JP2012204182A - Heat-resistant flexible battery and method for manufacturing heat-resistant flexible battery - Google Patents

Heat-resistant flexible battery and method for manufacturing heat-resistant flexible battery Download PDF

Info

Publication number
JP2012204182A
JP2012204182A JP2011068597A JP2011068597A JP2012204182A JP 2012204182 A JP2012204182 A JP 2012204182A JP 2011068597 A JP2011068597 A JP 2011068597A JP 2011068597 A JP2011068597 A JP 2011068597A JP 2012204182 A JP2012204182 A JP 2012204182A
Authority
JP
Japan
Prior art keywords
heat
resistant flexible
current collector
resistant
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011068597A
Other languages
Japanese (ja)
Other versions
JP5754002B2 (en
Inventor
Yusuke Eda
祐介 江田
Yasue Okuyama
妥絵 奥山
Takuhiro Miyuki
琢寛 幸
Tetsuo Sakai
哲男 境
Hiroshi Yamada
弘志 山田
Kazuki Sawa
和紀 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IST Corp Japan
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
IST Corp Japan
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IST Corp Japan, National Institute of Advanced Industrial Science and Technology AIST filed Critical IST Corp Japan
Priority to JP2011068597A priority Critical patent/JP5754002B2/en
Publication of JP2012204182A publication Critical patent/JP2012204182A/en
Application granted granted Critical
Publication of JP5754002B2 publication Critical patent/JP5754002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a battery having both favorable heat resistance and flexibility.SOLUTION: A heat-resistant flexible battery 100 according to the present invention includes: a first heat-resistant flexible collector 210; a heat-resistant flexible positive electrode 220; a heat-resistant flexible separator 300; a second heat-resistant flexible collector 410; a heat-resistant flexible negative electrode 420; and an electrolyte-containing medium. The heat-resistant flexible positive electrode 220 is formed on the first heat-resistant flexible collector 210. The heat-resistant flexible negative electrode 420 is formed on the second heat-resistant flexible collector 410. The electrolyte-containing medium is filled between the heat-resistant flexible positive electrode 220 and the heat-resistant flexible negative electrode 420.

Description

本発明は、耐熱可撓性電池、および耐熱可撓性電池の製造方法に関する。   The present invention relates to a heat-resistant flexible battery and a method for producing a heat-resistant flexible battery.

過去に「可撓性を有するセパレータを備えるリチウム二次電池」が提案されている(例えば、特許文献1参照)。セパレータが可撓性を有することで、このリチウム二次電池は可撓性を有している。   In the past, “a lithium secondary battery including a flexible separator” has been proposed (for example, see Patent Document 1). Since the separator has flexibility, this lithium secondary battery has flexibility.

特開2005−63958号公報JP 2005-63958 A

しかし、近年のリチウム二次電池には、可撓性だけでなく耐熱性も求められている。また、従来のリチウム二次電池では200℃に耐えることのできない材料が数多く含まれており、水分除去のための乾燥温度を200℃まで上げることができなかった。したがって、耐熱性の高い材料および電池構造が求められる。   However, recent lithium secondary batteries are required to have heat resistance as well as flexibility. In addition, the conventional lithium secondary battery includes many materials that cannot withstand 200 ° C., and the drying temperature for removing moisture cannot be increased to 200 ° C. Therefore, a highly heat resistant material and battery structure are required.

本発明の課題は、良好な耐熱性と可撓性とを兼ね備える電池を提供することにある。   The subject of this invention is providing the battery which has favorable heat resistance and flexibility.

