JP2009081140A - Secondary battery, and manufacturing method of secondary battery - Google Patents

Secondary battery, and manufacturing method of secondary battery Download PDF

Info

Publication number
JP2009081140A
JP2009081140A JP2008288140A JP2008288140A JP2009081140A JP 2009081140 A JP2009081140 A JP 2009081140A JP 2008288140 A JP2008288140 A JP 2008288140A JP 2008288140 A JP2008288140 A JP 2008288140A JP 2009081140 A JP2009081140 A JP 2009081140A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
layer
current collector
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008288140A
Other languages
Japanese (ja)
Inventor
Koichi Harada
耕一 原田
Hirotaka Inagaki
浩貴 稲垣
Seiichi Suenaga
誠一 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008288140A priority Critical patent/JP2009081140A/en
Publication of JP2009081140A publication Critical patent/JP2009081140A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic solid electrolyte secondary battery having excellent battery characteristics, and to provide a simple manufacturing method of the inorganic solid electrolyte secondary battery. <P>SOLUTION: The secondary battery is equipped with a positive electrode 1, a negative electrode 2 and an inorganic solid electrolyte 3, of which, the positive electrode 1 is constituted of a positive electrode active material layer 4 and a positive electrode current collector layer 5, the negative electrode 2 is constituted of a negative electrode active material layer 6 and a negative electrode current collector layer 7. The positive electrode current collector layer 5 or the negative electrode current collector layer 7 is a conductive metal oxide layer, and the negative electrode active material layer 6 is lithium metal or a lithium alloy, or the negative electrode active material layer is a material in which an operating potential of the negative electrode is nobler than 1.0 V to a potential of the lithium metal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、無機固体電解質を用いた二次電池及びその製造方法に関する。   The present invention relates to a secondary battery using an inorganic solid electrolyte and a manufacturing method thereof.

電子機器の小型化、軽量化に伴い、電池についても小型化、軽量化の要望が強くなっている。この要求に適応する電池として、薄膜技術と電池材料技術の融合により生まれる超小型・超薄型電池の検討が行われている。これら薄型電池は、ICカード、タグなどの電源、あるいはLSI基板上への実装などが期待されている。   As electronic devices become smaller and lighter, there is an increasing demand for smaller and lighter batteries. As batteries that meet this demand, ultra-small and ultra-thin batteries born by the fusion of thin film technology and battery material technology are being studied. These thin batteries are expected to be mounted on power supplies such as IC cards and tags, or on LSI substrates.

一方、高出力の二次電池として、現状、正極にコバルト酸リチウム、負極に炭素材料、電解液に非水溶媒にリチウム塩を溶解させた溶液を組み合わせたリチウムイオン二次電池が実用化されている。これらは種々の方法で製造されているが、正極・負極材料を各々スラリー化して塗布し、乾燥を伴う工程とそれらを所定の形状に切断する工程、圧延工程、捲回工程と、電解液を注液する工程等を含む製法が主となり、実用化にいたっている。しかし、これらの工程、製法では、電池の薄型化、小型化には限界がある。   On the other hand, as a high-power secondary battery, a lithium ion secondary battery in which a lithium cobalt oxide is combined in the positive electrode, a carbon material in the negative electrode, and a solution in which a lithium salt is dissolved in a nonaqueous solvent is combined has been put into practical use. Yes. These are manufactured by various methods, but each of the positive electrode and negative electrode materials is slurried and applied, a process involving drying, a process of cutting them into a predetermined shape, a rolling process, a winding process, and an electrolyte solution. The manufacturing method including the step of injecting liquid is mainly used, leading to practical use. However, these processes and manufacturing methods have limitations in making the battery thinner and smaller.

このため、より小型、薄型化するために、負極に金属リチウムや炭素、正極にLiCoOやLiMn、電解質に無機固体電解質を用い、スパッタリング、蒸着法といった半導体プロセスとパターニング工法を導入した薄型固体電解質二次電池が考案されている。(例えば特許文献1、特許文献2参照) For this reason, in order to make it smaller and thinner, lithium and carbon were used for the negative electrode, LiCoO 2 and LiMn 2 O 4 were used for the positive electrode, an inorganic solid electrolyte was used for the electrolyte, and semiconductor processes such as sputtering and vapor deposition and patterning methods were introduced. Thin solid electrolyte secondary batteries have been devised. (For example, see Patent Document 1 and Patent Document 2)

しかしながらこのような従来の固体電解質電池は、スパッタリングなどの薄膜プロセスで製膜されるため、製膜時間がかかる他、多層化し難く、製造コストが高くなるという問題があった。また、従来の固体電解質電池は、集電体に銅やアルミ、金やパラジウムなどの金属を用いるため、製膜後の熱処理を充分に行えず、活物質の結晶性が上がらず、電池特性が不十分となる問題があった。   However, since such a conventional solid electrolyte battery is formed by a thin film process such as sputtering, it takes a long time to form a film, and it is difficult to form a multi-layer, resulting in a high manufacturing cost. In addition, since conventional solid electrolyte batteries use metals such as copper, aluminum, gold, and palladium as current collectors, heat treatment after film formation cannot be sufficiently performed, the crystallinity of the active material does not increase, and battery characteristics are improved. There was an inadequate problem.

特開2000−106366号JP 2000-106366 A 特開2004−127743号JP 2004-127743 A

本発明は、このような問題に鑑みてなされたものであり、簡便なプロセスを用いて、電池特性に優れ、小型化・薄型化に適した二次電池およびその製造方法を提供することを課題とする。   The present invention has been made in view of such problems, and it is an object of the present invention to provide a secondary battery excellent in battery characteristics and suitable for downsizing and thinning using a simple process and a method for manufacturing the same. And

本発明者らは、電池性能を損なうことなく、簡便なプロセスで製造可能な二次電池の形態について鋭意研究した結果、電解質として無機固体電解質、正極集電体もしくは負極集電体として導電性金属酸化物、さらに特定の負極活物質材料を組み合わせて適用すると、正極、負極、無機固体電解質等を備えた電池要素前駆体を一括して焼結して二次電池を得ることができ、従来のスパッタリング等の製膜法を適用した電池の製造方法に比べて、プロセスや製造設備が簡便かつ低コストで小型電池の作成が可能であり、しかも得られた二次電池の各構成部材が高密度化されて各部材が十分なイオン導電性及び導電性を発揮し、十分な電池特性を得ることが可能であることを見出した。   As a result of earnest research on the form of a secondary battery that can be manufactured by a simple process without impairing battery performance, the present inventors have found that an inorganic solid electrolyte as an electrolyte, a conductive metal as a positive electrode current collector or a negative electrode current collector When applied in combination with an oxide and a specific negative electrode active material, a battery element precursor comprising a positive electrode, a negative electrode, an inorganic solid electrolyte, etc. can be sintered together to obtain a secondary battery. Compared to battery manufacturing methods using sputtering or other film-forming methods, the process and manufacturing equipment are simple and low-cost, and small batteries can be created, and each component of the resulting secondary battery has a high density. It has been found that each member exhibits sufficient ionic conductivity and conductivity, and sufficient battery characteristics can be obtained.

本発明の二次電池は、
正極活物質層と、正極集電体層とが積層された正極と、
負極活物質層と、負極集電体層とが積層された負極と、
前記正極及び前記負極間に挟持された、リチウムを含有する無機固体電解質とを具備し、
前記負極活物質層に、負極の作動電位が金属リチウムの電位に対して1.0Vよりも貴となる負極活物質を用い、かつ
前記正極集電体及び負極集電体の少なくとも一方は導電性金属酸化物層であることを特徴とする。
The secondary battery of the present invention is
A positive electrode in which a positive electrode active material layer and a positive electrode current collector layer are laminated;
A negative electrode in which a negative electrode active material layer and a negative electrode current collector layer are laminated;
An inorganic solid electrolyte containing lithium sandwiched between the positive electrode and the negative electrode,
The negative electrode active material layer uses a negative electrode active material in which the negative electrode operating potential is nobler than 1.0 V with respect to the potential of metallic lithium, and at least one of the positive electrode current collector and the negative electrode current collector is conductive. It is a metal oxide layer.

本発明の二次電池において、
前記導電性金属酸化物は、Sn、In、Zn、Tiから選ばれる少なくとも1種の元素の酸化物であることが望ましい。
In the secondary battery of the present invention,
The conductive metal oxide is preferably an oxide of at least one element selected from Sn, In, Zn, and Ti.

