムイオン二次電池の構成>
図1は、本実施形態に係るリチウムイオン二次電池の概略断面図である。リチウムイオン二次電池は、正極10と、負極20と、正極10および負極20間に介在する電解質30とを有する。
<Configuration of lithium ion secondary battery>
FIG. 1 is a schematic cross-sectional view of a lithium ion secondary battery according to this embodiment. The lithium ion secondary battery includes a positive electrode 10, a negative electrode 20, and an electrolyte 30 interposed between the positive electrode 10 and the negative electrode 20.

正極10は、シート状の正極集電体11と、正極集電体11の固体電解質30側に配置された正極活物質層12とを有する。   The positive electrode 10 includes a sheet-like positive electrode current collector 11 and a positive electrode active material layer 12 disposed on the solid electrolyte 30 side of the positive electrode current collector 11.

正極集電体11は、正極10の集電のために配置され、アルミニウム、チタン、ステンレス等の金属や合金からなる。集電体表面は活物質の保持を促進するために、凹凸をつけたり、表面を粗らしたり、微小な穴(50μm以下)を多数個開けたものを用いることができる。   The positive electrode current collector 11 is disposed for collecting the positive electrode 10 and is made of a metal or an alloy such as aluminum, titanium, or stainless steel. In order to promote the retention of the active material, the surface of the current collector can be roughened, roughened, or provided with a large number of minute holes (50 μm or less).

正極活物質層12は、酸化還元反応により電気化学的にリチウムを挿入または脱離可能なリチウムを含む金属酸化物からなる正極活物質粒子を含む。このようなリチウムを含む金属酸化物としては、LiCoO2等のリチウム・コバルト系複合酸化物、LiNiO2等のリチウム・ニッケル系複合酸化物、LiMn24等のリチウム・マンガン系複合酸化物、V25等のリチウム・バナジウム系複合酸化物、LiFeO2等のリチウム・鉄系複合酸化物を用いることができる。 The positive electrode active material layer 12 includes positive electrode active material particles made of a metal oxide containing lithium capable of electrochemically inserting or removing lithium by an oxidation-reduction reaction. The metal oxide containing such a lithium, lithium-cobalt composite oxide such as LiCoO 2, lithium-nickel composite oxide such as LiNiO 2, lithium-manganese-based composite oxide such as LiMn 2 O 4, Lithium / vanadium complex oxides such as V 2 O 5 and lithium / iron complex oxides such as LiFeO 2 can be used.

正極活物質層12は、正極活物質粒子の他に、当該正極活物質粒子を固化するための結着剤や、電気伝導を高めるための導電剤を含んでいてもよい。結着剤としては、スチレンーブタジエンゴム(SBR)等のゴム系樹脂や、ポリフッ化ビリニデン(PVDF)等のフッ素系樹脂を、カルボキシメチルセルロース(CMC)やN・メチル・2ピロリドン(NMP)等の、水溶液や溶媒に懸濁させて使用できる。しかし、結着剤は電気伝導に寄与しないので、できるだけ使わない方が好ましい。導電剤としては、アセチレンブラック、グラファイト、カーボンナノチューブ等の炭素系材料を用いることができる。   In addition to the positive electrode active material particles, the positive electrode active material layer 12 may include a binder for solidifying the positive electrode active material particles and a conductive agent for enhancing electrical conduction. As the binder, rubber resins such as styrene-butadiene rubber (SBR), fluorine resins such as polyvinylidene fluoride (PVDF), carboxymethyl cellulose (CMC), N · methyl · 2 pyrrolidone (NMP), etc. It can be suspended in an aqueous solution or solvent. However, since the binder does not contribute to electrical conduction, it is preferable not to use it as much as possible. As the conductive agent, a carbon-based material such as acetylene black, graphite, or carbon nanotube can be used.

負極20は、シート状の負極集電体21と、負極集電体21の固体電解質30側に配置された負極活物質層22とを有する。集電体表面は活物質の保持を促進するために、凹凸をつけたり、表面を粗らしたり、微小な穴(50μm以下)を多数個開けたものを用いることができる。   The negative electrode 20 includes a sheet-like negative electrode current collector 21 and a negative electrode active material layer 22 disposed on the solid electrolyte 30 side of the negative electrode current collector 21. In order to promote the retention of the active material, the surface of the current collector can be roughened, roughened, or provided with a large number of minute holes (50 μm or less).

負極集電体21は、負極20の集電のために配置され、銅、アルミニウム、ニッケル、チタン、ステンレス等の金属や合金を用いることができる。また、集電体表面は活物質の保持を促進するために、凹凸をつけたり、表面を粗らしたり、微小な穴(50μm以下)を多数個開けたものを用いることができる。   The negative electrode current collector 21 is disposed for collecting current of the negative electrode 20, and a metal or an alloy such as copper, aluminum, nickel, titanium, or stainless steel can be used. Moreover, in order to promote retention of the active material, the surface of the current collector can be provided with irregularities, roughened surface, or a large number of fine holes (50 μm or less).

負極活物質層22は、酸化還元反応により電気化学的にリチウムを挿入または脱離可能な負極活物質粒子を含む。このような負極活物質粒子として、金属リチウムや、リチウムと合金化するLiAl系、LiAg系、LiPb系、LiSi系合金がある。また、黒鉛や、樹脂を焼成炭素化した難黒鉛化炭素、コークスを熱処理した易黒鉛化炭素、フラーレン等の一般炭素材料を用いることができる。   The negative electrode active material layer 22 includes negative electrode active material particles capable of electrochemically inserting or removing lithium by an oxidation-reduction reaction. Examples of such negative electrode active material particles include metallic lithium and LiAl, LiAg, LiPb, and LiSi alloys that are alloyed with lithium. Also, general carbon materials such as graphite, non-graphitizable carbon obtained by firing carbonized resin, graphitizable carbon obtained by heat treating coke, and fullerene can be used.

負極活物質層22は、負極活物質粒子の他に、当該負極活物質粒子を固化するための結着剤や、電気伝導を高めるための導電剤を含んでいてもよい。しかし、結着剤は電気伝導に寄与しないので、できるだけ使わない方が好ましい。結着剤および導電剤の種類については、正極活物質層12で説明したのと同様である。   In addition to the negative electrode active material particles, the negative electrode active material layer 22 may include a binder for solidifying the negative electrode active material particles and a conductive agent for enhancing electrical conduction. However, since the binder does not contribute to electrical conduction, it is preferable not to use it as much as possible. The types of the binder and the conductive agent are the same as those described for the positive electrode active material layer 12.

固体電解質30の材料としては、難燃性のガラスセラミックス系材料を用いることが好ましく、LiPON等のリン酸リチウム系、Li2S−P25、thio−LISICON(チオリシコン)等の硫化リチウム系、LiNbO3とLiTaO3等の複合酸化物系が使用できる。特にLi2S−P25は240℃〜360℃の温度範囲で繰り返し何時間加熱処理しても導電率がほぼ同じ値を示すので、加熱融着成形や加熱融着圧着等の熱処理工程を何度か行う工程では好ましい。 The material of the solid electrolyte 30 is preferably a flame retardant glass ceramic material, such as lithium phosphate such as LiPON, or lithium sulfide such as Li 2 S—P 2 S 5 or thio-LISICON. A composite oxide system such as LiNbO 3 and LiTaO 3 can be used. In particular, Li 2 S—P 2 S 5 shows the same conductivity even if it is repeatedly heat-treated in the temperature range of 240 ° C. to 360 ° C. for many hours, so heat treatment processes such as heat fusion molding and heat fusion pressure bonding It is preferable in the process of performing several times.