(1)
本発明にかかる耐熱可撓性電池は、第1耐熱可撓性集電体と、耐熱可撓性正極と、耐熱可撓性セパレータと、第2耐熱可撓性集電体と、耐熱可撓性負極と、電解質含有媒体とを備える。耐熱可撓性正極は、第1耐熱可撓性集電体上に形成される。耐熱可撓性負極は、第2耐熱可撓性集電体上に形成される。この耐熱可撓性負極は、耐熱可撓性セパレータを挟んで耐熱可撓性正極に対向するように配置される。電解質含有媒体は、耐熱可撓性正極と耐熱可撓性負極との間に充填される。なお、本発明において「耐熱性を備える」とは、電解質含有媒体の注入工程より前の乾燥工程で、200℃までの熱処理に耐える構造および材料で構成されていることをいう。この乾燥工程で200℃の熱処理が行われることで、電池内部から完全に水が除去され、水分混入による電池の劣化が防がれる。さらに、電解質含有媒体の注入工程より後の工程で耐熱性の電解質含有媒体を用いることにより、耐熱可撓性電池は電池使用時においても耐熱性を備えることができる。従来、リチウム二次電池用の耐熱性材料として、活物質、セパレータ、およびバインダ等それぞれ個別で耐熱性の高い材料は提案されていたが、実際に耐熱性を備える電池を構成するにはそれだけでは十分でなかった。本発明では、耐熱性を備える活物質やセパレータ、バインダを用いることに加えて、耐熱性を有する、絶縁性のフィルムおよび樹脂と、導電性のフィルムおよび樹脂、とを用途に応じて使い分けることで、良好な耐熱性と可撓性とを兼ね備える電池を提供する。
(1)
A heat-resistant flexible battery according to the present invention includes a first heat-resistant flexible current collector, a heat-resistant flexible positive electrode, a heat-resistant flexible separator, a second heat-resistant flexible current collector, and a heat-resistant flexible battery. A negative electrode and an electrolyte-containing medium. The heat resistant flexible positive electrode is formed on the first heat resistant flexible current collector. The heat resistant flexible negative electrode is formed on the second heat resistant flexible current collector. The heat-resistant flexible negative electrode is disposed so as to face the heat-resistant flexible positive electrode with the heat-resistant flexible separator interposed therebetween. The electrolyte-containing medium is filled between the heat-resistant flexible positive electrode and the heat-resistant flexible negative electrode. In the present invention, “having heat resistance” means that it is composed of a structure and material that can withstand heat treatment up to 200 ° C. in the drying step prior to the step of injecting the electrolyte-containing medium. By performing a heat treatment at 200 ° C. in this drying step, water is completely removed from the inside of the battery, and deterioration of the battery due to moisture mixing is prevented. Furthermore, the heat-resistant flexible battery can be provided with heat resistance even when the battery is used by using the heat-resistant electrolyte-containing medium in a step after the step of injecting the electrolyte-containing medium. Hitherto, materials with high heat resistance such as active materials, separators, and binders have been proposed as heat-resistant materials for lithium secondary batteries. It was not enough. In the present invention, in addition to using an active material having heat resistance, a separator, and a binder, the insulating film and resin having heat resistance and the conductive film and resin can be properly used depending on the application. A battery having both good heat resistance and flexibility is provided.

本願発明者の鋭意検討の結果、この耐熱可撓性電池は、良好な耐熱性と可撓性とを兼ね備えることが明らかとなった。   As a result of intensive studies by the inventor of the present application, it has been found that this heat-resistant flexible battery has both good heat resistance and flexibility.

(2)
上述(1)の第1電気絶縁性樹脂と、第2電気絶縁性樹脂と、第3電気絶縁性樹脂とをさらに備えることが好ましい。第1電気絶縁性樹脂は、第1耐熱可撓性集電体と耐熱可撓性セパレータとの間に形成される。第2電気絶縁性樹脂は、第2耐熱可撓性集電体と耐熱可撓性セパレータとの間に形成される。第3電気絶縁性樹脂は、耐熱可撓性セパレータの外周部に形成される。第1電気絶縁性樹脂、第2電気絶縁性樹脂、および第3電気絶縁性樹脂は、一体的で枠状である。
(2)
It is preferable to further include the first electrical insulating resin, the second electrical insulating resin, and the third electrical insulating resin described in (1) above. The first electrically insulating resin is formed between the first heat-resistant flexible current collector and the heat-resistant flexible separator. The second electrically insulating resin is formed between the second heat-resistant flexible current collector and the heat-resistant flexible separator. The third electrically insulating resin is formed on the outer peripheral portion of the heat resistant flexible separator. The first electric insulating resin, the second electric insulating resin, and the third electric insulating resin are integrated and have a frame shape.

