JP2010177042A - Positive electrode for nonaqueous electrolyte battery, method of manufacturing the same, and nonaqueous electrolyte battery - Google Patents

Positive electrode for nonaqueous electrolyte battery, method of manufacturing the same, and nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2010177042A
JP2010177042A JP2009018372A JP2009018372A JP2010177042A JP 2010177042 A JP2010177042 A JP 2010177042A JP 2009018372 A JP2009018372 A JP 2009018372A JP 2009018372 A JP2009018372 A JP 2009018372A JP 2010177042 A JP2010177042 A JP 2010177042A
Authority
JP
Japan
Prior art keywords
positive electrode
nonaqueous electrolyte
electrolyte battery
powder
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009018372A
Other languages
Japanese (ja)
Inventor
Kentaro Yoshida
健太郎 吉田
Ryoko Kanda
良子 神田
Mitsuyasu Ogawa
光靖 小川
Taku Kamimura
卓 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009018372A priority Critical patent/JP2010177042A/en
Publication of JP2010177042A publication Critical patent/JP2010177042A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode for a nonaqueous electrolyte battery which has small moving resistance of a lithium ion between positive electrode particles and hardly generates cracks during a charge and discharge cycle, and the nonaqueous electrolyte battery which is superior in charge and discharge cycle characteristics. <P>SOLUTION: In the positive electrode for the nonaqueous electrolyte battery wherein a positive electrode active material sintered compact becomes principal, the positive electrode active material sintered compact is a sintered compact of powder of the positive electrode wherein a coated layer is formed on at least a part of the surface of the powder itself in which lithium composite oxide is principal, and the coated layer is made from amorphous lithium transition metal oxide including one or more of elements selected from a group of Mn, Fe, Co, and Ni. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は非水電解質電池用正極とその製造方法および非水電解質電池に関し、特にアモルファスのリチウム遷移金属酸化物からなる被覆層を設けた正極粉末の焼結体を主体とする非水電解質用正極とその製造方法および前記非水電解質用正極を用いた非水電解質電池に関する。   The present invention relates to a positive electrode for a nonaqueous electrolyte battery, a method for producing the same, and a nonaqueous electrolyte battery, and more particularly, a positive electrode for a nonaqueous electrolyte mainly comprising a sintered body of positive electrode powder provided with a coating layer made of an amorphous lithium transition metal oxide. The present invention also relates to a non-aqueous electrolyte battery using the non-aqueous electrolyte positive electrode.

リチウムやリチウム合金等を負極に用い、非水電解液や固体電解質等の非水電解質を用いた非水電解質電池、中でも非水電解質二次電池は、携帯電話やノート型パソコンに代表されるモバイル電子機器の電源として広く用いられている。また、最近では電気自動車用バッテリ等の大容量の電源への応用等も計画されている。そして、これらの電源に用いられる非水電解質二次電池用の正極として活物質の充填密度を高くすることができるため、焼結式の正極が注目されている。しかし、従来の非水電解質二次電池、特に焼結式の正極を用いた非水電解質二次電池は、近年益々厳しくなって来ている充放電を繰り返しても放電容量が低下しない特性、いわゆる充放電サイクル特性等に対する要求を必ずしも充分に満足しているとは言えない。   Non-aqueous electrolyte batteries using non-aqueous electrolytes such as non-aqueous electrolytes and solid electrolytes, such as lithium and lithium alloys, are used as negative electrodes. Among them, non-aqueous electrolyte secondary batteries are mobiles such as mobile phones and laptop computers. Widely used as a power source for electronic devices. Recently, application to a large-capacity power source such as an electric vehicle battery is also planned. And since the packing density of an active material can be made high as a positive electrode for nonaqueous electrolyte secondary batteries used for these power supplies, the sintered positive electrode attracts attention. However, conventional non-aqueous electrolyte secondary batteries, particularly non-aqueous electrolyte secondary batteries using a sintered positive electrode, have a characteristic that discharge capacity does not decrease even after repeated charge and discharge, which has become increasingly severe in recent years, so-called It cannot be said that the requirements for the charge / discharge cycle characteristics are sufficiently satisfied.

このため、非水電解質電池の性能の一層の向上を目指して種々の研究がなされている。その研究成果の一つとして、例えば非水電解液リチウム電池の負荷特性と充放電サイクル特性を向上させる手段として、LiCoO、LiNiO等からなる正極活物質粉末(粉末本体)の表面をLiTiOの粉末で被覆した正極に関する発明が開示されている(特許文献1)。この発明は、正極活物質粉末(粉末本体)の表面をLiTiOの粉末で被覆することにより、正極活物質粉末(粉末本体)間での界面抵抗の減少を図り、これにより充放電サイクル特性を改善するものである。 For this reason, various studies have been made with the aim of further improving the performance of nonaqueous electrolyte batteries. As one of the research results, for example, as a means for improving load characteristics and charge / discharge cycle characteristics of a non-aqueous electrolyte lithium battery, the surface of a positive electrode active material powder (powder body) made of LiCoO 2 , LiNiO 2 or the like is formed on LiTiO 2. An invention relating to a positive electrode coated with the above powder is disclosed (Patent Document 1). In the present invention, the surface resistance of the positive electrode active material powder (powder body) is covered with LiTiO 2 powder, thereby reducing the interfacial resistance between the positive electrode active material powders (powder body), thereby improving the charge / discharge cycle characteristics. It is an improvement.

