JP2000251938A - Manufacture of all solid lithium battery - Google Patents

Manufacture of all solid lithium battery

Info

Publication number
JP2000251938A
JP2000251938A JP11047398A JP4739899A JP2000251938A JP 2000251938 A JP2000251938 A JP 2000251938A JP 11047398 A JP11047398 A JP 11047398A JP 4739899 A JP4739899 A JP 4739899A JP 2000251938 A JP2000251938 A JP 2000251938A
Authority
JP
Japan
Prior art keywords
active material
electrode active
solid electrolyte
powder
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11047398A
Other languages
Japanese (ja)
Inventor
Toshihiko Kamimura
俊彦 上村
Hiromitsu Mishima
洋光 三島
Nobuyuki Kitahara
暢之 北原
Hisashi Higuchi
永 樋口
Makoto Osaki
誠 大崎
Shinji Umagome
伸二 馬込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11047398A priority Critical patent/JP2000251938A/en
Publication of JP2000251938A publication Critical patent/JP2000251938A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To retard interface reaction between a solid electrolyte and electrode active materials by interposing solid electrolyte powder between a positive electrode active material body made by mixing positive electrode active material powder and solid electrolyte powder and a negative electrode active material body made by mixing negative electrode active material powder and solid electrolyte powder, heating with microwaves, and then sealing them in a battery can. SOLUTION: A positive electrode active material body 3 of a coin type lithium battery is prepared by mixing positive electrode active material powder and solid electrolyte powder and heating with microwaves, and a negative electrode active material body 6 is prepared by mixing negative electrode active material powder and solid electrolyte powder and heating with microwaves. The negative electrode active material body 6 is a mixture of an oxide having charging-discharging potential lower than that of a positive electrode active material in the positive electrode active material body 3 and the solid electrolyte powder. A solid electrolyte 5 is prepared by also heating with microwaves. As an oxide used in the positive electrode active material body 3 and the negative electrode active material body 6, lithium manganese composite oxide, for example, is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は全固体リチウム電池
の製造方法に関する。
[0001] The present invention relates to a method for manufacturing an all-solid lithium battery.

【0002】[0002]

【従来技術】携帯電話やパーソナルコンピューターに代
表される携帯機器の近年の目覚しい発達に伴い、その電
源としての電池の需要も急速に増加している。特にリチ
ウムイオン電池は、原子量が小さく、かつイオン化エネ
ルギーが大きなリチウムを使う電池であることから、高
エネルギー密度を得ることができる電池として盛んに研
究され、現在では携帯機器の電源をはじめとして広範囲
に用いられるに至っている。これらリチウムイオン電池
には、大きく分けて円筒型と角型があるが、いずれも正
極と負極がセパレータを介して倦回された極群を電槽缶
内に挿入し、そこに有機電解液が注入されて封口された
構造となっている。
2. Description of the Related Art With the recent remarkable development of portable devices typified by portable telephones and personal computers, demand for batteries as power sources has been rapidly increasing. In particular, lithium ion batteries are batteries that use lithium, which has a low atomic weight and a large ionization energy, and are therefore being actively studied as batteries that can obtain high energy densities. It has been used. These lithium-ion batteries are roughly classified into cylindrical type and square type.In both cases, the positive electrode and the negative electrode are inserted through a separator into a battery case. The structure has been injected and sealed.

【0003】上述したリチウムイオン電池では、正極活
物質としてコバルト酸リチウム(LiCoO2 )やマン
ガン酸リチウム(LiMn2 4 )が一般的に用いられ
ている。また、負極活物質には、コークスや炭素繊維な
どの炭素材料が用いられている。ここで挙げだLiCo
2 やLiMn2 4 の充放電電圧は約4Vである。こ
れに対して炭素材料の充放電位は0V付近である。した
がって、これらの正極活物質と負極活物質を組み合わせ
ることでリチウムイオン電池は約3.5Vの高電圧を達
成している。
In the above-mentioned lithium ion battery, lithium cobalt oxide (LiCoO 2 ) and lithium manganate (LiMn 2 O 4 ) are generally used as a positive electrode active material. Further, a carbon material such as coke and carbon fiber is used for the negative electrode active material. LiCo listed here
The charge and discharge voltage of O 2 and LiMn 2 O 4 is about 4V. On the other hand, the charge / discharge potential of the carbon material is around 0V. Therefore, a lithium ion battery achieves a high voltage of about 3.5 V by combining these positive electrode active materials and negative electrode active materials.

【0004】また、近年、ビデオ撮影装置やノートパソ
コン、携帯電話等の携帯用情報端末機器に代表される各
種電子応用機器の薄型かつ軽量小型化の要求に伴い、前
述のような有機電解液に代えて、正負一対の電極間に高
分子電解質と有機電解液を混合させた。ポリマー電解質
電池が注目されている。しかし、これらリチウムイオン
電池またはポリマー電解質電池は電解質に液体を使用し
ているため、液漏れの問題を皆無とすることができな
い。また、電池に短絡等の異常が生じた場合、有機電解
液が反応を起こし、電池が発火する危険性がある。その
ため、電池の安全性を確保するため、不燃性の固体で形
成されるリチウム電池の開発が望まれている。
[0004] In recent years, with the demand for thin, light and small electronic devices such as video photographing devices, notebook personal computers, and portable information terminals such as portable telephones, the above-mentioned organic electrolytic solution has been required. Instead, a polymer electrolyte and an organic electrolyte were mixed between a pair of positive and negative electrodes. Attention has been focused on polymer electrolyte batteries. However, since these lithium ion batteries or polymer electrolyte batteries use a liquid as an electrolyte, the problem of liquid leakage cannot be eliminated at all. Further, when an abnormality such as a short circuit occurs in the battery, there is a risk that the organic electrolyte reacts and the battery is ignited. Therefore, in order to ensure the safety of the battery, development of a lithium battery formed of a nonflammable solid is desired.