本発明の二次電池において、
前記導電性金属酸化物は、SnO、In、ZnO、TiO(0.5≦x≦2)から選ばれる少なくとも一種であることが望ましい。
In the secondary battery of the present invention,
The conductive metal oxide is preferably at least one selected from SnO 2 , In 2 O 3 , ZnO, and TiO x (0.5 ≦ x ≦ 2).

本発明の二次電池において、前記負極作動電位が金属リチウムの電位に対して、1.0Vよりも貴となる負極活物質は、酸化タングステン、酸化モリブデン、硫化鉄、硫化鉄リチウム、硫化チタン、チタン酸リチウムから選択される少なくとも一種であることが望ましい。   In the secondary battery of the present invention, the negative electrode active material in which the negative electrode operating potential is nobler than 1.0 V with respect to the potential of metallic lithium is tungsten oxide, molybdenum oxide, iron sulfide, lithium iron sulfide, titanium sulfide, It is desirable that it is at least one selected from lithium titanate.

本発明の二次電池において、前記負極作動電位が金属リチウムの電位に対して、1.0Vよりも貴となる負極活物質は、LiFeS(0≦x≦4、0.9≦y≦2.1)で表されスピネル型構造を有する硫化鉄リチウム、及びLi4+xTi12(0≦x≦3)で表されスピネル型構造を有するチタン酸リチウムから選択される少なくとも一種であることが望ましい。 In the secondary battery of the present invention, the negative electrode active material in which the negative electrode operating potential is nobler than 1.0 V with respect to the potential of metallic lithium is Li x FeS y (0 ≦ x ≦ 4, 0.9 ≦ y ≦ 2.1) and at least one selected from lithium iron sulfide having a spinel structure and Li 4 + x Ti 5 O 12 (0 ≦ x ≦ 3) and having a spinel structure It is desirable.

本発明の二次電池の製造方法は、
正極集電体層と、正極活物質層と、リチウムを含有する無機固体電解質層と、負極活物質層と、負極集電体層とを積層して積層体を得る積層工程と、
前記積層体を酸化性雰囲気下で焼結する焼結工程とを行う二次電池の製造方法であって、
前記正極集電体層及び負極集電体層の少なくとも一方は、導電性金属酸化物層であり、かつ前記負極活物質層に、負極の作動電位が金属リチウムの電位に対して1.0Vよりも貴となる負極活物質を用いることを特徴とする。
The method for producing the secondary battery of the present invention includes:
A lamination step of obtaining a laminate by laminating a positive electrode current collector layer, a positive electrode active material layer, an inorganic solid electrolyte layer containing lithium, a negative electrode active material layer, and a negative electrode current collector layer;
A method for producing a secondary battery, comprising performing a sintering step of sintering the laminate in an oxidizing atmosphere,
At least one of the positive electrode current collector layer and the negative electrode current collector layer is a conductive metal oxide layer, and the negative electrode active material layer has a negative electrode operating potential of 1.0 V or more with respect to the lithium metal potential. Is also characterized by using a noble negative electrode active material.

本発明の第1及び第2の二次電池、第1及び第2の二次電池の製造方法においては、正極もしくは負極集電体に導電性金属酸化物を用い、特定の負極活物質を用いることで特徴的である。この導電性金属酸化物は加熱、特に酸化性雰囲気中での加熱によって変質しないため焼結による電池要素の製造が適用できる。また、特定の負極活物質の選択によって、またリチウムイオンの吸蔵・放出の可逆性に優れ、電池の繰り返し寿命も良好である。   In the first and second secondary batteries and the first and second secondary battery manufacturing methods of the present invention, a conductive metal oxide is used for the positive electrode or the negative electrode current collector, and a specific negative electrode active material is used. That is characteristic. Since this conductive metal oxide is not altered by heating, particularly heating in an oxidizing atmosphere, the production of battery elements by sintering can be applied. Moreover, it is excellent in reversibility of occlusion / release of lithium ions by selecting a specific negative electrode active material, and the battery has a good repeated life.

本発明によれば、簡便な製法で電池特性に優れ、薄型化に適した二次電池を提供することができる。   According to the present invention, it is possible to provide a secondary battery that is excellent in battery characteristics and suitable for thinning by a simple manufacturing method.

図1に第1の二次電池及び第2の二次電池の一実施形態を例示し、以下図面を参照してこの実施形態について説明する。   FIG. 1 illustrates an embodiment of a first secondary battery and a second secondary battery, and this embodiment will be described below with reference to the drawings.

まず、第1の二次電池及び第2の二次電池に共通の構成について説明する。
図1に示すように電池セルは、正極1と負極2とが無機固体電解質層3を介して対向するように、正極1、負極2、無機固体電解質層3とが積層されてなる。正極1は正極活物質層4と正極集電体層5とが積層されてなり、負極2が、負極活物質層6と負極集電体層7とが積層されてなる。これら正極1および負極2間に無機固体電解質層3が挟持されている。正極1、負極2には外部に出力を引き出すためリードを備えた外部電極8、9がそれぞれ積層されている。特に薄型電池に適しており、例えば正極活物質層4の厚さは500〜0.1μm、より好ましくは50〜1μm、正極集電体層5の厚さは500〜0.1μm、より好ましくは50〜1μm、無機固体電解質層3の厚さは500〜0.1μm、より好ましくは50〜1μm、負極活物質層6の厚さは500〜0.1μm、より好ましくは50〜1μm、負極集電体層7の厚さは500〜0.1μm、より好ましくは50〜1μmの範囲が例示される。
First, a configuration common to the first secondary battery and the second secondary battery will be described.
As shown in FIG. 1, the battery cell is formed by laminating a positive electrode 1, a negative electrode 2, and an inorganic solid electrolyte layer 3 so that a positive electrode 1 and a negative electrode 2 face each other with an inorganic solid electrolyte layer 3 therebetween. The positive electrode 1 is formed by laminating a positive electrode active material layer 4 and a positive electrode current collector layer 5, and the negative electrode 2 is formed by laminating a negative electrode active material layer 6 and a negative electrode current collector layer 7. An inorganic solid electrolyte layer 3 is sandwiched between the positive electrode 1 and the negative electrode 2. The positive electrode 1 and the negative electrode 2 are laminated with external electrodes 8 and 9 each having a lead for extracting output to the outside. Particularly suitable for thin batteries, for example, the thickness of the positive electrode active material layer 4 is 500 to 0.1 μm, more preferably 50 to 1 μm, and the thickness of the positive electrode current collector layer 5 is 500 to 0.1 μm, more preferably. 50 to 1 μm, the thickness of the inorganic solid electrolyte layer 3 is 500 to 0.1 μm, more preferably 50 to 1 μm, and the thickness of the negative electrode active material layer 6 is 500 to 0.1 μm, more preferably 50 to 1 μm. The thickness of the electric body layer 7 is 500-0.1 micrometer, More preferably, the range of 50-1 micrometer is illustrated.

正極1の正極活物質層4について説明する。
正極活物質層4に用いられる正極活物質としては、種々の金属酸化物、金属硫化物などを用いることができる。特に金属酸化物が用いられる場合には、二次電池焼結を酸素雰囲気下で行うことが可能となり、得られる二次電池は、酸素欠陥が少なく、結晶性が高い活物質を得ることが可能になるため、理論容量に近い高容量な電池を作製できるため望ましい。
The positive electrode active material layer 4 of the positive electrode 1 will be described.
As the positive electrode active material used for the positive electrode active material layer 4, various metal oxides, metal sulfides, and the like can be used. In particular, when a metal oxide is used, secondary battery sintering can be performed in an oxygen atmosphere, and the obtained secondary battery can obtain an active material with few oxygen defects and high crystallinity. Therefore, it is desirable because a battery having a high capacity close to the theoretical capacity can be manufactured.

正極活物質の具体例としては、二酸化マンガン(MnO)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えばLiMnまたはLiMnO)、リチウムニッケル複合酸化物(例えばLiNiO)、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケルコバルト複合酸化物(例えばLiNi1−yCo)、リチウムマンガンコバルト複合酸化物(例えばLiMnCo1−y)、スピネル型リチウムマンガンニッケル複合酸化物(LiMn2−yNi)、オリビン構造を有するリチウムリン酸化物(LiFePO、LiFe1−yMnPO、LiCoPOなど)、硫酸鉄(Fe(SO)、バナジウム酸化物(例えばV)などから選択される少なくとも一種が挙げられる。なお、これらの化学式中、x,yは0〜1の範囲であることが好ましい。 Specific examples of the positive electrode active material include manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide (for example, Li x Mn 2 O 4 or Li x MnO 2 ), and lithium nickel composite oxide. (e.g. Li x NiO 2), lithium cobalt composite oxide (Li x CoO 2), lithium nickel cobalt composite oxide (e.g., LiNi 1-y Co y O 2 ), lithium manganese cobalt composite oxides (e.g. LiMn y Co 1 -y O 2), spinel type lithium-manganese-nickel composite oxide (Li x Mn 2-y Ni y O 4), lithium phosphates having an olivine structure (Li x FePO 4, Li x Fe 1-y Mn y PO 4, such as Li x CoPO 4), iron sulfate (Fe 2 (SO 4) 3 ), vanadium At least one selected from such product (e.g. V 2 O 5) can be mentioned. In these chemical formulas, x and y are preferably in the range of 0-1.

