JP2010205479A - All-solid battery employing power compact - Google Patents

All-solid battery employing power compact Download PDF

Info

Publication number
JP2010205479A
JP2010205479A JP2009047865A JP2009047865A JP2010205479A JP 2010205479 A JP2010205479 A JP 2010205479A JP 2009047865 A JP2009047865 A JP 2009047865A JP 2009047865 A JP2009047865 A JP 2009047865A JP 2010205479 A JP2010205479 A JP 2010205479A
Authority
JP
Japan
Prior art keywords
voltage
electrode layer
battery
solid
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009047865A
Other languages
Japanese (ja)
Inventor
Masato Kamiya
正人 神谷
Yukiyoshi Ueno
幸義 上野
Shigeki Hama
重規 濱
Yasushi Tsuchida
靖 土田
Hiroshi Nagase
浩 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009047865A priority Critical patent/JP2010205479A/en
Publication of JP2010205479A publication Critical patent/JP2010205479A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an all-solid secondary battery employing powder compact, capable of stabilizing voltage at discharge of the battery without being affected by temperature and noise. <P>SOLUTION: The all-solid battery employing powder compact includes a laminate equipped with a positive electrode layer, a negative electrode layer, and a solid electrolytic layer arranged between the positive electrode layer and the negative electrode layer, a voltage detection means detecting battery voltage, and a pressure control means controlling a restrictive pressure added on the laminate based on voltage detected by the voltage detection means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は圧粉全固体電池に関する。   The present invention relates to a compacted all solid state battery.

近年、携帯電話等の小型機器から自動車等の大型機器に至るまで、電源としての二次電池の需要が拡大しており、その性能の向上が図られている。   In recent years, the demand for secondary batteries as a power source has expanded from small devices such as mobile phones to large devices such as automobiles, and the performance has been improved.

上記用途に用いられる二次電池には、正極、負極、及び当該正極と負極との間に介在する電解質が備えられる。このうち電解質は、正極及び負極間のイオン伝導を行う媒体であり、液体の電解質又は固体の電解質が用いられている。   The secondary battery used for the above application includes a positive electrode, a negative electrode, and an electrolyte interposed between the positive electrode and the negative electrode. Among these, the electrolyte is a medium that conducts ions between the positive electrode and the negative electrode, and a liquid electrolyte or a solid electrolyte is used.

二次電池の電解質として液体の電解質(電解液)を用いた場合には、充電、放電の際、電池内部に気体が発生して電池性能を劣化させる虞や、電解液の液漏れ、発火の虞がある。そのため、気体の発生を抑制し、若しくは、気体を除去可能とする手段や液漏れを防止する手段等が必要となる(例えば、特許文献1、2)。一方、二次電池の電解質として固体の電解質を用いた場合には、上記液漏れの虞がない。また、液体の電解質を用いた場合に必要な、短絡時の温度上昇を抑える安全装置の取り付けや、短絡防止のための構造、材料面での改善が不要となる。全固体電池に係る技術としては、例えば、特許文献3には、粉末状の固体電解質と粉末状の活物質とを加圧成形してなる圧粉全固体リチウム電池が開示されている。   When a liquid electrolyte (electrolyte) is used as the electrolyte of a secondary battery, there is a risk that gas will be generated inside the battery during charging and discharging, and the battery performance may be deteriorated. There is a fear. Therefore, a means for suppressing the generation of gas or allowing the gas to be removed, a means for preventing liquid leakage, and the like are required (for example, Patent Documents 1 and 2). On the other hand, when a solid electrolyte is used as the electrolyte of the secondary battery, there is no risk of the liquid leakage. In addition, it is not necessary to install a safety device that suppresses the temperature rise at the time of a short circuit, and to improve the structure and material for preventing a short circuit, which are necessary when a liquid electrolyte is used. As a technique related to an all-solid battery, for example, Patent Document 3 discloses a powder all-solid lithium battery obtained by pressure-molding a powdered solid electrolyte and a powdered active material.

一方、電池は電圧変化が小さいほど、安定した使用が可能となる。しかしながら、電池は放電に伴い電圧が徐々に低下することが知られており、従来においては、ツェナーダイオード等を用いて回路内に定電圧回路を設置し、電圧の一定化を図っている。   On the other hand, the battery can be used more stably as the voltage change is smaller. However, it is known that the voltage of the battery gradually decreases with discharge. Conventionally, a constant voltage circuit is installed in the circuit using a Zener diode or the like to make the voltage constant.

特許第3735585号公報Japanese Patent No. 3735585 特開2004−213902号公報JP 2004-213902 A 特開平9−35724号公報Japanese Patent Laid-Open No. 9-35724

特許文献3に記載された圧粉全固体リチウム電池においては、放電に伴って正極電位が低下するとともに、活物質の変形により固体−固体間の接触面積が減少して界面抵抗が増大し、電圧低下を引き起こすという問題があった。   In the powder all solid lithium battery described in Patent Document 3, the positive electrode potential decreases with discharge, the contact area between the solid and the solid decreases due to deformation of the active material, the interface resistance increases, and the voltage increases. There was a problem of causing a drop.

また、二次電池の定電圧回路として従来のツェナーダイオードを用いた場合、その半導体特性上、温度によって定電圧域(降伏電圧)が変動し、また、順方向へ電流を流した際に電圧降下が生じ、さらに、ノイズが発生して電圧が変化する、などといった問題があった。   In addition, when a conventional Zener diode is used as a constant voltage circuit for a secondary battery, due to its semiconductor characteristics, the constant voltage range (breakdown voltage) fluctuates depending on the temperature, and the voltage drops when a current flows in the forward direction. Further, there is a problem that noise is generated and the voltage is changed.

本発明は上記問題に鑑みてなされたものであり、温度やノイズの影響を受けることなく電池放電時の電圧を安定化できる圧粉全固体二次電池を提供することを課題とする。   This invention is made | formed in view of the said problem, and makes it a subject to provide the powder all-solid-state secondary battery which can stabilize the voltage at the time of battery discharge, without receiving the influence of temperature or noise.