【0005】このような電池に用いられる電解質として
は、ハロゲン化リチウム、窒化リチウム、リチウムイオ
ン導電性硫化物非晶質、あるいはLi2 O−B2 3
SiO2 等のリチウムイオン導電性酸化物系ガラス等の
固体電解質が研究開発されつつある。これらの電解質は
無機固体粉末であるため、電池へ応用する際には粉末を
加圧して用いられる。しかしながら粉末の加圧成形で
は、粒子間の接合は原則的に点接触に近い状態になって
おり、電極のインピーダンスが高くなり、大電流での充
放電が困難となっていた。この問題を解決するために、
固体電解質層を固体電解質の軟化点以上ガラス転移点以
下の温度で加圧成形したり、正極活物質粉体と固体電解
質粉末の混合物から成る正極と、負極活物質粉末と固体
電解質粉末の混合物からなる負極とによって固体電解質
粉末を加圧成形して得られた固体電解質層を挟持した
後、前記固体電解質の軟化点以上ガラス転移点以下の温
度で加圧したり、正、負極いずれか一方の電極が活物質
粉末と固体電解質粉末の混合物からなり、この電極と固
体電解質粉末を加圧成形して得た後、固体電解質層とを
重ね合わせ、これらを固体電解質の軟化点以上ガラス転
移点以下の温度で加圧する電池が提案されている(特開
平8−138724号)。または、平均粒径が0.1〜
50μmの活物質粉末と平均粒径0.1〜50μmの固
体電解質粉末を、重量比で3.0:7.0〜9.5:
0.5で配合することにより、電極中のイオン伝導経路
と電子伝導経路の双方を確保し、電極中の利用率の向上
を高めると共に、集電効率を上げ、大電流充放電が可能
な電極が提案されている(特開平8−195219
号)。
As an electrolyte used in such a battery, lithium halide, lithium nitride, lithium ion conductive sulfide amorphous, or Li 2 O—B 2 O 3
A solid electrolyte such as a lithium ion conductive oxide glass such as SiO 2 is being researched and developed. Since these electrolytes are inorganic solid powders, the powders are used under pressure when applied to batteries. However, in pressure molding of powder, the bonding between particles is basically in a state close to point contact, and the impedance of the electrode is high, making it difficult to charge and discharge with a large current. to solve this problem,
The solid electrolyte layer may be formed under pressure at a temperature between the softening point of the solid electrolyte and the glass transition point or less, or a mixture of the cathode active material powder and the solid electrolyte powder, and the mixture of the anode active material powder and the solid electrolyte powder. After sandwiching the solid electrolyte layer obtained by press-molding the solid electrolyte powder with the negative electrode, or pressing the solid electrolyte at a temperature equal to or higher than the softening point and lower than the glass transition point of the solid electrolyte, one of the positive and negative electrodes Consists of a mixture of the active material powder and the solid electrolyte powder, after obtaining the electrode and the solid electrolyte powder by pressure molding, the solid electrolyte layer is superimposed, and these are softened point or more and glass transition point or less of the solid electrolyte. A battery which is pressurized at a temperature has been proposed (JP-A-8-138724). Or, the average particle size is 0.1 to
A 50 μm active material powder and a solid electrolyte powder having an average particle diameter of 0.1 to 50 μm were mixed at a weight ratio of 3.0: 7.0 to 9.5:
By mixing at 0.5, both the ion conduction path and the electron conduction path in the electrode are ensured, the utilization rate in the electrode is improved, the current collection efficiency is increased, and the electrode capable of large current charging and discharging is possible. (Japanese Patent Laid-Open No. 8-195219)
issue).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、固体電
解質の軟化点以上ガラス転移点以下で加圧成形する場
合、その加熱の工程において電極活物質と固体電解質が
反応する場合がある。特に電極活物質には遷移金属元素
を含んだものが多く、この元素は、加熱工程中に固体電
解質に拡散し易く、活物質本来の組成や結晶構造が変化
する問題がある。したがって、加熱工程においてはこの
反応を抑制することが非常に困難であり、再現性のよい
電池特性が得られにくい問題がある。あるいは、平均粒
径の異なる2種の粉末を混合した場合でも依然として空
隙は残っており、この空隙は電池反応に寄与しないた
め、電池容量が低くなる問題がある。また、粉末成形法
では、粒子間の接合は原則的に点接触に近い状態になっ
ており、空隙が多くなるほど粒子間の接触面積は大きく
なる問題がある。
However, when pressure molding is performed at a temperature between the softening point and the glass transition point of the solid electrolyte, the electrode active material and the solid electrolyte may react in the heating step. In particular, many electrode active materials contain a transition metal element, which easily diffuses into the solid electrolyte during the heating step, and has a problem that the original composition and crystal structure of the active material change. Therefore, it is very difficult to suppress this reaction in the heating step, and it is difficult to obtain reproducible battery characteristics. Alternatively, even when two kinds of powders having different average particle diameters are mixed, a void still remains, and the void does not contribute to the battery reaction, so that there is a problem that the battery capacity is reduced. Further, in the powder molding method, the bonding between particles is basically in a state close to a point contact, and there is a problem that the contact area between the particles increases as the number of voids increases.

