JP5752303B2 - Lithium composite oxide sintered plate - Google Patents

Lithium composite oxide sintered plate Download PDF

Info

Publication number
JP5752303B2
JP5752303B2 JP2014149692A JP2014149692A JP5752303B2 JP 5752303 B2 JP5752303 B2 JP 5752303B2 JP 2014149692 A JP2014149692 A JP 2014149692A JP 2014149692 A JP2014149692 A JP 2014149692A JP 5752303 B2 JP5752303 B2 JP 5752303B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
composite oxide
plate
oxide sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014149692A
Other languages
Japanese (ja)
Other versions
JP2014220254A (en
Inventor
隆太 杉浦
隆太 杉浦
小林 伸行
伸行 小林
七瀧 努
七瀧  努
宇賀治 正弥
正弥 宇賀治
かおる 長田
かおる 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2014149692A priority Critical patent/JP5752303B2/en
Publication of JP2014220254A publication Critical patent/JP2014220254A/en
Application granted granted Critical
Publication of JP5752303B2 publication Critical patent/JP5752303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池の正極に用いられるリチウム複合酸化物焼結体板に関する。   The present invention relates to a lithium composite oxide sintered plate used for a positive electrode of a lithium secondary battery.

リチウム二次電池(リチウムイオン二次電池と称されることもある)における正極活物質層として、リチウム複合酸化物(リチウム遷移金属酸化物)の粉末とバインダーや導電剤等との混練物を成形することによって形成されたものが、広く知られている(例えば、特許文献1等参照。)。以下、かかる構成を「粉末分散型」と称する。   As a positive electrode active material layer in a lithium secondary battery (sometimes called a lithium ion secondary battery), a kneaded product of a lithium composite oxide (lithium transition metal oxide) powder and a binder, a conductive agent, or the like is formed. What was formed by doing is known widely (for example, refer patent document 1 etc.). Hereinafter, this configuration is referred to as “powder dispersion type”.

かかる粉末分散型の正極においては、容量に寄与しないバインダーが比較的多量に(例えば10重量%程度)添加されることにより、正極活物質としてのリチウム複合酸化物の充填密度が低くなる。よって、かかる粉末分散型の構成においては、容量や充放電効率の面で、改善の余地が大きかった。   In such a powder-dispersed positive electrode, a relatively large amount (for example, about 10% by weight) of a binder that does not contribute to capacity is added, so that the packing density of the lithium composite oxide as the positive electrode active material is lowered. Therefore, in such a powder dispersion type configuration, there is much room for improvement in terms of capacity and charge / discharge efficiency.

そこで、正極あるいは正極活物質層を、リチウム複合酸化物焼結体板によって構成することで、容量や充放電効率を改善しようとする試みがなされている(例えば、特許文献1及び特許文献2等参照。)。この場合、正極あるいは正極活物質層には、上述のバインダーが含まれていない。このため、リチウム複合酸化物の充填密度が高くなることで、高容量や良好な充放電効率が得られることが期待される。   Thus, attempts have been made to improve capacity and charge / discharge efficiency by forming the positive electrode or the positive electrode active material layer with a lithium composite oxide sintered plate (for example, Patent Document 1 and Patent Document 2). reference.). In this case, the above-mentioned binder is not contained in the positive electrode or the positive electrode active material layer. For this reason, it is expected that high capacity and good charge / discharge efficiency can be obtained by increasing the packing density of the lithium composite oxide.

特開平5−226004号公報JP-A-5-226004 特開平8−180904号公報JP-A-8-180904 特開2001−143687号公報JP 2001-143687 A

上述のように、正極あるいは正極活物質層をリチウム複合酸化物焼結体板によって構成した場合、かかる焼結体板におけるリチウム複合酸化物の充填率が低すぎると(すなわち空隙率が高すぎると)、上述の粉末分散型の構成に対する性能(特に容量)の向上効果が小さくなる。この点、特許文献1や特許文献2に開示されている、リチウム複合酸化物焼結体板による正極は、いずれも充填率が低い領域(空隙率が15〜60%)のものであり、容量の点で満足できるものではなかった。   As described above, when the positive electrode or the positive electrode active material layer is composed of a lithium composite oxide sintered plate, if the filling rate of the lithium composite oxide in the sintered plate is too low (that is, the porosity is too high). ), The effect of improving the performance (particularly capacity) with respect to the above-mentioned powder dispersion type configuration is reduced. In this respect, the positive electrode made of a lithium composite oxide sintered body disclosed in Patent Document 1 and Patent Document 2 is a low-filling region (with a porosity of 15 to 60%), and has a capacity. The point was not satisfactory.

他方、焼結体板におけるリチウム複合酸化物の充填率が高すぎる領域においては、高容量化が達成される反面、サイクル特性(充放電サイクルが繰り返された場合の容量維持特性)が悪化するという問題が生じた。かかるサイクル特性の悪化は、焼結板の厚さが10μm程度の場合でも生ずるが、焼結体板の厚さを大きく(具体的には30μm以上に)した場合に特に顕著であることが確認された。   On the other hand, in a region where the filling rate of the lithium composite oxide in the sintered plate is too high, the capacity can be increased, but the cycle characteristics (capacity maintenance characteristics when the charge / discharge cycle is repeated) are deteriorated. There was a problem. Such deterioration of the cycle characteristics occurs even when the thickness of the sintered plate is about 10 μm, but it is confirmed that it is particularly remarkable when the thickness of the sintered plate is increased (specifically, 30 μm or more). It was done.

そこで、この原因を究明するために、サイクル特性が悪化した実験例におけるリチウム複合酸化物焼結体板を電子顕微鏡によって観察したところ、当該焼結体板にクラックが発生していることが判明した。このクラックは、粒界、すなわち、結晶方位が異なる隣り合う領域の境界に発生している(このクラックを、以下、「粒界クラック」と称する。)。さらに、この実験例において、リチウム複合酸化物焼結体板と正極集電体との間の導電性接合層と、当該焼結体板と、の界面を、電子顕微鏡によって観察したところ、剥離(隙間)が発生していることが判明した(これを、以下、「接合界面剥離」と称する。)。   Therefore, in order to investigate the cause, when the lithium composite oxide sintered body plate in the experimental example in which the cycle characteristics deteriorated was observed with an electron microscope, it was found that cracks occurred in the sintered body plate. . This crack is generated at a grain boundary, that is, a boundary between adjacent regions having different crystal orientations (this crack is hereinafter referred to as “grain boundary crack”). Further, in this experimental example, when the interface between the conductive bonding layer between the lithium composite oxide sintered body plate and the positive electrode current collector and the sintered body plate was observed with an electron microscope, peeling ( It was found that a gap was generated (hereinafter referred to as “bonding interface peeling”).

この粒界クラックは、充放電サイクルにおけるリチウムイオンの出入りに伴う、結晶格子の伸縮(体積の膨張収縮及び体積変化を伴わない格子伸縮を含む)によって発生するものであると考えられる。また、接合界面剥離については、同様に、結晶格子の伸縮によるリチウム複合酸化物焼結体板の形状変化に伴う、導電性接合層との間の引張あるいはせん断応力によって発生するものであると考えられる。そして、かかる粒界クラック及び接合界面剥離によって、リチウム複合酸化物焼結体板内に、導電経路が断たれて電気的に孤立した部分(容量に寄与し得ない部分)が発生することで、容量が低下することが、サイクル特性悪化の原因であると考えられる。   This grain boundary crack is considered to be generated by expansion and contraction of the crystal lattice (including expansion and contraction of volume and lattice expansion and contraction not accompanied by volume change) accompanying the entry and exit of lithium ions in the charge / discharge cycle. In addition, it is considered that the peeling at the bonding interface is caused by the tensile or shear stress between the conductive bonding layer and the shape change of the lithium composite oxide sintered body due to the expansion and contraction of the crystal lattice. It is done. And, by such grain boundary cracks and joint interface peeling, in the lithium composite oxide sintered plate, the conductive path is cut off and an electrically isolated part (part that cannot contribute to the capacity) is generated, It is considered that the decrease in capacity is a cause of deterioration in cycle characteristics.

本発明は、かかる課題に対処するためになされたものである。すなわち、本発明の目的は、良好なサイクル特性を維持しつつ、高容量化を図ることができる、リチウム二次電池の正極に用いられるリチウム複合酸化物焼結体板を提供することにある。   The present invention has been made to cope with such a problem. That is, an object of the present invention is to provide a lithium composite oxide sintered plate used for a positive electrode of a lithium secondary battery, which can achieve high capacity while maintaining good cycle characteristics.

<構成>
本発明のリチウム二次電池の正極(以下、単に「正極」と称する。)に用いられるリチウム複合酸化物焼結体板は、厚さが30μm以上であり、空隙率が3〜30%であり、開気孔比率が70%以上である。
<Configuration>
The lithium composite oxide sintered plate used for the positive electrode (hereinafter simply referred to as “positive electrode”) of the lithium secondary battery of the present invention has a thickness of 30 μm or more and a porosity of 3 to 30%. The open pore ratio is 70% or more.

「リチウム複合酸化物」とは、LiMO(0.05<x<1.10、Mは少なくとも1種類の遷移金属:典型的にはMはCo,Ni,Mnのうちの1種以上を含む。)で表される酸化物であって、典型的には、層状岩塩構造を有する。「層状岩塩構造」とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造、すなわち、酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα−NaFeO型構造:立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。 “Lithium composite oxide” means Li x MO 2 (0.05 <x <1.10, M is at least one transition metal: typically, M is one or more of Co, Ni, and Mn. And typically has a layered rock salt structure. The “layered rock salt structure” is a crystal structure in which a lithium layer and a transition metal layer other than lithium are alternately stacked with an oxygen layer interposed therebetween, that is, a transition metal ion layer and a lithium single layer through oxide ions. Refers to a crystal structure (typically an α-NaFeO 2 type structure: a structure in which transition metals and lithium are regularly arranged in the [111] axis direction of a cubic rock salt type structure).

前記リチウム複合酸化物焼結体板が層状岩塩構造を有する場合、X線回折における、(104)面による回折強度に対する(003)面による回折強度(ピーク強度)の比率[003]/[104]が、2以下であることが好ましく、1以下であることがより好ましく、0.5以下であることがさらに好ましい。ピーク強度比[003]/[104]が2以下である場合にサイクル特性が向上する理由は、以下のように考えられる。   When the lithium composite oxide sintered plate has a layered rock salt structure, the ratio of the diffraction intensity (peak intensity) by the (003) plane to the diffraction intensity by the (104) plane in X-ray diffraction [003] / [104] Is preferably 2 or less, more preferably 1 or less, and even more preferably 0.5 or less. The reason why the cycle characteristics are improved when the peak intensity ratio [003] / [104] is 2 or less is considered as follows.

充放電サイクルに伴う結晶格子の伸縮(体積膨張収縮)は、(003)面に垂直な方向(すなわち[003]方向)についてのものが、最も大きくなる。このため、充放電サイクルに伴う結晶格子の伸縮を起因とするクラックは、(003)面と平行に入りやすい。また、(003)面は、酸素の最密充填面であって、リチウムイオンおよび電子が出入りできない、化学的にも電気化学的にも不活性な面である。   The expansion and contraction (volume expansion / contraction) of the crystal lattice accompanying the charge / discharge cycle is greatest in the direction perpendicular to the (003) plane (that is, [003] direction). For this reason, the crack resulting from the expansion and contraction of the crystal lattice accompanying the charge / discharge cycle tends to be parallel to the (003) plane. The (003) plane is a close-packed plane of oxygen and is a chemically and electrochemically inert plane from which lithium ions and electrons cannot enter and exit.

この点、上述のように、ピーク強度比[003]/[104]が2以下である、ということは、前記リチウム複合酸化物焼結体板の板面や前記正極集電体との接合界面に、さらには当該リチウム複合酸化物焼結体板の内部にて板面と平行に、(003)面が出現している割合が、減っていることを意味する。そして、(003)面が接合界面に出現する割合が減ることで、接合界面の接着強度が高まって剥離が抑制されるとともに、容量低下に特に影響する、板面と平行な粒界クラックの発生が、効果的に抑制される。したがって、サイクル特性が向上する。   In this regard, as described above, the peak intensity ratio [003] / [104] is 2 or less, which means that the plate surface of the lithium composite oxide sintered plate or the junction interface with the positive electrode current collector is used. Furthermore, it means that the ratio of the appearance of the (003) plane is reduced in parallel with the plate surface inside the lithium composite oxide sintered plate. And, by reducing the rate at which the (003) plane appears at the bonding interface, the adhesion strength at the bonding interface is increased, peeling is suppressed, and the generation of grain boundary cracks parallel to the plate surface, which particularly affects the capacity reduction. Is effectively suppressed. Therefore, cycle characteristics are improved.

また、前記リチウム複合酸化物焼結体「板」は、典型的には、
厚さをt、
板面方向(厚さ方向と直交する方向)における最小寸法をw、
とした場合に、
w/tが3以上となるように形成され得る。
In addition, the lithium composite oxide sintered body “plate” typically includes:
Thickness t,
The minimum dimension in the plate surface direction (direction perpendicular to the thickness direction) is w,
If
It may be formed so that w / t is 3 or more.

ここで、「厚さ方向」とは、前記リチウム複合酸化物焼結体の厚さtを規定する方向であって、典型的には、当該リチウム複合酸化物焼結体板を「水平面」上に「安定的」に載置した状態における、鉛直方向と平行な方向をいう。そして、かかる「厚さ方向」における当該リチウム複合酸化物焼結体板の寸法が、「厚さ」と称される。   Here, the “thickness direction” is a direction that defines the thickness t of the lithium composite oxide sintered body. Typically, the lithium composite oxide sintered plate is placed on the “horizontal plane”. In a state of being “stable” placed in the direction parallel to the vertical direction. And the dimension of the said lithium complex oxide sintered compact board in this "thickness direction" is called "thickness."