図2は、本実施形態に係るリチウムイオン二次電池1の詳細な構成の一例を示す図である。図3は、固体電解質30の好ましい一形態例を示す断面図である。   FIG. 2 is a diagram illustrating an example of a detailed configuration of the lithium ion secondary battery 1 according to the present embodiment. FIG. 3 is a cross-sectional view showing a preferred embodiment of the solid electrolyte 30.

図2に示すように、本実施形態に係る固体電解質30は、結晶相を有する粒径が数十ミクロン前後の固体電解質粒子31を融着して成形したものからなる。固体電解質粒子31の平均粒径としては、5μm〜50μmが好ましく、さらに好ましくは10μm前後〜20μm前後である。ここで、平均粒径が5μm未満であると、粒子は凝集し易くなるので好ましくない。平均粒径が50μmより大きくなると、微粒子間の接触面積が小さくなり、成形体内部に空隙部が含まれ不均質になるので好ましくない。   As shown in FIG. 2, the solid electrolyte 30 according to the present embodiment is formed by fusing and molding solid electrolyte particles 31 having a crystal phase and having a particle diameter of around several tens of microns. The average particle size of the solid electrolyte particles 31 is preferably 5 μm to 50 μm, more preferably about 10 μm to about 20 μm. Here, it is not preferable that the average particle diameter is less than 5 μm, since the particles easily aggregate. When the average particle size is larger than 50 μm, the contact area between the fine particles becomes small, and voids are contained inside the molded body, which is not preferable.

図3に示すように、固体電解質30の表面に凹凸が形成されていることが好ましい。固体電解質表面に接する正極10及び/または負極20の活物質層12、22はその凹凸形状に従って凸凹形状となる。この場合、固体電解質表面の凹凸は片面にのみ形成されていても、両面に形成されていても良い。ただし、正極及び/または負極活物質に金属を用いる場合は、その極側は平坦である方が好ましいのは当然である。この凹凸形状に関しては、円柱、円錐、四角柱、四角錐、波状、線状等種々考えられ、それらの組合せでもよい。そして凹凸形状は固体電解質表面のほぼ全面に形成されている方が好ましい。   As shown in FIG. 3, it is preferable that irregularities are formed on the surface of the solid electrolyte 30. The active material layers 12 and 22 of the positive electrode 10 and / or the negative electrode 20 that are in contact with the solid electrolyte surface have an uneven shape according to the uneven shape. In this case, the unevenness on the surface of the solid electrolyte may be formed only on one side or on both sides. However, when a metal is used for the positive electrode and / or the negative electrode active material, it is natural that the pole side is preferably flat. With regard to the uneven shape, various shapes such as a cylinder, a cone, a quadrangular column, a quadrangular pyramid, a wave shape, and a linear shape are conceivable, and combinations thereof may be used. It is preferable that the uneven shape is formed on almost the entire surface of the solid electrolyte.

固体電解質30の凹凸のアスペクト比(b/a)は、好ましくは2以上であり、さらに好ましくは5以上である。固体電解質30の表面の凹凸のアスペクト比が大きくなれば、それだけ固体電解質30と電極との接触面積が増大することから、出力密度を向上させることができる。   The aspect ratio (b / a) of the unevenness of the solid electrolyte 30 is preferably 2 or more, more preferably 5 or more. As the aspect ratio of the irregularities on the surface of the solid electrolyte 30 increases, the contact area between the solid electrolyte 30 and the electrode increases accordingly, so that the output density can be improved.

また、図2に示すように、本実施形態において、正極活物質層12は、正極活物質粒子13と固体電解質30を構成する粒子と同じ固体電解質粒子14とを含み、正極活物質粒子13と固体電解質粒子14とが融着していることが好ましい。また、負極活物質層22は、負極活物質粒子23と固体電解質30を構成する粒子と同じ固体電解質粒子24を含み、負極活物質粒子23と固体電解質粒子24とが融着していることが好ましい。なお、活物質粒子中に分散している固体電解質粒子は、それ自体がイオン伝導体であるので正極活物質層12の抵抗を高くすることはない。また、活物質層12、22には結着剤が添加されている必要はないが、導電剤は必要に応じて添加してもよい。   In addition, as shown in FIG. 2, in the present embodiment, the positive electrode active material layer 12 includes the positive electrode active material particles 13 and the same solid electrolyte particles 14 as the particles constituting the solid electrolyte 30, It is preferable that the solid electrolyte particles 14 are fused. The negative electrode active material layer 22 includes the same solid electrolyte particles 24 as the particles constituting the negative electrode active material particles 23 and the solid electrolyte 30, and the negative electrode active material particles 23 and the solid electrolyte particles 24 are fused. preferable. Note that the solid electrolyte particles dispersed in the active material particles themselves are ionic conductors, and therefore do not increase the resistance of the positive electrode active material layer 12. In addition, a binder need not be added to the active material layers 12 and 22, but a conductive agent may be added as necessary.

上記の本実施形態に係る固体電解質および当該固体電解質を用いたリチウムイオン二次電池1の効果について説明する。   The effects of the solid electrolyte according to the present embodiment and the lithium ion secondary battery 1 using the solid electrolyte will be described.

本実施形態に係る固体電解質30は、結晶相を有する粒子が融着した固体からなることから、単に粒子同士が接触している状態に比べて、接触抵抗を著しく小さくすることができる。また、固体電解質30は、電気伝導に寄与しない結着剤等の材料(成分)を含まないことから、このような場合と比べても、抵抗を低くすることができる。   Since the solid electrolyte 30 according to the present embodiment is made of a solid in which particles having a crystal phase are fused, the contact resistance can be remarkably reduced as compared with a state where the particles are simply in contact with each other. In addition, since the solid electrolyte 30 does not include a material (component) such as a binder that does not contribute to electrical conduction, the resistance can be lowered as compared with such a case.

また、固体電解質30の表面を凹凸形状とし、この固体電解質30の表面形状に合致した正極および負極を配置することにより、固体電解質30の表面が平面である場合と比べて、電極の表面積を大きくすることができる。したがって、リチウムイオン二次電池を高容量化できる。この場合、固体電解質表面の凹凸は片面でも良いし両面でも良い。   Further, by making the surface of the solid electrolyte 30 uneven, and disposing the positive electrode and the negative electrode that match the surface shape of the solid electrolyte 30, the surface area of the electrode is increased compared to the case where the surface of the solid electrolyte 30 is flat. can do. Therefore, the capacity of the lithium ion secondary battery can be increased. In this case, the unevenness on the surface of the solid electrolyte may be one side or both sides.

また、正極活物質層12が、正極活物質粒子13と固体電解質粒子14とを含み、正極活物質粒子13と固体電解質粒子14とが融着していることにより、異種粒子が単に接触している状態に比べて、接触抵抗を著しく小さくすることができる。負極活物質層22についても同様である。   Further, since the positive electrode active material layer 12 includes the positive electrode active material particles 13 and the solid electrolyte particles 14 and the positive electrode active material particles 13 and the solid electrolyte particles 14 are fused, the different types of particles simply come into contact with each other. The contact resistance can be remarkably reduced as compared with the existing state. The same applies to the negative electrode active material layer 22.