上記課題を解決するために、本発明は以下の構成をとる。すなわち、
本発明は、正極層、負極層、並びに、当該正極層及び負極層の間に配置される固体電解質層を有する積層体と、電池電圧を検知する電圧検知手段と、当該電圧検知手段により検知された電圧に基づいて積層体に加わる拘束圧力を制御する圧力制御手段と、を備える圧粉全固体電池である。
In order to solve the above problems, the present invention has the following configuration. That is,
The present invention provides a laminate having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, a voltage detection means for detecting battery voltage, and the voltage detection means. And a pressure control means for controlling the constraining pressure applied to the laminate based on the measured voltage.

ここに、「電圧検知手段」とは、電圧を検知することができるものであれば特に限定されるものではなく、例えば電圧計とすることができる。本発明における「圧力制御手段」とは、電圧検知手段により検知された電圧に基づき、積層体に加える拘束圧力を制御する手段であり、例えばモーター制御可能なピストン装置を挙げることができる。本発明にいう「圧粉全固体電池」とは、正極層、固体電解質層、又は負極層の少なくとも一層が、粉体状の電池材料を含んでなる全固体電池を意味する。   Here, the “voltage detection means” is not particularly limited as long as it can detect a voltage, and may be, for example, a voltmeter. The “pressure control means” in the present invention is a means for controlling the restraining pressure applied to the laminate based on the voltage detected by the voltage detection means, and includes, for example, a piston device capable of motor control. The “compact all-solid battery” referred to in the present invention means an all-solid battery in which at least one of the positive electrode layer, the solid electrolyte layer, or the negative electrode layer contains a powdered battery material.

本発明において、積層体に用いられる材料には、電池放電時に体積収縮を起こす材料が含まれることが好ましい。電池放電時に体積収縮を起こすと、例えば電池内部の活物質同士の接触面積や活物質と固体電解質との接触面積が減少するものと考えられるが、圧力制御手段により拘束圧力を増加させることで、再び接触面積を増大させ、電池反応を維持することができ、本発明の効果がより顕著となるからである。   In the present invention, the material used for the laminate preferably includes a material that causes volume shrinkage during battery discharge. When volume contraction occurs during battery discharge, for example, it is considered that the contact area between the active materials inside the battery and the contact area between the active material and the solid electrolyte decrease, but by increasing the restraint pressure by the pressure control means, This is because the contact area can be increased again, the battery reaction can be maintained, and the effect of the present invention becomes more remarkable.

本発明における電池放電時に体積収縮を起こす材料については、正極層又は負極層に含まれる活物質とすることができる。   About the material which causes volume shrinkage at the time of battery discharge in this invention, it can be set as the active material contained in a positive electrode layer or a negative electrode layer.

本発明において、圧力制御手段により制御される拘束圧力が、積層体の積層方向と略同一な方向に対する圧力であることが好ましい。正極層と電解質層、又は電解質層と負極層との界面の密着力を加減することで、電圧を効果的に制御することができるからである。   In this invention, it is preferable that the restraint pressure controlled by a pressure control means is a pressure with respect to the direction substantially the same as the lamination direction of a laminated body. This is because the voltage can be effectively controlled by adjusting the adhesion at the interface between the positive electrode layer and the electrolyte layer or between the electrolyte layer and the negative electrode layer.

本発明によれば、電圧検知手段と圧力制御手段とにより、電圧値に応じて積層体の拘束圧力を制御することで、活物質同士の接触面積や活物質と固体電解質との接触面積を意図的に増大又は減少させることができる。これら固体−固体間接触面積を適切に増大又は減少させることで、電池反応を制御し、放電時の電圧を安定化できる。一方、検出電圧値が低下した場合に、圧力制御手段により拘束圧力を増加させ、活物質同士の接触面積や活物質と固体電解質との接触面積を増大させることで、電圧低下を抑えることができる。また、拘束圧力の制御において、温度やノイズの影響を受けることがない。すなわち、本発明によれば、温度やノイズの影響を受けることなく放電時の電圧を安定化できるとともに、十分な放電容量を有する圧粉全固体二次電池を提供することができる。   According to the present invention, the contact area between the active materials and the contact area between the active material and the solid electrolyte are intended by controlling the restraint pressure of the laminate according to the voltage value by the voltage detection means and the pressure control means. Can be increased or decreased. By appropriately increasing or decreasing the solid-solid contact area, the battery reaction can be controlled and the voltage during discharge can be stabilized. On the other hand, when the detection voltage value decreases, the pressure control means increases the restraint pressure, and the contact area between the active materials and the contact area between the active material and the solid electrolyte can be increased, thereby suppressing the voltage drop. . Further, the control of the restraint pressure is not affected by temperature or noise. That is, according to the present invention, it is possible to provide a powder all-solid secondary battery that can stabilize the voltage during discharge without being affected by temperature and noise, and has a sufficient discharge capacity.

本発明にかかる圧粉全固体電池の一形態を概略的に示す図である。It is a figure which shows roughly one form of the compacting all-solid-state battery concerning this invention. 本発明にかかる圧粉全固体電池の電圧安定化方法を示す図である。It is a figure which shows the voltage stabilization method of the compacting all-solid-state battery concerning this invention. 本発明にかかる圧粉全固体電池の性能及び効果を示す図である。It is a figure which shows the performance and effect of the compacting all-solid-state battery concerning this invention.

以下、本発明を、正極層、電解質層、及び負極層がこの順に積層されてなる圧粉全固体リチウムイオン二次電池に適用した場合ついて説明する。但し、本発明は、この形態に限定されるものではなく、その他の圧粉全固体二次電池にも適用することができる。   Hereinafter, the case where the present invention is applied to a powdered all solid lithium ion secondary battery in which a positive electrode layer, an electrolyte layer, and a negative electrode layer are laminated in this order will be described. However, the present invention is not limited to this form, and can be applied to other compacted all solid secondary batteries.