また、「板面」とは、前記リチウム複合酸化物焼結体板の「厚さ方向」と直交する表面をいう。この「板面」は、当該リチウム複合酸化物焼結体板における最も広い表面であるため、「主面(principal surface)」と称されることもある。「板面方向」とは、この「板面」と平行な方向(すなわち面内方向)をいう。したがって、当該リチウム複合酸化物焼結体板の「厚さ」は、略平行な2つの「板面」間の最短距離となる。また、上述の「厚さ方向」は、2つの「板面」の最短距離を規定する方向となる。   The “plate surface” means a surface orthogonal to the “thickness direction” of the lithium composite oxide sintered body plate. Since this “plate surface” is the widest surface of the lithium composite oxide sintered plate, it may be referred to as a “principal surface”. The “plate surface direction” refers to a direction parallel to the “plate surface” (that is, an in-plane direction). Therefore, the “thickness” of the lithium composite oxide sintered body plate is the shortest distance between two substantially parallel “plate surfaces”. The above-mentioned “thickness direction” is a direction that defines the shortest distance between the two “plate surfaces”.

厚さtは、例えば、前記リチウム複合酸化物焼結体板の断面をSEM(走査電子顕微鏡)によって観察した場合における、略平行に観察される板面間の距離を測定することで得られる。また、板面方向における最小寸法wは、例えば、前記リチウム複合酸化物焼結体板の平面視における外形形状をSEMによって観察した場合における、当該外形形状の内接円を描いたときの直径を測定することで得られる。   The thickness t is obtained, for example, by measuring the distance between the plate surfaces that are observed substantially in parallel when the cross section of the lithium composite oxide sintered plate is observed with an SEM (scanning electron microscope). Further, the minimum dimension w in the plate surface direction is, for example, the diameter when the inscribed circle of the outer shape is drawn when the outer shape of the lithium composite oxide sintered plate is observed by SEM. It is obtained by measuring.

「空隙率(voidage)」は、本発明のリチウム複合酸化物焼結体板における、気孔(開気孔及び閉気孔を含む)の体積比率である。「空隙率」は、「気孔率(porosity)」と称されることもある。この「空隙率」は、例えば、焼結体板の嵩密度と真密度とから計算上求められる。   “Voidage” is a volume ratio of pores (including open pores and closed pores) in the lithium composite oxide sintered plate of the present invention. “Porosity” is sometimes referred to as “porosity”. This “porosity” is calculated from, for example, the bulk density and the true density of the sintered body plate.

「開気孔比率」は、本発明のリチウム複合酸化物焼結体板に含まれる空隙(気孔)の全体に対する、開気孔の体積比率である。「開気孔」とは、本発明のリチウム複合酸化物焼結体板に含まれる空隙(気孔)のうちの、当該焼結体板の外部と連通するものをいう。この「開気孔比率」は、例えば、嵩密度から求められる開気孔と閉気孔との合計と、見かけ密度から求められる閉気孔とから、計算上求められる。この「開気孔比率」の算出に用いられるパラメータは、アルキメデス法等を用いて測定され得る。   The “open pore ratio” is a volume ratio of open pores to the whole voids (pores) included in the lithium composite oxide sintered plate of the present invention. “Open pores” refer to pores (pores) included in the lithium composite oxide sintered plate of the present invention that communicate with the outside of the sintered plate. This “open pore ratio” is calculated from, for example, the total of open pores and closed pores obtained from the bulk density and the closed pores obtained from the apparent density. The parameters used for calculating the “open pore ratio” can be measured using Archimedes method or the like.

前記リチウム複合酸化物焼結体板が、多数の一次粒子(結晶粒子)が結合した構造を有している場合、前記一次粒子の大きさ(一次粒子径)は、5μm以下であることが好適である。これは、以下の理由によるものと考えられる。一次粒子径が小さくなるほど、粒界の数が増加する。そして、粒界の数が多いほど、充放電サイクルに伴う結晶格子の伸縮の際に発生する内部応力が、良好に分散される。また、クラックが生じた際にも、粒界の数が多いほど、クラックの伸展が良好に抑制される。したがって、サイクル特性が向上する。   When the lithium composite oxide sintered plate has a structure in which a large number of primary particles (crystal particles) are bonded, the size (primary particle diameter) of the primary particles is preferably 5 μm or less. It is. This is considered to be due to the following reasons. As the primary particle size decreases, the number of grain boundaries increases. As the number of grain boundaries increases, the internal stress generated during the expansion and contraction of the crystal lattice accompanying the charge / discharge cycle is more favorably dispersed. Even when cracks occur, the more the number of grain boundaries, the better the crack extension is suppressed. Therefore, cycle characteristics are improved.

正極集電体は、前記リチウム複合酸化物焼結体板の2つの板面のうちの少なくとも一方に設けられ得る。すなわち、前記正極集電体は、前記リチウム複合酸化物焼結体板の2つの板面のうちの一方にのみ設けられ得る。あるいは、前記正極集電体は、前記リチウム複合酸化物焼結体板の両面(2つの板面の双方)に設けられ得る。   The positive electrode current collector may be provided on at least one of the two plate surfaces of the lithium composite oxide sintered plate. That is, the positive electrode current collector can be provided only on one of the two plate surfaces of the lithium composite oxide sintered body plate. Alternatively, the positive electrode current collector may be provided on both surfaces (both two plate surfaces) of the lithium composite oxide sintered body plate.

リチウム複合酸化物焼結体板の両面に正極集電体がそれぞれ設けられる場合、一方は前記リチウム複合酸化物焼結体板を支持するために他方よりも厚く形成され、当該他方は前記リチウム複合酸化物焼結体板におけるリチウムイオンの出入りを阻害しないような構造(メッシュ状や多孔質状等)に形成され得る。   When the positive electrode current collector is provided on both surfaces of the lithium composite oxide sintered plate, one is formed thicker than the other to support the lithium composite oxide sintered plate, and the other is the lithium composite oxide It can be formed in a structure (such as a mesh shape or a porous shape) that does not hinder the entry and exit of lithium ions in the oxide sintered body plate.

正極活物質層と正極集電体とは導電性接合層を介して接合され得る。導電性接合層は、例えば、導電性粉末(金属粉末及び/又はアセチレンブラックやグラファイト等の導電性炭素材料粉末)と、結着材と、を含んだものによって形成され得る。前記導電性接合層は、例えば、0.1〜20μmの厚さで形成され得る。導電性を高めるために、前記リチウム複合酸化物焼結体の両面もしくは前記導電性接合層と接合される片面に、スパッタ等により導電性薄膜(Au、Pt、Ag、Al、Cu等の金属またはカーボン等からなる薄膜)を形成してもよい。   The positive electrode active material layer and the positive electrode current collector can be bonded via a conductive bonding layer. The conductive bonding layer can be formed of, for example, a conductive powder (metal powder and / or conductive carbon material powder such as acetylene black or graphite) and a binder. The conductive bonding layer may be formed with a thickness of 0.1 to 20 μm, for example. In order to enhance conductivity, a conductive thin film (such as Au, Pt, Ag, Al, Cu, or the like is formed on both surfaces of the lithium composite oxide sintered body or one surface bonded to the conductive bonding layer by sputtering or the like. A thin film made of carbon or the like may be formed.

前記正極活物質層と前記正極集電体とが前記導電性接合層を介して接合される際、前記リチウム複合酸化物焼結体板からなる前記正極活物質層(その外形形状が前記正極集電体と適合するように切断等により適宜調整されたものを含む)と前記正極集電体とは1対1であってもよい。あるいは、平面視にて一次元的あるいは二次元的に配列した状態の複数の前記リチウム複合酸化物焼結体板からなる前記正極活物質層が前記正極集電体と接合されてもよい。すなわち、前記正極は、一旦得られた前記リチウム複合酸化物焼結体板を、切断等によって複数に分割した後、これらを平面視にて一次元的あるいは二次元的に配列した状態で前記正極集電体と接合することによって形成され得る。また、前記正極活物質層は、2層以上設けられていてもよい。すなわち、前記正極集電体と接合された前記正極活物質層の上に、さらに正極活物質層が設けられていてもよい。この場合、2つの正極活物質層は、導電性接合層を介して接合されていてもよい。   When the positive electrode active material layer and the positive electrode current collector are bonded via the conductive bonding layer, the positive electrode active material layer comprising the lithium composite oxide sintered body plate (the outer shape is the positive electrode current collector). (Including those appropriately adjusted by cutting or the like so as to be compatible with the electric current) and the positive electrode current collector may be one-to-one. Alternatively, the positive electrode active material layer formed of a plurality of the lithium composite oxide sintered plates arranged one-dimensionally or two-dimensionally in a plan view may be joined to the positive electrode current collector. That is, the positive electrode is obtained by dividing the lithium composite oxide sintered body plate once obtained into a plurality of parts by cutting or the like, and then arranging them one-dimensionally or two-dimensionally in a plan view. It can be formed by bonding with a current collector. Two or more positive electrode active material layers may be provided. That is, a positive electrode active material layer may be further provided on the positive electrode active material layer bonded to the positive electrode current collector. In this case, the two positive electrode active material layers may be bonded via a conductive bonding layer.

<作用・効果>
かかる構成においては、上述のように前記リチウム複合酸化物焼結体板に気孔が含まれることで、充放電サイクルにおけるリチウムイオンの出入りに伴う結晶格子の伸縮によって発生する応力が、当該気孔によって良好(均一)に開放される。このため、充放電サイクルの繰り返しに伴う粒界クラックの発生が可及的に抑制される。また、前記導電性接合層との界面に含まれる気孔(開気孔)により、接合強度が高まる。このため、充放電サイクルにおけるリチウムイオンの出入りに伴う結晶格子の伸縮による、前記リチウム複合酸化物焼結体板の形状変化を起因とする、上述の接合界面剥離の発生が、良好に抑制される。したがって、本発明によれば、良好なサイクル特性を維持しつつ、高容量化を図ることができる。
<Action and effect>
In such a configuration, since the lithium composite oxide sintered plate includes pores as described above, the stress generated by the expansion and contraction of the crystal lattice accompanying the entry and exit of lithium ions in the charge / discharge cycle is good due to the pores. (Uniform) is released. For this reason, generation | occurrence | production of the grain boundary crack accompanying the repetition of a charging / discharging cycle is suppressed as much as possible. Further, the bonding strength is increased by the pores (open pores) included in the interface with the conductive bonding layer. For this reason, generation | occurrence | production of the above-mentioned joint interface peeling resulting from the shape change of the said lithium complex oxide sintered compact board by expansion / contraction of the crystal lattice accompanying the entrance / exit of lithium ion in a charging / discharging cycle is suppressed favorably. . Therefore, according to the present invention, it is possible to increase the capacity while maintaining good cycle characteristics.

特に、開気孔比率を70%以上とすることで、より応力が開放されやすくなり、粒界クラックの発生が効果的に抑制される。これは、以下の理由によるものと考えられる。正極における体積の膨張収縮は、上述の通り、結晶格子におけるリチウムイオンの出入りが原因である。開気孔は、リチウムイオンの出入りする面によって囲まれた気孔である。このため、開気孔は、閉気孔に比べて、応力を開放する効果が高いものと考えられる。また、開気孔比率を70%以上とすることで、前記接合界面剥離が、効果的に抑制される。これは、以下の理由によるものと考えられる:開気孔は、表面粗さと見立てることができる。そして、開気孔の導入により、表面粗さが大きくなるため、アンカー効果で接合強度が高まる。   In particular, when the open pore ratio is 70% or more, the stress is more easily released, and the generation of grain boundary cracks is effectively suppressed. This is considered to be due to the following reasons. As described above, the volume expansion and contraction in the positive electrode is caused by the entry and exit of lithium ions in the crystal lattice. Open pores are pores surrounded by a surface through which lithium ions enter and exit. For this reason, it is considered that the open pores have a higher effect of releasing stress than the closed pores. Moreover, the said joint interface peeling is suppressed effectively by making an open-pore ratio 70% or more. This is thought to be due to the following reason: Open pores can be considered as surface roughness. And, by introducing open pores, the surface roughness increases, so the bonding strength increases due to the anchor effect.

また、開気孔内に電解質や導電材等を内在することで、当該開気孔の内壁面は、リチウムイオンの出入りする面として良好に機能する。したがって、開気孔比率を70%以上とすると、単なる気孔(充放電に寄与しない部分)として存在する閉気孔の比率が大きい場合に比べて、レート特性が改善する点でも好ましい。   In addition, by including an electrolyte, a conductive material, or the like in the open pores, the inner wall surface of the open pores functions well as a surface through which lithium ions enter and exit. Therefore, when the open pore ratio is 70% or more, it is preferable in terms of improving the rate characteristics as compared with the case where the ratio of closed pores existing as simple pores (portions that do not contribute to charge / discharge) is large.

一方、空隙率が3%未満では、気孔による応力開放効果が不十分となる。また、空隙率が30%を超えると、高容量化の効果が著しく減殺されるため好ましくない。   On the other hand, when the porosity is less than 3%, the stress release effect by the pores is insufficient. Further, if the porosity exceeds 30%, the effect of increasing the capacity is remarkably reduced, which is not preferable.

ところで、例えば、コバルト酸リチウムは充電時(リチウムイオンが抜けるとき)に体積膨張するのに対し、ニッケル酸リチウムは放電時(リチウムイオンが入るとき)に体積膨張する。このため、組成比を適宜調整することで、見かけ上、充放電時の体積膨張収縮をゼロにすることは可能である。しかしながら、この場合でも、格子の長さは変化する。具体的には、Li(Co0.5Ni0.5)Oは、c軸方向には伸びる一方でa軸方向には縮む。 By the way, for example, lithium cobaltate expands in volume during charging (when lithium ions are released), whereas lithium nickelate expands in volume during discharge (when lithium ions enter). For this reason, it is possible to make the volume expansion / contraction during charging / discharging to zero by adjusting the composition ratio as appropriate. However, even in this case, the length of the grating changes. Specifically, Li (Co 0.5 Ni 0.5 ) O 2 extends in the c-axis direction but contracts in the a-axis direction.