正極活物質層12および/または負極活物質層22が粒子の集合体からなることにより、リソグラフィやエッチング等の技術を用いずに、固体電解質30の表面形状に合わせた三次元形状化が容易となる。したがって、容易に電極表面積を大きくすることができ、高容量化を実現できる。   By forming the positive electrode active material layer 12 and / or the negative electrode active material layer 22 from an aggregate of particles, it is easy to form a three-dimensional shape that matches the surface shape of the solid electrolyte 30 without using a technique such as lithography or etching. Become. Therefore, the surface area of the electrode can be easily increased, and a high capacity can be realized.

また、正極活物質層12および/または負極活物質層22中の固体電解質粒子が、固体電解質30中の粒子に対しても融着することにより、固体電解質30と活物質層12,22とを一体化することができ、両者の界面抵抗を低減化できる。   Further, the solid electrolyte particles in the positive electrode active material layer 12 and / or the negative electrode active material layer 22 are fused to the particles in the solid electrolyte 30, so that the solid electrolyte 30 and the active material layers 12 and 22 are bonded. They can be integrated, and the interface resistance between them can be reduced.

次に、上記の本実施形態に係る固体電解質30の成形方法およびリチウムイオン二次電池1の製造方法について説明する。   Next, a method for forming the solid electrolyte 30 and a method for manufacturing the lithium ion secondary battery 1 according to the present embodiment will be described.

<固体電解質製造方法>
図4〜6に、固体電解質を成形する治具構成の概略を示す。凹凸を有する固体電解質、及び正極及び/または負極を作製するために、まず固体電解質の成形を行う。成形には加圧治具を用いる。例えば、図4に示すように、強度的に十分な高さと厚みを持った中空リング40を用意する。また、図5に示すように、そのリング内径に隙間なく挿入可能な直径を有する円柱41を2本用意する。この円柱41の片面には所定の凹凸形状42が形成されており、もう片端は平坦43に加工されている。さらに、図6に示すように、中空リング40の内径に隙間なく挿入可能な直径を有し、両面が平坦な円柱49を2本用意する。
<Solid electrolyte production method>
4 to 6 show an outline of a jig configuration for forming a solid electrolyte. In order to produce a solid electrolyte having irregularities and a positive electrode and / or a negative electrode, the solid electrolyte is first molded. A pressure jig is used for molding. For example, as shown in FIG. 4, a hollow ring 40 having a sufficiently high strength and thickness is prepared. Further, as shown in FIG. 5, two cylinders 41 having a diameter that can be inserted into the ring inner diameter without any gap are prepared. A predetermined concavo-convex shape 42 is formed on one side of the cylinder 41, and the other end is processed into a flat 43. Further, as shown in FIG. 6, two cylinders 49 having a diameter that can be inserted into the inner diameter of the hollow ring 40 without a gap and flat on both sides are prepared.

図7に示すように、最初に1本の円柱41を、凹凸形状42を上にして保持治具44aに立てる。そして、中空リング40を円柱41に挿入する。この時、円柱41は中空リング40から飛び出ないように保持治具で高さ調整されている。   As shown in FIG. 7, first, one column 41 is placed on the holding jig 44a with the concavo-convex shape 42 facing up. Then, the hollow ring 40 is inserted into the cylinder 41. At this time, the height of the cylinder 41 is adjusted by a holding jig so as not to jump out of the hollow ring 40.

次に、図8に示すように、中空リング40内に微粉末からなる固体電解質粉末45を適量入れる。この量によって加圧融着成形後の固体電解質の厚さが決まる。少なすぎると成形された凹凸によって孔が開いてしまうし、多過ぎると抵抗値が高くなるので、成形後約50μm〜約500μmの厚さ(平均)になるような量を入れることが好ましい。固体電解質粉末45を入れた後、粒子が凹凸形状42上で均一な厚さになるように保持治具44aに振動等を与えてもよい。   Next, as shown in FIG. 8, an appropriate amount of solid electrolyte powder 45 made of fine powder is put into the hollow ring 40. This amount determines the thickness of the solid electrolyte after pressure fusion molding. If the amount is too small, holes are formed due to the formed irregularities, and if the amount is too large, the resistance value becomes high. Therefore, it is preferable to add an amount that gives a thickness (average) of about 50 μm to about 500 μm after molding. After the solid electrolyte powder 45 is added, vibration or the like may be applied to the holding jig 44a so that the particles have a uniform thickness on the uneven shape 42.

次に、図9に示すように、残りの円柱41を凹凸形状42が下になるように中空リング40に挿入する。この時、円柱41の平坦部43は中空リング40から出ている。   Next, as shown in FIG. 9, the remaining cylinder 41 is inserted into the hollow ring 40 so that the concave / convex shape 42 faces downward. At this time, the flat portion 43 of the cylinder 41 protrudes from the hollow ring 40.

次に、図10に示すように、保持治具44a上に保持治具44bをかぶせる。なお、保持治具44bには中空リング40の内部を減圧するための減圧口46を設けてある方が好ましい。   Next, as shown in FIG. 10, the holding jig 44b is placed on the holding jig 44a. The holding jig 44b is preferably provided with a decompression port 46 for decompressing the inside of the hollow ring 40.

次に、図11に示すように、加圧の際の衝撃を吸収するバネ47を保持治具44b上に置き、加圧ピン48が円柱41の平坦部43を押すように保持治具44bに挿入する。   Next, as shown in FIG. 11, a spring 47 that absorbs an impact during pressurization is placed on the holding jig 44 b, and the pressurizing pin 48 presses the flat part 43 of the column 41 to the holding jig 44 b. insert.

これら加熱融着成形に用いる治具は、加熱や加圧によって変形がなく、膨張の小さい材料が選ばれる。特に、中空リング40と2本の円柱41は成形に関わる重要な部品であるため、ハステロイ、N−155等のFe−Ni−Mo合金やFe−Ni−Cr―Co合金、グラファイト、石英等の熱膨張係数が小さく、耐熱性と強度の高い材料を用いることが好ましい。   As the jig used for the heat fusion molding, a material which is not deformed by heating or pressurization and has a small expansion is selected. In particular, since the hollow ring 40 and the two cylinders 41 are important parts involved in molding, Fe-Ni-Mo alloys such as Hastelloy and N-155, Fe-Ni-Cr-Co alloys, graphite, quartz, etc. It is preferable to use a material having a small coefficient of thermal expansion and high heat resistance and strength.

このようにして加圧のための準備が整った後、加圧を行う。加圧には加圧治具の形状に合わせて、油圧式プレス機等の一般的なプレス装置を用いることができる。加圧は縦方向でも横方向でもよいが、固体電解質粒子を円柱41間で均一に保持するためには、縦方向で加圧した方が好ましい。   After preparing for pressurization in this way, pressurization is performed. For pressurization, a general press apparatus such as a hydraulic press can be used in accordance with the shape of the pressurizing jig. Although the pressurization may be in the vertical direction or the horizontal direction, in order to keep the solid electrolyte particles uniformly between the cylinders 41, it is preferable to press in the vertical direction.