特許3687665号公報Japanese Patent No. 3687665

しかしながら、前記発明は非水電解液の存在下では効果を発揮するが、発火や液漏れ等の危険性が少なく、モバイル機器や電気自動車の電源として主流をなすと思われる固体電解質を用いた全固体型の非水電解質電池においては非水電解液が存在しないため効果を発揮しない。また、焼結式の正極を用いる非水電解質電池においても満足な効果を発揮するとは言えない。   However, although the invention is effective in the presence of a non-aqueous electrolyte, there is little risk of ignition, liquid leakage, etc., and all the solid electrolytes that are considered to be mainstream as power sources for mobile devices and electric vehicles are used. The solid-type nonaqueous electrolyte battery does not exhibit the effect because there is no nonaqueous electrolyte. Further, it cannot be said that a satisfactory effect is exhibited even in a non-aqueous electrolyte battery using a sintered positive electrode.

このため、全固体型の非水電解質電池や焼結式の正極を用いる非水電解質電池においても充放電サイクル特性を向上させる技術の開発が望まれていた。   For this reason, development of the technique which improves a charge / discharge cycle characteristic was desired also in the all-solid-state nonaqueous electrolyte battery and the nonaqueous electrolyte battery using a sintered positive electrode.

本発明者は、前記の課題を解決することを目的として鋭意研究を行なった結果、正極原料粉末を焼結して正極を作製する際に、粉末本体を所定の物質を含むアモルファスのリチウム遷移金属酸化物で被覆しておくことにより良好な焼結がなされ、その結果非水電解質電池の充放電サイクル特性が向上することを見出し、本願発明を完成させるに至った。以下、各請求項の発明を説明する。   As a result of intensive studies aimed at solving the above-mentioned problems, the present inventors have determined that when a positive electrode material powder is sintered to produce a positive electrode, the powder body is an amorphous lithium transition metal containing a predetermined substance. By coating with an oxide, good sintering was achieved, and as a result, it was found that the charge / discharge cycle characteristics of the nonaqueous electrolyte battery were improved, and the present invention was completed. The invention of each claim will be described below.

(A)本発明の非水電解質電池用正極は、
正極活物質焼結体を主体とする非水電解質電池用正極であって、
前記正極活物質焼結体は、リチウム複合酸化物を主体とする粉末本体の表面の少なくとも一部に被覆層が形成された正極粉末の焼結体であり、
前記被覆層は、Mn、Fe、CoおよびNiからなる群から選択された1種以上の元素を含むアモルファスのリチウム遷移金属酸化物であることを特徴とする。
(A) The positive electrode for a non-aqueous electrolyte battery of the present invention is
A positive electrode for a non-aqueous electrolyte battery mainly comprising a positive electrode active material sintered body,
The positive electrode active material sintered body is a sintered body of positive electrode powder in which a coating layer is formed on at least a part of the surface of a powder body mainly composed of a lithium composite oxide,
The coating layer is an amorphous lithium transition metal oxide containing one or more elements selected from the group consisting of Mn, Fe, Co, and Ni.

本発明においては、前記粉末本体の表面の少なくとも一部にMn、Fe、CoおよびNiからなる群から選択された少なくとも1種以上の元素を含むアモルファスのリチウム遷移金属酸化物からなる被覆層が形成されているため、正極粉末間の結合が強い焼結体が得られ、正極粉末間のリチウムイオンの移動抵抗が小さく、充放電サイクルで亀裂が生じ難い焼結式の非水電解質電池用正極を得ることができる。そして、このような非水電解質電池用正極を用いることにより、充放電サイクルを繰り返しても正極の特性の低下が抑制されるため、非水電解質電池の充放電サイクル特性を大きく向上させることができる。   In the present invention, a coating layer made of an amorphous lithium transition metal oxide containing at least one element selected from the group consisting of Mn, Fe, Co and Ni is formed on at least a part of the surface of the powder body. Therefore, a sintered body with a strong bond between the positive electrode powders, a small lithium ion migration resistance between the positive electrode powders, and a sintered non-aqueous electrolyte battery positive electrode that is difficult to crack during charge / discharge cycles. Obtainable. And by using such a positive electrode for nonaqueous electrolyte batteries, since the deterioration of the characteristics of the positive electrode is suppressed even if the charge / discharge cycle is repeated, the charge / discharge cycle characteristics of the nonaqueous electrolyte battery can be greatly improved. .