よって、本発明は、層状岩塩構造を有するリチウム複合酸化物(例えば、コバルト酸リチウムLiCoO2[一般式中1≦p≦1.1]、ニッケル酸リチウムLiNiO2、マンガン酸リチウムLiMnO、ニッケルマンガン酸リチウムLi(Ni0.5,Mn0.5)O、一般式Li(Co,Ni,Mn)O[一般式中0.97≦p≦1.07,x+y+z=1]で表されるこれらの固容体、Li(Co,Ni,Al)O[一般式中0.97≦p≦1.07,x+y+z=1、0<x≦0.25、0.6≦y≦0.9、0<z≦0.1]、LiMnOとLiMO(Mは、Co、Ni等の遷移金属)との固溶体、等)の焼結体板に対して非常に有効である。なお、上記一般式を満たす範囲で、Mg,Al,Si,Ca,Ti,V,Cr,Fe,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ag,Sn,Sb,Te,Ba,Bi等の元素が、1種以上含まれていてもよい。 Therefore, the present invention provides a lithium composite oxide having a layered rock salt structure (for example, lithium cobaltate Li p CoO 2 [general formula 1 ≦ p ≦ 1.1], lithium nickelate LiNiO 2 , lithium manganate Li 2 MnO 3, the nickel-manganese lithium Li p (Ni 0.5, Mn 0.5 ) O 2, the general formula Li p (Co x, Ni y , Mn z) O 2 [ general formula 0.97 ≦ p ≦ 1.07, x + y + z = 1], Li p (Co x , Ni y , Al z ) O 2 [in the general formula, 0.97 ≦ p ≦ 1.07, x + y + z = 1, 0 <x ≦ 0.25. , 0.6 ≦ y ≦ 0.9, 0 <z ≦ 0.1], a sintered body plate of Li 2 MnO 3 and a solid solution of LiMO 2 (M is a transition metal such as Co or Ni), etc. It is very effective against. As long as the above general formula is satisfied, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, One or more elements such as Te, Ba, Bi and the like may be included.

体積膨張収縮が大きい組成、例えば、Li(Co,Ni,Mn)Oにおける、ニッケルのモル比率が0.75以上の場合や、コバルトのモル比率が0.9以上の場合、Li(Co,Ni,Al)Oにおけるニッケルのモル比率が0.7以上の場合に対して、本発明の適用は特に有効である。 Volumetric expansion and contraction is large composition, for example, Li p (Co x, Ni y, Mn z) in O 2, and the case of 0.75 or more mole ratio of nickel, if the molar ratio of cobalt is more than 0.9, li p (Co x, Ni y , Al z) with respect to the molar ratio of nickel in the O 2 is 0.7 or more, application of the present invention is particularly effective.

本発明の一実施形態が適用されたリチウム二次電池の概略構成を模式的に示す断面図である。It is sectional drawing which shows typically schematic structure of the lithium secondary battery with which one Embodiment of this invention was applied. 図1Aに示されている正極の拡大断面図である。It is an expanded sectional view of the positive electrode shown by FIG. 1A. 電池特性評価用のコインセル型のリチウム二次電池の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the coin cell type lithium secondary battery for battery characteristic evaluation. 実施形態及び比較例のLiCoO2セラミックス板によるサイクル特性の評価結果を示すグラフである。It is a graph showing the evaluation results of cycle characteristics of LiCoO 2 ceramic plate embodiments and comparative examples. 実施形態及び比較例のLiCoO2セラミックス板を観察した走査電子顕微鏡写真である。Is a scanning electron microscope photograph showing the LiCoO 2 ceramic plate embodiments and comparative examples. 空隙導入された実施形態のLiCoO2セラミックス板によるレート特性の評価結果である。The evaluation results of the rate characteristics by LiCoO 2 ceramic plate voids introduced embodiment. 図1Bに示されている正極の構成の一変形例を示す側断面図である。It is a sectional side view which shows the modification of a structure of the positive electrode shown by FIG. 1B. 本発明の一実施形態が適用されたリチウム二次電池の概略構成を模式的に示す断面図である。It is sectional drawing which shows typically schematic structure of the lithium secondary battery with which one Embodiment of this invention was applied. 本発明の一実施形態が適用されたリチウム二次電池の概略構成を模式的に示す断面図である。It is sectional drawing which shows typically schematic structure of the lithium secondary battery with which one Embodiment of this invention was applied. 図1Bに示されている正極の他の変形例の構成を示す断面図である。It is sectional drawing which shows the structure of the other modification of the positive electrode shown by FIG. 1B.

以下、本発明の好適な実施形態を、実施例及び比較例を用いつつ説明する。なお、以下の実施形態に関する記載は、法令で要求されている明細書の記載要件(記述要件・実施可能要件)を満たすために、本発明の具体化の単なる一例を、可能な範囲で具体的に記述しているものにすぎない。よって、後述するように、本発明が、以下に説明する実施形態や実施例の具体的構成に何ら限定されるものではないことは、全く当然である。本実施形態や実施例に対して施され得る各種の変更の例示は、当該実施形態の説明中に挿入されると、一貫した実施形態の説明の理解が妨げられるので、主として末尾にまとめて記載されている。   Hereinafter, preferred embodiments of the present invention will be described using examples and comparative examples. In addition, the description about the following embodiment is specific to the extent possible, merely an example of the embodiment of the present invention in order to satisfy the description requirement (description requirement / practicability requirement) of the specification required by law. It is only what is described in. Therefore, as will be described later, it is quite natural that the present invention is not limited to the specific configurations of the embodiments and examples described below. Examples of various changes that can be made to the present embodiment and examples are mainly described at the end, because if inserted during the description of the embodiment, understanding of a consistent description of the embodiment is hindered. Has been.

<リチウム二次電池の概略構成>
図1Aは、本発明の一実施形態が適用されたリチウム二次電池10の概略構成を模式的に示す断面図である。図1Aを参照すると、本実施形態のリチウム二次電池10は、電池ケース11と、セパレータ12と、電解質13と、負極14と、正極15と、を備えている。
<Schematic configuration of lithium secondary battery>
FIG. 1A is a cross-sectional view schematically showing a schematic configuration of a lithium secondary battery 10 to which an embodiment of the present invention is applied. Referring to FIG. 1A, the lithium secondary battery 10 of this embodiment includes a battery case 11, a separator 12, an electrolyte 13, a negative electrode 14, and a positive electrode 15.

セパレータ12は、電池ケース11内を、負極14の側と正極15の側とに二分するように設けられている。すなわち、電池ケース11内には、負極14及び正極15が、セパレータ12を隔てて対向するように設けられている。また、電池ケース11内には、電解質13が収容されている。   The separator 12 is provided so as to bisect the inside of the battery case 11 into a negative electrode 14 side and a positive electrode 15 side. That is, the negative electrode 14 and the positive electrode 15 are provided in the battery case 11 so as to face each other with the separator 12 therebetween. An electrolyte 13 is accommodated in the battery case 11.

電解質13としては、例えば、電気的特性や取り扱い易さの点から、液体電解質が好適に用いられ得る。かかる液体電解質としては、有機溶媒等の非水系溶媒にリチウム塩等の電解質塩を溶解させることによって調製された、非水溶媒系のものが好適に用いられる。もっとも、ポリマー電解質、ゲル電解質、有機固体電解質、無機固体電解質も、電解質13として問題なく使用することができる。なお、電解質は、正極活物質層(後述する図1Bにおける正極活物質層15b)に設けられた開気孔に充填されている、もしくは浸み込んでいる方が、正極活物質からのリチウムイオン出入りが活発になる点で好ましい。   As the electrolyte 13, for example, a liquid electrolyte can be suitably used from the viewpoint of electrical characteristics and ease of handling. As such a liquid electrolyte, a non-aqueous solvent type prepared by dissolving an electrolyte salt such as a lithium salt in a non-aqueous solvent such as an organic solvent is preferably used. However, polymer electrolytes, gel electrolytes, organic solid electrolytes, and inorganic solid electrolytes can also be used as the electrolyte 13 without problems. It is to be noted that the electrolyte is filled or penetrated in the open pores provided in the positive electrode active material layer (positive electrode active material layer 15b in FIG. 1B described later), and lithium ions enter and leave the positive electrode active material. Is preferable in that it becomes active.

非水系溶媒としては、特に限定はないが、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピオンカーボネート等の鎖状エステル;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の誘電率の高い環状エステル;鎖状エステルと環状エステルの混合溶媒;等を用いることができ、鎖状エステルを主溶媒とした環状エステルとの混合溶媒が特に適している。   The non-aqueous solvent is not particularly limited. For example, chain esters such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propion carbonate; high dielectric constants such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate A cyclic ester; a mixed solvent of a chain ester and a cyclic ester can be used, and a mixed solvent with a cyclic ester having a chain ester as a main solvent is particularly suitable.

上述の非水系溶媒に溶解させる電解質塩としては、例えば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiN(RfSO)(Rf′SO)、LiC(RfSO、LiC2n+1SO(n≧2)、LiN(RfOSO[ここでRfとRf′はフルオロアルキル基]、等が用いられ得る。かかる電解質塩としては、1種のみが単独で用いられてもよく、2種以上が併用されてもよい。 As the electrolyte salt to be dissolved in the nonaqueous solvent described above, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3 ) 2 , LiN (RfSO 2 ) (Rf′SO 2 ), LiC (RfSO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf And Rf ′ are fluoroalkyl groups], and the like. As this electrolyte salt, only 1 type may be used independently and 2 or more types may be used together.

上述の電解質塩の中でも、炭素数2以上の含フッ素有機リチウム塩が特に好ましい。この含フッ素有機リチウム塩は、アニオン性が大きく、且つイオン分離しやすいために、上述の溶媒に溶解し易いからである。非水電解液としての電解質13中における電解質塩の濃度は、特に限定はないが、例えば、0.3mol/l以上、より好ましくは0.4mol/l以上であって、1.7mol/l以下、より好ましくは1.5mol/l以下であることが好ましい。   Among the above electrolyte salts, a fluorine-containing organic lithium salt having 2 or more carbon atoms is particularly preferable. This is because this fluorine-containing organolithium salt has a large anionic property and is easily ion-separated, so that it is easily dissolved in the above-mentioned solvent. The concentration of the electrolyte salt in the electrolyte 13 as the nonaqueous electrolytic solution is not particularly limited, but is, for example, 0.3 mol / l or more, more preferably 0.4 mol / l or more, and 1.7 mol / l or less. More preferably, it is preferably 1.5 mol / l or less.

負極14に係る負極活物質は、リチウムイオンを吸蔵及び放出できるものであればよい。よって、例えば、炭素質材料(黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭等)が、負極活物質として用いられ得る。また、黒鉛の一部は、リチウムと合金化し得る金属や酸化物等と置き換えられ得る。さらに、金属リチウムや、金属リチウムと他の元素(ケイ素,スズ,インジウム等)とを含む合金、リチウムに近い低電位で充放電できるケイ素,スズ等の酸化物、Li2.6Co0.4N等のリチウムとコバルトとの窒化物、等の、リチウム吸蔵物質も、負極活物質として用いられ得る。 The negative electrode active material according to the negative electrode 14 may be any material that can occlude and release lithium ions. Thus, for example, carbonaceous materials (graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads, carbon fibers, activated carbon, etc.) are used as the negative electrode active material. obtain. In addition, a part of graphite can be replaced with a metal, oxide, or the like that can be alloyed with lithium. Furthermore, metallic lithium, alloys containing metallic lithium and other elements (silicon, tin, indium, etc.), oxides of silicon, tin, etc. that can be charged and discharged at a low potential close to lithium, Li 2.6 Co 0.4 A lithium storage material such as a nitride of lithium and cobalt such as N can also be used as the negative electrode active material.

負極活物質として黒鉛を用いた場合、満充電時の電圧を、リチウム基準で約0.1Vとみなすことができる。このため、電池電圧に0.1Vを加えた電圧で正極15の電位を便宜上計算することができる。よって、この場合、正極15の充電電位が制御しやすく、好適である。   When graphite is used as the negative electrode active material, the voltage at full charge can be regarded as about 0.1 V on the basis of lithium. For this reason, the electric potential of the positive electrode 15 can be calculated for convenience with a voltage obtained by adding 0.1 V to the battery voltage. Therefore, in this case, the charging potential of the positive electrode 15 is easy to control, which is preferable.

図1Bは、図1Aに示されている正極15の拡大断面図である。図1Bを参照すると、正極15は、正極集電体15aと、正極活物質層15bと、を備えている。正極集電体15aは、金属等の導電性物質(例えばアルミニウム箔)からなり、導電性接合層15cを介して正極活物質層15bと接合されている。正極活物質層15bは、リチウム複合酸化物焼結体板であって、厚さが30μm以上(具体的には30〜200μm)、空隙率が3〜30%、開気孔比率が70%以上となるように形成されている。   FIG. 1B is an enlarged cross-sectional view of the positive electrode 15 shown in FIG. 1A. Referring to FIG. 1B, the positive electrode 15 includes a positive electrode current collector 15a and a positive electrode active material layer 15b. The positive electrode current collector 15a is made of a conductive material such as metal (for example, aluminum foil), and is bonded to the positive electrode active material layer 15b via the conductive bonding layer 15c. The positive electrode active material layer 15b is a lithium composite oxide sintered body plate having a thickness of 30 μm or more (specifically, 30 to 200 μm), a porosity of 3 to 30%, and an open pore ratio of 70% or more. It is formed to become.

<正極活物質層用リチウム複合酸化物焼結体板の製造方法の概要>
図1Bに示されている、正極活物質層15bとしてのリチウム複合酸化物焼結体板は、例えば、以下の製造方法によって、容易かつ確実に形成される。
<Outline of Manufacturing Method of Lithium Composite Oxide Sintered Plate for Positive Electrode Active Material Layer>
The lithium composite oxide sintered body plate as the positive electrode active material layer 15b shown in FIG. 1B is easily and reliably formed by the following manufacturing method, for example.

<<二段階プロセス>>
1.原料粒子の準備
原料粒子としては、リチウム化合物を含まない、遷移金属(Co,Ni,Mn等)化合物の粒子が用いられる。原料粒子は、適宜、粉砕及び分級され得る。また、目的とする組成に応じて、複数種の原料粒子が適宜混合され得る。さらに、粒成長を促進する目的で、酸化ホウ素,酸化ビスマス,酸化アンチモン,等の低融点酸化物や、塩化ナトリウムや塩化カリウム等の低融点塩化物、ホウケイ酸ガラス等の低融点ガラスが、0.001〜30wt%添加され得る。
<< Two-stage process >>
1. Preparation of raw material particles As raw material particles, particles of a transition metal (Co, Ni, Mn, etc.) compound not containing a lithium compound are used. The raw material particles can be appropriately pulverized and classified. Moreover, according to the target composition, multiple types of raw material particles may be mixed as appropriate. Further, for the purpose of promoting grain growth, low melting point oxides such as boron oxide, bismuth oxide and antimony oxide, low melting point chlorides such as sodium chloride and potassium chloride, and low melting point glasses such as borosilicate glass are 0 0.001 to 30 wt% may be added.