より好ましい正極活物質は、電池電圧が高いリチウムマンガン複合酸化物(LixMn)、リチウムニッケル複合酸化物(LiNiO)、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケルコバルト複合酸化物(LiNi1−yCo)、スピネル型リチウムマンガンニッケル複合酸化物(LiMn2−yNi)、リチウムマンガンコバルト複合酸化物(LiMnCo1−y)、リチウムリン酸鉄(LiFePO)などが挙げられる。(なお、x,yは0〜1の範囲であることが好ましい。)これらの正極活物質は酸化性の雰囲気下での焼結により結晶性が向上し電池特性を向上させる。 More preferable positive electrode active materials include lithium manganese composite oxide (LixMn 2 O 4 ), lithium nickel composite oxide (Li x NiO 2 ), lithium cobalt composite oxide (Li x CoO 2 ), and lithium nickel cobalt having a high battery voltage. complex oxide (Li x Ni 1-y Co y O 2), spinel type lithium-manganese-nickel composite oxide (Li x Mn 2-y Ni y O 4), lithium manganese cobalt composite oxide (Li x Mn y Co 1 -y O 2), lithium iron phosphate (Li x FePO 4), and the like. (Note that x and y are preferably in the range of 0 to 1.) These positive electrode active materials have improved crystallinity and improved battery characteristics by sintering in an oxidizing atmosphere.

正極集電体層5及び負極集電体層7について説明する。
正極集電体層5、負極集電体層7の少なくとも一方は、導電性金属酸化物層を用いる。導電性金属酸化物層とは、導電性金属酸化物同士が一体化しており層状の形状を構成したものを指す。層内に微小な孔を有する多孔質体であっても良い。この材料の適用により、電極、電解質及び集電体を同時に焼結することが可能であり、それにより活物質の結晶性が高くなり導電性がさらに向上するため、優れた電池特性を得る上で非常に適している。
The positive electrode current collector layer 5 and the negative electrode current collector layer 7 will be described.
At least one of the positive electrode current collector layer 5 and the negative electrode current collector layer 7 uses a conductive metal oxide layer. The conductive metal oxide layer refers to a layered shape in which conductive metal oxides are integrated with each other. It may be a porous body having fine pores in the layer. By applying this material, it is possible to simultaneously sinter the electrode, electrolyte and current collector, thereby increasing the crystallinity of the active material and further improving the electrical conductivity. Very suitable.

正極集電体層5及び負極集電体層7のどちらか一方に、導電性金属酸化物を用いない場合は、負極の充放電電位でリチウムと反応しない銅やニッケルなどの金属、合金製集電体を用いることは可能であるが、製膜後の高温焼成で正極・負極活物質層と反応しやすく電池性能を劣化させる恐れがあるため好ましくない。正極集電体層5および負極集電体層7共に導電性金属酸化物層を用いることが特に望ましい。   When a conductive metal oxide is not used for either the positive electrode current collector layer 5 or the negative electrode current collector layer 7, a metal or alloy collection such as copper or nickel that does not react with lithium at the charge / discharge potential of the negative electrode Although it is possible to use an electric body, it is not preferable because high-temperature baking after film formation tends to react with the positive electrode / negative electrode active material layer and may deteriorate battery performance. It is particularly desirable to use a conductive metal oxide layer for both the positive electrode current collector layer 5 and the negative electrode current collector layer 7.

前記導電性金属酸化物としては、Sn、In、Zn、Tiから選ばれる少なくとも1種の元素の酸化物が挙げられる。さらに具体的には、SnO、In、ZnO、TiO(0.5≦x≦2)が挙げられる。これら導電性金属酸化物には、構造中にSb、Nb、Taなど導電性を高めるための微量元素を(例えば10at%以下)含んでも良い。 Examples of the conductive metal oxide include oxides of at least one element selected from Sn, In, Zn, and Ti. More specifically, SnO 2, In 2 O 3 , ZnO, TiO x (0.5 ≦ x ≦ 2) and the like. These conductive metal oxides may contain a trace element (for example, 10 at% or less) for enhancing conductivity such as Sb, Nb, Ta in the structure.

無機固体電解質3について説明する。
無機固体電解質3にはイオン導電性があり、電子伝導性が無視できるほど小さい材料を用いる。無機固体電解質3はリチウムを含むものを用い、この二次電池はリチウムイオンが可動イオンとする。例えば、LiPOをはじめ、LiPOに窒素を混ぜたLiPO4−x(xは0<x≦1)、LiS−SiS、LiS−P、LiS−B等のリチウムイオン伝導性ガラス状固体電解質や、これらのガラスにLiIなどのハロゲン化リチウム、LiPOなどのリチウム酸素酸塩をドープしたリチウムイオン伝導性固体電解質などは、リチウムイオン伝導性が高く、有効である。中でも、リチウムとチタンと酸素を含むチタン酸化物型の固体電解質、例えば、LiLaTiO(xは0<x<1、yは0<y<1)などは酸素雰囲気下での焼成においても安定な性能を示すため好ましい。
The inorganic solid electrolyte 3 will be described.
The inorganic solid electrolyte 3 is made of a material that has ionic conductivity and is so small that electronic conductivity can be ignored. The inorganic solid electrolyte 3 uses lithium, and in this secondary battery, lithium ions are movable ions. For example, Li 3 PO 4 , Li 3 PO 4 mixed with nitrogen, LiPO 4-x N x (x is 0 <x ≦ 1), Li 2 S—SiS 2 , Li 2 S—P 2 S 5 , Lithium ion conductive glassy solid electrolytes such as Li 2 S—B 2 S 3 , and lithium ion conductive solid electrolytes obtained by doping these glasses with lithium halides such as LiI and lithium oxyacid salts such as Li 3 PO 4 Etc. have high lithium ion conductivity and are effective. Among them, a titanium oxide type solid electrolyte containing lithium, titanium, and oxygen, for example, Li x La y TiO 3 (x is 0 <x <1, y is 0 <y <1) is fired in an oxygen atmosphere. Is preferable because it exhibits stable performance.

外部電極8,9について説明する。
外部電極8,9を構成する材料は特に限定されない。例えば、Ag、Ag/Pd合金、Niメッキ、蒸着によるCuなどが挙げられる。また、外部電極表面には実装のための半田メッキなどをおこなっても良い。外部電極8,9の接続形態は図1のものに限定されず、正極、1、負極2、無機固体電解質3を備えた電池要素を樹脂などで覆い、正極、負極の一部に接続するリード線で出力を外部に引き出す構成であってもよい。
The external electrodes 8 and 9 will be described.
The material constituting the external electrodes 8 and 9 is not particularly limited. For example, Ag, Ag / Pd alloy, Ni plating, Cu by vapor deposition, and the like can be mentioned. Further, solder plating for mounting may be performed on the surface of the external electrode. The connection form of the external electrodes 8 and 9 is not limited to that shown in FIG. 1. The battery element including the positive electrode 1, the negative electrode 2, and the inorganic solid electrolyte 3 is covered with a resin or the like and connected to a part of the positive electrode and negative electrode A configuration in which the output is drawn to the outside by a line may be used.

二次電池を構成する正極1、後述する負極2、無機固体電解質3、外部電極8,9などに対して、例えばSiO、Al、PbO、MgOなどの無機物が混合されていてもよいし、PVBやMEKなどの有機物を含んでいても良い。 Even if an inorganic material such as SiO 2 , Al 2 O 3 , PbO, or MgO is mixed with the positive electrode 1 constituting the secondary battery, the negative electrode 2 described later, the inorganic solid electrolyte 3, the external electrodes 8 and 9, etc. It may also contain organic substances such as PVB and MEK.

二次電池の形状について、図1には、平坦な層状電極及び電解質を積層した平面状の二次電池の例を示したが電池形状はこれに限定されない。例えば円柱型、ロッド型などであってもよい。   Regarding the shape of the secondary battery, FIG. 1 shows an example of a planar secondary battery in which a flat layered electrode and an electrolyte are stacked, but the battery shape is not limited to this. For example, a cylindrical shape, a rod shape, or the like may be used.