ここで、加圧の圧力が小さいと融着が不完全になると共に凹凸もうまく成形できない。一方、圧力が10t/cm2以上になると固体電解質を破壊してしまうので、圧力は少なくとも2000kg/cm2であり、この加圧圧力は固体電解質粒子の投入量によって変えることが好ましい。また、加圧時には減圧口46から中空リング40内部を大気圧以下に減圧することによって、固体電解質粒子間の空隙をなくすことができて、より緻密な融着が可能となる。 Here, if the pressure of the pressurization is small, the fusion is incomplete and the unevenness cannot be formed well. On the other hand, since the solid electrolyte is destroyed when the pressure becomes 10 t / cm 2 or more, the pressure is at least 2000 kg / cm 2 , and it is preferable to change this pressure depending on the amount of the solid electrolyte particles introduced. In addition, by reducing the pressure inside the hollow ring 40 from the pressure reducing port 46 to the atmospheric pressure or lower during pressurization, voids between the solid electrolyte particles can be eliminated, and a denser fusion can be achieved.

目標加熱温度保持時における加圧時間は、保持温度や固体電解質粉末の投入量にもよるため一概には言えないが、数時間以下が好ましい。また、加圧は昇温―温度保持―降温の全ての工程において、加圧し続ける方が好ましい。   Although the pressurization time at the time of holding the target heating temperature depends on the holding temperature and the amount of the solid electrolyte powder, it cannot be generally specified, but is preferably several hours or less. Further, it is preferable that the pressurization is continued in all the steps of raising temperature, maintaining temperature, and decreasing temperature.

加熱は、固体電解質が成形される部分が所定の温度になればよいので、例えば、固体電解質粒子が入っている部分だけを加熱してもよいし、加熱治具全体を加熱してもよい。   Since the heating may be performed so long as the portion where the solid electrolyte is formed reaches a predetermined temperature, for example, only the portion containing the solid electrolyte particles may be heated, or the entire heating jig may be heated.

加熱には、通常の加熱方法を用いることができる。例えば、抵抗加熱、高周波加熱等を用いることができる。この時、固体電解質が成形される部分の温度が比較的均一になるように温度調整器等によって温度制御を行う。加熱温度は固体電解質材料の転移点温度以上、軟化点温度以下の温度が好ましい。より好ましくは、転移点温度以上、転移点温度+200℃以下である。加熱温度が軟化点温度を越えてしまうと、結晶構造が変化して導電率が低下することがあり、また、軟化した固体電解質が加圧治具に強固に付着したりする現象が生じるので好ましくない。   A normal heating method can be used for heating. For example, resistance heating, high frequency heating, or the like can be used. At this time, temperature control is performed by a temperature controller or the like so that the temperature of the portion where the solid electrolyte is formed becomes relatively uniform. The heating temperature is preferably a temperature not lower than the transition point temperature and not higher than the softening point temperature of the solid electrolyte material. More preferably, it is not lower than the transition temperature and not higher than the transition temperature + 200 ° C. If the heating temperature exceeds the softening point temperature, the crystal structure may change and the conductivity may decrease, and the softened solid electrolyte may be firmly attached to the pressure jig, which is preferable. Absent.

上記の加熱により、固体電解質粉末45中の粒子が結晶化する。そして、加圧の効果も相まって、結晶相を有する粒子同士が融着し、所望の成形品となる。なお、粒子の結晶化と融着を同時にする必要はなく、加熱融着成形前に、固体電解質粉末45を結晶化させるための熱処理を行ってもよい。このときの熱処理温度は、上記の加熱融着成形におけるものと同じ条件が適用される。   By the heating, the particles in the solid electrolyte powder 45 are crystallized. And, together with the effect of pressurization, particles having a crystal phase are fused together to form a desired molded product. It is not necessary to simultaneously crystallize and fuse the particles, and heat treatment for crystallizing the solid electrolyte powder 45 may be performed before heat fusion molding. The heat treatment temperature at this time is the same as that in the heat fusion molding described above.

加熱融着成形によって三次元化された固体電解質成形品50を作製後、電極の圧着を行う。この場合も加圧治具を用いるが、固体電解質の時と異なり、円柱41の両端が平坦な円柱49を2本用いる。保持治具44aに円柱49を立てて、中空リング40を円柱に挿入する。そして、中空リング内径より僅かに小さい直径に切り抜いた負極集電体21となる金属箔を円柱49上に置き、さらにその上に、負極活物質粒子23に固体電解質粒子24を添加分散させたもの(以下、負極剤)を均一な厚さになるように入れる。この時保持治具44aに振動を加えてもよい。   After producing the three-dimensional solid electrolyte molded product 50 by heat fusion molding, the electrodes are crimped. In this case as well, a pressurizing jig is used, but unlike the case of the solid electrolyte, two cylinders 49 in which both ends of the cylinder 41 are flat are used. The column 49 is set up on the holding jig 44a, and the hollow ring 40 is inserted into the column. Then, a metal foil to be the negative electrode current collector 21 cut out to a diameter slightly smaller than the inner diameter of the hollow ring is placed on the cylinder 49, and further, the solid electrolyte particles 24 are added and dispersed in the negative electrode active material particles 23 thereon. (Hereinafter, negative electrode agent) is introduced so as to have a uniform thickness. At this time, vibration may be applied to the holding jig 44a.

次に、加熱融着成形した固体電解質30の成形品を負極剤の上に置き、その上に正極活物質粒子13に固体電解質粒子14を添加分散させたもの(以下、正極剤)を電解質剤表面で均一になるように入れる。この時再度保持治具44aに振動を与えてもよい。そして、正極剤上に中空リング内径より僅かに小さい直径に切り抜いた正極集電体となる金属箔を置き、もう一つの円柱49を中空リング40に挿入する。   Next, a molded product of the solid electrolyte 30 formed by heat fusion molding is placed on the negative electrode agent, and a solid electrolyte particle 14 added and dispersed on the positive electrode active material particles 13 thereon (hereinafter, positive electrode agent) is used as the electrolyte agent. Put evenly on the surface. At this time, vibration may be applied to the holding jig 44a again. Then, a metal foil serving as a positive electrode current collector cut out to a diameter slightly smaller than the inner diameter of the hollow ring is placed on the positive electrode agent, and another cylinder 49 is inserted into the hollow ring 40.