さらに、上述の所望割合の空孔を形成するための添加剤である空孔形成材が、適宜、均一に混合され得る。かかる空孔形成材としては、続く仮焼成工程において分解(蒸発あるいは炭化)される物質の、粒子又は繊維が、好適に用いられ得る。具体的には、例えば、テオブロミン、ナイロン、グラファイト、フェノール樹脂、ポリメタクリル酸メチル、ポリエチレン、ポリエチレンテレフタレート、又は発泡性樹脂等の有機合成樹脂の、粒子又は繊維が、空孔形成材として好適に用いられ得る。勿論、かかる空孔形成材がなくても、原料粒子の粒径や、仮焼成工程における焼成温度等を適宜調整することによって、上述の所望の大きさ及び割合の空孔を形成することが可能である。   Furthermore, the pore forming material, which is an additive for forming the above-mentioned desired proportion of pores, can be mixed uniformly as appropriate. As the pore forming material, particles or fibers of a substance that is decomposed (evaporated or carbonized) in the subsequent pre-baking step can be preferably used. Specifically, for example, particles or fibers of an organic synthetic resin such as theobromine, nylon, graphite, phenol resin, polymethyl methacrylate, polyethylene, polyethylene terephthalate, or foamable resin are suitably used as the pore forming material. Can be. Of course, even if there is no such pore forming material, it is possible to form pores having the above-mentioned desired size and ratio by appropriately adjusting the particle size of the raw material particles, the firing temperature in the preliminary firing step, and the like. It is.

2.原料粒子の成形工程
原料粒子あるいはその混合物をシート成形することで、「独立した」シート状の成形体が得られる。ここで、「独立した」シート(「自立膜」と称されることもある)とは、他の支持体から独立して単体で取り扱い可能なシートのことをいう(アスペクト比が5以上の薄片も含む)。すなわち、「独立した」シートには、他の支持体(基板等)に固着されて当該支持体と一体化された(分離不能あるいは分離困難となった)ものは含まれない。
2. Forming Step of Raw Material Particles By forming the raw material particles or a mixture thereof into a sheet, an “independent” sheet-like molded body can be obtained. Here, the “independent” sheet (sometimes referred to as “self-supporting film”) refers to a sheet that can be handled independently from another support (a thin piece having an aspect ratio of 5 or more). Also included). That is, the “independent” sheet does not include a sheet fixed to another support (substrate or the like) and integrated with the support (unseparable or difficult to separate).

シート成形は、周知の様々な方法で行われ得る。すなわち、例えば、シート成形には、ドクターブレード式シート成形機(ドクターブレード法)、ドラムドライヤー、ディスクドライヤー、スクリーン印刷機、等が用いられ得る。シート状の成形体の厚さは、焼成後に上述の所望厚さとなるように、適宜設定される。   Sheet forming can be performed by various known methods. That is, for example, a doctor blade type sheet forming machine (doctor blade method), a drum dryer, a disk dryer, a screen printer, or the like can be used for sheet forming. The thickness of the sheet-like molded body is appropriately set so that the desired thickness is obtained after firing.

3.成形体の仮焼成工程
上述の成形工程によって得られたシート状の成形体は、後述するリチウム導入工程に先立ち、比較的低温(例えば700〜1200℃)で焼成される。これにより、比較的大きめの気孔が多数含まれる多孔質状のシート状中間焼成体が得られる。かかる仮焼成工程は、例えば、エンボス加工が施されたジルコニア製セッター上に成形体を載置した状態で、大気雰囲気中で行われる。
3. Preliminary firing step of molded body The sheet-like molded body obtained by the above-described molding step is fired at a relatively low temperature (for example, 700 to 1200 ° C) prior to a lithium introduction step described later. As a result, a porous sheet-like intermediate fired body containing a large number of relatively large pores is obtained. For example, the temporary firing step is performed in an air atmosphere in a state where the molded body is placed on a zirconia setter that has been embossed.

4.リチウム導入工程
上述の仮焼成工程によって得られた中間焼成体に、リチウム化合物をふりかけて、熱処理することにより、当該中間焼成体にリチウムが導入される。これにより、「独立した」シート状の正極活物質層用リチウム複合酸化物焼結体板が得られる。かかるリチウム導入工程は、例えば、坩堝中で行われる。
4). Lithium introduction process Lithium is introduced into the intermediate fired body by heat-treating the intermediate fired body obtained by the above-described preliminary firing process with a lithium compound. As a result, an “independent” sheet-like lithium composite oxide sintered plate for a positive electrode active material layer is obtained. Such a lithium introducing step is performed, for example, in a crucible.

リチウム化合物としては、例えば、炭酸リチウム,硝酸リチウム,酢酸リチウム,過酸化リチウム,水酸化リチウム,塩化リチウム,シュウ酸リチウム,クエン酸リチウム,等の各種リチウム塩や、リチウムメトキシド,リチウムエトキシド,等のリチウムアルコキシドが用いられ得る。リチウム化合物は、一般式LiMOで表される焼結体板におけるリチウムとMとのモル比Li/Mが1以上となるように添加される。 Examples of the lithium compound include various lithium salts such as lithium carbonate, lithium nitrate, lithium acetate, lithium peroxide, lithium hydroxide, lithium chloride, lithium oxalate, lithium citrate, lithium methoxide, lithium ethoxide, Lithium alkoxides such as can be used. The lithium compound is added so that the molar ratio Li / M between lithium and M in the sintered body plate represented by the general formula Li x MO 2 is 1 or more.

上述の仮焼成工程によって得られた多孔質状のシート状中間焼成体に対して、リチウム導入を行う際に、当該中間焼成体内の気孔が小さくなり、上述のような、所望割合となる。   When lithium is introduced into the porous sheet-like intermediate fired body obtained by the above-described preliminary firing step, the pores in the intermediate fired body are reduced, and the desired ratio as described above is obtained.

<<一段階プロセス>>
1.原料粒子の準備
原料粒子としては、合成後の組成が層状岩塩構造を有する正極活物質LiMOとなるように、Li、Co、Ni、Mn等の化合物の粒子を適宜混合したものが用いられる。あるいは、原料粒子として、LiMOの組成からなるもの(合成済みのもの)を用いることができる。そして、かかる原料粒子に対して、上述の空孔形成材が添加される。
<< One-step process >>
1. Preparation of raw material particles As raw material particles, particles obtained by appropriately mixing particles of compounds such as Li, Co, Ni, and Mn are used so that the composition after synthesis is a positive electrode active material LiMO 2 having a layered rock salt structure. Alternatively, raw material particles having a composition of LiMO 2 (synthesized particles) can be used. And the above-mentioned hole forming material is added to the raw material particles.

後述する熱処理工程中における、粒成長の促進あるいは揮発分の補償の目的で、リチウム化合物が0.5〜30mol%程度過剰に添加されてもよい。また、粒成長を促進する目的で、酸化ビスマスなどの低融点酸化物、ホウケイ酸ガラスなどの低融点ガラスが0.001〜30wt%添加されてもよい。   A lithium compound may be added in an excess of about 0.5 to 30 mol% for the purpose of promoting grain growth or compensating for volatile components during the heat treatment step described later. Further, for the purpose of promoting grain growth, 0.001 to 30 wt% of a low melting point oxide such as bismuth oxide or a low melting point glass such as borosilicate glass may be added.

また、特に厚さが50μm以上の比較的厚い焼結体板を作る場合、配向性を高める目的で、板面に(003)面以外に配向し板厚が0.5〜20μm程度のLiMO板状配向粒子が、2〜30wt%添加されてもよい。このような板状配向粒子は、ドクターブレード法等のせん断力のかかるシート成形法にて板面がシート面と平行な状態で分散され、さらに、焼成工程にて周囲の原料粒子を取り込みながら粒成長することにより、配向性を高める効果がある。なお、このような板状配向粒子は、例えば、本願記載の焼結体板の作製方法において、シート厚を20μm以下とし、焼成後に適宜解砕することで得ることができる。 In particular, when a relatively thick sintered body plate having a thickness of 50 μm or more is produced, LiMO 2 having a thickness of about 0.5 to 20 μm and oriented on the plate surface other than the (003) plane for the purpose of enhancing the orientation. 2-30 wt% of plate-like oriented particles may be added. Such plate-like oriented particles are dispersed while the plate surface is parallel to the sheet surface by a sheet forming method with a shearing force such as a doctor blade method, and the surrounding raw material particles are incorporated in the firing step. Growing has the effect of increasing the orientation. Such plate-like oriented particles can be obtained, for example, in the method for producing a sintered body plate described in the present application, by setting the sheet thickness to 20 μm or less and appropriately crushing after firing.

2.原料粒子の成形工程
原料粒子と空孔形成材との混合物をシート成形することで、「独立した」シート状の成形体が得られる。かかるシート成形工程は、上述の二段階プロセスと同様である。
2. Forming Step of Raw Material Particles An “independent” sheet-like molded body is obtained by sheet-molding a mixture of raw material particles and pore forming material. Such a sheet forming step is the same as the above-described two-stage process.

3.成形体の熱処理(焼成)工程
上述の成形工程によって得られたシート状の成形体を、空孔を形成しつつ結晶を成長させる目的で、比較的高温(例えば1200℃〜1500℃)で熱処理(焼成)することで、「独立した」シート状の正極活物質層用リチウム複合酸化物焼結体板が得られる。かかる熱処理工程は、例えば、エンボス加工が施されたジルコニア製セッター上に成形体を載置した状態で、酸素雰囲気中で行われ得る。
3. Heat treatment (firing) step of the formed body The sheet-like formed body obtained by the above-described forming step is heat-treated at a relatively high temperature (for example, 1200 ° C. to 1500 ° C.) for the purpose of growing crystals while forming pores ( By firing, an “independent” sheet-like lithium composite oxide sintered body plate for a positive electrode active material layer is obtained. This heat treatment step can be performed, for example, in an oxygen atmosphere in a state where the molded body is placed on a zirconia setter that has been embossed.

<評価方法及び評価結果>
電池特性の評価のために、以下のようにして、CR2032型と同一形状のコインセル型電池を作成した。図2は、かかるコインセル型のリチウム二次電池10の概略構成を示す断面図である。
<Evaluation method and evaluation results>
In order to evaluate the battery characteristics, a coin cell type battery having the same shape as the CR2032 type was prepared as follows. FIG. 2 is a cross-sectional view showing a schematic configuration of the coin cell type lithium secondary battery 10.

得られた「独立した」シート状のリチウム複合酸化物焼結体板である正極活物質層15bを、φ5〜10mm程度の大きさに加工したものを準備する。正極集電体15bとしてのアルミニウム箔の上に、アセチレンブラックとPVdFを質量比で1:0.6となるように秤量して溶剤としての適宜量のNMPとともに混合してペースト化したものを、スクリーン印刷する。未乾燥の状態の印刷パターンの内側に入るように焼結体板を載せ、100℃,30分の条件で乾燥させて接合を完了させることで、正極15を作製した。なお、導電性接合層15cの厚さは、10〜20μmとした。   What prepared the positive electrode active material layer 15b which is the obtained "independent" sheet-like lithium complex oxide sintered board in the magnitude | size of about (phi) 5-10 mm is prepared. On the aluminum foil as the positive electrode current collector 15b, acetylene black and PVdF were weighed so as to have a mass ratio of 1: 0.6 and mixed with an appropriate amount of NMP as a solvent to form a paste. Screen print. The sintered body plate was placed so as to be inside the printed pattern in an undried state, and dried at 100 ° C. for 30 minutes to complete the joining, thereby producing the positive electrode 15. The thickness of the conductive bonding layer 15c was 10 to 20 μm.

電池ケース11を構成する正極缶111と負極缶112との間に、正極15(正極集電体15aが正極缶111と対向するように配置)とセパレータ13と負極14(リチウム金属板)とをこの順に積層したものを収容し、液体状の電解質13を充填した後に、ガスケット113によって封止することで、コインセル型のリチウム二次電池10を作製した。なお、液体状の電解質13は、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を等体積比で混合した有機溶媒に、LiPFを1mol/Lの濃度となるように溶解することで調製したものである。 Between the positive electrode can 111 and the negative electrode can 112 constituting the battery case 11, the positive electrode 15 (disposed so that the positive electrode current collector 15 a faces the positive electrode can 111), the separator 13, and the negative electrode 14 (lithium metal plate). The coin-cell type lithium secondary battery 10 was fabricated by storing the layers stacked in this order, filling the liquid electrolyte 13, and sealing with a gasket 113. The liquid electrolyte 13 was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in an organic solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at an equal volume ratio. It is.

上述のようにして作製した電池(コインセル)を用いて、サイクル特性(容量維持率)の評価を行った。   Using the battery (coin cell) produced as described above, the cycle characteristics (capacity maintenance ratio) were evaluated.

サイクル特性(容量維持率):作製した電池について、試験温度を20℃として、(1)1Cレートの定電流−定電圧で4.2Vまでの充電、及び(2)1Cレートの定電流で3.0Vまでの放電、を繰り返すサイクル充放電を行った。サイクル充放電終了後の電池の放電容量を初回値で除した値に100を乗算したものを、容量維持率(%)とした。   Cycle characteristics (capacity maintenance ratio): With respect to the fabricated battery, with a test temperature of 20 ° C., (1) 1C rate constant current-constant voltage up to 4.2V, and (2) 1C rate constant current 3 Cycle charge / discharge was repeated to discharge to 0.0V. The capacity retention rate (%) was obtained by multiplying the value obtained by dividing the discharge capacity of the battery after the end of the cycle charge / discharge by the initial value by 100.