次に第1の二次電池、第2の二次電池で共通の構成ではない負極活物質層6に用いられる負極活物質について説明する。第1の二次電池、第2の二次電池で用いられる負極活物質の適用により、電池要素前駆体を一括焼結して二次電池を製造する製造方法を適用した場合においても、その負極活物質特性が劣化することなく、良好な電池特性が発揮される。   Next, the negative electrode active material used for the negative electrode active material layer 6 which is not a common structure in the first secondary battery and the second secondary battery will be described. Even when a production method for producing a secondary battery by applying a negative electrode active material used in the first secondary battery and the second secondary battery to sinter battery element precursors at the same time is applied. Good battery characteristics are exhibited without deterioration of the active material characteristics.

(1)第1の二次電池
第1の二次電池において負極活物質層6に用いられる負極活物質は、金属リチウム、若しくはリチウム合金を用いる。前記リチウム合金としてはリチウム及びSn、In、Znから選択される少なくとも一種の合金が容量が大きいため薄型化が可能となり、界面での応力を抑制できるために望ましい。具体的な合金組成としては、Li4.4Sn、LiIn、LiZnなどが挙げられ、特にLi4.4Snなどが高容量で薄膜化が可能であるため望ましい。
(1) First Secondary Battery The negative electrode active material used for the negative electrode active material layer 6 in the first secondary battery uses metallic lithium or a lithium alloy. As the lithium alloy, lithium and at least one alloy selected from Sn, In, and Zn have a large capacity, so that the thickness can be reduced and the stress at the interface can be suppressed. Specific examples of the alloy composition include Li 4.4 Sn, LiIn, LiZn, and the like, and particularly Li 4.4 Sn is desirable because it has a high capacity and can be thinned.

金属リチウム、若しくはリチウム合金の負極活物質層6は、二次電池組み立て後、初回充電時に析出形成することができる。負極集電体層7である導電性金属酸化物が、正極活物質層4もしくは無機固体電解質層3から放出されるリチウムイオンと反応する材料(たとえば錫酸化物、インジウム酸化物、亜鉛酸化物)である場合には、無機固体電解質層3と負極集電体層7の間に負極活物質層6となるリチウム合金層が形成される。また、負極集電体層7である導電性金属酸化物が、正極から放出されるリチウムイオンと反応しない材料(例えばチタン酸化物)である場合には、無機固体電解質層3と負極集電体層7の間に負極活物質層6となる金属リチウム層が形成される。このような充電によって形成される負極活物質層6は、隣接する無機固体電解質3、あるいは負極集電体層7との接合性に富む良好な界面が形成される。この結果、界面抵抗が小さい優れた電池を作製できる。   The negative electrode active material layer 6 made of metallic lithium or lithium alloy can be deposited at the time of initial charge after the secondary battery is assembled. A material (for example, tin oxide, indium oxide, zinc oxide) in which the conductive metal oxide which is the negative electrode current collector layer 7 reacts with lithium ions released from the positive electrode active material layer 4 or the inorganic solid electrolyte layer 3 In this case, a lithium alloy layer to be the negative electrode active material layer 6 is formed between the inorganic solid electrolyte layer 3 and the negative electrode current collector layer 7. When the conductive metal oxide that is the negative electrode current collector layer 7 is a material that does not react with lithium ions released from the positive electrode (for example, titanium oxide), the inorganic solid electrolyte layer 3 and the negative electrode current collector A metal lithium layer that becomes the negative electrode active material layer 6 is formed between the layers 7. The negative electrode active material layer 6 formed by such charging forms a good interface rich in bondability with the adjacent inorganic solid electrolyte 3 or the negative electrode current collector layer 7. As a result, an excellent battery with low interface resistance can be produced.

(2)第2の二次電池
第1の二次電池において負極活物質層6に用いられる負極活物質は、負極2の作動電位が金属リチウムの電位に対して1.0Vよりも貴となる負極活物質を用いる。負極集電体7に用いられる導電性金属酸化物がリチウムイオンを挿入・脱離する電位は1.0V以下である。したがって負極活物質層6でリチウムイオンの挿入・脱離反応が進行する電位で、負極集電体層7の導電性金属酸化物がリチウムイオンと反応することはない。したがって集電体層7の導電性金属酸化物の反応によって負極活物質自体の電極反応を阻害することがなく、第1の電池に比べて電池の繰り返し寿命が向上する。
(2) Second Secondary Battery In the first secondary battery, the negative electrode active material used for the negative electrode active material layer 6 has an operating potential of the negative electrode 2 nobler than 1.0 V with respect to the potential of metallic lithium. A negative electrode active material is used. The potential at which the conductive metal oxide used for the negative electrode current collector 7 inserts and desorbs lithium ions is 1.0 V or less. Therefore, the conductive metal oxide of the negative electrode current collector layer 7 does not react with lithium ions at a potential at which the insertion / extraction reaction of lithium ions proceeds in the negative electrode active material layer 6. Therefore, the reaction of the conductive metal oxide in the current collector layer 7 does not hinder the electrode reaction of the negative electrode active material itself, and the repetitive life of the battery is improved as compared with the first battery.

負極活物質は、負極の作動電位が金属リチウムの電位に対して1.0Vよりも貴となる物質であって、かつ導電性を有し、リチウムイオンの挿入・脱離反応の可逆性が高い物質であり、さらにリチウムイオンの吸蔵・放出の際に体積変化が小さく、さらに加熱によって大きく変質しない物質が用いられることが望ましく、具体的には、酸化タングステン(例えばWO(1.8<a<2.2)、負極の作動電位1.0〜1.4V)、酸化モリブデン(例えばMoO(1.8<b<2.2)、負極の作動電位1.0〜1.4V)、硫化鉄(例えばFeS(0.9<c<1.1)、負極の作動電位約1.8V)、硫化鉄リチウム(LiFeS(0≦x≦4、0.9≦y≦2.1)、負極の作動電位約1.8V)、硫化チタン(例えばTiS(1.8<d<2.2)、負極の作動電位1.5〜2.7V)、チタン酸リチウム(例えばLi4+zTi12(0≦z≦3)、負極の作動電位約1.55V)などの金属酸化物や金属硫化物を用いることができる。これらは単独で用いてもよく、または2種以上混合して用いても良い。特にリチウムと鉄を含む複合硫化物、あるいはリチウムとチタンを含む複合酸化物であることが望ましく、中でもLiFeS(0≦x≦4、0.9≦y≦2.1)で表される硫化鉄(負極の作動電位約1.8V)、あるいは化学式Li4+xTi12(0≦x≦3)で表されスピネル型構造を有するチタン酸リチウム(負極の作動電位約1.55V)リチウムイオンの吸蔵量が多く電池容量をより高くするため望ましい。 The negative electrode active material is a material in which the operating potential of the negative electrode is nobler than 1.0 V with respect to the potential of metallic lithium, has conductivity, and has high reversibility of lithium ion insertion / extraction reactions. It is desirable to use a substance that has a small volume change upon occlusion / release of lithium ions and that does not change greatly upon heating. Specifically, tungsten oxide (for example, WO a (1.8 <a <2.2), negative electrode operating potential 1.0 to 1.4 V), molybdenum oxide (for example, MoO b (1.8 <b <2.2), negative electrode operating potential 1.0 to 1.4 V), Iron sulfide (for example, Fe c S (0.9 <c <1.1), negative electrode operating potential of about 1.8 V), lithium iron sulfide (Li x FeS y (0 ≦ x ≦ 4, 0.9 ≦ y ≦ 2.1), negative electrode working potential of about 1.8V), titanium sulfide (eg TiS d (1.8 <d <2.2), negative electrode operating potential 1.5 to 2.7 V), lithium titanate (for example, Li 4 + z Ti 5 O 12 (0 ≦ z ≦ 3), negative electrode operation) A metal oxide or metal sulfide having a potential of about 1.55 V) can be used. These may be used alone or in combination of two or more. In particular, it is preferably a composite sulfide containing lithium and iron, or a composite oxide containing lithium and titanium, and is represented by Li x FeS y (0 ≦ x ≦ 4, 0.9 ≦ y ≦ 2.1). Iron sulfide (negative electrode operating potential of about 1.8 V) or lithium titanate represented by the chemical formula Li 4 + x Ti 5 O 12 (0 ≦ x ≦ 3) and having a spinel structure (negative electrode operating potential of about 1.55 V) This is desirable because the amount of occlusion of lithium ions is large and the battery capacity is increased.