【0007】[0007]

【発明の目的】本発明は、このような従来技術の課題に
鑑みて成されたものであり、固体電解質と電極活物質の
界面反応を抑制すると共に電極活物質体もしくは固体電
解質の充填率を向上させ、電池の特性を向上することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the prior art, and suppresses the interfacial reaction between a solid electrolyte and an electrode active material, and reduces the filling rate of the electrode active material or the solid electrolyte. It is intended to improve the characteristics of the battery.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の全固体リチウム電池の製造方法では、正極
活物質粉体と固体電解質粉体を混合した正極活物質体
と、負極活物質粉末と固体電解質粉末を混合した負極活
物質体との間に固体電解質粉末を挟持してマイクロ波加
熱する。
In order to achieve the above object, a method for manufacturing an all solid lithium battery according to the present invention comprises a positive electrode active material body in which a positive electrode active material powder and a solid electrolyte powder are mixed; The solid electrolyte powder is sandwiched between the material powder and the negative electrode active material body in which the solid electrolyte powder is mixed, and microwave heating is performed.

【0009】また、正極活物質粉体と固体電解質粉体を
混合した正極活物質体と、負極活物質粉末と固体電解質
粉末を混合した負極活物質体とを各々マイクロ波加熱し
た後、前記正極活物質体と負極活物質体との間に固体電
解質粉末を挟持してマイクロ波加熱する。
Further, the positive electrode active material obtained by mixing the positive electrode active material powder and the solid electrolyte powder, and the negative electrode active material obtained by mixing the negative electrode active material powder and the solid electrolyte powder are each microwave-heated. Microwave heating is performed by sandwiching the solid electrolyte powder between the active material body and the negative electrode active material body.

【0010】また、正極活物質粉体と固体電解質粉体を
混合した正極活物質体と、負極活物質粉末と固体電解質
粉末を混合した負極活物質体と固体電解質粉体を各々マ
イクロ波加熱した後、前記正極活物質体と負極活物質体
との間に固体電解質層を挟持してマイクロ波加熱する。
Further, the positive electrode active material body in which the positive electrode active material powder and the solid electrolyte powder are mixed, the negative electrode active material body in which the negative electrode active material powder and the solid electrolyte powder are mixed, and the solid electrolyte powder are each microwave-heated. Then, the solid electrolyte layer is sandwiched between the positive electrode active material body and the negative electrode active material body, and microwave heating is performed.

【0011】また、正極活物質粉体、負極活物質粉体の
いずれか一方を固体電解質粉体と混合した活物質体をマ
イクロ波加熱して正極活物質体と負極活物質体を形成し
た後、前記正極活物質体と負極活物質体との間に固体電
解質粉体を挟持してマイクロ波加熱する。
[0011] Further, the active material obtained by mixing one of the positive electrode active material powder and the negative electrode active material powder with the solid electrolyte powder is microwave-heated to form the positive electrode active material and the negative electrode active material. Then, the solid electrolyte powder is sandwiched between the positive electrode active material body and the negative electrode active material body, and microwave heating is performed.

【0012】このようにすると、固体電解質と電極活物
質の界面反応を抑制すると共に、電極活物質体もしくは
固体電解質の充填率を向上させ、電池の特性を向上する
ことができる。つまり、マイクロ波加熱は、マイクロ波
を材料に吸収させ材料内部から自己発熱させる方法にな
っており、熱伝導率や輻射による従来の外部から加熱す
る方法と比較して急速加熱が可能となる。したがって、
短時間での焼成が可能になり、異種材料間の物質移動を
抑制することができる。
In this manner, the interfacial reaction between the solid electrolyte and the electrode active material can be suppressed, the filling rate of the electrode active material or the solid electrolyte can be improved, and the characteristics of the battery can be improved. That is, the microwave heating is a method in which microwaves are absorbed by a material and self-heat is generated from the inside of the material, and rapid heating is possible as compared with a conventional method of heating from the outside by thermal conductivity or radiation. Therefore,
Baking can be performed in a short time, and mass transfer between different materials can be suppressed.

【0013】[0013]

【発明の実施の形態】以下、本発明の全固体リチウム電
池の製造方法の実施形態について説明する。図1は、本
発明の製造方法によって製造されるコイン型リチウム電
池の構成例を示す断面図である。図1において、1は正
極缶、2は正極集電層、3は正極活物質体、5は固体電
解質、6は負極活物質体、7は負極集電層、8は負極缶
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method for producing an all solid lithium battery according to the present invention will be described below. FIG. 1 is a cross-sectional view illustrating a configuration example of a coin-type lithium battery manufactured by the manufacturing method of the present invention. In FIG. 1, 1 is a positive electrode can, 2 is a positive electrode current collecting layer, 3 is a positive electrode active material, 5 is a solid electrolyte, 6 is a negative electrode active material, 7 is a negative electrode current collecting layer, and 8 is a negative electrode can.

【0014】正極集電層2は、正極缶1と正極活物質体
3と接着と集電のため配置され、例えば炭素材料を含ん
だポリイミド系接着剤から成る。
The positive electrode current collecting layer 2 is disposed between the positive electrode can 1 and the positive electrode active material member 3 for adhesion and current collection, and is made of, for example, a polyimide adhesive containing a carbon material.

【0015】正極活物質体3は、正極活物質粉体と固体
電解質粉体を混合しマイクロ波加熱したものから成り、
負極活物質体6は、負極活物質粉体と固体電解質粉体を
混合しマイクロ波加熱したものから成る。負極活物質体
6は、正極活物質体3中の正極活物質の充放電電位より
も卑な充放電電位を有する酸化物と固体電解質粉末の混
合体から成る。また、固体電解質5もマイクロ波加熱し
たものから成る。
The positive electrode active material body 3 is made of a mixture of the positive electrode active material powder and the solid electrolyte powder, which is heated by microwave,
The negative electrode active material body 6 is formed by mixing the negative electrode active material powder and the solid electrolyte powder and heating them by microwave. The negative electrode active material member 6 is composed of a mixture of an oxide having a charge / discharge potential lower than that of the positive electrode active material in the positive electrode active material member 3 and a solid electrolyte powder. In addition, the solid electrolyte 5 is also formed by microwave heating.