レート特性:作製した電池について、試験温度を20℃として、0.1Cレートの電流値で電池電圧が4.2Vとなるまで定電流充電し、その後電池電圧を4.2Vに維持する電流条件で、その電流値が1/20に低下するまで定電圧充電した後10分間休止し、続いて所定レートの電流値で電池電圧が3.0Vになるまで定電流放電する、という充放電操作によって、レート特性の評価を行った。   Rate characteristics: With respect to the manufactured battery, under a current condition that the test temperature is 20 ° C., constant current charging is performed at a current value of 0.1 C rate until the battery voltage becomes 4.2 V, and then the battery voltage is maintained at 4.2 V. The charging / discharging operation of charging for 10 minutes after charging at constant voltage until the current value decreases to 1/20, and then discharging at constant current until the battery voltage reaches 3.0 V at a current value of a predetermined rate, The rate characteristics were evaluated.

図3は、実施形態及び比較例のLiCoO2セラミックス板によるサイクル特性の評価結果を示すグラフである。ここで、図3における(i)は、比較例としての、空隙導入されていないLiCoO2セラミックス板によるサイクル特性の評価結果である。また、(ii)は、本実施形態の空隙導入されたLiCoO2セラミックス板(厚さ30μm)によるサイクル特性の評価結果である。 FIG. 3 is a graph showing evaluation results of cycle characteristics by the LiCoO 2 ceramic plates of the embodiment and the comparative example. Here, (i) in FIG. 3 is an evaluation result of the cycle characteristics of a LiCoO 2 ceramic plate with no voids introduced as a comparative example. Moreover, (ii) is an evaluation result of cycle characteristics by the LiCoO 2 ceramic plate (thickness 30 μm) into which voids are introduced according to this embodiment.

図3における(i)に示されているように、空隙導入されていないLiCoO2セラミックス板においては、厚くなるほどサイクル特性が悪化し、特に厚さが30μmのものにおいて顕著なサイクル特性の悪化が確認された。これに対し、図3における(ii)に示されているように、空隙導入により、厚さが30μmのものにおいて、顕著なサイクル特性の改善効果が確認された。 As shown in FIG. 3 (i), in the LiCoO 2 ceramics plate in which no voids are introduced, the cycle characteristics deteriorate as the thickness increases, and it is confirmed that the cycle characteristics are particularly markedly deteriorated when the thickness is 30 μm. It was done. On the other hand, as shown in (ii) in FIG. 3, a remarkable improvement in cycle characteristics was confirmed when the thickness was 30 μm by introducing the gap.

図4は、実施形態及び比較例のLiCoO2セラミックス板を観察した走査電子顕微鏡写真である。図4における(i)は、比較例としての、空隙導入されていないLiCoO2セラミックス板における、コインセル組み立て直後から、再び分解してセラミックス板だけ取り出した状態(左側の写真)、及び50サイクルの充放電後、分解してセラミックス板だけ取り出した状態(右側の写真)での外観の走査電子顕微鏡写真である。図4における(ii)は、比較例としての、空隙導入されていないLiCoO2セラミックス板の、断面の走査電子顕微鏡写真である。図4における(iii)は、空隙導入された実施形態のLiCoO2セラミックス板の、断面の走査電子顕微鏡写真である(空隙率8%)。 FIG. 4 is a scanning electron micrograph observing the LiCoO 2 ceramic plates of the embodiment and the comparative example. (I) in FIG. 4 shows a comparative example of a LiCoO 2 ceramic plate into which no voids are introduced, immediately after the coin cell is assembled, after being disassembled again and taking out only the ceramic plate (left photo), and 50 cycles of charge. It is the scanning electron micrograph of the external appearance in the state (right photograph) which decomposed | disassembled and took out only the ceramic board after discharge. (Ii) in FIG. 4 is a scanning electron micrograph of a cross section of a LiCoO 2 ceramic plate with no voids introduced as a comparative example. (Iii) in FIG. 4 is a scanning electron micrograph of the cross section of the LiCoO 2 ceramic plate of the embodiment into which voids have been introduced (porosity 8%).

図4における(i)に示されているように、比較例としての、空隙導入されていないLiCoO2セラミックス板においては、50サイクルの充放電後に、粒界クラックが発生していることが確認された。この粒界クラックは、充放電サイクルにおけるリチウムイオンの出入りに伴う、結晶格子の伸縮によって発生する内部応力によるものであると考えられる。さらに、50サイクルの充放電後では、空隙導入されていないLiCoO2セラミックス板を集電体から剥離する際、50%以上の領域で導電性接合層がセラミックス板との界面で剥離することが確認された。そして、これらの空隙導入されていないLiCoO2セラミックス板におけるサイクル特性の悪化は、かかる粒界クラック及び導電性接合層との接合界面剥離の発生によって、LiCoO2セラミックス板内に、導電経路が断たれて電気的に孤立した部分(容量に寄与し得ない部分)が発生することで、容量が低下することが原因であると考えられる。 As shown in (i) of FIG. 4, in the LiCoO 2 ceramic plate with no voids introduced as a comparative example, it was confirmed that grain boundary cracks occurred after 50 cycles of charge and discharge. It was. This grain boundary crack is considered to be due to internal stress generated by the expansion and contraction of the crystal lattice accompanying the entry and exit of lithium ions in the charge / discharge cycle. Furthermore, after 50 cycles of charging / discharging, it was confirmed that when the LiCoO 2 ceramic plate with no voids introduced was peeled from the current collector, the conductive bonding layer peeled off at the interface with the ceramic plate in a region of 50% or more. It was done. The deterioration of cycle characteristics in these LiCoO 2 ceramic plates into which voids are not introduced is due to the occurrence of such intergranular cracks and peeling of the bonding interface with the conductive bonding layer, and the conductive path is cut in the LiCoO 2 ceramic plate. It is thought that the cause is that the capacity is reduced due to the occurrence of electrically isolated parts (parts that cannot contribute to the capacity).

そこで、本発明の発明者は、充放電サイクルにおけるリチウムイオンの出入りに伴う、結晶格子の伸縮によって発生する内部応力を緩和するために、また、導電性接合層との接合強度を高めるために、LiCoO2セラミックス板内に、上述の範囲で空隙を導入した。これにより、上述の通り、顕著なサイクル特性の改善効果が確認された。また、図5は、空隙導入された実施形態のLiCoO2セラミックス板によるレート特性の評価結果である。かかる図5に示されているように、空隙導入により、サイクル特性のみならず、レート特性についても向上することが確認された。 Therefore, the inventor of the present invention, in order to relieve the internal stress generated by the expansion and contraction of the crystal lattice accompanying the entry and exit of lithium ions in the charge and discharge cycle, and to increase the bonding strength with the conductive bonding layer, In the LiCoO 2 ceramic plate, voids were introduced in the above range. Thereby, as mentioned above, the remarkable improvement effect of cycling characteristics was confirmed. Further, FIG. 5 shows the evaluation results of the rate characteristics by the LiCoO 2 ceramic plate of the embodiment into which voids are introduced. As shown in FIG. 5, it was confirmed that not only the cycle characteristics but also the rate characteristics were improved by introducing the gap.

<具体例>
以下、上述の正極活物質層15bとしてのリチウム複合酸化物焼結体板の具体例、及びかかる具体例の評価結果について、より詳細に説明する。
<Specific example>
Hereinafter, specific examples of the lithium composite oxide sintered plate as the positive electrode active material layer 15b described above and evaluation results of the specific examples will be described in more detail.

<<具体例1:コバルト系組成>>
まず、LiCoO2セラミックス板についての実験例1−1〜1−9の作成条件を、表1に示す。
<< Specific Example 1: Cobalt-based composition >>
First, Table 1 shows conditions for preparing Experimental Examples 1-1 to 1-9 for the LiCoO 2 ceramic plate.

表1の実験例1−2及び1−4における作成条件は、以下の通りである(二段階プロセス:空孔形成材なし)。   The creation conditions in Experimental Examples 1-2 and 1-4 in Table 1 are as follows (two-step process: no pore forming material).

(1)スラリー調製:Co34粉末(粒径1−5μm、正同化学工業株式会社製)を粉砕及び分級して得られたCo34原料粒子100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番「BM−2」、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名「レオドールSP−O30」、花王株式会社製)2重量部と、を混合した。この混合物を、減圧下で撹拌することで脱泡するとともに、3000〜4000cPの粘度に調製した。なお、粘度は、ブルックフィールド社製LVT型粘度計で測定した(以下同様)。 (1) Slurry preparation: 100 parts by weight of Co 3 O 4 raw material particles obtained by pulverizing and classifying Co 3 O 4 powder (particle size: 1-5 μm, manufactured by Shodo Chemical Industry Co., Ltd.) and a dispersion medium (toluene) : 100 parts by weight of isopropanol = 1: 1), 10 parts by weight of binder (polyvinyl butyral: product number “BM-2”, manufactured by Sekisui Chemical Co., Ltd.), plasticizer (DOP: Di (2-ethylhexyl) phthalate, black) 4 parts by weight of Kim Kasei Co., Ltd. and 2 parts by weight of a dispersant (product name “Leodol SP-O30”, manufactured by Kao Corporation) were mixed. The mixture was defoamed by stirring under reduced pressure and adjusted to a viscosity of 3000 to 4000 cP. The viscosity was measured with an LVT viscometer manufactured by Brookfield (the same applies hereinafter).

(2)シート成形:上述のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが30μmとなるように、シート状に成形した。   (2) Sheet forming: The slurry prepared as described above was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 30 μm.

(3)仮焼成:PETフィルムから剥がしたシート状の成形体を、カッターで70mm角に切り出し、突起の大きさが300μmのエンボス加工を施したジルコニア製セッター(寸法90mm角、高さ1mm)の中央に載置し、大気雰囲気中にて所定温度(中間焼成体焼成温度)で5h焼成後、降温速度200℃/hにて降温し、セッターに溶着していない部分を取り出した。   (3) Temporary calcination: A zirconia setter (dimensions 90 mm square, 1 mm height) in which a sheet-like molded body peeled off from a PET film was cut into a 70 mm square with a cutter and subjected to embossing with a protrusion size of 300 μm. It was placed in the center, fired at a predetermined temperature (intermediate fired body firing temperature) in the air atmosphere for 5 hours, and then cooled at a temperature lowering rate of 200 ° C./h, and the part not welded to the setter was taken out.

(4)リチウム導入:このようにして得られたCo34セラミックスシートに、LiNO3粉末(関東化学株式会社製)を、Li/Co=1.2となるようにふりかけ、坩堝中(大気雰囲気)にて840℃で20時間加熱処理することで、厚さ30μmの、「独立した」シート状の正極活物質層15b用LiCoO2セラミックス板を得た。 (4) Lithium introduction: LiNO 3 powder (manufactured by Kanto Chemical Co., Inc.) was sprinkled on the Co 3 O 4 ceramic sheet obtained in this way so that Li / Co = 1.2, and the inside of the crucible (atmosphere) In the atmosphere), a LiCoO 2 ceramic plate for a positive electrode active material layer 15b having a thickness of 30 μm and an “independent” sheet was obtained by heat treatment at 840 ° C. for 20 hours.

表1の実験例1−3及び1−5における作成条件は、以下の通りである(二段階プロセス:空孔形成材添加)。   The preparation conditions in Experimental Examples 1-3 and 1-5 in Table 1 are as follows (two-stage process: addition of pore forming material).

空孔形成材を添加した以外は、上述の実験例1−2等と同様にして、スラリーを調製した。空孔形成材は、繊維状のもの(製品名「セレッシュPC10S」:ダイセルファインケム株式会社製)、又は球状のもの(ナイロンパウダー:住友エンビロサイエンス株式会社製)を用いた。このようにして調製されたスラリーを、上述の実験例1−2等と同様に、PETフィルムの上にシート状に成形した。   A slurry was prepared in the same manner as in Experimental Example 1-2 described above except that the pore forming material was added. As the pore forming material, a fibrous material (product name “Ceresh PC10S”: manufactured by Daicel Finechem Co., Ltd.) or a spherical material (nylon powder: manufactured by Sumitomo Enviro Science Co., Ltd.) was used. The slurry thus prepared was molded into a sheet on a PET film in the same manner as in Experimental Example 1-2 and the like described above.

PETフィルムから剥がしたシート状の成形体を、カッターで70mm角に切り出し、上述のジルコニア製セッターの中央に載置し、大気雰囲気中にて900℃(中間焼成体焼成温度)で10h焼成後、降温速度200℃/hにて降温し、セッターに溶着していない部分を取り出した。このようにして得られたCo34セラミックスシートに、上述の実験例1−2等と同様にして、リチウム導入を行うことで、厚さ30μmの、「独立した」シート状の正極活物質層用LiCoO2セラミックス板を得た。 The sheet-like molded body peeled off from the PET film was cut into a 70 mm square with a cutter, placed in the center of the above-mentioned zirconia setter, and fired at 900 ° C. (intermediate fired body firing temperature) for 10 hours in the air atmosphere. The temperature was decreased at a temperature decrease rate of 200 ° C./h, and the portion not welded to the setter was taken out. By introducing lithium into the thus obtained Co 3 O 4 ceramic sheet in the same manner as in Experimental Example 1-2 and the like, an “independent” sheet-like positive electrode active material having a thickness of 30 μm was obtained. A layered LiCoO 2 ceramic plate was obtained.

表1の実験例1−1及び1−6〜1−9における作成条件は、以下の通りである(一段階プロセス)。   The production conditions in Experimental Examples 1-1 and 1-6 to 1-9 in Table 1 are as follows (one-step process).

(1)スラリー調製:Co34粉末(粒径1−5μm、正同化学工業株式会社製)を粉砕して得られたCo34原料粒子(粒径0.3μm)とLi2CO3粉末(関東化学株式会社製)とをLi/Co(モル比)=1.0となるように混合した原料粉末100重量部と、上述の空孔形成材と、を用いた以外は、上述の各実験例と同様にして、スラリーを調製した(但しスラリー粘度は500〜700cP)。 (1) Slurry preparation: Co 3 O 4 raw material particles (particle size 0.3 μm) obtained by pulverizing Co 3 O 4 powder (particle size 1-5 μm, manufactured by Shodo Chemical Industry Co., Ltd.) and Li 2 CO 3 powder (manufactured by Kanto Chemical Co., Inc.) and the Li / Co (molar ratio) = 1.0 were mixed so that the raw material powder 100 parts by weight, except for using a pore-forming agent described above, above A slurry was prepared in the same manner as in each of the experimental examples (however, the slurry viscosity was 500 to 700 cP).