このようにして、負極集電体―負極剤―固体電解質―正極剤―正極集電体を積層し、加圧の準備が整った後、固体電解質の加熱融着成形と同様の方法で加熱融着圧着を行い、三次元電極を有するリチウムイオン二次電池1を作製する。この場合も加圧は、縦方向、横方向どちらでもよいが、多数の材料を積層しているので、縦方向で加圧する方が好ましい。また、この例では、負極集電体から積層したが、正極集電体から積層してもよい。このように積層することによって、一度の加熱融着圧着で電池セル構造を形成できるので、コストダウンに効果的である。さらに、この例では、負極集電体―負極剤(以下、負極)、正極集電体−正極剤(以下、正極)を同時に加熱融着圧着したが、事前に塗布法等によって形成された負極や正極を、負極−電解質剤−正極の構成で積層し、加熱融着圧着することもできる。   In this way, the negative electrode current collector-negative electrode agent-solid electrolyte-positive electrode agent-positive electrode current collector is laminated, and after preparation for pressurization is completed, heat fusion is performed in the same manner as the heat fusion molding of the solid electrolyte. The lithium ion secondary battery 1 having a three-dimensional electrode is manufactured by performing pressure bonding. In this case as well, the pressurization may be in either the vertical direction or the horizontal direction, but since a large number of materials are laminated, it is preferable to apply pressure in the vertical direction. In this example, the negative electrode current collector is laminated, but the positive electrode current collector may be laminated. By laminating in this way, the battery cell structure can be formed by one-time heat fusion bonding, which is effective for cost reduction. Further, in this example, the negative electrode current collector-negative electrode agent (hereinafter referred to as negative electrode) and the positive electrode current collector-positive electrode agent (hereinafter referred to as positive electrode) were simultaneously heat-sealed and bonded, but the negative electrode formed by a coating method or the like in advance. Alternatively, a positive electrode, a negative electrode, an electrolyte agent, and a positive electrode can be laminated and heat-sealed.

加熱融着圧着は多数の材料が積層しているため、加圧時の圧力が低いと積層構造が形成されないので、少なくとも1000kg/cm2の圧力で加圧することが好ましい。この圧力は積層構造物の高さ、すなわち負極剤投入量、固体電解質の厚さ、正極剤投入量によって変更することが好ましい。また、一気に高い圧力を加えて加圧すると積層構造が壊れることがあるので、徐々に高くしていく方が好ましい。 Since a large number of materials are laminated in the heat fusion pressure bonding, since a laminated structure is not formed if the pressure at the time of pressurization is low, it is preferable to pressurize at a pressure of at least 1000 kg / cm 2 . This pressure is preferably changed according to the height of the laminated structure, that is, the negative electrode agent input amount, the thickness of the solid electrolyte, and the positive electrode agent input amount. In addition, when a high pressure is applied at a stretch, the laminated structure may be broken, so it is preferable to increase the pressure gradually.

一方、加熱温度は固体電解質を加熱融着成形した温度と同じであるか、もしくは数十℃高い方が好ましい。加熱融着圧着温度が高過ぎると、より強固な融着が可能になるものの、加圧治具への融着も同時に生じるため好ましくない。   On the other hand, the heating temperature is preferably the same as the temperature at which the solid electrolyte is heat-sealed or formed, or higher by several tens of degrees Celsius. When the heat fusion pressure bonding temperature is too high, although stronger fusion is possible, fusion to the pressure jig is also not preferable.

なお、ここでは、結晶相を有する固体電解質を加熱融着成形することを示したが、ガラス状の固体電解質粒子に結晶相を析出させる熱処理を兼ねて、ガラス状固体電解質の結晶化と同時に加熱融着成形してもよい。   Here, it is shown that the solid electrolyte having a crystalline phase is formed by heat fusion molding. However, the solid electrolyte is heated simultaneously with the crystallization of the glassy solid electrolyte also as a heat treatment for precipitating the crystalline phase on the glassy solid electrolyte particles. Fusion molding may be performed.

[実施例1]
まず片面は平坦であり、残りの片面に、深さ200μm,線幅100μmで縦横にピッチ200μmで引かれた線状痕を有する直径20mmの円柱41を2本準備した。この円柱を保持治具に線状痕を上にして立てて、中空リング40を挿入した。
[Example 1]
First, one side was flat, and two cylinders 41 with a diameter of 20 mm were prepared on the remaining one side, with linear traces having a depth of 200 μm, a line width of 100 μm, and a vertical and horizontal pitch of 200 μm. The hollow ring 40 was inserted with the cylinder standing on the holding jig with the line traces facing up.

次に、固体電解質粉末45として、硫化リチウム系結晶であるLi2S−P25を用意した。Li2S−P25は以下のようにして作製した。Li2S:P25=70:30(モル比)となるように秤量し、乳鉢にて混合し、遊星型ボールミルを用いたメカニカルミリング法によって、窒素雰囲気中、室温で20時間の処理を行いガラス状のLi2S−P25を得た。その後、このガラス状Li2S−P25を300℃で熱処理を行い、結晶相を有する固体電解質Li2S−P25とした。この固体電解質のTgは約210℃であった。また平均粒径は21μmであった。 Next, Li 2 S—P 2 S 5 , which is a lithium sulfide-based crystal, was prepared as the solid electrolyte powder 45. Li 2 S—P 2 S 5 was prepared as follows. Weighing so that Li 2 S: P 2 S 5 = 70: 30 (molar ratio), mixing in a mortar, and treatment for 20 hours at room temperature in a nitrogen atmosphere by mechanical milling using a planetary ball mill To obtain glassy Li 2 S—P 2 S 5 . Thereafter, this glassy Li 2 S—P 2 S 5 was heat-treated at 300 ° C. to obtain a solid electrolyte Li 2 S—P 2 S 5 having a crystalline phase. The Tg of this solid electrolyte was about 210 ° C. The average particle size was 21 μm.

この固体電解質粉末100mgを線状痕上に高さが均一になるように置いた。そして、もう一つの円柱41の線状痕を下にして中空リング40に挿入し、それらの上に保持治具44bをかぶせ、バネ47と加圧ピン48を定位置に配置して加圧前品とした。この加圧前品を油圧プレス機にセットして、加圧前品内部を10Paに減圧し、3800kg/cm2の圧力を加えながら、加圧前品を330℃で1時間加熱した。その後、加圧を続けながら降温して、直径20mm,厚さ500μmに加熱融着成形された固体電解質の成形品を得た。この固体電解質の表裏面には、深さ約180μmの線状形状が転写されていた。 100 mg of this solid electrolyte powder was placed on the linear trace so that the height was uniform. Then, the other cylindrical column 41 is inserted into the hollow ring 40 with the linear mark down, and the holding jig 44b is placed on them, and the spring 47 and the pressure pin 48 are placed in a fixed position before pressing. It was a product. This pre-pressurized product was set in a hydraulic press machine, the pressure inside the pre-pressurized product was reduced to 10 Pa, and the pre-pressurized product was heated at 330 ° C. for 1 hour while applying a pressure of 3800 kg / cm 2 . Thereafter, the temperature was lowered while continuing the pressurization to obtain a solid electrolyte molded product heat-sealed to a diameter of 20 mm and a thickness of 500 μm. A linear shape having a depth of about 180 μm was transferred to the front and back surfaces of the solid electrolyte.

一方、電極の圧着に対して、正極活物質粒子13としてLiCoO2を、負極活物質粒子23として黒鉛を用意し、正極はLiCoO2:アセチレンブラック:固体電解質=5:1:4(wt%)の割合で、負極は黒鉛:固体電解質=5:5(wt%)の割合で均一に混合した正極剤と負極剤をそれぞれ作製した。また、正極集電体11および負極集電体21として、それぞれ直径20mmのアルミニウム箔と銅箔を準備した。さらに、両端が平坦な円柱49を2本準備した。 On the other hand, LiCoO 2 is prepared as the positive electrode active material particles 13 and graphite is prepared as the negative electrode active material particles 23, and the positive electrode is LiCoO 2 : acetylene black: solid electrolyte = 5: 1: 4 (wt%). In this ratio, a negative electrode and a negative electrode were prepared by uniformly mixing them in a ratio of graphite: solid electrolyte = 5: 5 (wt%). Moreover, as the positive electrode current collector 11 and the negative electrode current collector 21, an aluminum foil and a copper foil each having a diameter of 20 mm were prepared. Further, two cylinders 49 having flat ends are prepared.