【0016】この正極活物質体3および負極活物質体6
に用いる酸化物としては、次のような化合物が挙げられ
る。例えば、リチウムマンガン複合酸化物、二酸化マン
ガン、リチウムニッケル複合酸化物、リチウムコバルト
複合酸化物、リチウムニッケルコバルト複合酸化物、リ
チウムバナジウム複合酸化物、リチウムチタン複合酸化
物、酸化チタン、酸化ニオブ、酸化バナジウム、酸化タ
ングステンなどとそれらの誘動体が挙げられる。ここ
で、正極活物質と負極活物質には明確な区別はなく、2
種類の化合物の充放電電位を比較して貴な電位を示すも
のを正極に、卑な電位を示すものを負極にそれぞれ用い
て任意の電圧の電池を構成することができる。
The positive electrode active material 3 and the negative electrode active material 6
The following compounds may be mentioned as oxides to be used for: For example, lithium manganese composite oxide, manganese dioxide, lithium nickel composite oxide, lithium cobalt composite oxide, lithium nickel cobalt composite oxide, lithium vanadium composite oxide, lithium titanium composite oxide, titanium oxide, niobium oxide, vanadium oxide , Tungsten oxide and the like and their inducers. Here, there is no clear distinction between the positive electrode active material and the negative electrode active material.
By comparing the charge / discharge potentials of the various compounds, a battery having a noble potential is used as a positive electrode, and a compound showing a noble potential is used as a negative electrode, whereby a battery having an arbitrary voltage can be formed.

【0017】このような電極活物質体3、6は、(1)
活物質粉末と固体電解質粉末を混合させこれに成形助剤
を溶解させた水もしくは溶剤に分散させ、必要に応じて
は可塑剤、分散剤を混合してスラリーを調整し、このス
ラリーを基材フイルム上に塗布・乾燥・脱バインダーし
たものをマイクロ波加熱させる方法、あるいは、(2)
前述と同様にあらかじめ混合したものに成形助剤を添加
し造粒したものを金型に投入し、プレス機で加圧成形・
脱バインダーした後、マイクロ波加熱させる方法、ある
いは(3)ロールプレス機で加圧成形してシート状に加
工した後、そのシートを適時裁断しマイクロ波させる方
法などが用いられる。
Such electrode active material members 3 and 6 are (1)
The active material powder and the solid electrolyte powder are mixed and dispersed in water or a solvent in which a molding aid is dissolved.If necessary, a plasticizer and a dispersant are mixed to prepare a slurry. A method of heating the film which has been coated, dried and debindered on a film by microwave heating, or (2)
As before, a molding aid was added to the pre-mixed one, and the mixture was granulated and poured into a mold.
A method of microwave heating after removing the binder, or (3) a method of press-molding with a roll press machine to form a sheet, and then cutting the sheet as appropriate to apply microwaves is used.

【0018】マイクロ波加熱を行う加熱炉としては、マ
ルチモード共振器とシングルモード共振器を用いること
ができ、マイクロ波共振器は、一般的に2.45GHz
もしくは6GHzのものが用いられる。昇温速度および
加熱温度は、マイクロ波出力によって制御され、被加熱
体の温度は、赤外線温度計などを用いて読み取る。
As a heating furnace for performing microwave heating, a multi-mode resonator and a single-mode resonator can be used, and a microwave resonator generally has a frequency of 2.45 GHz.
Alternatively, a frequency of 6 GHz is used. The heating rate and the heating temperature are controlled by the microwave output, and the temperature of the object to be heated is read using an infrared thermometer or the like.

【0019】(2)、(3)の造粒は、(1)の方法で
述べたスラリーから造粒する湿式造粒であっても溶剤を
用いない乾式造粒であっても構わない。また、(2)の
方法では成型助剤を用いなくてもよい。ここで使用可能
な成形助剤としては、例えばポリアクリル酸、カルボキ
シメチルセルロース、ポリフッ化ビニリデン、ポリビニ
ルアルコール、ジアセチルセルロース、ヒドロキシプロ
ピルセルロース、ポリビニルクロライト、ポリビニルピ
ロリドンなどの1種もしくは2種以上の混合物が挙げら
れる。
The granulation of (2) and (3) may be wet granulation from the slurry described in the method of (1) or dry granulation without using a solvent. In the method (2), a molding aid may not be used. Examples of the molding aid that can be used here include one or a mixture of two or more of polyacrylic acid, carboxymethylcellulose, polyvinylidene fluoride, polyvinyl alcohol, diacetylcellulose, hydroxypropylcellulose, polyvinylchlorite, and polyvinylpyrrolidone. No.

【0020】基材フイルムとしては、例えばポリエチレ
ンテレフタレート、ポリプロピレン、ポリエチレン、テ
トラフルオロエチレン等の樹脂フイルム、アルミニウ
ム、ステンレス、銅などの金属箔等が使用可能である。
As the base film, for example, resin films such as polyethylene terephthalate, polypropylene, polyethylene and tetrafluoroethylene, and metal foils such as aluminum, stainless steel and copper can be used.