即ち、前記アモルファスのリチウム遷移金属酸化物からなる被覆層が形成された正極粉末の場合、被覆層に含まれる原子が熱運動により正極粉末間で相互拡散し易く、焼結が進み易いため、被覆層のない正極粉末では焼結が進み難い焼成温度であっても正極粉末同士が強固に結合される。このため、正極粉末間のリチウムイオンの移動抵抗が小さく、充放電サイクルで亀裂が生じ難い焼結式の非水電解質電池用正極が得られる。   That is, in the case of the positive electrode powder in which the coating layer made of the amorphous lithium transition metal oxide is formed, the atoms contained in the coating layer are easily diffused between the positive electrode powders due to thermal motion, and the sintering easily proceeds. The positive electrode powder without a layer is firmly bonded to each other even at a firing temperature at which sintering is difficult to proceed. For this reason, a lithium ion migration resistance between the positive electrode powders is small, and a sintered positive electrode for a non-aqueous electrolyte battery that hardly causes cracks in the charge / discharge cycle is obtained.

なおここに、「少なくとも一部に被覆層が形成された」とは、粉末表面への被覆層の形成という性質上、粉末本体の中にはアモルファス層で全く被覆されなかったり、その一部しか被覆されていなかったりするものがあり得るという意味であり、粉末本体の全表面積の30%以上が被覆されていることが好ましい。   Here, “at least part of the coating layer is formed” means that the powder body is not coated with an amorphous layer at all or only part of the powder body due to the property of forming a coating layer on the powder surface. This means that there may be some that are not coated, and it is preferable that 30% or more of the total surface area of the powder body is coated.

なお、前記リチウム複合酸化物としては、一般式LiMOやLiM(但しMはCo、Mn、Ni、Alの1種または2以上を含み、Mに占めるCo、Mn、Ni、Alの比率が50at%以上)で表されるリチウム複合酸化物を好ましく用いることができる。このようなリチウム複合酸化物として、たとえば、LiCoO、LiNiO、LiNi0.8Co0.15Al0.05、LiNi1/3Mn1/3Co1/3、LiMn、LiMn1.9Co0.1などが挙げられる。また、LiFePOも用いることができる。 The lithium composite oxide includes a general formula LiMO 2 or LiM 2 O 4 (where M is one or more of Co, Mn, Ni, and Al, and includes Co, Mn, Ni, and Al in M). A lithium composite oxide represented by a ratio of 50 at% or more can be preferably used. As such a lithium composite oxide, for example, LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiMn 2 O 4 , LiMn 1.9 Co 0.1 O 4 and the like. LiFePO 4 can also be used.

また、リチウム複合酸化物を主体とする粉末本体とアモルファスのリチウム遷移金属酸化物からなる被覆層被覆層は、正極粉末をより強固に焼結させるという面から、同じ組成であることが好ましい。   Moreover, it is preferable that the powder main body which has lithium complex oxide as a main body, and the coating layer coating layer which consists of an amorphous lithium transition metal oxide are the same compositions from the surface which sinters positive electrode powder more firmly.

また、負極層は、活物質であるリチウム複合酸化物、例えばLiCoOが分解され難い温度で形成可能であること、近年の非水電解質電池に対する小型、軽量化の要求に応えるには負極についても薄くかつ均一に形成する必要があるため、気相法により形成することが好ましい。 In addition, the negative electrode layer can be formed at a temperature at which a lithium composite oxide as an active material, for example, LiCoO 2 is difficult to be decomposed, and in order to meet the recent demand for small size and light weight for nonaqueous electrolyte batteries, Since it is necessary to form thinly and uniformly, it is preferable to form by a vapor phase method.

(B)本発明の非水電解質電池は、
前記(A)の発明に記載された非水電解質電池用正極が用いられていることを特徴とする。
(B) The nonaqueous electrolyte battery of the present invention is
The positive electrode for nonaqueous electrolyte batteries described in the invention of (A) is used.

本発明においては、前記(A)の発明に記載された非水電解質電池用正極を用いているため、充放電サイクル特性の優れた非水電解質電池を提供することができる。   In the present invention, since the positive electrode for a non-aqueous electrolyte battery described in the invention of (A) is used, a non-aqueous electrolyte battery having excellent charge / discharge cycle characteristics can be provided.

(C)本発明の非水電解質電池は、
前記(B)の発明に記載された非水電解質電池であって、リチウムイオン伝導性の固体電解質が用いられていることを特徴とする。
(C) The nonaqueous electrolyte battery of the present invention is
The nonaqueous electrolyte battery described in the invention of (B) is characterized in that a lithium ion conductive solid electrolyte is used.