1.圧粉全固体リチウムイオン二次電池100
図1は、実施形態にかかる圧粉全固体リチウムイオン二次電池100(以下、「二次電池100」という。)の全体を概略的に示す図である。図1に示すように、二次電池100は、正極層10、固体電解質層20、及び負極層30をこの順に有する積層体40と、集電体50、60と、圧力制御手段としてのピストン装置80と、これらを収容する電池ケース90と、集電体50、60から伸びる端子間に接続された電圧計70と、電圧計70及びピストン装置80の間に接続された制御部75とを備えている。
1. Powdered all solid lithium ion secondary battery 100
FIG. 1 is a diagram schematically illustrating an entire compact all solid lithium ion secondary battery 100 (hereinafter referred to as “secondary battery 100”) according to the embodiment. As shown in FIG. 1, a secondary battery 100 includes a laminate 40 having a positive electrode layer 10, a solid electrolyte layer 20, and a negative electrode layer 30 in this order, current collectors 50 and 60, and a piston device as pressure control means. 80, a battery case 90 for housing them, a voltmeter 70 connected between terminals extending from the current collectors 50, 60, and a control unit 75 connected between the voltmeter 70 and the piston device 80. ing.

(正極層10)
正極層10は、正極活物質、及び固体電解質を含有する層である。正極活物質としては、全固体リチウムイオン二次電池の正極活物質として用いられ得るものを、特に限定されることなく用いることができ、例えば、リチウム遷移金属酸化物やカルコゲン化物を用いることができる。二次電池100においては、特に、電池放電時に体積収縮を起こす正極活物質を用いることが好ましい。電池放電時に体積収縮を起こす正極活物質としては、LiCoO、LiNi0.5Co0.5、LiTiS、LiNi0.6Co0.3Mn0.1、LiNi0.6Co0.4、LiMn、及びLiMn12を挙げることができる。固体電解質としては、全固体リチウムイオン二次電池の固体電解質として用いられ得るものを、特に限定されることなく用いることができ、例えば、LiS−Pを用いることができる。LiSとPの比率については特に限定されないが、例えば、LiS:Pを50:50〜100:0とすることができる。これらの他、正極10には導電材が含まれていてもよい。導電材としては全固体リチウムイオン二次電池の導電材として用いられ得るものを、特に限定されることなく用いることができる。二次電池100においては、正極活物質、及び固体電解質として、粉体状のものが用いられ、これらが均一に混合されたのち、プレス機等を用いて加圧成形されて正極層10となる。粉体粒子径等の粉体の形態については、特に限定されるものではない。また、粉体の混合方法や成形方法については、公知の手段を用いることができる。成形圧力についても、二次電池100の正極層10として機能し得る程度の成形性が得られる圧力であれば、特に限定されない。
(Positive electrode layer 10)
The positive electrode layer 10 is a layer containing a positive electrode active material and a solid electrolyte. As a positive electrode active material, what can be used as a positive electrode active material of an all-solid-state lithium ion secondary battery can be used without being specifically limited, For example, a lithium transition metal oxide and a chalcogenide can be used. . In the secondary battery 100, it is particularly preferable to use a positive electrode active material that causes volume shrinkage during battery discharge. Examples of positive electrode active materials that cause volume shrinkage during battery discharge include LiCoO 2 , LiNi 0.5 Co 0.5 O 2 , LiTiS 2 , LiNi 0.6 Co 0.3 Mn 0.1 O 2 , and LiNi 0.6 Co. Mention may be made of 0.4 O 2 , LiMn 2 O 4 and LiMn 5 O 12 . The solid electrolyte, those which can be used as the solid electrolyte of the all-solid-state lithium-ion secondary battery, in particular can be used without limitation, for example, can be used Li 2 S-P 2 S 5 . Li 2 but S is not particularly limited ratio of the P 2 O 5, for example, Li 2 S: the P 2 O 5 50: 50~100: it is 0 to be. In addition to these, the positive electrode 10 may contain a conductive material. As the conductive material, a material that can be used as a conductive material of an all-solid lithium ion secondary battery can be used without particular limitation. In the secondary battery 100, powdered materials are used as the positive electrode active material and the solid electrolyte, and after these are uniformly mixed, the positive electrode layer 10 is formed by pressure molding using a press machine or the like. . The form of the powder such as the powder particle diameter is not particularly limited. Moreover, a well-known means can be used about the mixing method and shaping | molding method of powder. The molding pressure is not particularly limited as long as it is a pressure that can provide a moldability that can function as the positive electrode layer 10 of the secondary battery 100.

(固体電解質層20)
固体電解質層20は、粉体の固体電解質が成形されてなる層である。固体電解質としては、上記正極層10に用いられる固体電解質と同様のものを用いることができる。粉体の固体電解質は均一に混合されたのち、プレス機等を用いて加圧成形され固体電解質層20となる。粉体の混合方法や成形方法については、公知の手段を用いることができる。成形圧力についても、二次電池100の固体電解質層20として機能し得る程度の成形性が得られる圧力であれば、特に限定されない。
(Solid electrolyte layer 20)
The solid electrolyte layer 20 is a layer formed by molding a powder solid electrolyte. As the solid electrolyte, the same solid electrolyte as that used for the positive electrode layer 10 can be used. After the solid electrolyte of the powder is uniformly mixed, it is pressure-formed using a press machine or the like to form the solid electrolyte layer 20. Known methods can be used for the powder mixing method and molding method. The molding pressure is not particularly limited as long as the molding pressure is such that the moldability to the extent that it can function as the solid electrolyte layer 20 of the secondary battery 100 is obtained.