(2)シート成形:上述のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが30μmとなるように、シート状に成形した。   (2) Sheet forming: The slurry prepared as described above was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 30 μm.

(3)熱処理:PETフィルムから剥がしたシート状の成形体を、カッターで70mm角に切り出し、上述のジルコニア製セッターの中央に載置し、酸素雰囲気中(酸素分圧0.1MPa)にて900℃で10h加熱処理後、セッターに溶着していない部分を取り出すことで、厚さ30μmの、「独立した」シート状の正極活物質層用LiCoO2セラミックス板を得た。 (3) Heat treatment: The sheet-like molded body peeled off from the PET film was cut into a 70 mm square with a cutter, placed on the center of the above-mentioned zirconia setter, and 900 in an oxygen atmosphere (oxygen partial pressure 0.1 MPa). After the heat treatment at 10 ° C. for 10 hours, the portion not welded to the setter was taken out to obtain an “independent” sheet-like positive electrode active material layer LiCoO 2 ceramic plate having a thickness of 30 μm.

表1に示されている実験例の評価結果を、表2に示す。なお、表2における「容量維持率」は、50サイクルの充放電終了後の値である。また、「空隙率」は、アルキメデス法で求めた焼結体板の嵩密度を、ピクノメータを用いて求めた真密度で除して求めた値である、相対密度から計算される値(空隙率=1−相対密度)である。嵩密度の測定では、気孔中に存在する空気を十分に追い出すために、水中で煮沸処理をした。気孔径の小さな試料では、予め真空含浸装置(ストルアス社製 装置名「シトバック」)を用いて、気孔中に水を含浸させたあと、煮沸処理をした。さらに、「開気孔比率」は、閉気孔率と全気孔率から計算によって求められる値(開気孔比率=開気孔/全気孔=開気孔/(開気孔+閉気孔))である。閉気孔率は、アルキメデス法で測定した見かけ密度より求められる。また、全気孔率は、同じくアルキメデス法で測定した嵩密度より求められる。
The evaluation results of the experimental examples shown in Table 1 are shown in Table 2. The “capacity maintenance ratio” in Table 2 is a value after 50 cycles of charge / discharge. The “porosity” is a value calculated from the relative density (porosity), which is a value obtained by dividing the bulk density of the sintered body plate obtained by the Archimedes method by the true density obtained using a pycnometer. = 1-relative density). In the measurement of the bulk density, boiling treatment was performed in water in order to sufficiently expel the air present in the pores. For samples with small pore diameters, the pores were impregnated with water in advance using a vacuum impregnation device (device name “Sitback” manufactured by Struers) and then boiled. Furthermore, the “open pore ratio” is a value obtained by calculation from the closed porosity and the total porosity (open pore ratio = open pores / total pores = open pores / (open pores + closed pores)). The closed porosity is obtained from the apparent density measured by the Archimedes method. The total porosity is determined from the bulk density measured by the Archimedes method.

表1及び表2から明らかなように、空隙率が3〜30%であり、開気孔比率が70%以上である実験例1−1〜1−7においては、50サイクルの充放電終了後でも良好な容量維持率が得られた。これに対し、空隙率が上記所定範囲よりも低い実験例1−8、及び開気孔比率が上記所定範囲よりも低い実験例1−9においては、サイクル特性(50サイクルの充放電終了後における容量維持率)が格段に低下した。これは、以下の理由によるものと考えられる。   As is clear from Tables 1 and 2, in Experimental Examples 1-1 to 1-7 in which the porosity is 3 to 30% and the open pore ratio is 70% or more, even after 50 cycles of charge and discharge are completed. A good capacity retention rate was obtained. On the other hand, in Experimental Example 1-8 in which the porosity is lower than the predetermined range, and in Experimental Example 1-9 in which the open pore ratio is lower than the predetermined range, the cycle characteristics (capacity after 50 cycles of charge / discharge end) Maintenance rate) has dropped dramatically. This is considered to be due to the following reasons.

実験例1−1〜1−7のように、空隙率が上記所定範囲となるように気孔が所定割合含まれることで、充放電サイクルにおけるリチウムイオンの出入りに伴う結晶格子の伸縮によって発生する応力が、当該気孔によって良好(均一)に開放される。このため、充放電サイクルの繰り返しに伴う粒界クラックの発生が可及的に抑制される。特に、開気孔比率を70%以上とすることで、より応力が開放されやすくなり、粒界クラックの発生が効果的に抑制される。さらに、正極活物質層用セラミックス板と導電性接合層との接合強度が高まり、接合界面剥離が効果的に抑制される。したがって、実験例1−1〜1−7によれば、良好なサイクル特性を維持しつつ、高容量化を図ることができる。   As in Experimental Examples 1-1 to 1-7, the stress generated by the expansion and contraction of the crystal lattice accompanying the entry / exit of lithium ions in the charge / discharge cycle by containing the pores in a predetermined ratio so that the porosity falls within the predetermined range. However, the pores are favorably (uniformly) opened by the pores. For this reason, generation | occurrence | production of the grain boundary crack accompanying the repetition of a charging / discharging cycle is suppressed as much as possible. In particular, when the open pore ratio is 70% or more, the stress is more easily released, and the generation of grain boundary cracks is effectively suppressed. Furthermore, the bonding strength between the positive electrode active material layer ceramic plate and the conductive bonding layer is increased, and bonding interface peeling is effectively suppressed. Therefore, according to Experimental Examples 1-1 to 1-7, the capacity can be increased while maintaining good cycle characteristics.

さらに、開気孔内に電解質が浸透することで、当該開気孔の内壁面は、リチウムイオンの出入りする面として良好に機能する。したがって、開気孔比率を70%以上とすることで、閉気孔の比率が大きい場合に比べて、レート特性が改善される。   Furthermore, when the electrolyte permeates into the open pores, the inner wall surface of the open pores functions well as a surface through which lithium ions enter and exit. Therefore, by setting the open pore ratio to 70% or more, the rate characteristic is improved as compared with the case where the closed pore ratio is large.

一方、空隙率が3%未満である実験例1−8や、開気孔比率が70%未満である実験例1−9においては、気孔による応力開放効果(粒界クラックの発生抑制効果)や、接合界面剥離抑制効果が不十分となる。このため、サイクル特性が格段に低下した。   On the other hand, in Experimental Example 1-8 in which the porosity is less than 3%, and in Experimental Example 1-9 in which the open pore ratio is less than 70%, the stress release effect due to the pores (granular boundary crack generation suppression effect), The bonding interface peeling suppression effect is insufficient. For this reason, the cycle characteristics were significantly reduced.

次に、X線回折における、(104)面による回折強度に対する(003)面による回折強度(ピーク強度)の比率である、ピーク強度比[[003]/[104]について評価した。XRD(X線回折)測定は、以下の方法で行った。   Next, the peak intensity ratio [[003] / [104], which is the ratio of the diffraction intensity (peak intensity) of the (003) plane to the diffraction intensity of the (104) plane, was evaluated in X-ray diffraction. XRD (X-ray diffraction) measurement was performed by the following method.

φ5〜10mm程度の大きさに加工した正極活物質層用セラミックス板を、XRD測定用の試料フォルダに載せた。XRD装置(株式会社リガク製 製品名「RINT-TTRIII」)を用い、正極活物質層用セラミックス板の表面に対してX線を照射したときのXRDプロファイルを測定し、(104)面による回折強度(ピーク高さ)に対する(003)面による回折強度(ピーク高さ)の比率[003]/[104]を求めた。上記方法によれば、板面の結晶面に平行に存在する結晶面、すなわち、板面方向に配向する結晶面による回折プロファイルが得られる。   A ceramic plate for a positive electrode active material layer processed to a size of about φ5 to 10 mm was placed on a sample folder for XRD measurement. Using an XRD apparatus (product name “RINT-TTRIII” manufactured by Rigaku Corporation), the XRD profile when the surface of the ceramic plate for the positive electrode active material layer is irradiated with X-rays is measured, and the diffraction intensity by the (104) plane The ratio [003] / [104] of the diffraction intensity (peak height) by the (003) plane to (peak height) was determined. According to the above method, a diffraction profile is obtained by a crystal plane that is parallel to the crystal plane of the plate surface, that is, a crystal plane that is oriented in the plate surface direction.

ピーク強度比[003]/[104]の影響を評価するため、空隙率及び開気孔比率を一定にして、配向度が異なる実験例1−10〜1−13を作成した。実験例1−10〜1−13は、原料粒子粒径及び中間焼成体焼成温度を実験例1−5と同一とすることで実験例1−5と同じ空隙率及び開気孔比率(空隙率8%、開気孔比率98%)に設定しつつ、リチウム導入工程における条件(リチウム化合物の種類及び添加量、並びに処理温度:表3参照)を適宜変更することによって、配向度が異なるように形成したものである。この評価結果を表4に示す。
In order to evaluate the influence of the peak intensity ratio [003] / [104], Experimental Examples 1-10 to 1-13 having different degrees of orientation were prepared with the porosity and open pore ratio being constant. In Experimental Examples 1-10 to 1-13, the same porosity and open pore ratio (void ratio 8) as in Experimental Example 1-5 were obtained by making the raw material particle diameter and intermediate fired body firing temperature the same as in Experimental Example 1-5. %, Open pore ratio 98%), and by appropriately changing the conditions in the lithium introduction step (type and addition amount of lithium compound and treatment temperature: see Table 3), the degree of orientation was different. Is. The evaluation results are shown in Table 4.

表4に示されている結果から明らかなように、ピーク強度比[003]/[104]が2以下である実験例1−5、1−10、及び1−11においては、良好なサイクル特性が得られた。一方、ピーク強度比[003]/[104]が2を超える実験例1−12及び1−13においては、2以下である実験例1−5、1−10、及び1−11よりも、サイクル特性が悪化した。   As is clear from the results shown in Table 4, in Examples 1-5, 1-10, and 1-11 in which the peak intensity ratio [003] / [104] is 2 or less, good cycle characteristics are obtained. was gotten. On the other hand, in Experimental Examples 1-12 and 1-13 in which the peak intensity ratio [003] / [104] exceeds 2, the cycle is more than in Experimental Examples 1-5, 1-10, and 1-11 that are 2 or less. Characteristics deteriorated.

また、本実施形態の正極活物質層用セラミックス板は、多数の一次粒子(結晶粒子)が結合した構造を有している(図4における(iii)に示されている、断面の走査電子顕微鏡写真においても、コントラストはあまり明瞭ではないものの、一応確認可能である。)。そこで、一次粒子径の影響を評価するため、空隙率及び気孔径を一定にして、一次粒子径が異なる実験例1−14〜1−17を作成した。実験例1−14〜1−17は、原料粒子粒径及び中間焼成体焼成温度を実験例1−5と同一とすることで実験例1−5と同じ空隙率及び開気孔比率(空隙率8%、開気孔比率98%)に設定しつつ、リチウム導入工程における条件(リチウム化合物の種類及び添加量、並びに処理温度:表5参照)を適宜変更することによって、一次粒子径が異なるように形成したものである。
In addition, the ceramic plate for the positive electrode active material layer of the present embodiment has a structure in which a large number of primary particles (crystal particles) are combined (scanning electron microscope of a cross section shown in (iii) in FIG. 4). Even in the photograph, the contrast is not so clear, but it can be confirmed.) Therefore, in order to evaluate the influence of the primary particle diameter, Experimental Examples 1-14 to 1-17 having different primary particle diameters were prepared with the porosity and the pore diameter being constant. Experimental Examples 1-14 to 1-17 have the same porosity and open pore ratio (void ratio 8) as Experimental Example 1-5 by making the raw material particle diameter and the intermediate fired body firing temperature the same as Experimental Example 1-5. %, Open pore ratio 98%), and by appropriately changing the conditions in the lithium introduction process (type and amount of lithium compound, and treatment temperature: see Table 5), the primary particle size is different. It is a thing.

一次粒子径は、以下のようにして測定した:FIB(収束イオンビーム)によって厚さを80nm程度まで薄片加工することで、正極活物質層用セラミックス板の板面と平行な断面の電子顕微鏡観察サンプルを作成した。透過電子顕微鏡により、一次粒子が視野内に10個以上入る倍率を選択して、かかるサンプルの明視野像を撮影した。得られた明視野像中の10個の一次粒子について、それぞれ、粒内に内接円を描いたときの直径を求め、これらの平均値を一次粒子径とした。これら実験例1−14〜1−17の評価結果を表6に示す。
The primary particle size was measured as follows: electron microscope observation of a cross section parallel to the plate surface of the ceramic plate for the positive electrode active material layer by processing a thin piece to a thickness of about 80 nm by FIB (focused ion beam) A sample was created. Using a transmission electron microscope, the magnification at which 10 or more primary particles were in the field of view was selected, and a bright field image of the sample was taken. For the 10 primary particles in the obtained bright-field image, the diameters when inscribed circles were drawn in the grains were determined, and the average value of these was taken as the primary particle diameter. Table 6 shows the evaluation results of Experimental Examples 1-14 to 1-17.

表6に示されている結果から明らかなように、一次粒子径が5μm以下である実験例1−5、1−14、及び1−15においては、良好なサイクル特性が得られた。一方、一次粒子径が5μmを超える実験例1−16及び1−17においては、サイクル特性が悪化した。   As is clear from the results shown in Table 6, in Examples 1-5, 1-14, and 1-15 in which the primary particle diameter is 5 μm or less, good cycle characteristics were obtained. On the other hand, in Experimental Examples 1-16 and 1-17 in which the primary particle diameter exceeds 5 μm, the cycle characteristics deteriorated.

<<具体例2:ニッケル系組成>>
次に、Li(Ni,Co,Al)Oセラミックス板についての実験例2−1〜2−9の作成条件を、表7に示す。
<< Specific Example 2: Nickel-based composition >>
Next, Table 7 shows conditions for creating Experimental Examples 2-1 to 2-9 for the Li (Ni, Co, Al) O 2 ceramic plate.