本発明においては、前記(B)の発明に記載された非水電解質電池、即ち前記(A)の発明に記載された非水電解質電池用正極が用いられているため、良好な充放電サイクル特性を得ることができる。さらに、前記非水電解質電池用正極がリチウム複合酸化物を主体とする正極であり、リチウムイオン伝導性の固体電解質が用いられているため、発火や液漏れ等の危険性が少ないという全固体型の非水電解質電池の特長を生かしつつ、充分満足な充放電サイクル特性を有する非水電解質電池を提供することができる。   In the present invention, the non-aqueous electrolyte battery described in the invention of (B), that is, the positive electrode for a non-aqueous electrolyte battery described in the invention of (A) is used. Can be obtained. Furthermore, since the positive electrode for a non-aqueous electrolyte battery is a positive electrode mainly composed of a lithium composite oxide, and a lithium ion conductive solid electrolyte is used, the all-solid-type battery has less risk of ignition and liquid leakage. It is possible to provide a nonaqueous electrolyte battery having sufficiently satisfactory charge / discharge cycle characteristics while taking advantage of the features of the nonaqueous electrolyte battery.

なお、リチウムイオン伝導性の固体電解質としては、例えば10−4S/cm程度の優れたリチウムイオン伝導性を有するLiSとPを含む硫化物系の固体電解質が好ましく用いられる。 As the lithium ion conductive solid electrolyte, a sulfide-based solid electrolyte containing Li 2 S and P 2 S 5 having excellent lithium ion conductivity of about 10 −4 S / cm, for example, is preferably used.

また、正極と上記した硫化物系の固体電解質とが反応することを防ぐため、正極と固体電解質との界面に界面層(緩衝層ともいう)が設けられることが好ましい。具体的には、正極と硫化物系固体電解質の界面に高抵抗層を形成しにくいLiLa(2−X)/3TiO(X=0.1〜0.5)、LiTi12、Li3.6Si0.60.4、Li1.3Al0.31.7(PO、Li1.8Cr0.8Ti1.2(PO、Li1.4In0.4Ti1.6(PO、LiTaOおよびLiNbOの少なくとも1種以上からなる界面層を形成させることが好ましい。 In order to prevent the positive electrode and the sulfide-based solid electrolyte from reacting with each other, an interface layer (also referred to as a buffer layer) is preferably provided at the interface between the positive electrode and the solid electrolyte. Specifically, Li X La (2-X) / 3 TiO 3 (X = 0.1 to 0.5), Li 4 Ti 5 is difficult to form a high resistance layer at the interface between the positive electrode and the sulfide solid electrolyte. O 12 , Li 3.6 Si 0.6 P 0.4 O 4 , Li 1.3 Al 0.3 T 1.7 (PO 4 ) 3 , Li 1.8 Cr 0.8 Ti 1.2 (PO It is preferable to form an interface layer composed of at least one of 4 ) 3 , Li 1.4 In 0.4 Ti 1.6 (PO 4 ) 3 , LiTaO 3 and LiNbO 3 .

(D)本発明の非水電解質電池用正極の製造方法は、
正極活物質焼結体を主体とする非水電解質電池用正極の製造方法であって、
リチウム複合酸化物を主体とする粉末本体の表面の少なくとも一部に、Mn、Fe、CoおよびNiからなる群から選択された少なくとも1種以上の元素を含むアモルファスのリチウム遷移金属酸化物からなる被覆層が形成された正極粉末を製造する正極粉末製造工程と、
前記正極粉末を焼結する正極活物質焼結体製造工程と、
を有していることを特徴とする。
(D) The method for producing the positive electrode for a non-aqueous electrolyte battery of the present invention comprises:
A method for producing a positive electrode for a non-aqueous electrolyte battery mainly comprising a positive electrode active material sintered body,
A coating comprising an amorphous lithium transition metal oxide containing at least one element selected from the group consisting of Mn, Fe, Co and Ni on at least a part of the surface of the powder body mainly composed of lithium composite oxide A positive electrode powder production process for producing a positive electrode powder having a layer formed thereon;
A positive electrode active material sintered body manufacturing process for sintering the positive electrode powder;
It is characterized by having.

上記のそれぞれの工程は、いずれも容易に実施することができ、また少ない工程数で、前記(A)の発明に記載の非水電解質電池用正極を作製することができる。即ち、本発明においては、充放電サイクル特性を大きく向上させた非水電解質電池用正極を容易に作製することができる。   Each of the above steps can be easily carried out, and the positive electrode for a nonaqueous electrolyte battery described in the invention of (A) can be produced with a small number of steps. That is, in the present invention, a positive electrode for a non-aqueous electrolyte battery with greatly improved charge / discharge cycle characteristics can be easily produced.