(負極層30)
負極層30は、負極活物質、及び固体電解質を含有する層である。負極活物質としては、全固体リチウムイオン二次電池の負極活物質として用いられ得るものを、特に限定されることなく用いることができ、例えば、カーボン、リチウム遷移金属酸化物や金属合金を用いることができる。二次電池100においては、特に、電池放電時に体積収縮を起こす負極活物質を用いることが好ましい。電池放電時に体積収縮を起こす負極活物質としては、カーボンを挙げることができる。固体電解質としては、上記正極層10に用いられる固体電解質と同様のものを用いることができる。これらの他、負極30には導電材が含まれていてもよい。導電材としては全固体リチウムイオン二次電池の導電材として用いられ得るものを、特に限定されることなく用いることができる。二次電池100においては、負極活物質、及び固体電解質として、粉体状のものを用い、これらが均一に混合されたのち、プレス機等を用いて加圧成形されて負極層30となる。粉体粒子径等の粉体の形態については、特に限定されるものではない。また、粉体の混合方法や成形方法については、公知の手段を用いることができる。成形圧力についても、二次電池100の負極層30として機能し得る程度の成形性が得られる圧力であれば、特に限定されない。
(Negative electrode layer 30)
The negative electrode layer 30 is a layer containing a negative electrode active material and a solid electrolyte. As a negative electrode active material, what can be used as a negative electrode active material of an all-solid-state lithium ion secondary battery can be used without being specifically limited, For example, carbon, a lithium transition metal oxide, and a metal alloy are used. Can do. In the secondary battery 100, it is particularly preferable to use a negative electrode active material that causes volume shrinkage during battery discharge. Examples of the negative electrode active material that causes volume shrinkage during battery discharge include carbon. As the solid electrolyte, the same solid electrolyte as that used for the positive electrode layer 10 can be used. In addition to these, the negative electrode 30 may contain a conductive material. As the conductive material, those that can be used as the conductive material of the all-solid-state lithium ion secondary battery can be used without any particular limitation. In the secondary battery 100, powdery materials are used as the negative electrode active material and the solid electrolyte, and after these are uniformly mixed, the negative electrode layer 30 is formed by pressure molding using a press or the like. The form of the powder such as the powder particle diameter is not particularly limited. Moreover, a well-known means can be used about the mixing method and shaping | molding method of powder. The molding pressure is not particularly limited as long as the molding pressure is such that the moldability can function as the negative electrode layer 30 of the secondary battery 100.

(積層体40)
積層体40は、正極層10、電解質層20、及び負極層30がこの順に積層されてなる。二次電池100には、積層体40が複数収容されている。積層体40、40、…の正極側端面(図1紙面上側)には集電体50が、積層体40、40、…の負極側端面(図1紙面下側)には、集電体60が備えられ、集電体50、60はそれぞれ正極集電体、負極集電体として機能する。集電体50、60は、全固体リチウムイオン二次電池の正極集電体、負極集電体として機能し得るものを特に限定されずに用いることができる。集電体50、60は、電池ケース90の外部へと延びており、電池反応にて生じた電気エネルギーを、電極端子を介して外部へと取り出し可能としている。尚、図1には図示されていないが、積層体40、40、…の間(隣り合う一の積層体40の正極層10と他の積層体40の負極層30との間)にも集電体が備えられている。
(Laminated body 40)
The laminate 40 is formed by laminating the positive electrode layer 10, the electrolyte layer 20, and the negative electrode layer 30 in this order. In the secondary battery 100, a plurality of stacked bodies 40 are accommodated. The current collector 50 is on the positive side end surface (upper side of FIG. 1) of the laminates 40, 40,... And the current collector 60 is on the negative side end surface (lower side of FIG. 1) of the laminates 40, 40,. The current collectors 50 and 60 function as a positive electrode current collector and a negative electrode current collector, respectively. As the current collectors 50 and 60, those that can function as a positive electrode current collector and a negative electrode current collector of an all-solid-state lithium ion secondary battery can be used without particular limitation. The current collectors 50 and 60 extend to the outside of the battery case 90 so that the electric energy generated by the battery reaction can be taken out through the electrode terminals. Although not shown in FIG. 1, it is also collected between the stacked bodies 40, 40,... (Between the positive electrode layer 10 of one adjacent stacked body 40 and the negative electrode layer 30 of another stacked body 40). Electric body is provided.

(電圧計70)
電圧計70は、二次電池100の外部に備えられ、二次電池100の電圧を検知する手段である。電圧計70により検知された電圧値に基づき、下記ピストン装置80の動作が制御される。
(Voltmeter 70)
The voltmeter 70 is a means that is provided outside the secondary battery 100 and detects the voltage of the secondary battery 100. Based on the voltage value detected by the voltmeter 70, the operation of the piston device 80 described below is controlled.

(ピストン装置80)
ピストン装置80は、電池ケース90内にて、積層体40、40、…にかかる拘束圧力を制御する装置である。図1において、ピストン装置80は、電池ケース90の上壁面と積層体40、40、…の集電体50との間に配置されており、集電体50側から積層体40の積層方向に向かって圧力を付与している。また、ピストン装置80は、電圧計70にて検知された電圧に基づいて、積層体40に付与する圧力を制御する装置である。これには、例えば、モーター制御により動作するピストン装置を用いることができる。図示されるように、電池放電時に電圧計70から得られた放電電圧値情報が、制御部75に送られ、当該制御部75においてピストン装置80の動作が決定され、ピストン装置80の動作がフィードバック制御される。それにより、積層体40にかかる圧力が制御される。制御部については公知のフィードバック制御装置とすればよい。積層体40にかかる拘束圧力については、特に限定されるものではないが、30N/cm以上10000N/cm以下、好ましくは100N/cm以上2000N/cm以下の範囲で制御されることが好ましい。
(Piston device 80)
The piston device 80 is a device that controls the restraining pressure applied to the stacked bodies 40, 40,... In the battery case 90. 1, the piston device 80 is disposed between the upper wall surface of the battery case 90 and the current collector 50 of the stacked bodies 40, 40,..., And extends in the stacking direction of the stacked body 40 from the current collector 50 side. The pressure is applied toward. The piston device 80 is a device that controls the pressure applied to the stacked body 40 based on the voltage detected by the voltmeter 70. For this, for example, a piston device that operates by motor control can be used. As shown in the figure, the discharge voltage value information obtained from the voltmeter 70 at the time of battery discharge is sent to the control unit 75, and the operation of the piston device 80 is determined in the control unit 75, and the operation of the piston device 80 is fed back. Be controlled. Thereby, the pressure concerning the laminated body 40 is controlled. The control unit may be a known feedback control device. For restraining pressure on the stack 40 is not particularly limited, 30 N / cm 2 or more 10000 N / cm 2 or less, preferably be controlled at 100 N / cm 2 or more 2000N / cm 2 or less in the range preferable.