表7の実験例2−2及び2−4における作成条件は、以下の通りである(二段階プロセス:空孔形成材なし)。   The creation conditions in Experimental Examples 2-2 and 2-4 in Table 7 are as follows (two-step process: no pore forming material).

(1)スラリー調製:NiO粉末(粒径1−10μm、正同化学工業株式会社製)75.1重量部、Co粉末(粒径1−5μm、正同化学工業株式会社製)21.5重量部、及びAl粉末(粒径1−10μm、昭和電工株式会社製)3.4重量部を混合及び粉砕し、大気雰囲気中にて1000℃で5時間熱処理することで、(Ni0.75,Co0.2,Al0.05)O粉末を合成した。 (1) Slurry preparation: NiO powder (particle size 1-10 μm, manufactured by Shodo Chemical Industry Co., Ltd.) 75.1 parts by weight, Co 3 O 4 powder (particle size 1-5 μm, manufactured by Shodo Chemical Industry Co., Ltd.) 21 By mixing and grinding 5 parts by weight and 3.4 parts by weight of Al 2 O 3 powder (particle size 1-10 μm, Showa Denko KK) and heat-treating at 1000 ° C. for 5 hours in an air atmosphere, (Ni 0.75 , Co 0.2 , Al 0.05 ) O powder was synthesized.

この粉末をポットミルで粉砕することで得られた(Ni0.75,Co0.2,Al0.05)O原料粒子100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番「BM−2」、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2-ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名「レオドールSP−O30」、花王株式会社製)2重量部と、を混合した。この混合物を、減圧下で撹拌することで脱泡するとともに、3000〜4000cPの粘度に調製した。 100 parts by weight of (Ni 0.75 , Co 0.2 , Al 0.05 ) O raw material particles obtained by pulverizing this powder in a pot mill, and 100 parts by weight of a dispersion medium (toluene: isopropanol = 1: 1) And 10 parts by weight of a binder (polyvinyl butyral: product number “BM-2”, manufactured by Sekisui Chemical Co., Ltd.) and 4 parts by weight of a plasticizer (DOP: Di (2-ethylhexyl) phthalate, manufactured by Kurokin Kasei Co., Ltd.) , 2 parts by weight of a dispersant (product name “Leodol SP-O30”, manufactured by Kao Corporation) was mixed. The mixture was defoamed by stirring under reduced pressure and adjusted to a viscosity of 3000 to 4000 cP.

(2)シート成形:上記のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが30μmとなるように、シート状に成形した。   (2) Sheet forming: The slurry prepared as described above was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 30 μm.

(3)仮焼成:PETフィルムから剥がしたシート状の成形体を、カッターで50mm角に切り出し、上述のジルコニア製セッターの中央に載置し、大気雰囲気中にて所定温度(中間焼成体焼成温度)で10h焼成後、焼成炉中の雰囲気を酸素雰囲気に置換し、室温まで200℃/hで降温して、セッターに溶着していない部分を取り出した。   (3) Temporary calcination: A sheet-like molded body peeled off from the PET film is cut into a 50 mm square with a cutter, placed on the center of the above-mentioned zirconia setter, and a predetermined temperature (intermediate calcination body firing temperature). ), The atmosphere in the firing furnace was replaced with an oxygen atmosphere, the temperature was lowered to room temperature at 200 ° C./h, and the portion not welded to the setter was taken out.

(4)リチウム導入:このようにして得られた(Ni0.75,Co0.2,Al0.05)Oセラミックスシートと、LiOH粉末(関東化学株式会社製)とを、mol比率Li/(NiCoAl)=3.0となるようにふりかけ、酸素雰囲気中(0.1MPa)にて775℃で48時間加熱処理することで、「独立した」シート状の正極活物質層用Li1.0(Ni0.75Co0.2Al0.05)Oセラミックス板を得た。 (4) Lithium introduction: The (Ni 0.75 , Co 0.2 , Al 0.05 ) O ceramic sheet thus obtained and LiOH powder (manufactured by Kanto Chemical Co., Ltd.) were mixed in a molar ratio of Li / (NiCoAl) = 3.0, and heat treatment is performed in an oxygen atmosphere (0.1 MPa) at 775 ° C. for 48 hours, whereby “independent” sheet-form positive electrode active material layer Li 1.0 It was obtained (Ni 0.75 Co 0.2 Al 0.05) O 2 ceramic plate.

表7の実験例2−3及び2−5における作成条件は、上述の空孔形成材を添加した以外は、上述の実験例2−2等と同様である(二段階プロセス:空孔形成材添加)。表7の実験例2−1及び2−6〜2−9における作成条件は、以下の通りである(一段階プロセス)。   The preparation conditions in Experimental Examples 2-3 and 2-5 in Table 7 are the same as in Experimental Example 2-2 and the like described above except that the above-described hole forming material was added (two-step process: hole forming material) Addition). The creation conditions in Experimental Examples 2-1 and 2-6 to 2-9 in Table 7 are as follows (one-step process).

(1)スラリー調製:Li1.50(Ni0.75Co0.2Al0.05)Oの組成比となるように、NiO粉末(粒径1−10μm、正同化学工業株式会社製)、Co粉末(粒径1−5μm、正同化学工業株式会社製)、Al・HO(粒径1−3μm、SASOL社製)、及びLiCO粉末(粒径10−50μm、関東化学株式会社製)を混合した原料粉末100重量部と、上述の空孔形成材と、を用いた以外は、上述の各実験例と同様にして、スラリーを調製した(但しスラリー粘度は500〜700cP)。 (1) Slurry preparation: Ni 1.50 (Ni 0.75 Co 0.2 Al 0.05 ) O 2 so as to have a composition ratio of NiO powder (particle size 1-10 μm, manufactured by Shodo Chemical Co., Ltd.) ), Co 3 O 4 powder (particle size 1-5 μm, manufactured by Shodo Chemical Industry Co., Ltd.), Al 2 O 3 .H 2 O (particle size 1-3 μm, manufactured by SASOL), and Li 2 CO 3 powder ( A slurry was prepared in the same manner as in each of the above experimental examples except that 100 parts by weight of the raw material powder mixed with a particle size of 10-50 μm (manufactured by Kanto Chemical Co., Ltd.) and the above-described pore forming material were used. (However, the slurry viscosity is 500 to 700 cP).

(2)シート成形:上述のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが30μmとなるように、シート状に成形した。   (2) Sheet forming: The slurry prepared as described above was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 30 μm.

(3)熱処理:PETフィルムから剥がしたシート状の成形体を、カッターで70mm角に切り出し、上述のジルコニア製セッターの中央に載置し、酸素雰囲気中(酸素分圧0.1MPa)にて750℃で5時間加熱処理することで、厚さ30μmの、「独立した」シート状の正極活物質層用Li1.0(Ni0.75Co0.2Al0.05)Oセラミックス板を得た。 (3) Heat treatment: The sheet-like molded body peeled off from the PET film was cut into a 70 mm square with a cutter, placed on the center of the above-mentioned zirconia setter, and 750 in an oxygen atmosphere (oxygen partial pressure 0.1 MPa). By heat-treating at 5 ° C. for 5 hours, an “independent” sheet-shaped Li 1.0 (Ni 0.75 Co 0.2 Al 0.05 ) O 2 ceramic plate for a positive electrode active material layer having a thickness of 30 μm was obtained. Obtained.

表7に示されている実験例の評価結果を、表8に示す。かかる表8から明らかなように、ニッケル系組成においても、上述のコバルト系組成と同様の結果が得られた。
The evaluation results of the experimental examples shown in Table 7 are shown in Table 8. As is clear from Table 8, the same results as in the cobalt-based composition described above were obtained in the nickel-based composition.

また、ニッケル系組成についても、上述のLiCoO2と同様に、ピーク強度比[003]/[104]や一次粒子径の影響について評価した結果を、表9〜表12に示す。表9〜表12に示されている実験例の評価結果から明らかなように、ニッケル系組成についても、上述のLiCoO2と同様の結果が得られた。
As for the nickel-based composition, similarly to LiCoO 2 mentioned above, the peak intensity ratio [003] / [104] and the results of evaluating the effect of primary particle size, shown in Table 9 to Table 12. As is clear from the evaluation results of the experimental examples shown in Tables 9 to 12, the same results as the above LiCoO 2 were obtained for the nickel-based composition.

<変形例の例示列挙>
なお、上述の実施形態や具体例は、上述した通り、出願人が取り敢えず本願の出願時点において最良であると考えた本発明の具現化の一例を単に示したものにすぎないのであって、本発明はもとより上述の実施形態や具体例によって何ら限定されるべきものではない。よって、上述の実施形態や具体例に対して、本発明の本質的部分を変更しない範囲内において、種々の変形が施され得ることは、当然である。
<List of examples of modification>
It should be noted that the above-described embodiments and specific examples are merely examples of the realization of the present invention that the applicant considered to be the best at the time of filing of the present application, as described above. The invention should not be limited at all by the above-described embodiments and specific examples. Therefore, it goes without saying that various modifications can be made to the above-described embodiments and specific examples without departing from the essential part of the present invention.

以下、変形例について幾つか例示する。以下の変形例の説明において、上述の実施形態における各構成要素と同様の構成・機能を有する構成要素については、本変形例においても同一の名称及び同一の符号が付されているものとする。そして、当該構成要素の説明については、上述の実施形態における説明が、矛盾しない範囲で適宜援用され得るものとする。   Hereinafter, some modifications will be exemplified. In the following description of the modification, components having the same configurations and functions as the components in the above-described embodiment are given the same name and the same reference numerals in this modification. And about description of the said component, description in the above-mentioned embodiment shall be used suitably in the range which is not inconsistent.

もっとも、変形例とて、下記のものに限定されるものではないことは、いうまでもない。本発明を、上述の実施形態や下記変形例の記載に基づいて限定解釈することは、(特に先願主義の下で出願を急ぐ)出願人の利益を不当に害する反面、模倣者を不当に利するものであって、許されない。   However, it goes without saying that the modified examples are not limited to the following. The limited interpretation of the present invention based on the description of the above-described embodiment and the following modifications unfairly harms the interests of the applicant (especially rushing the application under the principle of prior application), but improperly imitates the imitator. It is beneficial and not allowed.

また、上述の実施形態の構成、及び下記の各変形例に記載された構成の全部又は一部が、技術的に矛盾しない範囲において、適宜複合して適用され得ることも、いうまでもない。   It goes without saying that the configuration of the above-described embodiment and the configuration described in each of the following modifications can be combined in an appropriate manner within a technically consistent range.

本発明は、上述の実施形態にて具体的に開示された構成に何ら限定されない。例えば、正極15における正極集電体15aは、省略され得る。すなわち、リチウム複合酸化物焼結体板が、そのまま正極15として用いられ得る。   The present invention is not limited to the configuration specifically disclosed in the above-described embodiment. For example, the positive electrode current collector 15a in the positive electrode 15 can be omitted. That is, the lithium composite oxide sintered plate can be used as the positive electrode 15 as it is.

図6は、図1Bに示されている正極15の構成の一変形例を示す側断面図である。図6に示されているように、多数のリチウム複合酸化物焼結体板15b1が一次元的あるいは二次元的に配列した状態で正極集電体15aと接合されることで、正極15が形成されていてもよい。この場合、極活物質層15bは、多数のリチウム複合酸化物焼結体板15b1が一次元的あるいは二次元的に配列したものによって構成される。   FIG. 6 is a side sectional view showing a modification of the configuration of the positive electrode 15 shown in FIG. 1B. As shown in FIG. 6, the positive electrode 15 is formed by joining a large number of lithium composite oxide sintered plates 15b1 to the positive electrode current collector 15a in a one-dimensional or two-dimensional arrangement. May be. In this case, the polar active material layer 15b is composed of a plurality of lithium composite oxide sintered plates 15b1 arranged one-dimensionally or two-dimensionally.

上述の図6に示されている場合において、個々のリチウム複合酸化物焼結体板15b1は、上述のリチウム導入工程を経た焼結体板に対して、平面視にて所定寸法となるように端部をカットしたものであってもよい。あるいは、個々のリチウム複合酸化物焼結体板15b1は、上述のリチウム導入工程を経た焼結体板を平面視にて一次元的あるいは二次元的に複数に分割したものであってもよい。これらの場合、隣り合うリチウム複合酸化物焼結体板15b1同士の隙間を可及的に小さくすべく、隣り合うリチウム複合酸化物焼結体板15b1同士を互いに当接させるように配列するとともに、当該隙間に導電性接合層15cが入り込まないように正極集電体15aと接合することで、隣り合うリチウム複合酸化物焼結体板15b1同士の非常に狭い隙間に電解質13が浸入するように、正極15を形成することが好ましい。   In the case shown in FIG. 6 described above, each lithium composite oxide sintered body plate 15b1 has a predetermined size in plan view with respect to the sintered body plate that has undergone the above-described lithium introduction step. The end may be cut. Alternatively, each lithium composite oxide sintered body plate 15b1 may be obtained by dividing the sintered body plate that has undergone the above-described lithium introduction step into a plurality of one-dimensionally or two-dimensionally in plan view. In these cases, in order to make the gap between the adjacent lithium composite oxide sintered plates 15b1 as small as possible, the adjacent lithium composite oxide sintered plates 15b1 are arranged so as to contact each other, By joining the positive electrode current collector 15a so that the conductive bonding layer 15c does not enter the gap, the electrolyte 13 enters the very narrow gap between the adjacent lithium composite oxide sintered plates 15b1. It is preferable to form the positive electrode 15.