次に、この円柱49を保持治具44aに立てて、中空リング40を挿入した。そして、銅箔を円柱上に置き、以下、負極剤、固体電解質、正極剤、アルミニウム箔の順番に積層し、最後に円柱49を中空リングに挿入し、保持治具44b、バネ47、加圧ピン48を定位置に配置して圧着前品とした。   Next, the hollow ring 40 was inserted with the cylinder 49 standing on the holding jig 44a. Then, the copper foil is placed on a cylinder, and thereafter, the negative electrode agent, the solid electrolyte, the positive electrode agent, and the aluminum foil are laminated in this order. Finally, the cylinder 49 is inserted into the hollow ring, the holding jig 44b, the spring 47, and the pressurization. The pin 48 was placed at a fixed position to obtain a pre-crimped product.

この圧着前品を油圧プレス機にセットして、圧着前品内部を10Paに減圧し2800kg/cm2の圧力を加えながら、圧着前品を360℃で1時間加熱した。その後、加圧を続けながら降温して、外径20mm,厚さ900μmに加熱融着圧着された電池を得た。交流インピーダンス法を用いて、この電池の導電率を測定したところ、3.2×10-3S/cmであった。さらに容量を調べたところ、203mAh/gであった。 This pre-compression product was set in a hydraulic press, the pre-compression product was depressurized to 10 Pa, and the pre-compression product was heated at 360 ° C. for 1 hour while applying a pressure of 2800 kg / cm 2 . Thereafter, the temperature was lowered while continuing the pressurization to obtain a battery which was heat-sealed and bonded to an outer diameter of 20 mm and a thickness of 900 μm. When the electric conductivity of this battery was measured using the alternating current impedance method, it was 3.2 × 10 −3 S / cm. When the capacity was further examined, it was 203 mAh / g.

[実施例2]
実施例1の固体電解質を作製する場合に、負極側に接する面を両端が平坦な円柱を用いて、さらに、負極剤にインジウム箔を用いた以外は、実施例1と同様の方法で電池を作製した。この場合、電池の固体電解質剤の正極側には凹凸があり、負極側は平坦である。この電池の導電率を、交流インピーダンス法を用いて測定したところ、2.9×10-3S/cmであった。また容量を調べたところ、135mAh/gであった。
[Example 2]
When producing the solid electrolyte of Example 1, a battery was fabricated in the same manner as in Example 1 except that a cylinder in which both ends were flat on the surface in contact with the negative electrode side and indium foil was used as the negative electrode agent. Produced. In this case, the positive electrode side of the solid electrolyte agent of the battery is uneven, and the negative electrode side is flat. The conductivity of this battery was measured using an AC impedance method and found to be 2.9 × 10 −3 S / cm. When the capacity was examined, it was 135 mAh / g.

[実施例3]
実施例1の固体電解質を作製する場合に、両端が平坦な円柱2本を用いた以外は、実施例1と同様の方法で電池を作製した。この場合、電池の固体電解質の表面に凹凸はなく、平坦である。この電池の導電率を、交流インピーダンス法を用いて測定したところ、2.3×10-3S/cmであった。また容量を調べたところ、88mAh/gであった。
[Example 3]
When producing the solid electrolyte of Example 1, a battery was produced in the same manner as in Example 1 except that two cylinders having flat ends were used. In this case, the surface of the solid electrolyte of the battery is flat with no irregularities. The conductivity of this battery was measured using an AC impedance method and found to be 2.3 × 10 −3 S / cm. When the capacity was examined, it was 88 mAh / g.

[比較例1]
実施例1の固体電解質を作製する場合に、両端が平坦な円柱2本を用い、さらに加熱を行わずに加圧して固体電解質の成形体を得た以外は、実施例1と同様の方法で電池を作製した。この場合、電池の固体電解質の表面に凹凸はなく、平坦である。この電池の導電率を、交流インピーダンス法を用いて測定したところ、8.3×10-4S/cmであった。また容量を調べたところ、59mAh/gであった。
[Comparative Example 1]
In the case of producing the solid electrolyte of Example 1, the same method as in Example 1 was used except that two cylinders with flat ends were used and the solid electrolyte was molded by applying pressure without heating. A battery was produced. In this case, the surface of the solid electrolyte of the battery is flat with no irregularities. The conductivity of this battery was measured using an AC impedance method and found to be 8.3 × 10 −4 S / cm. When the capacity was examined, it was 59 mAh / g.

本発明は、上記の実施形態の説明に限定されない。
その他、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。
The present invention is not limited to the description of the above embodiment.
In addition, various modifications can be made without departing from the scope of the present invention.

本実施形態に係るリチウムイオン二次電池の概略断面図である。It is a schematic sectional drawing of the lithium ion secondary battery which concerns on this embodiment. リチウムイオン二次電池の詳細な構成を示す断面図である。It is sectional drawing which shows the detailed structure of a lithium ion secondary battery. 固体電解質の構成を示す図である。It is a figure which shows the structure of a solid electrolyte. 固体電解質の成形に用いる治具を示す図である。It is a figure which shows the jig | tool used for shaping | molding of a solid electrolyte. 固体電解質の成形に用いる治具を示す図である。It is a figure which shows the jig | tool used for shaping | molding of a solid electrolyte. 固体電解質の成形に用いる治具を示す図である。It is a figure which shows the jig | tool used for shaping | molding of a solid electrolyte. 固体電解質の成形方法を説明するための図である。It is a figure for demonstrating the shaping | molding method of a solid electrolyte. 固体電解質の成形方法を説明するための図である。It is a figure for demonstrating the shaping | molding method of a solid electrolyte. 固体電解質の成形方法を説明するための図である。It is a figure for demonstrating the shaping | molding method of a solid electrolyte. 固体電解質の成形方法を説明するための図である。It is a figure for demonstrating the shaping | molding method of a solid electrolyte. 固体電解質の成形方法を説明するための図である。It is a figure for demonstrating the shaping | molding method of a solid electrolyte.