(電池ケース90)
上記の積層体40、40、…、集電体50、60、及びピストン装置80は、電池ケース90に収容され、二次電池100が形成される。電池ケース90の材質や形状については、全固体リチウムイオン二次電池の電池反応を問題なく行うことができ、また、電池ケース内の圧力変化によって変形することがないものであれば、特に限定されるものではない。
(Battery case 90)
The stacked bodies 40, 40,..., Current collectors 50, 60, and the piston device 80 are accommodated in a battery case 90, and the secondary battery 100 is formed. The material and shape of the battery case 90 are not particularly limited as long as the battery reaction of the all-solid-state lithium ion secondary battery can be performed without any problem and the battery case 90 is not deformed by a pressure change in the battery case. It is not something.

二次電池100は、上記のような構成を有して動作する。二次電池100の動作時(例えば放電時)は、電圧計70により連続的又は所定の間隔で二次電池100の電圧が検知され、電圧値情報が逐次ピストン装置80へとフィードバックされる。ピストン装置80は検知された電圧値情報に基づき、積層体40にかかる圧力を制御する。以下、二次電池100の電圧制御方法について、二次電池100の放電時における動作を例にとり、詳しく説明する。   The secondary battery 100 operates with the above configuration. During the operation of the secondary battery 100 (for example, at the time of discharging), the voltage of the secondary battery 100 is detected continuously or at predetermined intervals by the voltmeter 70, and voltage value information is fed back to the piston device 80 sequentially. The piston device 80 controls the pressure applied to the stacked body 40 based on the detected voltage value information. Hereinafter, the voltage control method of the secondary battery 100 will be described in detail with reference to an operation of the secondary battery 100 during discharging.

2.圧粉全固体リチウムイオン二次電池100の放電電圧制御方法
図2は、二次電池100における放電時における電圧制御方法を示す図である。二次電池100の放電時の電圧制御方法は、放電電圧検知工程S1と、判断工程S2と、加圧工程S3又は減圧工程S4と、を備えている。以下、図1、2を参照しつつ工程ごとに説明する。
2. FIG. 2 is a diagram illustrating a voltage control method during discharging in the secondary battery 100. FIG. The voltage control method during discharging of the secondary battery 100 includes a discharge voltage detecting step S1, a determining step S2, and a pressurizing step S3 or a depressurizing step S4. Hereinafter, each process will be described with reference to FIGS.

(放電電圧検知工程S1)
工程S1は、二次電池100の放電時の電圧を、電圧計70により検知する工程である。電圧計70が集電体50、60の電極端子間に設けられて、二次電池100の放電電圧が検知される。得られた放電電圧が所定の範囲内にあるか否かについて、次工程S2で判断される。
(Discharge voltage detection step S1)
Step S <b> 1 is a step in which the voltage at the time of discharging the secondary battery 100 is detected by the voltmeter 70. A voltmeter 70 is provided between the electrode terminals of the current collectors 50 and 60 to detect the discharge voltage of the secondary battery 100. Whether or not the obtained discharge voltage is within a predetermined range is determined in the next step S2.

(判断工程S2)
工程S2は、工程S1により得られた二次電池100の放電電圧が、あらかじめ設定された電圧の範囲内にあるか否かを判断する工程である。例えば、電池電圧3.8Vで電池を使用したい場合について考える。この場合は、許容範囲も考慮して、例えば、3.75V〜3.85Vを設定電圧とし、検知された放電電圧が設定電圧範囲内にあるか否かを判断する。放電電圧が設定電圧内であれば、そのまま電池の放電を行う。一方、放電電圧が設定電圧から外れている場合は、当該放電電圧が設定電圧より大きいか小さいかを判断し、当該判断に基づいてピストン装置70の動作がフィードバック制御される。
(Judgment process S2)
Step S2 is a step of determining whether or not the discharge voltage of the secondary battery 100 obtained in step S1 is within a preset voltage range. For example, consider a case where a battery is desired to be used at a battery voltage of 3.8V. In this case, considering the allowable range, for example, 3.75 V to 3.85 V is set as the set voltage, and it is determined whether or not the detected discharge voltage is within the set voltage range. If the discharge voltage is within the set voltage, the battery is discharged as it is. On the other hand, when the discharge voltage deviates from the set voltage, it is determined whether the discharge voltage is larger or smaller than the set voltage, and the operation of the piston device 70 is feedback controlled based on the determination.

(加圧工程S3)
工程S3は、ピストン装置70により積層体40を加圧し、積層体40の拘束圧力を高める工程である。すなわち、工程S2において、放電電圧が設定電圧よりも小さいと判断された場合、ピストン装置70に動作指示がなされ、ピストン装置70が積層体40を加圧するようにフィードバック制御される。ピストン装置70の動作により積層体40の拘束圧力が高められると、積層体40内の活物質同士又は活物質と固体電解質との接触面積が増大し、固体−固体間の界面抵抗が低下する。これにより、設定電圧よりも小さくなった放電電圧が、再び設定電圧内へと回復する。従って、加圧工程S3を経ることで、放電電圧を設定電圧内に安定させることができ、且つ、放電電圧の低下を抑制することができる。
(Pressurizing step S3)
Step S <b> 3 is a step of increasing the binding pressure of the stacked body 40 by pressurizing the stacked body 40 with the piston device 70. That is, in step S <b> 2, when it is determined that the discharge voltage is smaller than the set voltage, an operation instruction is given to the piston device 70, and feedback control is performed so that the piston device 70 pressurizes the stacked body 40. When the restraint pressure of the stacked body 40 is increased by the operation of the piston device 70, the contact area between the active materials in the stacked body 40 or between the active material and the solid electrolyte increases, and the interface resistance between the solid and the solid decreases. As a result, the discharge voltage that has become smaller than the set voltage is restored to the set voltage again. Therefore, through the pressurizing step S3, the discharge voltage can be stabilized within the set voltage, and a decrease in the discharge voltage can be suppressed.