第1耐熱可撓性集電体、第2耐熱可撓性集電体、第1電気絶縁性樹脂、第2電気絶縁性樹脂、および第3電気絶縁性樹脂で囲まれる耐熱可撓性電池の内部は密閉される。そのため、耐熱可撓性電池は、充填された電解質含有媒体の液漏れを気にする必要がないので取り扱いやすい。よって、耐熱可撓性電池は、高電圧化のために、容易に複数積層させることができる。   A heat-resistant flexible battery surrounded by a first heat-resistant flexible current collector, a second heat-resistant flexible current collector, a first electrically insulating resin, a second electrically insulating resin, and a third electrically insulating resin The inside is sealed. Therefore, the heat-resistant flexible battery is easy to handle because there is no need to worry about liquid leakage of the filled electrolyte-containing medium. Therefore, a plurality of heat-resistant flexible batteries can be easily stacked in order to increase the voltage.

(3)
上述(1)の枠状の耐熱接着フィルムをさらに備えることが好ましい。耐熱接着フィルムは、耐熱可撓性セパレータ、耐熱可撓性正極、および耐熱可撓性負極の外周を囲む。耐熱接着フィルムは、第1耐熱可撓性集電体と第2耐熱可撓性集電体との間に形成される。
(3)
It is preferable to further include the frame-shaped heat-resistant adhesive film of (1) above. The heat resistant adhesive film surrounds the outer periphery of the heat resistant flexible separator, the heat resistant flexible positive electrode, and the heat resistant flexible negative electrode. The heat resistant adhesive film is formed between the first heat resistant flexible current collector and the second heat resistant flexible current collector.

第1耐熱可撓性集電体、第2耐熱可撓性集電体、および耐熱接着フィルムで囲まれる耐熱可撓性電池の内部は密閉される。そのため、耐熱可撓性電池は、充填された電解質含有媒体の液漏れを気にする必要がないので取り扱いやすい。よって、耐熱可撓性電池は、高電圧化のために、容易に複数積層させることができる。   The inside of the heat-resistant flexible battery surrounded by the first heat-resistant flexible current collector, the second heat-resistant flexible current collector, and the heat-resistant adhesive film is sealed. Therefore, the heat-resistant flexible battery is easy to handle because there is no need to worry about liquid leakage of the filled electrolyte-containing medium. Therefore, a plurality of heat-resistant flexible batteries can be easily stacked in order to increase the voltage.

(4)
上述(1)〜(3)のいずれかの耐熱可撓性電池は、活物質層を有することが好ましい。活物質層は、主に、活物質粒子と、多孔質ポリイミド樹脂とから成る。多孔質ポリイミド樹脂は、活物質粒子同士を結着させる。
(4)
The heat-resistant flexible battery according to any one of the above (1) to (3) preferably has an active material layer. The active material layer is mainly composed of active material particles and porous polyimide resin. The porous polyimide resin binds the active material particles to each other.

本願発明者の鋭意検討の結果、この耐熱可撓性電池は、活物質層によって、従前の耐熱可撓性電池よりも充放電サイクルを向上させると共に、放電容量を増大させることが明らかとなった。   As a result of intensive studies by the inventor of the present application, it has been clarified that this heat-resistant flexible battery improves the charge / discharge cycle and increases the discharge capacity as compared with the conventional heat-resistant flexible battery by the active material layer. .

(5)
上述(1)〜(4)のいずれかの耐熱可撓性電池は、第1アンダーコート層と、第2アンダーコート層とをさらに備えることが好ましい。第1アンダーコート層は、第1耐熱可撓性集電体上に形成される。第2アンダーコート層は、第2耐熱可撓性集電体上に形成される。耐熱可撓性正極は、第1アンダーコート層上に形成される。耐熱可撓性負極は、第2アンダーコート層上に形成される。集電体上にアンダーコート層が形成される場合、アンダーコート層形成用の「導電性フィラー入りポリイミド樹脂溶液」を50℃から100℃の間の温度で数十分間加熱した後に、合剤スラリーを塗布するのが好ましい。このようにすれば、アンダーコート層が完全に固化されない状態で合剤スラリーが塗布されることになるので、アンダーコート層と活物質層とが良好に接着することになる。
(5)
The heat-resistant flexible battery according to any one of the above (1) to (4) preferably further includes a first undercoat layer and a second undercoat layer. The first undercoat layer is formed on the first heat resistant flexible current collector. The second undercoat layer is formed on the second heat-resistant flexible current collector. The heat-resistant flexible positive electrode is formed on the first undercoat layer. The heat-resistant flexible negative electrode is formed on the second undercoat layer. When the undercoat layer is formed on the current collector, the “mixed polyimide resin solution with conductive filler” for forming the undercoat layer is heated for several tens of minutes at a temperature between 50 ° C. and 100 ° C. It is preferable to apply a slurry. By doing so, the mixture slurry is applied in a state where the undercoat layer is not completely solidified, so that the undercoat layer and the active material layer are well bonded.