符号の説明Explanation of symbols

1…リチウムイオン二次電池、10…正極、11…正極集電体、12…正極活物質層、13…正極活物質粒子、14…固体電解質粒子、20…負極、21…負極集電体、22…負極活物質層、23…負極活物質粒子、24…固体電解質粒子、30…固体電解質、31…固体電解質粒子、40…中空リング、41…円柱、42…凹凸部、43…平坦部、44a,44b…保持治具、45…固体電解質粉末、46…減圧口、47…バネ、48…加圧ピン、49…円柱   DESCRIPTION OF SYMBOLS 1 ... Lithium ion secondary battery, 10 ... Positive electrode, 11 ... Positive electrode collector, 12 ... Positive electrode active material layer, 13 ... Positive electrode active material particle, 14 ... Solid electrolyte particle, 20 ... Negative electrode, 21 ... Negative electrode collector 22 ... Negative electrode active material layer, 23 ... Negative electrode active material particle, 24 ... Solid electrolyte particle, 30 ... Solid electrolyte, 31 ... Solid electrolyte particle, 40 ... Hollow ring, 41 ... Cylinder, 42 ... Uneven portion, 43 ... Flat portion, 44a, 44b ... holding jig, 45 ... solid electrolyte powder, 46 ... decompression port, 47 ... spring, 48 ... pressure pin, 49 ... cylinder

Claims (9)

結晶相を有する粒子が融着して成形されている、
固体電解質。
The particles having a crystalline phase are fused and shaped,
Solid electrolyte.
正極と、
負極と、
前記正極および負極の間に介在する、結晶相を有する粒子が融着して成形された固体電解質と、
を含むリチウムイオン二次電池。
A positive electrode;
A negative electrode,
A solid electrolyte formed by fusing particles having a crystalline phase interposed between the positive electrode and the negative electrode;
Lithium ion secondary battery containing.
前記固体電解質は、表面に凹凸が形成されており、
前記正極および/または前記負極は、前記固体電解質の前記凹凸に合致した表面形状を有する、
請求項2記載のリチウムイオン二次電池。
The solid electrolyte has irregularities formed on the surface,
The positive electrode and / or the negative electrode has a surface shape that matches the irregularities of the solid electrolyte,
The lithium ion secondary battery according to claim 2.
前記正極および/または前記負極は、
シート状の集電体と、
前記集電体の前記固体電解質側に設けられた、活物質の粒子を含む活物質層と、
を有する請求項3記載のリチウム二次電池。
The positive electrode and / or the negative electrode is
A sheet-like current collector;
An active material layer including active material particles provided on the solid electrolyte side of the current collector;
The lithium secondary battery according to claim 3, comprising:
前記活物質層は、
前記活物質の粒子と、
前記固体電解質の粒子とを含み、
前記活物質と前記固体電解質の粒子が融着している、
請求項4記載のリチウムイオン二次電池。
The active material layer is
Particles of the active material;
The solid electrolyte particles,
The active material and the solid electrolyte particles are fused.
The lithium ion secondary battery according to claim 4.
固体電解質の粉末を加熱した状態でプレスすることにより、前記粉末中の粒子を融着させて、固体電解質を成形する、
固体電解質の成形方法。
By pressing the solid electrolyte powder in a heated state, the particles in the powder are fused to form a solid electrolyte.
A method for forming a solid electrolyte.
固体電解質の粉末を加熱した状態でプレスすることにより、前記粉末中の粒子を融着させて、固体電解質を成形する工程と、
前記固体電解質の両側に正極および負極を加熱圧着する工程と、
を有するリチウムイオン二次電池の製造方法。
Pressing the solid electrolyte powder in a heated state to fuse the particles in the powder to form a solid electrolyte; and
Heat-pressing a positive electrode and a negative electrode on both sides of the solid electrolyte;
The manufacturing method of the lithium ion secondary battery which has this.
前記固体電解質を成形する工程において、前記固体電解質の粉末を前記固体電解質の転移点温度以上であり、軟化点温度以下の温度に加熱した状態でプレスする、
請求項7記載のリチウムイオン二次電池の製造方法。
In the step of forming the solid electrolyte, the powder of the solid electrolyte is pressed at a temperature equal to or higher than the transition temperature of the solid electrolyte and heated to a temperature equal to or lower than the softening temperature.
The manufacturing method of the lithium ion secondary battery of Claim 7.
前記固体電解質を成形する工程において、減圧下において前記固体電解質の粉末を加熱した状態でプレスする、
請求項7記載のリチウムイオン二次電池の製造方法。
In the step of forming the solid electrolyte, pressing the solid electrolyte powder in a heated state under reduced pressure,
The manufacturing method of the lithium ion secondary battery of Claim 7.
JP2007085865A 2007-03-28 2007-03-28 Solid electrolyte, its molding method, lithium ion secondary battery and its manufacturing method Pending JP2008243735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007085865A JP2008243735A (en) 2007-03-28 2007-03-28 Solid electrolyte, its molding method, lithium ion secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007085865A JP2008243735A (en) 2007-03-28 2007-03-28 Solid electrolyte, its molding method, lithium ion secondary battery and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013138293A Division JP5698803B2 (en) 2013-07-01 2013-07-01 Method for producing lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2008243735A true JP2008243735A (en) 2008-10-09