(減圧工程S4)
工程S4は、ピストン装置70を動作させて、積層体40の拘束圧力を低下させる(減圧する)工程である。すなわち、工程S2において、放電電圧が設定電圧よりも大きいと判断された場合、ピストン装置70に動作指示がなされ、ピストン装置70が積層体40を減圧するようにフィードバック制御される。ピストン装置70の動作により積層体40の拘束圧力が低下すると、積層体40内の活物質同士又は活物質と固体電解質との接触面積が低減される。これにより、設定電圧よりも大きくなった放電電圧が、再び設定電圧内へと落ち着く。従って、減圧工程S4を経ることで、放電電圧を設定電圧内に安定させることができる。
(Decompression step S4)
Step S4 is a step in which the piston device 70 is operated to reduce (depressurize) the restraint pressure of the stacked body 40. That is, when it is determined in step S2 that the discharge voltage is higher than the set voltage, an operation instruction is given to the piston device 70, and the piston device 70 is feedback-controlled so as to depressurize the stacked body 40. When the restraint pressure of the laminated body 40 is lowered by the operation of the piston device 70, the contact area between the active materials in the laminated body 40 or between the active material and the solid electrolyte is reduced. As a result, the discharge voltage that has become larger than the set voltage settles again within the set voltage. Therefore, the discharge voltage can be stabilized within the set voltage through the decompression step S4.

上記工程S1〜S4を繰り返して二次電池100の運転を行うことで、設定電圧内で安定して放電できるとともに、電池反応を無駄なく行うことができ、放電容量の高い二次電池とすることができる。   By repeating the above steps S1 to S4 and operating the secondary battery 100, the secondary battery 100 can be stably discharged within the set voltage, the battery reaction can be performed without waste, and a secondary battery having a high discharge capacity can be obtained. Can do.

特に、積層体40の材料に放電時体積収縮を起こす活物質等が含まれている場合、従来の電池構造にあっては、放電に伴って活物質同士又は活物質と固体電解質との接触面積が低減し、界面抵抗が増大して電圧が低下するものと考えられる。一方、二次電池100では、放電時に上記工程S1〜S4により、積層体40の拘束圧力が制御されるので、活物質同士又は活物質と固体電解質との接触面積を適切に制御でき、電圧を安定して維持することができる。   In particular, in the case where the material of the laminate 40 includes an active material that causes volume shrinkage during discharge, in the conventional battery structure, the contact area between the active materials or between the active material and the solid electrolyte accompanying discharge It is considered that the voltage decreases as the interface resistance increases. On the other hand, in the secondary battery 100, since the restraint pressure of the stacked body 40 is controlled by the steps S1 to S4 at the time of discharging, the contact area between the active materials or between the active material and the solid electrolyte can be appropriately controlled, and the voltage It can be maintained stably.

また、ツェナーダイオードを用いて電圧を定電圧化する従来の形態に対して、二次電池100は、温度やノイズ等の影響を受けることなく電圧を安定化することができる。   In contrast to the conventional configuration in which the voltage is made constant using a Zener diode, the secondary battery 100 can stabilize the voltage without being affected by temperature, noise, or the like.

圧粉全固体リチウムイオン二次電池100を作製し、放電時の電圧挙動を確認した。放電前の電池内の積層体40にかかる拘束圧力は500N/cmとした。また、電池放電時の設定電圧を3.75〜3.85Vとした。結果を図3に示す。 A compacted all-solid-state lithium ion secondary battery 100 was produced, and voltage behavior during discharge was confirmed. The restraining pressure applied to the laminate 40 in the battery before discharging was 500 N / cm 2 . Moreover, the set voltage at the time of battery discharge was set to 3.75 to 3.85V. The results are shown in FIG.

図3に示されるように、二次電池100の放電電圧は時間の経過とともに低下し、設定電圧よりも大きかった放電電圧は、7.5mAh/gで設定電圧内となった。その後、放電電圧はさらに低下し、12.8mAh/gで設定電圧の下限となった。そこで、フィードバック制御によりピストン装置70の動作を制御して、積層体40にかかる拘束圧力を1270N/cmに上昇させた。すると、二次電池100の放電電圧が再び上昇し、設定電圧内に落ち着いた。その後、放電電圧は再び低下し、21.8mAh/gの時点で設定電圧の下限となった。このように、積層体40にかかる拘束圧力を、二次電池100の放電電圧値に基づいてフィードバック制御することで、設定電圧域での使用範囲を、約2.7倍にまで拡大させることができた。 As shown in FIG. 3, the discharge voltage of the secondary battery 100 decreased with time, and the discharge voltage that was higher than the set voltage was within the set voltage at 7.5 mAh / g. Thereafter, the discharge voltage further decreased and became the lower limit of the set voltage at 12.8 mAh / g. Therefore, the operation of the piston device 70 is controlled by feedback control, and the restraining pressure applied to the stacked body 40 is increased to 1270 N / cm 2 . Then, the discharge voltage of the secondary battery 100 rose again and settled within the set voltage. Thereafter, the discharge voltage decreased again and reached the lower limit of the set voltage at 21.8 mAh / g. In this way, the use range in the set voltage range can be expanded to about 2.7 times by feedback control of the restraint pressure applied to the stacked body 40 based on the discharge voltage value of the secondary battery 100. did it.

上記説明においては、二次電池100において、積層体40の積層方向にかかる圧力が制御される形態について例示したが、本発明はこれに限定されるものではない。積層体40の拘束圧力を加減可能な形態であればよく、例えば、積層体40の積層方向に対して略垂直となる方向にかかる圧力を制御する形態としてもよい。但し、正極層10及び固体電解質層20の接触圧力、及び固体電解質層20と負極層30との接触圧力を適切に制御して、活物質と固体電解質との界面抵抗の増大を抑制する観点からは、積層体40の積層方向にかかる圧力を制御する形態とすることが好ましい。   In the above description, in the secondary battery 100, the form in which the pressure applied in the stacking direction of the stacked body 40 is controlled is illustrated, but the present invention is not limited to this. For example, the pressure applied in the direction substantially perpendicular to the stacking direction of the stacked body 40 may be controlled as long as the restraint pressure of the stacked body 40 can be adjusted. However, from the viewpoint of suppressing an increase in the interface resistance between the active material and the solid electrolyte by appropriately controlling the contact pressure between the positive electrode layer 10 and the solid electrolyte layer 20 and the contact pressure between the solid electrolyte layer 20 and the negative electrode layer 30. Is preferably configured to control the pressure applied in the stacking direction of the stacked body 40.