本発明によれば、正極粉末間のリチウムイオンの移動抵抗が小さく、充放電サイクルで亀裂が生じ難い非水電解質電池用正極を提供することができるため、非水電解質電池の充放電サイクル特性を大きく向上させることができる。   According to the present invention, it is possible to provide a positive electrode for a non-aqueous electrolyte battery that has a low lithium ion transfer resistance between positive electrode powders and is less likely to crack during a charge / discharge cycle. It can be greatly improved.

本発明の一実施の形態に係る全固体型の非水電解質二次電池の積層体の側面を概念的に示す図である。It is a figure which shows notionally the side surface of the laminated body of the all-solid-state nonaqueous electrolyte secondary battery which concerns on one embodiment of this invention.

以下、本発明をその最良の実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。   Hereinafter, the present invention will be described based on the best mode. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.

(実施例)
1.正極の作製
イ.粉末本体への被覆層の形成
平均粒径1μmのLiCoOの粉末(粉末本体)の表面に、スパッタ法を用いて、平均厚さ0.1μmのアモルファスのLiCoOからなる被覆層を形成し、正極用の活物質粉末(正極粉末)とした。具体的には、スパッタ装置内のLiCoOからなるターゲット直下に配置した振動機構を有するサンプル台上に前記粉末本体を設置し、Arと酸素の雰囲気中で前記粉末本体を振動させながらスパッタリングを行なった。
(Example)
1. Preparation of positive electrode a. Formation of coating layer on powder body Using a sputtering method, a coating layer made of amorphous LiCoO 2 with an average thickness of 0.1 μm is formed on the surface of LiCoO 2 powder (powder body) with an average particle diameter of 1 μm, An active material powder for positive electrode (positive electrode powder) was obtained. Specifically, the powder main body is placed on a sample stage having a vibration mechanism arranged directly under a target made of LiCoO 2 in a sputtering apparatus, and sputtering is performed while vibrating the powder main body in an atmosphere of Ar and oxygen. It was.

なお、平均粒径1μmのLiCoOの粉末本体は炭酸リチウムと酸化コバルトの粉末末を焼成した後に粉砕加工して作製した。スパッタリングの際用いたターゲットは炭酸リチウムと酸化コバルトの粉末を加圧成型した後に焼成して作製した。 The LiCoO 2 powder body having an average particle diameter of 1 μm was prepared by firing powder powder of lithium carbonate and cobalt oxide and then pulverizing them. The target used for sputtering was prepared by press-molding lithium carbonate and cobalt oxide powders and firing them.

また、結晶性の評価には電子線回折法を用いた。具体的にはサンプル断面の被覆層領域を電子線回折法で分析し、粉末本体がアモルファス層で被覆されていることを確認した。   Moreover, the electron beam diffraction method was used for crystallinity evaluation. Specifically, the coating layer region of the sample cross section was analyzed by electron beam diffraction, and it was confirmed that the powder body was coated with an amorphous layer.

ロ.加圧成形および焼結
この正極粉末を所定量成形型に入れ、40MPaで加圧成形し、成形体を得た。さらに、この成形体を、大気中において焼成炉を用いて900℃で焼結し、LiCoOからなる直径20mm、厚さ100μmの正極を得た。なお、焼結温度を900℃としたのは、活物質であるLiCoOの焼結時における分解を防止する為である。
B. Pressure Molding and Sintering A predetermined amount of this positive electrode powder was put into a mold and pressure molded at 40 MPa to obtain a molded body. Furthermore, this molded body was sintered at 900 ° C. in the atmosphere using a firing furnace, and a positive electrode made of LiCoO 2 having a diameter of 20 mm and a thickness of 100 μm was obtained. The reason why the sintering temperature is set to 900 ° C. is to prevent decomposition of LiCoO 2 as an active material during sintering.

正極粉末には、アモルファスのリチウム遷移金属酸化物からなる被覆層が形成されているため、正極粉末間で相互拡散し易く、焼結が進み易いため、900℃という比較的低い温度であっても、正極粉末同士が強固に結合した焼結体を得ることが出来る。   Since the coating layer made of amorphous lithium transition metal oxide is formed on the positive electrode powder, the positive electrode powder easily diffuses between the positive electrode powders, and the sintering easily proceeds. Even at a relatively low temperature of 900 ° C. A sintered body in which the positive electrode powders are firmly bonded can be obtained.

ハ.全固体型の非水電解質二次電池の作製
前記正極の一面(上面)に、レーザー蒸着法によりLiNbOからなる厚さ0.02μmの界面層(緩衝層ともいう)を、次いでレーザー蒸着法によりLiSとPからなる厚さ5μmの固体電解質層を形成し、最後に真空蒸着法によりLiとSiからなる厚さ1μmの負極活物質層を順に形成し、全固体型の非水電解質二次電池を作製した。
C. Production of an all-solid-state non-aqueous electrolyte secondary battery On one surface (upper surface) of the positive electrode, an interface layer (also referred to as a buffer layer) having a thickness of 0.02 μm made of LiNbO 3 is formed by laser deposition, and then by laser deposition. A solid electrolyte layer having a thickness of 5 μm composed of Li 2 S and P 2 S 5 is formed, and finally a negative electrode active material layer having a thickness of 1 μm composed of Li and Si is sequentially formed by a vacuum evaporation method. A water electrolyte secondary battery was produced.