Family

ID=39914797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085865A Pending JP2008243735A (en) 2007-03-28 2007-03-28 Solid electrolyte, its molding method, lithium ion secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008243735A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097812A (en) * 2008-10-16 2010-04-30 Toyota Motor Corp Method for manufacturing solid battery
JP2010097811A (en) * 2008-10-16 2010-04-30 Toyota Motor Corp Method for manufacturing solid battery
WO2012053359A1 (en) * 2010-10-20 2012-04-26 新東工業株式会社 Method and device for manufacturing layered structure constituting all-solid battery, and all-solid battery provided with layered structure
JP2012234720A (en) * 2011-05-02 2012-11-29 Ngk Insulators Ltd Solid electrolyte separator, secondary battery unit, and secondary battery assembly
CN102956865A (en) * 2011-08-23 2013-03-06 大日本网屏制造株式会社 Preparation process of electrode for battery
JP2013201145A (en) * 2013-07-01 2013-10-03 Arisawa Mfg Co Ltd Method for manufacturing lithium ion secondary battery
JP2014093260A (en) * 2012-11-06 2014-05-19 Idemitsu Kosan Co Ltd Solid electrolyte compact, process of manufacturing the same, and all solid battery
JP2014096311A (en) * 2012-11-12 2014-05-22 National Institute Of Advanced Industrial & Technology Solid electrolyte sheet, electrode sheet, and all solid secondary battery
CN103828089A (en) * 2011-09-30 2014-05-28 三洋电机株式会社 Assembled cell
JPWO2014073467A1 (en) * 2012-11-07 2016-09-08 株式会社村田製作所 All solid battery
JP2017103253A (en) * 2012-03-29 2017-06-08 株式会社半導体エネルギー研究所 Lithium ion secondary battery
CN108365267A (en) * 2017-01-26 2018-08-03 罗伯特·博世有限公司 The method for manufacturing the electrode layered product of solid state battery group
JP2018166020A (en) * 2017-03-28 2018-10-25 Fdk株式会社 All-solid battery and manufacturing method thereof
WO2020067107A1 (en) * 2018-09-27 2020-04-02 富士フイルム株式会社 Method for manufacturing all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for manufacturing same
CN113381055A (en) * 2020-03-10 2021-09-10 中国科学院上海硅酸盐研究所 Lithium/garnet-based solid electrolyte interface with low interface impedance and preparation method thereof
WO2022172612A1 (en) * 2021-02-12 2022-08-18 パナソニックIpマネジメント株式会社 Battery, battery system, and battery manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200621A (en) * 1998-12-28 2000-07-18 Central Res Inst Of Electric Power Ind All solid secondary battery and its manufacture
JP2000251938A (en) * 1999-02-25 2000-09-14 Kyocera Corp Manufacture of all solid lithium battery
JP2000331684A (en) * 1999-05-24 2000-11-30 Kyocera Corp Laminated solid secondary battery
JP2001243984A (en) * 2000-02-28 2001-09-07 Kyocera Corp Solid electrolyte battery and its manufacturing method
JP2003208919A (en) * 2002-01-15 2003-07-25 Idemitsu Petrochem Co Ltd Manufacturing method of lithium ion conductive sulfide glass and glass ceramics as well as all solid-type battery using same glass ceramics
JP2008124011A (en) * 2006-10-19 2008-05-29 Idemitsu Kosan Co Ltd Lithium ion conductive solid electrolyte sheet, and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200621A (en) * 1998-12-28 2000-07-18 Central Res Inst Of Electric Power Ind All solid secondary battery and its manufacture
JP2000251938A (en) * 1999-02-25 2000-09-14 Kyocera Corp Manufacture of all solid lithium battery
JP2000331684A (en) * 1999-05-24 2000-11-30 Kyocera Corp Laminated solid secondary battery
JP2001243984A (en) * 2000-02-28 2001-09-07 Kyocera Corp Solid electrolyte battery and its manufacturing method
JP2003208919A (en) * 2002-01-15 2003-07-25 Idemitsu Petrochem Co Ltd Manufacturing method of lithium ion conductive sulfide glass and glass ceramics as well as all solid-type battery using same glass ceramics
JP2008124011A (en) * 2006-10-19 2008-05-29 Idemitsu Kosan Co Ltd Lithium ion conductive solid electrolyte sheet, and its manufacturing method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097812A (en) * 2008-10-16 2010-04-30 Toyota Motor Corp Method for manufacturing solid battery
JP2010097811A (en) * 2008-10-16 2010-04-30 Toyota Motor Corp Method for manufacturing solid battery
JP5900343B2 (en) * 2010-10-20 2016-04-06 新東工業株式会社 Method for manufacturing layer structure constituting all-solid battery, manufacturing apparatus, and all-solid battery including the layer structure
US9484568B2 (en) 2010-10-20 2016-11-01 Sintokogio, Ltd. Method of manufacturing layered structure constituting all-solid-state battery, apparatus for manufacturing the same, and all-solid-state battery provided with layered structure
WO2012053359A1 (en) * 2010-10-20 2012-04-26 新東工業株式会社 Method and device for manufacturing layered structure constituting all-solid battery, and all-solid battery provided with layered structure
JPWO2012053359A1 (en) * 2010-10-20 2014-02-24 新東工業株式会社 Method for manufacturing layer structure constituting all-solid battery, manufacturing apparatus, and all-solid battery including the layer structure
JP2012234720A (en) * 2011-05-02 2012-11-29 Ngk Insulators Ltd Solid electrolyte separator, secondary battery unit, and secondary battery assembly
US8734538B2 (en) 2011-08-23 2014-05-27 Dainippon Screen Mfg. Co., Ltd. Preparation process of electrode for battery
CN102956865A (en) * 2011-08-23 2013-03-06 大日本网屏制造株式会社 Preparation process of electrode for battery
KR101533140B1 (en) * 2011-08-23 2015-07-01 가부시키가이샤 스크린 홀딩스 Preparation process of electrode for battery
CN103828089A (en) * 2011-09-30 2014-05-28 三洋电机株式会社 Assembled cell
JP2017103253A (en) * 2012-03-29 2017-06-08 株式会社半導体エネルギー研究所 Lithium ion secondary battery
JP2014093260A (en) * 2012-11-06 2014-05-19 Idemitsu Kosan Co Ltd Solid electrolyte compact, process of manufacturing the same, and all solid battery
JPWO2014073467A1 (en) * 2012-11-07 2016-09-08 株式会社村田製作所 All solid battery
JP2014096311A (en) * 2012-11-12 2014-05-22 National Institute Of Advanced Industrial & Technology Solid electrolyte sheet, electrode sheet, and all solid secondary battery
JP2013201145A (en) * 2013-07-01 2013-10-03 Arisawa Mfg Co Ltd Method for manufacturing lithium ion secondary battery
CN108365267A (en) * 2017-01-26 2018-08-03 罗伯特·博世有限公司 The method for manufacturing the electrode layered product of solid state battery group
JP2018166020A (en) * 2017-03-28 2018-10-25 Fdk株式会社 All-solid battery and manufacturing method thereof
US11967681B2 (en) 2018-09-27 2024-04-23 Fujifilm Corporation Method of manufacturing all-solid state secondary battery, electrode sheet for all-solid state secondary battery, and method of manufacturing electrode sheet for all-solid state secondary battery
CN112585797A (en) * 2018-09-27 2021-03-30 富士胶片株式会社 Method for manufacturing all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for manufacturing electrode sheet
CN112585797B (en) * 2018-09-27 2024-03-12 富士胶片株式会社 Method for manufacturing all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for manufacturing same
WO2020067107A1 (en) * 2018-09-27 2020-04-02 富士フイルム株式会社 Method for manufacturing all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for manufacturing same
CN113381055A (en) * 2020-03-10 2021-09-10 中国科学院上海硅酸盐研究所 Lithium/garnet-based solid electrolyte interface with low interface impedance and preparation method thereof
CN113381055B (en) * 2020-03-10 2022-11-11 中国科学院上海硅酸盐研究所 Lithium/garnet-based solid electrolyte interface with low interface impedance and preparation method thereof
WO2022172612A1 (en) * 2021-02-12 2022-08-18 パナソニックIpマネジメント株式会社 Battery, battery system, and battery manufacturing method

Similar Documents

Publication Publication Date Title
JP2008243735A (en) Solid electrolyte, its molding method, lithium ion secondary battery and its manufacturing method
CN108417883B (en) All-solid-state battery and method for manufacturing same
JP6175934B2 (en) Manufacturing method of all solid state battery
JP6319335B2 (en) Manufacturing method of all solid state battery
JP5131283B2 (en) Solid battery manufacturing method and solid battery
JP5311283B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP5487719B2 (en) Manufacturing method of all-solid lithium secondary battery, and all-solid lithium secondary battery obtained by the manufacturing method
WO2010137381A1 (en) Positive electrode and process for producing same
JPH08138724A (en) Manufacture of all solid lithium secondary battery
JP2016134254A (en) Method of manufacturing all-solid battery
KR101586536B1 (en) Manufacturing method of carbon fiber sheet current collector for all solid state rechargeable thin film lithium secondary battery, and all solid state rechargeable thin film lithium secondary battery comprising carbon fiber sheet current collector
CN113196545A (en) All-solid-state battery and method for manufacturing all-solid-state battery
JP5698803B2 (en) Method for producing lithium ion secondary battery
JP2012064432A (en) Method for manufacturing powder layer, method for manufacturing electrode body and method for manufacturing solid battery
WO2018079165A1 (en) Stacked secondary battery and method for producing same
JP2014082105A (en) All solid battery and manufacturing method therefor
JP7070329B2 (en) Manufacturing method of all-solid-state battery
JP6251974B2 (en) Battery manufacturing method
JP2014116136A (en) All-solid-state secondary battery
CN114864921B (en) Negative electrode active material layer
JP2019207871A (en) battery
US20220246989A1 (en) Stacked electrode body, resin-fixed stacked electrode body, and all-solid-state battery
JP2014102982A (en) All-solid-state battery and manufacturing method for the same
CN111370773A (en) All-solid-state stacked battery
JP6992710B2 (en) A composite solid electrolyte layer, a method for manufacturing the same, and a method for manufacturing an all-solid-state battery.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716