以上の如くの第1、第2の二次電池の構成を採用することにより、正極、負極、無機固体電解質を一括して焼結する製造プロセスを採用でき、例えば、以下のような簡便なプロセスで無機固体電解質二次電池を完成させることができる。   By adopting the configuration of the first and second secondary batteries as described above, a manufacturing process in which the positive electrode, the negative electrode, and the inorganic solid electrolyte are sintered together can be adopted. For example, the following simple process Thus, an inorganic solid electrolyte secondary battery can be completed.

次に第1、第2の二次電池の製造方法について図2を用いて説明する。図2は二次電池製造プロセスの一実施形態を示す概略断面図である。   Next, the manufacturing method of the 1st, 2nd secondary battery is demonstrated using FIG. FIG. 2 is a schematic cross-sectional view showing an embodiment of a secondary battery manufacturing process.

図2において例えばキャリアシート10上に無機固体電解質層3、正極活物質層4、正極集電体層5、負極用活物質層6、よび負極集電体層7を準備する。ただし負極活物質層を後工程の初充電により析出させて形成する二次電池の場合には負極活物質層6をあらかじめ準備しておくことは不要である。   In FIG. 2, for example, an inorganic solid electrolyte layer 3, a positive electrode active material layer 4, a positive electrode current collector layer 5, a negative electrode active material layer 6, and a negative electrode current collector layer 7 are prepared on a carrier sheet 10. However, it is not necessary to prepare the negative electrode active material layer 6 in advance in the case of a secondary battery formed by depositing the negative electrode active material layer by the initial charge in the subsequent process.

各層の形成は、例えば各部材の構成材料をバインダー(例えば、ポリフッ化ビニリデン、
スチレンブタジエンゴムなど)及び溶媒(N−メチルピロリドン、水など)で混練したスラリーをスクリーン印刷やドクターブレード法で必要とする厚みにキャリアシートに塗布した後、キャリアシートを除去することにより行うことができる。導電性金属酸化物で構成される正極集電体層5、負極活物質層6には、酸化により絶縁層を形成する金属等の物質は含有させたり表面に被着させたりしないことが望ましい。
Each layer is formed by, for example, using a constituent material of each member as a binder (for example, polyvinylidene fluoride,
This can be done by applying a slurry kneaded with styrene-butadiene rubber or the like and a solvent (N-methylpyrrolidone, water, etc.) to the required thickness by screen printing or doctor blade method, and then removing the carrier sheet. it can. It is desirable that the positive electrode current collector layer 5 and the negative electrode active material layer 6 made of a conductive metal oxide do not contain a material such as a metal that forms an insulating layer by oxidation or be deposited on the surface.

各層を構成する材料が互いに相溶しなければ、例えば正極活物質層4と正極集電体層ト5を同一キャリアシート上に順次積層して形成するなど、複数の部材を組み合わせて同一キャリアシート上に積層して形成しても良い。また、正極活物質層4、正極集電体層5、負極活物質層6(初充電によって負極活物質層を形成する場合には不要)、負極集電体層7および無機固体電解質3のすべての部材を前記スラリーの状態でスクリーン印刷法などを適用して順次積層して形成することも可能である。   If the materials constituting each layer are not compatible with each other, for example, the positive electrode active material layer 4 and the positive electrode current collector layer 5 are sequentially stacked on the same carrier sheet. You may laminate and form on top. Further, all of the positive electrode active material layer 4, the positive electrode current collector layer 5, the negative electrode active material layer 6 (not necessary when the negative electrode active material layer is formed by initial charging), the negative electrode current collector layer 7, and the inorganic solid electrolyte 3 are all included. It is also possible to sequentially laminate the members in the slurry state by applying a screen printing method or the like.

次に乾燥した各層から、キャリアシートを除去した後に固体電解質層3が正活物質層4と負活物質層6で挟まれ、正極活物質層4の外側に正極集電体層5、負極活物質層6の外側に負極集電体層7が位置するように積層して電池要素前駆体を形成する。このとき熱圧着しながら行うことが望ましい。さらにその電池要素前駆体を、各層を一体化させる所定の治具に入れ、静水圧処理を行う。その後にダイシング加工を行う。   Next, after removing the carrier sheet from each dried layer, the solid electrolyte layer 3 is sandwiched between the positive active material layer 4 and the negative active material layer 6, and the positive electrode current collector layer 5, the negative electrode active material layer are disposed outside the positive electrode active material layer 4. The battery element precursor is formed by stacking so that the negative electrode current collector layer 7 is positioned outside the material layer 6. At this time, it is desirable to perform it while thermocompression bonding. Further, the battery element precursor is put in a predetermined jig for integrating the layers and subjected to a hydrostatic pressure treatment. Then, dicing is performed.

さらに、この電池要素前駆体を500℃以上1500℃以下、望ましくは700℃以上900℃以下の温度条件にて高温焼結する。焼結時の雰囲気は材料に酸化物を用いていることから、酸化性雰囲気で行われる。例えば酸素含有雰囲気が良く、特に大気雰囲気中で行われることが最も簡便であるが、原料によっては酸化還元反応を調整する目的で各種雰囲気を調整して行われても全く支障はない。焼成時間は0.1〜10時間の範囲であることが望ましい。   Further, the battery element precursor is sintered at a high temperature under a temperature condition of 500 ° C. or higher and 1500 ° C. or lower, desirably 700 ° C. or higher and 900 ° C. or lower. The atmosphere during sintering is an oxidizing atmosphere because an oxide is used as a material. For example, the oxygen-containing atmosphere is good, and it is most convenient to carry out in an air atmosphere. However, depending on the raw material, there is no problem even if it is carried out by adjusting various atmospheres for the purpose of adjusting the oxidation-reduction reaction. The firing time is desirably in the range of 0.1 to 10 hours.

次に正極集電体層5及び負極集電体層7に接続する外部電極8、9を金属端子を導電性ペーストなどでそれぞれ接合して乾燥した後、樹脂コーティングによる外装をディッピングなどでコーティングして硬化させもて二次電池とすることができる。   Next, the external electrodes 8 and 9 connected to the positive electrode current collector layer 5 and the negative electrode current collector layer 7 are dried by bonding metal terminals to each other with a conductive paste or the like, and then coating the exterior with a resin coating by dipping or the like. Then, it can be cured to make a secondary battery.

初充電することによって、負極活物質層6を形成させる場合は、この後、充電工程を行うことによって、固体電解質層3と負極集電体層7間に負極活物質層6が析出する。   When the negative electrode active material layer 6 is formed by initial charging, the negative electrode active material layer 6 is deposited between the solid electrolyte layer 3 and the negative electrode current collector layer 7 by performing a charging step thereafter.

以下に例を挙げ、本発明をさらに詳しく説明するが、発明の主旨を超えない限り本発明は以下に掲載される実施例に限定されるものでない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples as long as the gist of the invention is not exceeded.

(実施例1)
以下の手順にて方法にて二次電池を作成した。二次電池の構造を示す概略断面図を図1に、二次電池の製造工程を示す概略断面図を図2に示す。
Example 1
A secondary battery was prepared by the following procedure. FIG. 1 is a schematic cross-sectional view showing the structure of the secondary battery, and FIG.

<無機固体電解質層の作製>
無機固体電解質としてチタン酸ランタンリチウム(LiLaTiO)粉末95重量%、ポリフッ化ビニリデン(PVdF)5重量%をN−メチルピロリドン(NMP)に加えて混合してスラリーとし、このスラリーをキャリアシート10上に塗布、乾燥させ、キャリアシート10に無機固体電解質層3を形成した。
<Preparation of inorganic solid electrolyte layer>
Inorganic solid lanthanum titanate lithium as an electrolyte (Li x La y TiO 3) powder 95 wt%, added to and mixed with polyvinylidene fluoride (PVdF) were added 5% by weight N-methylpyrrolidone (NMP) as a slurry, the slurry The inorganic solid electrolyte layer 3 was formed on the carrier sheet 10 by applying and drying on the carrier sheet 10.

<正極・負極集電体層の作製>
アンチモンをドープしたスズ酸化物(SnO)粉末95重量%、ポリフッ化ビニリデン(PVdF)5重量%をN−メチルピロリドン(NMP)に加えて混合してスラリーとし、このスラリーをキャリアシート10上に塗布、乾燥させ、キャリアシート10上に正極集電体層5、負極集電体層7をそれぞれ作成した。
<Preparation of positive electrode / negative electrode current collector layer>
Antimony-doped tin oxide (SnO 2 ) powder 95% by weight and polyvinylidene fluoride (PVdF) 5% by weight are added to N-methylpyrrolidone (NMP) and mixed to form a slurry. Application and drying were performed to prepare a positive electrode current collector layer 5 and a negative electrode current collector layer 7 on the carrier sheet 10.