なお、具体的には、前記正極、界面層、固体電解質層、負極活物質層が順に形成された積層体を、さらにケースに格納する等の処理がなされて全固体型の非水電解質二次電池が完成する。   Specifically, the laminated body in which the positive electrode, the interface layer, the solid electrolyte layer, and the negative electrode active material layer are formed in this order is further subjected to a treatment such as storing in a case, so that the all-solid-type nonaqueous electrolyte secondary The battery is complete.

前記積層体の側面を、図1に概念的に示す。図1において、10は正極であり、20は界面層であり、30は固体電解質層であり、40は負極活物質層である。なお、11および12は、それぞれ正極10に含まれる正極粉末の粉末本体、被覆層を拡大して模式的に表している。   The side surface of the laminate is conceptually shown in FIG. In FIG. 1, 10 is a positive electrode, 20 is an interface layer, 30 is a solid electrolyte layer, and 40 is a negative electrode active material layer. Reference numerals 11 and 12 schematically represent the enlarged powder body and coating layer of the positive electrode powder included in the positive electrode 10, respectively.

(比較例)
比較例として、粉末本体に前記アモルファスのLiCoOからなる被覆層を形成しない他は実施例と同様にして全固体型の非水電解質二次電池を作製した。
(Comparative example)
As a comparative example, an all-solid-state nonaqueous electrolyte secondary battery was manufactured in the same manner as in the example except that the coating layer made of amorphous LiCoO 2 was not formed on the powder body.

(性能試験)
作製した実施例と比較例の全固体型の非水電解質二次電池を、室温にて、電流密度0.1mA/cm、電圧範囲4.2V〜3.0Vの条件で充放電サイクル試験を実施した。各電池の充放電10サイクル後の容量維持率(10サイクル時の放電容量/サイクル中の最大放電容量)を表1に示す。
(performance test)
The charge-discharge cycle test of the produced solid-state nonaqueous electrolyte secondary batteries of Examples and Comparative Examples was performed at room temperature at a current density of 0.1 mA / cm 2 and a voltage range of 4.2 V to 3.0 V. Carried out. Table 1 shows the capacity retention rate after 10 cycles of charge / discharge of each battery (discharge capacity at 10 cycles / maximum discharge capacity during the cycle).

Figure 2010177042
Figure 2010177042

表1から明らかな様に、実施例の10サイクル後の容量維持率は90%であるのに対して比較例は10%しかない。これにより、LiCoOの粉末(粉末本体)を焼結して正極を作製する際に、焼結に先立って粉末本体に予めアモルファスのLiCoOからなる被覆層を形成しておくことによる10サイクル後の容量維持率向上に対する効果が極めて大きいことが分かる。 As is apparent from Table 1, the capacity retention rate after 10 cycles of the example is 90%, whereas the comparative example is only 10%. Thus, when a LiCoO 2 powder (powder body) is sintered to produce a positive electrode, after 10 cycles after forming a coating layer made of amorphous LiCoO 2 in advance on the powder body prior to sintering. It can be seen that the effect of improving the capacity retention rate is extremely large.

次に、前記充放電10サイクル後の容量維持率の試験が終了した実施例と比較例の電池を解体し、走査型電子顕微鏡で正極の状態を観察した。観察において、比較例の非水電解質二次電池の正極には5μm程度の亀裂が多数観察されたのに対して、実施例の非水電解質二次電池の正極には亀裂は観察されなかった。   Next, the batteries of Examples and Comparative Examples in which the capacity retention rate test after 10 cycles of charge / discharge was completed were disassembled, and the state of the positive electrode was observed with a scanning electron microscope. In the observation, many cracks of about 5 μm were observed on the positive electrode of the nonaqueous electrolyte secondary battery of the comparative example, whereas no cracks were observed on the positive electrode of the nonaqueous electrolyte secondary battery of the example.

実施例の正極に亀裂が生じなかった理由は、粉末本体にアモルファスのLiCoOからなる被覆層が形成されているため、正極粉末が強固に結合した良好な焼結がなされたためと思われる。またこのため、リチウムイオンの移動も良好となり、性能試験において良好な結果が得られたものと思われる。 The reason why no cracks occurred in the positive electrode of the example seems to be that the coating body made of amorphous LiCoO 2 was formed on the powder body, so that the positive electrode powder was firmly bonded and firmly sintered. For this reason, the movement of lithium ions is also good, and it seems that good results were obtained in the performance test.