【0021】固体電解質としては、例えばLi1.3 Al
0.3 Ti1.7 (PO4 3 、Li3. 6 Ge0.6 0.4
4 、Li1+x+y Alx Ti2-x Siy 3-y 12などの
結晶性固体電解質、30LiI−41Li2 O−29P
2 5 や40Li2 O−35B2 5 −25LiNbO
3 などの酸化物系非晶質固体電解質、45LiI−37
Li2 S−18P2 5 や1Li3 PO4 −63Li2
S−36SiS2 などの硫化物系非晶質固体電解質など
を挙げることができる。
As the solid electrolyte, for example, Li 1.3 Al
0.3 Ti 1.7 (PO 4) 3 , Li 3. 6 Ge 0.6 V 0.4 O
4, Li 1 + x + y Al x Ti 2-x Si y P 3-y O 12 crystalline solid electrolyte such as, 30LiI-41Li 2 O-29P
2 O 5 and 40Li 2 O-35B 2 O 5 -25LiNbO
Oxidized amorphous solid electrolyte such as 3 , 45LiI-37
Li 2 S-18P 2 O 5 and 1Li 3 PO 4 -63Li 2
A sulfide-based amorphous solid electrolyte such as S-36SiS 2 can be used.

【0022】負極集電層7は、負極活物質体6と例えば
ステンレスから成る負極缶8の接着と集電のために配置
され、例えば銀を含んだ導電性接着剤から成る。上述の
正極活物質体3が収納された正極缶1と負極活物質体6
が収納装着された負極缶8は、絶縁パッキング4を介し
てかしめ合わされ封口される。本発明が適用されるリチ
ウム電池は、正極活物質体および/または負極活物質体
が固体電解質粉末との混合物で構成されているものであ
れば、一次電池であっても二次電池であってもよい。電
池形状は円筒型、角型、ボタン型、コイン型および扁平
型などに限定されるものではない。
The negative electrode current collecting layer 7 is disposed for bonding and collecting current between the negative electrode active material 6 and the negative electrode can 8 made of, for example, stainless steel, and is made of, for example, a conductive adhesive containing silver. The positive electrode can 1 containing the above-mentioned positive electrode active material 3 and the negative electrode active material 6
The negative electrode can 8 in which is stored and attached is caulked via the insulating packing 4 and sealed. The lithium battery to which the present invention is applied is a primary battery or a secondary battery as long as the positive electrode active material body and / or the negative electrode active material body is composed of a mixture with a solid electrolyte powder. Is also good. The battery shape is not limited to a cylindrical type, a square type, a button type, a coin type, a flat type and the like.

【0023】[0023]

【実施例】[実施例]水酸化リチウムと二酸化マンガン
をLiとMnのモル比が1:2となるように混合し、こ
の混合物を大気中、900℃で15時間加熱焼成するこ
とによりリチウムマンガン複合酸化物(LiMn
2 4 )を調整し、これを正極活物質粉体とした。次に
水酸化リチウムと二酸化チタンをLiとTiのモル比が
4:5となるように混合し、この混合物を大気中、85
0℃で15時間加熱焼成することによりリチウムチタン
複合酸化物(Li4 Ti5 12)を調整して負極活物質
粉体とした。このLiMn2 4 とLi4 Ti5 12
それぞれに30LiI−41Li2 O−29P2 5
混合し成形助剤と溶剤を加え混合しスラリー化を調整し
た。
EXAMPLES [Example] Lithium manganese was mixed by mixing lithium hydroxide and manganese dioxide so that the molar ratio of Li and Mn was 1: 2, and then firing the mixture at 900 ° C. for 15 hours in the air. Complex oxide (LiMn
2 O 4 ) was prepared and used as a positive electrode active material powder. Next, lithium hydroxide and titanium dioxide are mixed so that the molar ratio of Li and Ti is 4: 5.
By heating and baking at 0 ° C. for 15 hours, a lithium-titanium composite oxide (Li 4 Ti 5 O 12 ) was prepared to obtain a negative electrode active material powder. To each of LiMn 2 O 4 and Li 4 Ti 5 O 12 , 30LiI-41Li 2 O-29P 2 O 5 was mixed, and a molding aid and a solvent were added and mixed to adjust the slurry.

【0024】このスラリーをポリエチレンテレフタレー
ト(PET)フイルム上にドクターブレードにて塗付し
た後に乾燥させてシート状に成形した。さらに固体電解
質粉体に30LiI−41Li2 O−29P2 5 を選
択し、これに成形助剤と溶剤を加え混合しスラリー化を
調整した後、前記と同様にシート状に成形した。正極活
物質体は厚み1.2mm、負極活物質体は厚み1.0m
m、固体電解質は厚み0.3mmのシートとした。
This slurry was applied on a polyethylene terephthalate (PET) film with a doctor blade and then dried to form a sheet. Further select 30LiI-41Li 2 O-29P 2 O 5 to the solid electrolyte powder, after a molding aid and a solvent was added and mixed to prepare a slurry into which was molded into the same sheetlike. The positive electrode active material body is 1.2 mm in thickness, and the negative electrode active material body is 1.0 m in thickness.
m, the solid electrolyte was a sheet having a thickness of 0.3 mm.

【0025】得られたシート状の成形体を各々金型で直
径16.5mmに打ち抜いたのち、正極活物質体一固体
電解質一負極活物質体となるように積層し、200℃で
5時間脱バンダーした。脱バインダーした積層体を、さ
らに昇温速度120℃/min、焼成温度720〜75
0℃、焼成時間3minの条件でマイクロ波加熱した。
Each of the obtained sheet-like molded bodies was punched into a mold with a diameter of 16.5 mm, and then laminated so as to have a positive electrode active material body-a solid electrolyte-anode active material body. Bander. The delaminated laminate was further heated at a rate of 120 ° C./min and a firing temperature of 720 to 75.
Microwave heating was performed under the conditions of 0 ° C. and a baking time of 3 minutes.