<正極活物質層の作製>
正極活物質としてコバルト酸リチウム(LiCoO)粉末95重量%、ポリフッ化ビニリデン(PVdF)5重量%をN−メチルピロリドン(NMP)に加えて混合してスラリーとし、このスラリーをキャリアシート上に塗布、乾燥させ、キャリアシート10上に正極活物質層4を作成した。
<Preparation of positive electrode active material layer>
As a positive electrode active material, 95% by weight of lithium cobaltate (LiCoO 2 ) powder and 5% by weight of polyvinylidene fluoride (PVdF) are added to N-methylpyrrolidone (NMP) to form a slurry, and this slurry is applied onto a carrier sheet. Then, the positive electrode active material layer 4 was formed on the carrier sheet 10.

これら構成部材からなる正極集電体層5、正極活物質層4、無機固体電解質層3、負極集電体層6を順次積層させ電池要素前駆体を形成し、これを酸素気流中900℃で1時間焼成した。   A positive electrode current collector layer 5, a positive electrode active material layer 4, an inorganic solid electrolyte layer 3, and a negative electrode current collector layer 6 made of these constituent members are sequentially laminated to form a battery element precursor, which is then heated at 900 ° C. in an oxygen stream. Baked for 1 hour.

得られた電池要素の正極集電体5、負極集電体7にそれぞれ接続する外部電極8、9を取り付けた後、4.1Vまで充電し、無機固体電解質二次電池を完成させた。   The external electrodes 8 and 9 connected to the positive electrode current collector 5 and the negative electrode current collector 7 of the obtained battery element were attached, respectively, and then charged to 4.1 V to complete an inorganic solid electrolyte secondary battery.

完成した電池を積層面に対して垂直に切断し、SEM−EDX分析、XRD分析を行った結果、負極集電体シート7と無機固体電解質層3の間に負極活物質層6となるLi−Sn合金層の存在が確認できた。   The completed battery was cut perpendicularly to the laminated surface and subjected to SEM-EDX analysis and XRD analysis, and as a result, Li-- which became the negative electrode active material layer 6 between the negative electrode current collector sheet 7 and the inorganic solid electrolyte layer 3 was obtained. The presence of the Sn alloy layer was confirmed.

(実施例2)
正極、負極集電体層材料として、インジウム酸化物(In)を用いるほか、実施例1と同様の電池を作製した。
(Example 2)
A battery similar to that of Example 1 was prepared, except that indium oxide (In 2 O 3 ) was used as the positive electrode and negative electrode current collector layer material.

完成した電池を積層面に対して垂直に切断し、SEM−EDX分析、XRD分析を行った結果、負極集電体シート7と無機固体電解質層3の間に負極活物質層6となるLi−In合金層の存在が確認できた。   The completed battery was cut perpendicularly to the laminated surface and subjected to SEM-EDX analysis and XRD analysis, and as a result, Li-- which became the negative electrode active material layer 6 between the negative electrode current collector sheet 7 and the inorganic solid electrolyte layer 3 was obtained. The presence of the In alloy layer was confirmed.

(実施例3)
正極、負極集電体層として、亜鉛酸化物(ZnO)を用いるほか、実施例1と同様の電池を作製した。
(Example 3)
A battery similar to that of Example 1 was fabricated in addition to using zinc oxide (ZnO) as the positive electrode and negative electrode current collector layers.

完成した電池を積層面に対して垂直に切断し、SEM−EDX分析、XRD分析を行った結果、負極集電体シート7と無機固体電解質層3の間に負極活物質層6となるLi−Zn合金層の存在が確認できた。   The completed battery was cut perpendicularly to the laminated surface and subjected to SEM-EDX analysis and XRD analysis, and as a result, Li-- which became the negative electrode active material layer 6 between the negative electrode current collector sheet 7 and the inorganic solid electrolyte layer 3 was obtained. The presence of the Zn alloy layer was confirmed.

(実施例4)
正極、負極集電体層として、ニオブをドープしたチタン酸化物(TiO)を用いるほか、実施例1と同様の電池を作製した。
Example 4
A battery similar to that of Example 1 was fabricated except that niobium-doped titanium oxide (TiO 2 ) was used as the positive electrode and the negative electrode current collector layer.

完成した電池を積層面に対して垂直に切断し、SEM−EDX分析、XRD分析を行った結果、負極集電体層と無機固体電解質層の間にLi金属層の存在が確認できた。   As a result of cutting the completed battery perpendicular to the laminated surface and performing SEM-EDX analysis and XRD analysis, the presence of a Li metal layer was confirmed between the negative electrode current collector layer and the inorganic solid electrolyte layer.

(実施例5)
正極集電体層5、正極活物質層4、無機固体電解質層3、負極集電体7としては実施例1と同様なものを用い、負極活物質層6として以下のように作成したものを用いて、正極集電体層5、正極活物質層4、無機固体電解質層3、負極活物質層6、負極集電体6層を順次積層させ電池要素前駆体を形成し、これを酸素気流中900℃で1時間焼成した。
(Example 5)
As the positive electrode current collector layer 5, the positive electrode active material layer 4, the inorganic solid electrolyte layer 3, and the negative electrode current collector 7, the same materials as in Example 1 were used, and the negative electrode active material layer 6 was prepared as follows. The positive electrode current collector layer 5, the positive electrode active material layer 4, the inorganic solid electrolyte layer 3, the negative electrode active material layer 6, and the negative electrode current collector 6 layer are sequentially laminated to form a battery element precursor, Baked at 900 ° C. for 1 hour.

得られた電池要素の正極集電体5、負極集電体7にそれぞれ接続する外部電極8、9を取り付けた後、2.8Vまで充電し、無機固体電解質二次電池を完成させた。   After attaching the external electrodes 8 and 9 connected to the positive electrode current collector 5 and the negative electrode current collector 7 of the obtained battery element, respectively, the battery was charged to 2.8 V to complete an inorganic solid electrolyte secondary battery.

<負極活物質層の作成>
負極活物質としてチタン酸リチウム(LiTi12)粉末95重量%、ポリフッ化ビニリデン(PVdF)5重量%をN−メチルピロリドン(NMP)に加えて混合してスラリーとし、このスラリーをシート状に塗布、乾燥させた。
<Creation of negative electrode active material layer>
As a negative electrode active material, 95% by weight of lithium titanate (Li 4 Ti 5 O 12 ) powder and 5 % by weight of polyvinylidene fluoride (PVdF) are added to N-methylpyrrolidone (NMP) and mixed to form a slurry. It was applied and dried.

(実施例6)
正極、負極集電体層材料として、インジウム酸化物(In)を用いる他は、実施例5と同様の電池を作製した。
(Example 6)
A battery was prepared in the same manner as in Example 5 except that indium oxide (In 2 O 3 ) was used as the positive electrode and negative electrode current collector layer material.

(実施例7)
正極、負極集電体層材料として、亜鉛酸化物(ZnO)を用いる他は、実施例5と同様の電池を作製した。
(Example 7)
A battery was prepared in the same manner as in Example 5 except that zinc oxide (ZnO) was used as the positive electrode and negative electrode current collector layer material.

(実施例8)
正極、負極集電体層材料として、ニオブをドープしたチタン酸化物(TiO)を用いる他は、実施例5と同様の電池を作製した。
(Example 8)
A battery was prepared in the same manner as in Example 5 except that niobium-doped titanium oxide (TiO 2 ) was used as the positive electrode and negative electrode current collector layer material.

(実施例9)
負極活物質として、硫化鉄(FeS)を用いる他は、実施例5と同様の電池を作製した。
Example 9
A battery was prepared in the same manner as in Example 5 except that iron sulfide (FeS) was used as the negative electrode active material.

(実施例10)
負極活物質として、硫化チタン(TiS)を用いる他は、実施例5と同様の電池を作製した。
(Example 10)
A battery was prepared in the same manner as in Example 5 except that titanium sulfide (TiS 2 ) was used as the negative electrode active material.

(実施例11)
負極活物質として、酸化タングステン(WO)を用いる他は、実施例5と同様の電池を作製した。
(Example 11)
A battery was prepared in the same manner as in Example 5 except that tungsten oxide (WO 2 ) was used as the negative electrode active material.