即ち、充放電特性が大きく改善され、正極の充放電による損傷防止という面から、焼結に先立って粉末本体に予めアモルファスのLiCoOからなる被覆層を形成しておくことの効果が裏付けられた。 That is, the charge / discharge characteristics were greatly improved, and from the viewpoint of preventing damage due to charge / discharge of the positive electrode, the effect of forming a coating layer made of amorphous LiCoO 2 in advance on the powder body prior to sintering was supported. .

以上、電解質として固体電解質を用いた二次電池である全固体型の非水電解質二次電池を例に挙げて本発明を説明したが、本発明は、全固体型の非水電解質電池や非水電解質二次電池に限定されず、焼結式の正極が用いられている全ての非水電解質電池に対して適用できる。   As described above, the present invention has been described by taking an example of an all-solid-type non-aqueous electrolyte secondary battery that is a secondary battery using a solid electrolyte as an electrolyte. However, the present invention is not limited to an all-solid-type non-aqueous electrolyte battery or a non-aqueous electrolyte battery. The present invention is not limited to a water electrolyte secondary battery, and can be applied to all nonaqueous electrolyte batteries in which a sintered positive electrode is used.

10 正極
11 粉末本体
12 被覆層
20 界面層
30 固体電解質層
40 負極活物質層
DESCRIPTION OF SYMBOLS 10 Positive electrode 11 Powder main body 12 Coating layer 20 Interface layer 30 Solid electrolyte layer 40 Negative electrode active material layer

Claims (4)

正極活物質焼結体を主体とする非水電解質電池用正極であって、
前記正極活物質焼結体は、リチウム複合酸化物を主体とする粉末本体の表面の少なくとも一部に被覆層が形成された正極粉末の焼結体であり、
前記被覆層は、Mn、Fe、CoおよびNiからなる群から選択された1種以上の元素を含むアモルファスのリチウム遷移金属酸化物であることを特徴とする非水電解質電池用正極。
A positive electrode for a non-aqueous electrolyte battery mainly comprising a positive electrode active material sintered body,
The positive electrode active material sintered body is a sintered body of positive electrode powder in which a coating layer is formed on at least a part of the surface of a powder body mainly composed of a lithium composite oxide,
The positive electrode for a nonaqueous electrolyte battery, wherein the coating layer is an amorphous lithium transition metal oxide containing one or more elements selected from the group consisting of Mn, Fe, Co, and Ni.
請求項1に記載の非水電解質電池用正極が用いられていることを特徴とする非水電解質電池。   A nonaqueous electrolyte battery comprising the positive electrode for a nonaqueous electrolyte battery according to claim 1. リチウムイオン伝導性の固体電解質が用いられていることを特徴とする請求項2に記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 2, wherein a lithium ion conductive solid electrolyte is used. 正極活物質焼結体を主体とする非水電解質電池用正極の製造方法であって、
リチウム複合酸化物を主体とする粉末本体の表面の少なくとも一部に、Mn、Fe、CoおよびNiからなる群から選択された少なくとも1種以上の元素を含むアモルファスのリチウム遷移金属酸化物からなる被覆層が形成された正極粉末を製造する正極粉末製造工程と、
前記正極粉末を焼結する正極活物質焼結体製造工程と、
を有していることを特徴とする非水電解質電池用正極の製造方法。
A method for producing a positive electrode for a non-aqueous electrolyte battery mainly comprising a positive electrode active material sintered body,
A coating comprising an amorphous lithium transition metal oxide containing at least one element selected from the group consisting of Mn, Fe, Co and Ni on at least a part of the surface of the powder body mainly composed of lithium composite oxide A positive electrode powder production process for producing a positive electrode powder having a layer formed thereon;
A positive electrode active material sintered body manufacturing process for sintering the positive electrode powder;
The manufacturing method of the positive electrode for nonaqueous electrolyte batteries characterized by having.
JP2009018372A 2009-01-29 2009-01-29 Positive electrode for nonaqueous electrolyte battery, method of manufacturing the same, and nonaqueous electrolyte battery Pending JP2010177042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018372A JP2010177042A (en) 2009-01-29 2009-01-29 Positive electrode for nonaqueous electrolyte battery, method of manufacturing the same, and nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018372A JP2010177042A (en) 2009-01-29 2009-01-29 Positive electrode for nonaqueous electrolyte battery, method of manufacturing the same, and nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2010177042A true JP2010177042A (en) 2010-08-12