第1アンダーコート層は、第1耐熱可撓性集電体と、耐熱可撓性正極との接着性を向上させる。また、第1アンダーコート層は、第1耐熱可撓性集電体と、耐熱可撓性正極と、第1電気絶縁性樹脂または耐熱接着フィルムとの接着性を向上させてもよい。   The first undercoat layer improves the adhesion between the first heat-resistant flexible current collector and the heat-resistant flexible positive electrode. The first undercoat layer may improve adhesion between the first heat-resistant flexible current collector, the heat-resistant flexible positive electrode, and the first electrically insulating resin or the heat-resistant adhesive film.

同様に、第2アンダーコート層は、第2耐熱可撓性集電体と、耐熱可撓性負極との接着性を向上させる。また、第2アンダーコート層は、第2耐熱可撓性集電体と、耐熱可撓性負極と、第2電気絶縁性樹脂または耐熱接着フィルムとの接着性を向上させる。   Similarly, the second undercoat layer improves the adhesion between the second heat-resistant flexible current collector and the heat-resistant flexible negative electrode. The second undercoat layer also improves the adhesion between the second heat-resistant flexible current collector, the heat-resistant flexible negative electrode, and the second electrically insulating resin or heat-resistant adhesive film.

(6)
本発明にかかる耐熱可撓性電池積層体では、上述(1)〜(5)のいずれかの耐熱可撓性電池が、第1耐熱可撓性集電体と第2耐熱可撓性集電体とが交互に重なるようにして複数積層される。
(6)
In the heat-resistant flexible battery laminate according to the present invention, the heat-resistant flexible battery according to any one of the above (1) to (5) includes the first heat-resistant flexible current collector and the second heat-resistant flexible current collector. A plurality of layers are stacked such that the body and the body overlap alternately.

耐熱可撓性電池積層体では、耐熱可撓性電池の積層数を適宜調整することによって、所望の電圧を容易に得ることができる。   In the heat-resistant flexible battery laminate, a desired voltage can be easily obtained by appropriately adjusting the number of heat-resistant flexible batteries stacked.

(7)
上述(1)の耐熱可撓性電池は、耐熱可撓性リブ部をさらに備えることが好ましい。耐熱可撓性リブ部は、耐熱可撓性セパレータの両面において耐熱可撓性セパレータの周辺部に設けられる。耐熱可撓性正極および耐熱可撓性負極は、耐熱可撓性リブ部の内部空間に挿入される。電解質含有媒体は、耐熱可撓性セパレータ内部に充填される。
(7)
It is preferable that the heat-resistant flexible battery of the above (1) further includes a heat-resistant flexible rib portion. The heat-resistant flexible rib portions are provided on the periphery of the heat-resistant flexible separator on both sides of the heat-resistant flexible separator. The heat-resistant flexible positive electrode and the heat-resistant flexible negative electrode are inserted into the internal space of the heat-resistant flexible rib portion. The electrolyte-containing medium is filled inside the heat-resistant flexible separator.

耐熱可撓性電池を組み立てる際に、耐熱可撓性リブ部は、耐熱可撓性正極および耐熱可撓性負極の設置位置の位置決めを補助する役目を果たす。そのため、ユーザは、耐熱可撓性電池を容易に組み立てることができる。   When assembling the heat-resistant flexible battery, the heat-resistant flexible rib portion serves to assist the positioning of the installation positions of the heat-resistant flexible positive electrode and the heat-resistant flexible negative electrode. Therefore, the user can easily assemble the heat-resistant flexible battery.