また、上記説明においては、正極層10、固体電解質層20、及び負極30がこの順に積層されてなる、端面が略平面とされた積層体40を電池ケース90内に収容する形態について例示したが、本発明はこれに限定されるものではない。例えば、捲回された積層体40を電池ケース90内に収容してもよい。   Further, in the above description, the configuration in which the stacked body 40 in which the positive electrode layer 10, the solid electrolyte layer 20, and the negative electrode 30 are stacked in this order and the end surface is substantially flat is accommodated in the battery case 90 is illustrated. However, the present invention is not limited to this. For example, the wound laminate 40 may be accommodated in the battery case 90.

また、上記説明においては、圧力制御手段としてモーター制御によるピストン装置70が備えられる形態について説明したが、放電電圧の変化により積層体40の拘束圧力を適切に制御可能な形態であれば、本発明はこれに限定されるものではない。例えば、電池ケース90内の流体圧力を制御する装置としてもよい。   Further, in the above description, the embodiment in which the piston device 70 by motor control is provided as the pressure control means has been described. However, the present invention is applicable as long as the restraint pressure of the stacked body 40 can be appropriately controlled by changing the discharge voltage. Is not limited to this. For example, a device for controlling the fluid pressure in the battery case 90 may be used.

また、上記説明においては、電池放電時の電圧制御方法において減圧工程S4が行われる形態について説明したが、本発明はこれに限定されるものではない。例えば、放電電圧が設定電圧よりも大きくなり過ぎた場合であっても、意図的に減圧工程S4を行わずとも、放電により電圧は徐々に低下して設定電圧内に落ち着く。但し、加圧工程S3において誤って過度の加圧がなされた場合等、電池内の圧力を適正に保つ観点や、過度の放電を防ぐ観点等から、減圧工程S4を備える形態が好ましいといえる。   Moreover, in the said description, although the pressure reduction process S4 was demonstrated in the voltage control method at the time of battery discharge, this invention is not limited to this. For example, even when the discharge voltage becomes too higher than the set voltage, the voltage gradually decreases due to the discharge and settles within the set voltage without intentionally performing the decompression step S4. However, it can be said that the embodiment including the pressure reducing step S4 is preferable from the viewpoint of appropriately maintaining the pressure in the battery, the viewpoint of preventing excessive discharge, and the like when excessive pressure is mistakenly applied in the pressing step S3.

以上、現時点において、最も実践的であり、且つ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う圧粉全固体電池もまた本発明の技術範囲に包含されるものとして理解されなければならない。   Although the present invention has been described with reference to the most practical and preferred embodiments at the present time, the invention is not limited to the embodiments disclosed herein. The invention can be changed as appropriate without departing from the scope or spirit of the invention that can be read from the claims and the entire specification, and a compact all-solid battery with such changes is also included in the technical scope of the present invention. Must be understood as.

10 正極層
20 固体電解質層
30 負極層
40 積層体
50 集電体
60 集電体
70 電圧計
75 制御部
80 ピストン装置
90 電池ケース
100 圧粉全固体二次電池
DESCRIPTION OF SYMBOLS 10 Positive electrode layer 20 Solid electrolyte layer 30 Negative electrode layer 40 Laminate body 50 Current collector 60 Current collector 70 Voltmeter 75 Control part 80 Piston apparatus 90 Battery case 100 Compaction all-solid-state secondary battery

Claims (4)

正極層、負極層、並びに、該正極層及び負極層の間に配置される固体電解質層を有する積層体と、電池電圧を検知する電圧検知手段と、該電圧検知手段により検知された電圧に基づいて前記積層体に加わる拘束圧力を制御する圧力制御手段と、を備える圧粉全固体電池。 A positive electrode layer, a negative electrode layer, and a laminate having a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, a voltage detection means for detecting a battery voltage, and a voltage detected by the voltage detection means And a pressure control means for controlling a restraining pressure applied to the laminate. 前記積層体に用いられる材料には、電池放電時に体積収縮を起こす材料が含まれる、請求項1に記載の圧粉全固体次電池。 The powder all-solid secondary battery according to claim 1, wherein the material used for the laminate includes a material that causes volume shrinkage during battery discharge. 前記電池放電時に体積収縮を起こす材料が、前記正極層又は前記負極層に含まれる活物質である、請求項2に記載の圧粉全固体電池。 The powder all-solid battery according to claim 2, wherein the material that causes volume shrinkage during battery discharge is an active material contained in the positive electrode layer or the negative electrode layer. 前記圧力制御手段により制御される前記拘束圧力が、前記積層体の積層方向と略同一な方向に対する圧力である、請求項1〜3のいずれかに記載の圧粉全固体電池。 The powder all-solid battery according to any one of claims 1 to 3, wherein the restraining pressure controlled by the pressure control means is a pressure in a direction substantially the same as a stacking direction of the stacked body.
JP2009047865A 2009-03-02 2009-03-02 All-solid battery employing power compact Pending JP2010205479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009047865A JP2010205479A (en) 2009-03-02 2009-03-02 All-solid battery employing power compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009047865A JP2010205479A (en) 2009-03-02 2009-03-02 All-solid battery employing power compact

Publications (1)

Publication Number Publication Date
JP2010205479A true JP2010205479A (en) 2010-09-16

Family

ID=42966778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009047865A Pending JP2010205479A (en) 2009-03-02 2009-03-02 All-solid battery employing power compact

Country Status (1)