図7は、本発明の一実施形態が適用されたリチウム二次電池20の概略構成を模式的に示す断面図である。図7を参照すると、このリチウム二次電池20は、いわゆる全固体型のものであって、正極集電体21と、正極活物質層22と、固体電解質層23と、負極活物質層24と、負極集電体25と、を備えている。このリチウム二次電池20は、正極集電体21の上に、正極活物質層22、固体電解質層23、負極活物質層24、及び負極集電体25を、この順序で積層することにより形成されている。本発明のリチウム複合酸化物焼結体板は、かかる構成における正極活物質層22を構成するものとして、好適に用いられ得る。このとき、正極活物質層22の開気孔に、固体電解質23が連続的に充填されている方が、正極活物質からのリチウムイオン出入りが活発になる点で好ましい。   FIG. 7 is a cross-sectional view schematically showing a schematic configuration of a lithium secondary battery 20 to which an embodiment of the present invention is applied. Referring to FIG. 7, the lithium secondary battery 20 is a so-called all-solid type battery, and includes a positive electrode current collector 21, a positive electrode active material layer 22, a solid electrolyte layer 23, a negative electrode active material layer 24, and And a negative electrode current collector 25. The lithium secondary battery 20 is formed by laminating a positive electrode active material layer 22, a solid electrolyte layer 23, a negative electrode active material layer 24, and a negative electrode current collector 25 in this order on a positive electrode current collector 21. Has been. The lithium composite oxide sintered body plate of the present invention can be suitably used as the positive electrode active material layer 22 in such a configuration. At this time, it is preferable that the solid electrolyte 23 is continuously filled in the open pores of the positive electrode active material layer 22 from the viewpoint that lithium ion enters and exits from the positive electrode active material.

図8は、本発明の一実施形態が適用されたリチウム二次電池30の概略構成を模式的に示す断面図である。図8を参照すると、このリチウム二次電池30は、いわゆるポリマー型のものであって、正極集電体31と、正極活物質層32と、ポリマー電解質層33と、負極活物質層34と、負極集電体35と、を備えている。このリチウム二次電池30は、正極集電体31の上に、正極活物質層32、ポリマー電解質層33、負極活物質層34、及び負極集電体35を、この順序で積層することにより形成されている。本発明のリチウム複合酸化物焼結体板は、かかる構成における正極活物質層32を構成するものとして、好適に用いられ得る。   FIG. 8 is a cross-sectional view schematically showing a schematic configuration of a lithium secondary battery 30 to which an embodiment of the present invention is applied. Referring to FIG. 8, the lithium secondary battery 30 is of a so-called polymer type, and includes a positive electrode current collector 31, a positive electrode active material layer 32, a polymer electrolyte layer 33, a negative electrode active material layer 34, A negative electrode current collector 35. The lithium secondary battery 30 is formed by laminating a positive electrode active material layer 32, a polymer electrolyte layer 33, a negative electrode active material layer 34, and a negative electrode current collector 35 in this order on a positive electrode current collector 31. Has been. The lithium composite oxide sintered body plate of the present invention can be suitably used as the positive electrode active material layer 32 in such a configuration.

正極集電体15aは、図1Bに示されているように、正極活物質層15bの両板面のうちの一方にのみ設けられていてもよいし、図9に示されているように、正極活物質層15bの両板面に設けられていてもよい。   The positive electrode current collector 15a may be provided only on one of both plate surfaces of the positive electrode active material layer 15b as shown in FIG. 1B, or as shown in FIG. It may be provided on both plate surfaces of the positive electrode active material layer 15b.

図9に示されているように、正極集電体15aが正極活物質層15bの両板面に設けられている場合、一方の正極集電体15a1は正極活物質層15bを支持するために他方の正極集電体15a2よりも厚く形成されていてもよい。また、この場合、当該他方の正極集電体15a2は、正極活物質層15bにおけるリチウムイオンの出入りを阻害しないような構造(メッシュ状や多孔質状等)に形成されている。なお、この正極集電体15a2は、図1Bに示されている正極15にも適用可能である。   As shown in FIG. 9, when the positive electrode current collector 15a is provided on both plate surfaces of the positive electrode active material layer 15b, one positive electrode current collector 15a1 supports the positive electrode active material layer 15b. It may be formed thicker than the other positive electrode current collector 15a2. In this case, the other positive electrode current collector 15a2 is formed in a structure (such as a mesh shape or a porous shape) that does not hinder the entry and exit of lithium ions in the positive electrode active material layer 15b. In addition, this positive electrode collector 15a2 is applicable also to the positive electrode 15 shown by FIG. 1B.

さらに、この場合、一方の正極集電体15a1側に設けられた導電性接合層15c1と、他方の正極集電体15a2側に設けられた導電性接合層15c2とは、同じ厚さでもよいし、異なる厚さでもよい。また、両者は、同一の材質で形成されていてもよいし、異なる材質で形成されていてもよい。さらには、両者のうちのいずれか一方は、省略され得る。すなわち、一方の正極集電体15a1又は他方の正極集電体15a2は、塗布やスパッタリング等によって、正極活物質層15bの板面上に直接的に膜形成され得る。   Further, in this case, the conductive bonding layer 15c1 provided on the one positive electrode current collector 15a1 side and the conductive bonding layer 15c2 provided on the other positive electrode current collector 15a2 side may have the same thickness. Different thicknesses are possible. Moreover, both may be formed with the same material and may be formed with a different material. Furthermore, either one of them can be omitted. That is, one positive electrode current collector 15a1 or the other positive electrode current collector 15a2 can be directly formed on the plate surface of the positive electrode active material layer 15b by coating, sputtering, or the like.

図1Bに示されているように、正極集電体15aが正極活物質層15bの一方の板面にのみ設けられている場合、充放電時の正極15での電池反応においてリチウムイオンの移動方向と電子の移動方向とが反対方向になることで、正極活物質層15b内にて電位勾配が生じる。かかる電位勾配が大きくなると、リチウムイオンが拡散しにくくなる。   As shown in FIG. 1B, when the positive electrode current collector 15a is provided only on one plate surface of the positive electrode active material layer 15b, the movement direction of lithium ions in the battery reaction at the positive electrode 15 during charge and discharge. And the movement direction of the electrons are opposite to each other, a potential gradient is generated in the positive electrode active material layer 15b. When such a potential gradient is increased, lithium ions are difficult to diffuse.

これに対し、図9に示されているように、正極活物質層15bにおける、電解質13に接する側の表面に、リチウムイオンの出入りを阻害しないような正極集電体15a2を設けることで、上述のような電位勾配の形成が抑制される。これにより、電池性能が向上する。   On the other hand, as shown in FIG. 9, by providing the positive electrode current collector 15 a 2 that does not inhibit the entry and exit of lithium ions on the surface of the positive electrode active material layer 15 b on the side in contact with the electrolyte 13, The formation of such a potential gradient is suppressed. Thereby, battery performance improves.

一般式LiMOで表される焼結体板におけるリチウムとMとのモル比Li/M(Li/CoあるいはLi/(Co,Ni,Mn))は、1.0に限定されないが、0.9〜1.2の範囲内にあることが好ましく、1.0〜1.1の範囲内にあることがより好ましい。これにより、良好な充放電容量が実現される。 The molar ratio Li / M (Li / Co or Li / (Co, Ni, Mn)) between lithium and M in the sintered body plate represented by the general formula Li x MO 2 is not limited to 1.0, It is preferably in the range of 0.9 to 1.2, and more preferably in the range of 1.0 to 1.1. Thereby, a favorable charge / discharge capacity is realized.

その他、特段に言及されていない変形例についても、本発明の本質的部分を変更しない範囲内において、本発明の技術的範囲に含まれることは当然である。   Other modifications not specifically mentioned are naturally included in the technical scope of the present invention without departing from the essential part of the present invention.

また、本発明の課題を解決するための手段を構成する各要素における、作用・機能的に表現されている要素は、上述の実施形態や変形例にて開示されている具体的構造の他、当該作用・機能を実現可能ないかなる構造をも含む。さらに、本明細書にて引用した先行出願や各公報の内容(明細書及び図面を含む)は、本明細書の一部を構成するものとして適宜援用され得る。   In addition, in each element constituting the means for solving the problems of the present invention, elements expressed functionally and functionally include the specific structures disclosed in the above-described embodiments and modifications, It includes any structure that can realize this action / function. Furthermore, the contents of the prior application and each publication (including the specification and the drawings) cited in the present specification may be incorporated as appropriate as part of the present specification.

10…リチウム二次電池 11…電池ケース
12…セパレータ 13…電解質 14…負極
15…正極 15a…正極集電体 15b…正極活物質層
15b1…リチウム複合酸化物焼結体板 15c…導電性接合層
20…リチウム二次電池 21…正極集電体 22…正極活物質層
23…固体電解質層 24…負極活物質層 25…負極集電体
30…リチウム二次電池 31…正極集電体 32…正極活物質層
33…ポリマー電解質層 34…負極活物質層 35…負極集電体
DESCRIPTION OF SYMBOLS 10 ... Lithium secondary battery 11 ... Battery case 12 ... Separator 13 ... Electrolyte 14 ... Negative electrode 15 ... Positive electrode 15a ... Positive electrode collector 15b ... Positive electrode active material layer 15b1 ... Lithium composite oxide sintered board 15c ... Conductive joining layer DESCRIPTION OF SYMBOLS 20 ... Lithium secondary battery 21 ... Positive electrode collector 22 ... Positive electrode active material layer 23 ... Solid electrolyte layer 24 ... Negative electrode active material layer 25 ... Negative electrode collector 30 ... Lithium secondary battery 31 ... Positive electrode collector 32 ... Positive electrode Active material layer 33 ... Polymer electrolyte layer 34 ... Negative electrode active material layer 35 ... Negative electrode current collector

Claims (2)

リチウム二次電池の正極に用いられ、
厚さが30μm以上であり、
空隙率が3〜30%であり、且つ、
開気孔比率が70%以上である、
リチウム複合酸化物焼結体板であって、
粒子径が2.2μm以下であり且つ層状岩塩構造を有する一次粒子が多数結合した構造を有し、且つ、X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]が、2以下である、
リチウム複合酸化物焼結体板。



Used for the positive electrode of lithium secondary battery,
The thickness is 30 μm or more,
The porosity is 3-30%, and
The open pore ratio is 70% or more,
Lithium composite oxide sintered plate,
It has a structure in which a number of primary particles having a particle diameter of 2.2 μm or less and a layered rock salt structure are combined, and the diffraction intensity of the (003) plane in relation to the diffraction intensity of the (104) plane in X-ray diffraction. The ratio [003] / [104] is 2 or less,
Lithium composite oxide sintered plate.



請求項1に記載のリチウム複合酸化物焼結体板であって、
前記リチウム複合酸化物焼結体板の厚さ方向と直交する方向である、板面方向における最小寸法を前記リチウム複合酸化物焼結体板の厚さで除した値が3以上である、
リチウム複合酸化物焼結体板。
The lithium composite oxide sintered body plate according to claim 1,
The value obtained by dividing the minimum dimension in the plate surface direction by the thickness of the lithium composite oxide sintered plate, which is a direction orthogonal to the thickness direction of the lithium composite oxide sintered plate, is 3 or more.
Lithium composite oxide sintered plate.
JP2014149692A 2014-07-23 2014-07-23 Lithium composite oxide sintered plate Active JP5752303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014149692A JP5752303B2 (en) 2014-07-23 2014-07-23 Lithium composite oxide sintered plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014149692A JP5752303B2 (en) 2014-07-23 2014-07-23 Lithium composite oxide sintered plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010142441A Division JP5587052B2 (en) 2010-06-23 2010-06-23 Positive electrode of lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2014220254A JP2014220254A (en) 2014-11-20
JP5752303B2 true JP5752303B2 (en) 2015-07-22

Family

ID=51938484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014149692A Active JP5752303B2 (en) 2014-07-23 2014-07-23 Lithium composite oxide sintered plate

Country Status (1)

Country Link
JP (1) JP5752303B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329270B2 (en) 2017-02-21 2022-05-10 Ngk Insulators, Ltd. Lithium complex oxide sintered body plate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2642563A4 (en) * 2010-11-17 2014-05-14 Ngk Insulators Ltd Positive electrode for lithium secondary battery
WO2012066926A1 (en) * 2010-11-17 2012-05-24 日本碍子株式会社 Positive electrode for lithium secondary battery
JPWO2018198967A1 (en) * 2017-04-27 2020-02-27 株式会社村田製作所 Positive electrode active material, positive electrode, battery, battery pack, electronic equipment, electric vehicle, power storage device and power system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080422A (en) * 2008-04-10 2010-04-08 Sumitomo Electric Ind Ltd Electrode body and nonaqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329270B2 (en) 2017-02-21 2022-05-10 Ngk Insulators, Ltd. Lithium complex oxide sintered body plate

Also Published As

Publication number Publication date
JP2014220254A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5587052B2 (en) Positive electrode of lithium secondary battery and lithium secondary battery
JP5564649B2 (en) Positive electrode of lithium secondary battery and lithium secondary battery
JP5542694B2 (en) Plate-like particle for positive electrode active material of lithium secondary battery, positive electrode active material film of lithium secondary battery, production method thereof, production method of positive electrode active material of lithium secondary battery, and lithium secondary battery
US8795898B2 (en) Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, and a lithium secondary battery
JP4745463B2 (en) Plate-like particle for positive electrode active material of lithium secondary battery, same material film, and lithium secondary battery
JP5631993B2 (en) Plate-like particles for positive electrode active material of lithium secondary battery, positive electrode of lithium secondary battery, and lithium secondary battery
JP4745464B2 (en) Plate-like particle for positive electrode active material of lithium secondary battery, same material film, and lithium secondary battery
JP5457947B2 (en) Plate-like particle for positive electrode active material of lithium secondary battery, same material film, and lithium secondary battery
JP2010219069A (en) Manufacturing method of sheet-shaped particles for cathode active material of lithium secondary battery
JP5752303B2 (en) Lithium composite oxide sintered plate
WO2011158575A1 (en) Method for producing positive electrode active material for lithium secondary battery
JP5703409B2 (en) Lithium composite oxide sintered plate for lithium secondary battery
JP5631992B2 (en) Plate-like particles for positive electrode active material of lithium secondary battery, positive electrode of lithium secondary battery, and lithium secondary battery
JP2010219068A (en) Manufacturing method of sheet-shaped particles for cathode active material of lithium secondary battery
US20120049109A1 (en) Cathode active material for lithium secondary battery
WO2012029803A1 (en) Positive-electrode active material for lithium secondary battery
JP2012003880A (en) Plate-like particle for positive electrode active material of lithium secondary battery and film of the same, as well as lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150428

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150519

R150 Certificate of patent or registration of utility model

Ref document number: 5752303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150