【0026】得られた積層体の厚みは、2.0mmであ
った。マイクロ波加熱した積層体の正極活物質体3に正
極集電層2を介して正極缶1内に収納装着した。一方、
負極側も正極側と同様に負極活物質体6に導電性接着剤
から成る負極集電層7を介して負極缶8内に収納装着し
た。次に、前記正極缶1と負極缶8とを絶縁パッキング
4を介してかしめ合わせることにより、図1に示した外
径が20mm、厚みが2.5mmのコイン型リチウム電
池を組み立てた。
The thickness of the obtained laminate was 2.0 mm. The microwave-heated laminated positive electrode active material body 3 was housed and mounted in the positive electrode can 1 via the positive electrode current collecting layer 2. on the other hand,
On the negative electrode side, similarly to the positive electrode side, the negative electrode active material body 6 was housed and mounted in the negative electrode can 8 via the negative electrode current collecting layer 7 made of a conductive adhesive. Next, the positive electrode can 1 and the negative electrode can 8 were caulked via the insulating packing 4 to assemble the coin-type lithium battery having an outer diameter of 20 mm and a thickness of 2.5 mm shown in FIG.

【0027】[比較例]正極活物質粉体、負極活物質粉
体の調整法および、固体電解質の選択、積層体の作製法
は実施例1と同様に行った。得られた正極活物質体は厚
み1.3mm、負極活物質体は厚み1.2mm、固体電
解質は厚み0.3mmのシートとした。得られたシート
状の成形体を各々金型で直径16.5mmに打ち抜いた
のち、正極活物質体−固体電解質−負極活物質体となる
ように積層し、200℃で5時間脱バンダーした。
COMPARATIVE EXAMPLE The method for preparing the positive electrode active material powder and the negative electrode active material powder, the selection of the solid electrolyte, and the method for producing the laminate were performed in the same manner as in Example 1. The obtained positive electrode active material was a 1.3 mm thick sheet, the negative electrode active material was a 1.2 mm thick sheet, and the solid electrolyte was a 0.3 mm thick sheet. Each of the obtained sheet-shaped molded bodies was punched into a mold with a diameter of 16.5 mm, and then laminated so as to have a positive electrode active material body-solid electrolyte-negative electrode active material body, and was subjected to debanding at 200 ° C. for 5 hours.

【0028】さらに、この積層体を電気炉にて、昇温速
度20℃/min、焼成温度740℃、焼成時間10m
inの条件で加熱した。得られた積層体の厚みは、2.
1mmであった。この積層体を実施例1と同様にしてコ
イン型リチウム電池を組み立てた。
Further, this laminate was heated in an electric furnace at a heating rate of 20 ° C./min, a firing temperature of 740 ° C., and a firing time of 10 m.
Heated in conditions. The thickness of the obtained laminate is 2.
1 mm. A coin-type lithium battery was assembled from this laminate in the same manner as in Example 1.

【0029】(評価)かくして得られた評価用のコイン
型リチウム電池を用いて、充放電装置により、充放電条
件として300μAの電流で前記評価用セルに2.5V
まで充電を行い、電圧が2.5Vに到達後、充電を停止
して5分間保持し、その後0.5Vの電圧まで300μ
Aの電流で放電し、次に再度2.5Vまで充電し、この
電圧に到達後、充電を停止して5分間保持する充放電サ
イクル試験を行い、一定サイクル毎に放電電気量を求め
て電池としての性能を評価した。
(Evaluation) Using the thus obtained coin type lithium battery for evaluation, the charging / discharging device was used to charge and discharge 2.5 V to the cell for evaluation at a current of 300 μA.
After the voltage reaches 2.5 V, the charging is stopped and held for 5 minutes.
The battery was discharged with a current of A, then charged again to 2.5 V, and after reaching this voltage, a charge / discharge cycle test was performed in which charging was stopped and held for 5 minutes, and the amount of discharged electricity was determined every fixed cycle. The performance as was evaluated.

【0030】その結果、上記実施例の試料では、放電電
気量は35mAhであり、比較例の放電電気量は20m
Ahであり、マイクロ波加熱を行った試料の放電電気量
が大きい結果となった。また、積層体を目視または双眼
顕微鏡で観察したところ、実施例のサンプルは固体電解
質層の変化は確認されなかったが、比較例のサンプル
は、正極活物質体と固体電解質の界面、特に固体電解質
側の変色が顕著であった。これは、正極活物質中に含ま
れる遷移金属元素が固体電解質中に拡散もしくは反応し
たものと推測される。これは、マイクロ波加熱による工
程は電極活物質と固体電解質の反応を抑制できることに
よるものと推測される。
As a result, in the sample of the above example, the electric discharge amount was 35 mAh, and in the comparative example, the electric discharge amount was 20 mAh.
Ah, which resulted in a large amount of discharge electricity of the sample subjected to microwave heating. Further, when the laminate was observed visually or with a binocular microscope, no change in the solid electrolyte layer was confirmed in the sample of the example, but the sample of the comparative example was the interface between the positive electrode active material and the solid electrolyte, particularly the solid electrolyte. Discoloration on the side was remarkable. This is presumed that the transition metal element contained in the positive electrode active material diffused or reacted in the solid electrolyte. This is presumed to be due to the fact that the step of microwave heating can suppress the reaction between the electrode active material and the solid electrolyte.