(比較例1)
正極集電体層5としてアルミニウム箔を、負極集電体層7として銅箔を用い、さらに負極活物質として黒鉛を用いて負極活物質層6をキャリアシート10上に形成し電池要素を作成した後、焼結を行い負極活物質層6を形成した以外は、実施例1と同様の電池を作製した。
(Comparative Example 1)
An aluminum foil was used as the positive electrode current collector layer 5, a copper foil was used as the negative electrode current collector layer 7, and a negative electrode active material layer 6 was formed on the carrier sheet 10 using graphite as the negative electrode active material to produce a battery element. Thereafter, a battery similar to that of Example 1 was produced except that the negative electrode active material layer 6 was formed by sintering.

(比較例2)
正極集電体層5としてアルミニウム箔を、負極集電体層7として銅箔を用い、さらに負極活物質として黒鉛を用いて負極活物質層6をキャリアシート10上に形成し電池要素前駆体を作成した後、アルゴン雰囲気で焼結を行い負極活物質層6を形成した以外は、実施例1と同様の電池を作製した。
(Comparative Example 2)
An aluminum foil is used as the positive electrode current collector layer 5, a copper foil is used as the negative electrode current collector layer 7, and a negative electrode active material layer 6 is formed on the carrier sheet 10 using graphite as the negative electrode active material. After the production, a battery similar to Example 1 was produced except that the negative electrode active material layer 6 was formed by sintering in an argon atmosphere.

(比較例3)
負極活物質として黒鉛を用いて負極活物質層6をキャリアシート10上に形成し電池要素前駆体を作成した後、焼結を行い負極活物質層6を形成した以外は、実施例1と同様の電池を作製した。
(Comparative Example 3)
The negative electrode active material layer 6 was formed on the carrier sheet 10 using graphite as the negative electrode active material to prepare the battery element precursor, and then the same as in Example 1 except that the negative electrode active material layer 6 was formed by sintering. A battery was prepared.

(比較例4)
負極集電体層7として黒鉛を用い、アルゴン雰囲気で焼結させる他は、実施例1と同様の電池を作製した。
(Comparative Example 4)
A battery was prepared in the same manner as in Example 1 except that graphite was used as the negative electrode current collector layer 7 and sintering was performed in an argon atmosphere.

(比較例5)
正極集電体層5としてアルミニウム箔、負極集電体層7として銅箔を用いる他、実施例1と同様の電池を作製した。
(Comparative Example 5)
A battery was prepared in the same manner as in Example 1 except that aluminum foil was used as the positive electrode current collector layer 5 and copper foil was used as the negative electrode current collector layer 7.

完成した実施例1〜11、比較例1〜5の電池の電池容量を測定した結果を表1に記載する。各電池に用いた正極活物質は同様のものであり、同量を塗布しているため、本来、電池容量は同じになるはずである。しかしながら、比較例1〜4は実施例1に対して電池容量が格段に小さいことが分かった。   Table 1 shows the results of measuring the battery capacities of the completed batteries of Examples 1 to 11 and Comparative Examples 1 to 5. The positive electrode active material used for each battery is the same, and since the same amount is applied, the battery capacity should be essentially the same. However, Comparative Examples 1 to 4 were found to have a significantly smaller battery capacity than Example 1.

容量確認した電池を分解、解析した結果、比較例1の電池では、集電体と負極活物質である黒鉛が酸化して、界面で種々の変質層が形成されていた。この変質相の生成が、電池特性を劣化させたものと考えられた。   As a result of disassembling and analyzing the battery whose capacity was confirmed, in the battery of Comparative Example 1, the current collector and the graphite as the negative electrode active material were oxidized, and various deteriorated layers were formed at the interface. It was thought that the generation of this altered phase deteriorated the battery characteristics.

比較例2の電池では、集電体や負極活物質である黒鉛の酸化は軽減されていたが、正極活物質であるコバルト酸リチウムの結晶性が低下していることが分かった。還元雰囲気で焼成したことが結晶性を低下させ、電池性能を劣化させたと考えられた。   In the battery of Comparative Example 2, it was found that the oxidation of graphite as the current collector and the negative electrode active material was reduced, but the crystallinity of lithium cobaltate as the positive electrode active material was lowered. It was thought that firing in a reducing atmosphere reduced crystallinity and battery performance.

比較例3の電池では、比較例1同様に負極活物質である黒鉛の酸化が、比較例4の電池では、比較例2同様に正極活物質の結晶性の低下が認められ、電池性能が劣化することが分かった。   In the battery of Comparative Example 3, oxidation of graphite as the negative electrode active material was observed as in Comparative Example 1, and in the battery of Comparative Example 4, the crystallinity of the positive electrode active material was decreased as in Comparative Example 2, and the battery performance was deteriorated. I found out that

比較例5の電池では、集電体であるアルミニウムや銅の酸化が確認され、集電層の崩壊が電池性能を低下させていることが分かった。   In the battery of Comparative Example 5, the oxidation of aluminum and copper as current collectors was confirmed, and it was found that the collapse of the current collecting layer lowered the battery performance.

また実施例1〜11の電池についてサイクル寿命を測定した結果を下の表1に併記する。サイクル寿命試験は20℃で行い、充電電流1C、放電電流1Cとし、実施例1〜4の電池に関しては、充電時間3時間、充電及び放電終止電圧は4.1V、3Vとして充放電サイクルを繰り返し容量維持率を測定した。実施例5〜11の電池に関しては、充電時間3時間、充電及び放電終止電圧は2.8V、1.5Vとして充放電サイクルを繰り返し容量維持率を測定した。   The results of measuring the cycle life of the batteries of Examples 1 to 11 are also shown in Table 1 below. The cycle life test is performed at 20 ° C., charging current is 1 C, discharging current is 1 C. For the batteries of Examples 1 to 4, the charging time is 3 hours, the charging and discharging end voltages are 4.1 V and 3 V, and the charging and discharging cycle is repeated. The capacity retention rate was measured. Regarding the batteries of Examples 5 to 11, the capacity retention rate was measured by repeating the charge and discharge cycles with a charge time of 3 hours and charge and discharge end voltages of 2.8 V and 1.5 V.

Figure 2009081140
Figure 2009081140

本発明に係わる二次電池の概略断面図。1 is a schematic cross-sectional view of a secondary battery according to the present invention. 本発明に係わる二次電池の製造方法を示す概略断面図。The schematic sectional drawing which shows the manufacturing method of the secondary battery concerning this invention.

符号の説明Explanation of symbols

1 正極
2 負極
3 無機固体電解質層
4 正極活物質層
5 正極集電体層
6 負極活物質層
7 負極集電体層
8 正極外部電極
9 負極外部電極
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Inorganic solid electrolyte layer 4 Positive electrode active material layer 5 Positive electrode collector layer 6 Negative electrode active material layer 7 Negative electrode collector layer 8 Positive electrode external electrode 9 Negative electrode external electrode

Claims (6)

正極活物質層と、正極集電体層とが積層された正極と、
負極活物質層と、負極集電体層とが積層された負極と、
前記正極及び前記負極間に挟持された、リチウムを含有する無機固体電解質とを具備し、
前記負極活物質層に、負極の作動電位が金属リチウムの電位に対して1.0Vよりも貴となる負極活物質を用い、かつ
前記正極集電体及び負極集電体の少なくとも一方は導電性金属酸化物層であることを特徴とする二次電池。
A positive electrode in which a positive electrode active material layer and a positive electrode current collector layer are laminated;
A negative electrode in which a negative electrode active material layer and a negative electrode current collector layer are laminated;
An inorganic solid electrolyte containing lithium sandwiched between the positive electrode and the negative electrode,
The negative electrode active material layer uses a negative electrode active material in which the negative electrode operating potential is nobler than 1.0 V with respect to the potential of metallic lithium, and at least one of the positive electrode current collector and the negative electrode current collector is conductive. A secondary battery comprising a metal oxide layer.
前記導電性金属酸化物は、Sn、In、Zn、Tiから選ばれる少なくとも1種の元素の酸化物であることを特徴とする請求項1記載の二次電池。   2. The secondary battery according to claim 1, wherein the conductive metal oxide is an oxide of at least one element selected from Sn, In, Zn, and Ti. 前記導電性金属酸化物は、SnO、In、ZnO、TiO(0.5≦x≦2)から選ばれる少なくとも一種であることを特徴とする請求項1記載の二次電池。 2. The secondary battery according to claim 1, wherein the conductive metal oxide is at least one selected from SnO 2 , In 2 O 3 , ZnO, and TiO x (0.5 ≦ x ≦ 2). 前記負極作動電位が金属リチウムの電位に対して、1.0Vよりも貴となる負極活物質は、酸化タングステン、酸化モリブデン、硫化鉄、硫化鉄リチウム、硫化チタン、チタン酸リチウムから選択される少なくとも一種であることを特徴とする請求項1記載の二次電池。   The negative electrode active material having a negative electrode operating potential nobler than 1.0 V with respect to the potential of metallic lithium is at least selected from tungsten oxide, molybdenum oxide, iron sulfide, lithium iron sulfide, titanium sulfide, and lithium titanate. 2. The secondary battery according to claim 1, wherein the secondary battery is one type. 前記負極作動電位が金属リチウムの電位に対して、1.0Vよりも貴となる負極活物質は、LiFeS(0≦x≦4、0.9≦y≦2.1)で表されスピネル型構造を有する硫化鉄リチウム、及びLi4+xTi12(0≦x≦3)で表されスピネル型構造を有するチタン酸リチウムから選択される少なくとも一種であることを特徴とする請求項1記載の二次電池。 The negative electrode active material in which the negative electrode operating potential is nobler than 1.0 V with respect to the potential of metallic lithium is represented by Li x FeS y (0 ≦ x ≦ 4, 0.9 ≦ y ≦ 2.1). 2. The lithium iron sulfide having a spinel structure and at least one selected from lithium titanate represented by Li 4 + x Ti 5 O 12 (0 ≦ x ≦ 3) and having a spinel structure. The secondary battery as described. 正極集電体層と、正極活物質層と、リチウムを含有する無機固体電解質層と、負極活物質層と、負極集電体層とを積層して積層体を得る積層工程と、
前記積層体を酸化性雰囲気下で焼結する焼結工程とを行う二次電池の製造方法であって、
前記正極集電体層及び負極集電体層の少なくとも一方は、導電性金属酸化物層であり、かつ前記負極活物質層に、負極の作動電位が金属リチウムの電位に対して1.0Vよりも貴となる負極活物質を用いることを特徴とする二次電池の製造方法。