Family

ID=42707775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018372A Pending JP2010177042A (en) 2009-01-29 2009-01-29 Positive electrode for nonaqueous electrolyte battery, method of manufacturing the same, and nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2010177042A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160698A1 (en) * 2011-05-26 2012-11-29 トヨタ自動車株式会社 Coated active material, and lithium solid-state battery
WO2013073231A1 (en) * 2011-11-16 2013-05-23 トヨタ自動車株式会社 Lithium ion secondary battery and method for manufacturing same
JP2017062997A (en) * 2015-09-25 2017-03-30 住友金属鉱山株式会社 Method for evaluating positive electrode material for nonaqueous electrolyte secondary battery
KR20170038787A (en) 2014-07-31 2017-04-07 소니 주식회사 Positive-electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, electricity storage apparatus, and power system
KR20170039648A (en) 2014-07-31 2017-04-11 소니 주식회사 Positive-electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, electricity storage apparatus, and power system
US10811732B1 (en) * 2016-12-28 2020-10-20 Google Llc Pre-lithiation for batteries having si-anodes

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9214674B2 (en) 2011-05-26 2015-12-15 Toyota Jidosha Kabushiki Kaisha Coated active material and lithium solid state battery
WO2012160698A1 (en) * 2011-05-26 2012-11-29 トヨタ自動車株式会社 Coated active material, and lithium solid-state battery
CN103534845A (en) * 2011-05-26 2014-01-22 丰田自动车株式会社 Coated active material, and lithium solid-state battery
JPWO2012160698A1 (en) * 2011-05-26 2014-07-31 トヨタ自動車株式会社 Coated active material and lithium solid state battery
JP5578280B2 (en) * 2011-05-26 2014-08-27 トヨタ自動車株式会社 Coated active material and lithium solid state battery
JPWO2013073231A1 (en) * 2011-11-16 2015-04-02 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
WO2013073231A1 (en) * 2011-11-16 2013-05-23 トヨタ自動車株式会社 Lithium ion secondary battery and method for manufacturing same
KR20170038787A (en) 2014-07-31 2017-04-07 소니 주식회사 Positive-electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, electricity storage apparatus, and power system
KR20170039648A (en) 2014-07-31 2017-04-11 소니 주식회사 Positive-electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, electricity storage apparatus, and power system
US10559810B2 (en) 2014-07-31 2020-02-11 Murata Manufacturing Co., Ltd. Positive electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system
US10665856B2 (en) 2014-07-31 2020-05-26 Murata Manufacturing Co., Ltd. Positive electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system
KR20200105545A (en) 2014-07-31 2020-09-07 가부시키가이샤 무라타 세이사쿠쇼 Positive-electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, electricity storage apparatus, and power system
KR20200105550A (en) 2014-07-31 2020-09-07 가부시키가이샤 무라타 세이사쿠쇼 Positive-electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, electricity storage apparatus, and power system
JP2017062997A (en) * 2015-09-25 2017-03-30 住友金属鉱山株式会社 Method for evaluating positive electrode material for nonaqueous electrolyte secondary battery
US10811732B1 (en) * 2016-12-28 2020-10-20 Google Llc Pre-lithiation for batteries having si-anodes

Similar Documents

Publication Publication Date Title
Wu et al. An empirical model for the design of batteries with high energy density
Meng Atomic-scale surface modifications and novel electrode designs for high-performance sodium-ion batteries via atomic layer deposition
CN111864207B (en) All-solid battery
WO2010021205A1 (en) Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
KR20180091678A (en) Anode for all solid state secondary battery, all solid state secondary battery and method of manufacturing the same
JP7038951B2 (en) Negative electrode active material and negative electrode for all-solid-state battery containing it
JP6667985B2 (en) Lithium ion secondary battery
JP5348607B2 (en) All-solid lithium secondary battery
JP2013089321A (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP2011096630A (en) Solid-state lithium secondary battery, and method for producing the same
JP5682318B2 (en) All solid battery
KR101977995B1 (en) Positive electrode active material coated with boron compounds for lithium secondary battery and preparation method thereof
JP2016062683A (en) Lithium ion secondary battery
JPWO2012099178A1 (en) Non-aqueous electrolyte battery
JP2011222415A (en) Solid electrolyte material, lithium battery, and method for manufacturing solid electrolyte material
JP2012164571A (en) Negative electrode body and lithium ion battery
JP2016039052A (en) Positive electrode active material for lithium battery, lithium battery and method for producing positive electrode active material for lithium battery
JP2010140664A (en) Method of manufacturing sintered cathode body and sintered cathode body
JP2015201388A (en) Cathode active material for non-aqueous secondary battery and manufacturing method for the same
JP2010177042A (en) Positive electrode for nonaqueous electrolyte battery, method of manufacturing the same, and nonaqueous electrolyte battery
JP2011044368A (en) Nonaqueous electrolyte battery
JP2019091691A (en) Positive electrode active material composition for lithium secondary battery and lithium secondary battery including the same
Wang et al. Developments in Surface/Interface Engineering of Ni‐Rich Layered Cathode Materials
JP6576033B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP2011113735A (en) Nonaqueous electrolyte battery