【0031】[0031]

【発明の効果】以上のように、本発明の全固体リチウム
電池の製造方法は、正極活物質体、負極活物質体、ある
いは固体電解質の加熱工程でマイクロ波加熱を行うこと
から、固体電解質と電極活物質の界面反応を抑制できる
と共に、電極活物質体もしくは固体電解質の充填率が向
上して、電池の特性を向上させることができる。
As described above, the method for producing an all-solid lithium battery of the present invention performs microwave heating in the heating step of the positive electrode active material, the negative electrode active material, or the solid electrolyte. The interfacial reaction of the electrode active material can be suppressed, and the filling rate of the electrode active material or the solid electrolyte can be improved, so that the characteristics of the battery can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる製造方法によって製造される全
固体リチウム電池の一例を示す断面図である。
FIG. 1 is a cross-sectional view illustrating an example of an all-solid lithium battery manufactured by a manufacturing method according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・正極缶、2・・・・・正極集電層、3・・
・・・正極活物質体、4・・・・・絶縁パッキング、5
・・・・・固体電解質、6・・・・・負極活物質体、7
・・・・・負極集電層、8・・・・・負極缶
1 ... Positive electrode can, 2 ... Positive current collecting layer, 3 ...
... Positive electrode active material, 4 ... Insulating packing, 5
..... Solid electrolyte, 6 ... Negative electrode active material, 7
.... Negative electrode current collecting layer, 8 ... Negative electrode can

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樋口 永 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 大崎 誠 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 馬込 伸二 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 Fターム(参考) 5H014 AA01 BB01 BB06 EE10 5H015 AA01 BB00 BB01 BB07 BB17 BB18 CC01 CC11 DD01 EE01 EE18 5H024 AA02 BB01 BB07 BB18 CC03 FF23 FF31 5H029 AJ01 AK02 AK03 AL02 AL03 AM12 BJ12 CJ02 CJ08 CJ28 DJ09 DJ16 DJ17 DJ18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ei Higuchi 3-5 Koikodai, Seika-cho, Soraku-gun, Kyoto Prefecture Inside the Central Research Laboratory, Kyocera Corporation (72) Inventor Makoto Osaki 3-chome Koikodai, Seika-cho, Kyoto Prefecture 5 Kyocera Corporation Central Research Center (72) Inventor Shinji Magome 3-5 Koikadai, Seika-cho, Soraku-gun, Kyoto F-term in Kyocera Corporation Central Research Center 5H014 AA01 BB01 BB06 EE10 5H015 AA01 BB00 BB01 BB07 BB17 BB18 CC01 CC11 DD01 EE01 EE18 5H024 AA02 BB01 BB07 BB18 CC03 FF23 FF31 5H029 AJ01 AK02 AK03 AL02 AL03 AM12 BJ12 CJ02 CJ08 CJ28 DJ09 DJ16 DJ17 DJ18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質粉体と固体電解質粉体を混合
した正極活物質体と、負極活物質粉末と固体電解質粉末
を混合した負極活物質体との間に固体電解質粉末を挟持
してマイクロ波加熱した後に缶内に封入する全固体リチ
ウム電池の製造方法。
A solid electrolyte powder is sandwiched between a positive electrode active material body obtained by mixing a positive electrode active material powder and a solid electrolyte powder, and a negative electrode active material body obtained by mixing a negative electrode active material powder and a solid electrolyte powder. A method for producing an all-solid lithium battery which is sealed in a can after microwave heating.
【請求項2】 正極活物質粉体と固体電解質粉体を混合
した正極活物質体と、負極活物質粉末と固体電解質粉末
を混合した負極活物質体とを各々マイクロ波加熱した
後、前記正極活物質体と負極活物質体との間に固体電解
質粉末を挟持してマイクロ波加熱した後に缶内に封入す
る全固体リチウム電池の製造方法。
2. The positive electrode active material body obtained by mixing a positive electrode active material powder and a solid electrolyte powder, and the negative electrode active material body obtained by mixing a negative electrode active material powder and a solid electrolyte powder are each subjected to microwave heating. A method for producing an all-solid lithium battery in which a solid electrolyte powder is sandwiched between an active material body and a negative electrode active material body, microwave-heated, and then sealed in a can.
【請求項3】 正極活物質粉体と固体電解質粉体を混合
した正極活物質体と、負極活物質粉末と固体電解質粉末
を混合した負極活物質体と固体電解質粉体を各々マイク
ロ波加熱し、前記正極活物質体と負極活物質体との間に
固体電解質層を挟持してマイクロ波加熱した後に缶内に
封入する全固体リチウム電池の製造方法。
3. The positive electrode active material body obtained by mixing the positive electrode active material powder and the solid electrolyte powder, the negative electrode active material body obtained by mixing the negative electrode active material powder and the solid electrolyte powder, and the solid electrolyte powder are each microwave-heated. And a method for producing an all-solid lithium battery in which a solid electrolyte layer is sandwiched between the positive electrode active material body and the negative electrode active material body, microwave-heated, and then sealed in a can.
【請求項4】 正極活物質粉体、負極活物質粉体のいず
れか一方を固体電解質粉体と混合した活物質体をマイク
ロ波加熱して正極活物質体と負極活物質体を形成した
後、前記正極活物質体と負極活物質体との間に固体電解
質粉体を挟持してマイクロ波加熱した後に缶内に封入す
る全固体リチウム電池の製造方法。
4. A method of heating an active material obtained by mixing one of a positive electrode active material powder and a negative electrode active material powder with a solid electrolyte powder to form a positive electrode active material and a negative electrode active material. And a method for producing an all-solid lithium battery in which a solid electrolyte powder is sandwiched between the positive electrode active material body and the negative electrode active material body, microwave heated, and then sealed in a can.
JP11047398A 1999-02-25 1999-02-25 Manufacture of all solid lithium battery Pending JP2000251938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11047398A JP2000251938A (en) 1999-02-25 1999-02-25 Manufacture of all solid lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11047398A JP2000251938A (en) 1999-02-25 1999-02-25 Manufacture of all solid lithium battery

Publications (1)

Publication Number Publication Date
JP2000251938A true JP2000251938A (en) 2000-09-14

Family

ID=12774020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11047398A Pending JP2000251938A (en) 1999-02-25 1999-02-25 Manufacture of all solid lithium battery

Country Status (1)