A lamination step of obtaining a laminate by laminating a positive electrode current collector layer, a positive electrode active material layer, an inorganic solid electrolyte layer containing lithium, a negative electrode active material layer, and a negative electrode current collector layer;
A method for producing a secondary battery, comprising performing a sintering step of sintering the laminate in an oxidizing atmosphere,
At least one of the positive electrode current collector layer and the negative electrode current collector layer is a conductive metal oxide layer, and the negative electrode active material layer has a negative electrode operating potential of 1.0 V or more with respect to the lithium metal potential. A method for producing a secondary battery, comprising using a noble negative electrode active material.



JP2008288140A 2008-11-10 2008-11-10 Secondary battery, and manufacturing method of secondary battery Pending JP2009081140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008288140A JP2009081140A (en) 2008-11-10 2008-11-10 Secondary battery, and manufacturing method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008288140A JP2009081140A (en) 2008-11-10 2008-11-10 Secondary battery, and manufacturing method of secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004289946A Division JP4381273B2 (en) 2004-10-01 2004-10-01 Secondary battery and method for manufacturing secondary battery

Publications (1)

Publication Number Publication Date
JP2009081140A true JP2009081140A (en) 2009-04-16

Family

ID=40655711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008288140A Pending JP2009081140A (en) 2008-11-10 2008-11-10 Secondary battery, and manufacturing method of secondary battery

Country Status (1)

Country Link
JP (1) JP2009081140A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081926A (en) * 2009-10-02 2011-04-21 Nikkiso Co Ltd Method of manufacturing reformed fine powder-like positive electrode material
JP2011091010A (en) * 2009-10-26 2011-05-06 Nikkiso Co Ltd Method for manufacturing for reformed fine-powder positive electrode material
JP2012204182A (en) * 2011-03-25 2012-10-22 National Institute Of Advanced Industrial & Technology Heat-resistant flexible battery and method for manufacturing heat-resistant flexible battery
WO2018025683A1 (en) * 2016-08-02 2018-02-08 株式会社日本マイクロニクス Probe card and inspection method
US10079390B2 (en) 2016-03-16 2018-09-18 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
JPWO2018030477A1 (en) * 2016-08-09 2019-06-13 株式会社東芝 Power storage system, vehicle, and machinery
CN110165303A (en) * 2019-06-10 2019-08-23 天津瑞晟晖能科技有限公司 Secondary cell and preparation method thereof, electrical equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187876A (en) * 2001-12-19 2003-07-04 Fujitsu Ltd Lithium secondary battery
JP2004213938A (en) * 2002-12-27 2004-07-29 Toshiba Battery Co Ltd Lithium secondary battery and its manufacturing method
JP2004273436A (en) * 2003-02-18 2004-09-30 Matsushita Electric Ind Co Ltd All solid thin film laminated battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187876A (en) * 2001-12-19 2003-07-04 Fujitsu Ltd Lithium secondary battery
JP2004213938A (en) * 2002-12-27 2004-07-29 Toshiba Battery Co Ltd Lithium secondary battery and its manufacturing method
JP2004273436A (en) * 2003-02-18 2004-09-30 Matsushita Electric Ind Co Ltd All solid thin film laminated battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081926A (en) * 2009-10-02 2011-04-21 Nikkiso Co Ltd Method of manufacturing reformed fine powder-like positive electrode material
JP2011091010A (en) * 2009-10-26 2011-05-06 Nikkiso Co Ltd Method for manufacturing for reformed fine-powder positive electrode material
JP2012204182A (en) * 2011-03-25 2012-10-22 National Institute Of Advanced Industrial & Technology Heat-resistant flexible battery and method for manufacturing heat-resistant flexible battery
US10079390B2 (en) 2016-03-16 2018-09-18 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
KR20190029662A (en) * 2016-08-02 2019-03-20 가부시키가이샤 니혼 마이크로닉스 Probe card and inspection method
JP2018021779A (en) * 2016-08-02 2018-02-08 株式会社日本マイクロニクス Probe card, and checkup method
WO2018025683A1 (en) * 2016-08-02 2018-02-08 株式会社日本マイクロニクス Probe card and inspection method
CN109564245A (en) * 2016-08-02 2019-04-02 日本麦可罗尼克斯股份有限公司 Probe card and inspection method
EP3495828A4 (en) * 2016-08-02 2020-08-05 Kabushiki Kaisha Nihon Micronics Probe card and inspection method
KR102143306B1 (en) * 2016-08-02 2020-08-10 가부시키가이샤 니혼 마이크로닉스 Probe card and inspection method
JPWO2018030477A1 (en) * 2016-08-09 2019-06-13 株式会社東芝 Power storage system, vehicle, and machinery
JP7123797B2 (en) 2016-08-09 2022-08-23 株式会社東芝 Energy storage systems, vehicles, and mechanical equipment
CN110165303A (en) * 2019-06-10 2019-08-23 天津瑞晟晖能科技有限公司 Secondary cell and preparation method thereof, electrical equipment

Similar Documents

Publication Publication Date Title
JP4381273B2 (en) Secondary battery and method for manufacturing secondary battery
JP4352016B2 (en) Inorganic solid electrolyte battery and method for producing inorganic solid electrolyte battery
JP5519356B2 (en) Lithium ion secondary battery and manufacturing method thereof
US9457512B2 (en) Lithium ion rechargeable battery and process for producing the lithium ion rechargeable battery
JP6201327B2 (en) Method for producing electrode composite for lithium battery, electrode composite for lithium battery, and lithium battery
WO2012008422A1 (en) All-solid-state battery
WO2012138403A2 (en) Composite ionic conducting electrolytes
JP6927289B2 (en) All-solid-state secondary battery
KR20130083828A (en) Lithium ion secondary battery and method for producing same
JP2009081140A (en) Secondary battery, and manufacturing method of secondary battery
WO2014170998A1 (en) All-solid-state lithium-ion secondary battery
CN111868997A (en) All-solid-state battery
JPWO2018062081A1 (en) All solid lithium ion rechargeable battery
JP5817533B2 (en) Solid electrolyte, battery using the same, and manufacturing method thereof
JPWO2018062085A1 (en) All solid lithium ion rechargeable battery
JPWO2018062079A1 (en) Active material and all solid lithium ion secondary battery
CN113056835A (en) All-solid-state battery
CN113169372A (en) All-solid-state secondary battery
WO2014050569A1 (en) Positive electrode for lithium ion secondary batteries and lithium ion secondary battery using same
JPWO2018181662A1 (en) All-solid lithium-ion secondary battery
US20220069347A1 (en) Solid-state battery
CN113273015A (en) All-solid-state battery
WO2023162317A1 (en) All-solid-state battery
JP7259938B2 (en) solid state battery
WO2023162318A1 (en) All-solid-state battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724