Country Link
JP (1) JP2010205479A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161543A (en) * 2012-02-01 2013-08-19 Toyota Motor Corp Secondary battery control device and control method
CN104733769A (en) * 2013-12-19 2015-06-24 丰田自动车株式会社 Manufacturing method of all-solid battery
KR101741193B1 (en) * 2014-11-28 2017-05-29 주식회사 엘지화학 Battery pack
JP2017199665A (en) * 2016-04-25 2017-11-02 パナソニックIpマネジメント株式会社 Battery manufacturing method and battery manufacturing device
EP3389115A1 (en) * 2017-04-12 2018-10-17 VW-VM Forschungsgesellschaft mbH & Co. KG Modular battery with improved safety characteristics
JP2019140022A (en) * 2018-02-14 2019-08-22 トヨタ自動車株式会社 All-solid battery system
WO2022210325A1 (en) * 2021-03-31 2022-10-06 株式会社Gsユアサ Estimation device, estimation method, and computer program
WO2024079493A1 (en) * 2022-10-12 2024-04-18 日産自動車株式会社 All-solid-state battery and method for controlling all-solid-state battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133468A (en) * 1992-10-19 1994-05-13 Matsushita Electric Ind Co Ltd Method for charging closed type nickel-hydrogen storage battery
JPH0982363A (en) * 1995-09-06 1997-03-28 Canon Inc Lithium secondary battery
WO1999060652A1 (en) * 1998-05-20 1999-11-25 Osaka Gas Company Limited Nonaqueous secondary cell and method for controlling the same
JP2001093577A (en) * 1999-09-20 2001-04-06 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2007087759A (en) * 2005-09-21 2007-04-05 Nissan Motor Co Ltd Gel electrolyte battery, battery unit, and method of manufacturing gel electrolyte layer for battery
JP2008147010A (en) * 2006-12-08 2008-06-26 Nissan Motor Co Ltd Power supply device, and its control method
JP2008310987A (en) * 2007-06-12 2008-12-25 Toyota Motor Corp Battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133468A (en) * 1992-10-19 1994-05-13 Matsushita Electric Ind Co Ltd Method for charging closed type nickel-hydrogen storage battery
JPH0982363A (en) * 1995-09-06 1997-03-28 Canon Inc Lithium secondary battery
WO1999060652A1 (en) * 1998-05-20 1999-11-25 Osaka Gas Company Limited Nonaqueous secondary cell and method for controlling the same
JP2001093577A (en) * 1999-09-20 2001-04-06 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2007087759A (en) * 2005-09-21 2007-04-05 Nissan Motor Co Ltd Gel electrolyte battery, battery unit, and method of manufacturing gel electrolyte layer for battery
JP2008147010A (en) * 2006-12-08 2008-06-26 Nissan Motor Co Ltd Power supply device, and its control method
JP2008310987A (en) * 2007-06-12 2008-12-25 Toyota Motor Corp Battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161543A (en) * 2012-02-01 2013-08-19 Toyota Motor Corp Secondary battery control device and control method
CN104733769A (en) * 2013-12-19 2015-06-24 丰田自动车株式会社 Manufacturing method of all-solid battery
US9564655B2 (en) 2013-12-19 2017-02-07 Toyota Jidosha Kabushiki Kaisha Manufacturing method of all-solid battery
KR101741193B1 (en) * 2014-11-28 2017-05-29 주식회사 엘지화학 Battery pack
JP2017199665A (en) * 2016-04-25 2017-11-02 パナソニックIpマネジメント株式会社 Battery manufacturing method and battery manufacturing device
CN108695463A (en) * 2017-04-12 2018-10-23 Vw-Vm研究有限责任两合公司 The battery pack of modularization structure with improved security property
US20180301765A1 (en) * 2017-04-12 2018-10-18 VW-VM Forschungsgesellschaft mbH & Co., KG Battery of modular construction having improved safety properties
KR20180115237A (en) * 2017-04-12 2018-10-22 바우베-바우엠 포르슝스게젤샤프트 엠바하 운트 체오. 카게 Battery of modular construction having improved safety properties
EP3389115A1 (en) * 2017-04-12 2018-10-17 VW-VM Forschungsgesellschaft mbH & Co. KG Modular battery with improved safety characteristics
JP2018181832A (en) * 2017-04-12 2018-11-15 ファオヴェー−ファオエム フォルシュングスゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Battery of modular construction having improved safety property
US11024893B2 (en) 2017-04-12 2021-06-01 Varta Microbattery Gmbh Battery of modular construction having improved safety properties
JP7201328B2 (en) 2017-04-12 2023-01-10 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Modular battery with improved safety
KR102579536B1 (en) * 2017-04-12 2023-09-15 바르타 미크로바테리 게엠베하 Battery of modular construction having improved safety properties
JP2019140022A (en) * 2018-02-14 2019-08-22 トヨタ自動車株式会社 All-solid battery system
WO2022210325A1 (en) * 2021-03-31 2022-10-06 株式会社Gsユアサ Estimation device, estimation method, and computer program
WO2024079493A1 (en) * 2022-10-12 2024-04-18 日産自動車株式会社 All-solid-state battery and method for controlling all-solid-state battery

Similar Documents

Publication Publication Date Title
JP2010205479A (en) All-solid battery employing power compact
JP5822089B2 (en) Sealed lithium secondary battery
KR101629482B1 (en) Lithium Secondary Battery Preparation Method Pressurizing the Battery during Vitalization Process
CN111758173B (en) Negative electrode comprising microcapsules and lithium ion secondary battery provided with same
JP2008123954A (en) Method of manufacturing lithium secondary battery, and lithium secondary battery
JP2007500922A (en) Dispersion of lithium metal at the electrode.
JP5832915B2 (en) Method for manufacturing lithium ion battery
JP2009266589A (en) Solid lithium secondary battery and method of manufacturing the same
JP2008027662A (en) Secondary battery
JP2012048853A (en) All-solid battery
JP5786952B2 (en) Fuel cell output control device
JP2010040198A (en) Apparatus for charging and discharging secondary battery, electric equipment, method of charging and discharging secondary battery, and program for charging and discharging secondary battery
JP2007273273A (en) Composite powder for electrode, and method of manufacturing same
JP2008243657A (en) Method of manufacturing secondary battery, and device of manufacturing the same
WO2014122776A1 (en) Apparatus and method for controlling lithium-ion secondary cell
EP2850678A1 (en) An apparatus and associated methods
JP2014120404A (en) Secondary battery
JP2007137980A (en) High-density acetylene black and method for producing the same
JP2005340078A (en) Active material for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery
JP4639883B2 (en) Method for producing non-aqueous electrolyte secondary battery
EP2946433B1 (en) Electrochemical cell or battery with reduced impedance and method for producing same
JP6977599B2 (en) All-solid-state battery system
JP2013069490A (en) Method of manufacturing sealed lithium secondary battery
JP5553169B2 (en) Lithium ion secondary battery
JP2010027328A (en) Fuel cell system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730