Country Link
JP (1) JP2000251938A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243735A (en) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd Solid electrolyte, its molding method, lithium ion secondary battery and its manufacturing method
JP2009140911A (en) * 2007-11-12 2009-06-25 Kyushu Univ All-solid battery
JP2009140910A (en) * 2007-11-12 2009-06-25 Kyushu Univ All-solid battery
JPWO2008143027A1 (en) * 2007-05-11 2010-08-05 ナミックス株式会社 Lithium ion secondary battery and manufacturing method thereof
US8449628B2 (en) 2005-01-25 2013-05-28 Kyoto University Lithium battery and manufacturing method thereof
WO2015080502A1 (en) * 2013-11-29 2015-06-04 한양대학교 산학협력단 Active material for all-solid lithium secondary battery, method for manufacturing same, and all-solid lithium secondary battery comprising same
US9099758B2 (en) 2008-06-20 2015-08-04 University Of Dayton Lithium-air cell incorporating lithium aluminum germanium phosphate cathode
US9178255B2 (en) 2008-06-20 2015-11-03 University Of Dayton Lithium-air cells incorporating solid electrolytes having enhanced ionic transport and catalytic activity
US9209484B2 (en) 2007-11-12 2015-12-08 Kyushu University All-solid-state cell
US9209486B2 (en) 2007-11-12 2015-12-08 Kyushu University All-solid-state cell
CN108365267A (en) * 2017-01-26 2018-08-03 罗伯特·博世有限公司 The method for manufacturing the electrode layered product of solid state battery group
DE102017220619A1 (en) * 2017-11-17 2019-05-23 Iontech Systems Ag Process for the solid synthesis of metal mixed oxides and surface modification of these materials and use of these materials in batteries, in particular as cathode materials
JP2020155291A (en) * 2019-03-19 2020-09-24 トヨタ自動車株式会社 Manufacturing method of positive electrode mixture

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8449628B2 (en) 2005-01-25 2013-05-28 Kyoto University Lithium battery and manufacturing method thereof
JP2008243735A (en) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd Solid electrolyte, its molding method, lithium ion secondary battery and its manufacturing method
JPWO2008143027A1 (en) * 2007-05-11 2010-08-05 ナミックス株式会社 Lithium ion secondary battery and manufacturing method thereof
JP4797105B2 (en) * 2007-05-11 2011-10-19 ナミックス株式会社 Lithium ion secondary battery and manufacturing method thereof
US9457512B2 (en) 2007-05-11 2016-10-04 Namics Corporation Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
US9209484B2 (en) 2007-11-12 2015-12-08 Kyushu University All-solid-state cell
JP2009140911A (en) * 2007-11-12 2009-06-25 Kyushu Univ All-solid battery
JP2009140910A (en) * 2007-11-12 2009-06-25 Kyushu Univ All-solid battery
US9209486B2 (en) 2007-11-12 2015-12-08 Kyushu University All-solid-state cell
US9178255B2 (en) 2008-06-20 2015-11-03 University Of Dayton Lithium-air cells incorporating solid electrolytes having enhanced ionic transport and catalytic activity
US9099758B2 (en) 2008-06-20 2015-08-04 University Of Dayton Lithium-air cell incorporating lithium aluminum germanium phosphate cathode
WO2015080502A1 (en) * 2013-11-29 2015-06-04 한양대학교 산학협력단 Active material for all-solid lithium secondary battery, method for manufacturing same, and all-solid lithium secondary battery comprising same
US10050258B2 (en) 2013-11-29 2018-08-14 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Active material for all-solid lithium secondary battery, method for manufacturing same, and all-solid lithium secondary battery comprising same
CN108365267A (en) * 2017-01-26 2018-08-03 罗伯特·博世有限公司 The method for manufacturing the electrode layered product of solid state battery group
DE102017220619A1 (en) * 2017-11-17 2019-05-23 Iontech Systems Ag Process for the solid synthesis of metal mixed oxides and surface modification of these materials and use of these materials in batteries, in particular as cathode materials
JP2020155291A (en) * 2019-03-19 2020-09-24 トヨタ自動車株式会社 Manufacturing method of positive electrode mixture
JP7177989B2 (en) 2019-03-19 2022-11-25 トヨタ自動車株式会社 Method for manufacturing positive electrode mixture

Similar Documents

Publication Publication Date Title
KR100883376B1 (en) Lithium ion conductive solid electrolyte and method for manufacturing the same
JP2001126758A (en) Lithium battery
JP4845244B2 (en) Lithium battery
JP3703667B2 (en) Nonaqueous electrolyte secondary battery
JP3198828B2 (en) Manufacturing method of all solid lithium secondary battery
JP3822445B2 (en) Electrochemical devices
JP2002117841A (en) Nonaqueous electrolyte secondary battery
JPH11283664A (en) Solid-electrolyte battery
JP2000311710A (en) Solid electrolyte battery and its manufacture
JPH09120818A (en) Nonaqueous electrolyte secondary battery
JP2000067920A (en) Solid electrolyte battery
CN115347227A (en) All-solid-state battery
JP2000251938A (en) Manufacture of all solid lithium battery
JP4245933B2 (en) Non-aqueous electrolyte secondary battery for reflow soldering
JP2000195499A (en) Lithium battery
JP2001102056A (en) Lithium cell
JP2000331684A (en) Laminated solid secondary battery
JP2001068149A (en) All solid lithium secondary battery
JP2001015115A (en) Lithium secondary battery
JP2000164217A (en) Lithium battery
JP2001126740A (en) Lithium cell
JP2000340255A (en) Lithium battery
JP2002042785A (en) Lithium battery
JP2000311708A (en) Manufacture of battery formed entirely of solid lithium
JP2001155763A (en) Solid electroltic cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050512

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A02 Decision of refusal

Effective date: 20070424

Free format text: JAPANESE INTERMEDIATE CODE: A02