(8)
上述(7)の耐熱可撓性電池は、活物質層を有する。活物質層は、主に、活物質粒子と、多孔質ポリイミド樹脂とから成る。多孔質ポリイミド樹脂は、多孔質構造を有し、活物質粒子を包含する鋳型材料として機能し、その孔内の活物質粒子を結着させると共に、集電体と活物質粒子とを結着させる役目を担っている。
(8)
The heat-resistant flexible battery of the above (7) has an active material layer. The active material layer is mainly composed of active material particles and porous polyimide resin. The porous polyimide resin has a porous structure, functions as a template material including the active material particles, binds the active material particles in the pores, and binds the current collector and the active material particles. It plays a role.

本願発明者の鋭意検討の結果、この耐熱可撓性電池は、活物質層によって、従前の耐熱可撓性電池よりも充放電サイクルを向上させると共に、放電容量を増大させることが明らかとなった。   As a result of intensive studies by the inventor of the present application, it has been clarified that this heat-resistant flexible battery improves the charge / discharge cycle and increases the discharge capacity as compared with the conventional heat-resistant flexible battery by the active material layer. .

(9)
上述(7)または(8)の耐熱可撓性電池は、第1アンダーコート層と、第2アンダーコート層とをさらに備えることが好ましい。第1アンダーコート層は、第1耐熱可撓性集電体上に形成される。第2アンダーコート層は、第2耐熱可撓性集電体上に形成される。耐熱可撓性正極は、第1アンダーコート層上に形成される。耐熱可撓性負極は、第2アンダーコート層上に形成される。
(9)
It is preferable that the heat-resistant flexible battery of the above (7) or (8) further includes a first undercoat layer and a second undercoat layer. The first undercoat layer is formed on the first heat resistant flexible current collector. The second undercoat layer is formed on the second heat-resistant flexible current collector. The heat-resistant flexible positive electrode is formed on the first undercoat layer. The heat-resistant flexible negative electrode is formed on the second undercoat layer.

第1アンダーコート層は、第1耐熱可撓性集電体と、耐熱可撓性正極と、耐熱可撓性リブ部との接着性を向上させる。同様に、第2アンダーコート層は、第2耐熱可撓性集電体と、耐熱可撓性負極と、耐熱可撓性リブ部との接着性を向上させる。   The first undercoat layer improves the adhesion between the first heat-resistant flexible current collector, the heat-resistant flexible positive electrode, and the heat-resistant flexible rib portion. Similarly, the second undercoat layer improves the adhesion between the second heat-resistant flexible current collector, the heat-resistant flexible negative electrode, and the heat-resistant flexible rib portion.

(10)
本発明にかかる耐熱可撓性電池の製造方法は、貼付工程と、硬化工程とを備える。貼付工程では、耐熱可撓性正極が形成される第1耐熱可撓性集電体、および、耐熱可撓性負極が形成される第2耐熱可撓性集電体が、電気絶縁性樹脂前駆体ペーストを介して耐熱可撓性セパレータに貼り付けられる。硬化工程では、電気絶縁性樹脂前駆体ペーストが硬化させられる。
(10)
The manufacturing method of the heat-resistant flexible battery according to the present invention includes a pasting step and a curing step. In the attaching step, the first heat-resistant flexible current collector on which the heat-resistant flexible positive electrode is formed and the second heat-resistant flexible current collector on which the heat-resistant flexible negative electrode is formed are electrically insulating resin precursors. Affixed to a heat-resistant flexible separator via a body paste. In the curing step, the electrically insulating resin precursor paste is cured.

この耐熱可撓性電池の製造方法では、電気絶縁性樹脂前駆体ペーストによって、耐熱可撓性セパレータと第1耐熱可撓性集電体と第2耐熱可撓性集電体との接着性が向上する。   In this method of manufacturing a heat-resistant flexible battery, the adhesiveness between the heat-resistant flexible separator, the first heat-resistant flexible current collector, and the second heat-resistant flexible current collector is improved by the electrically insulating resin precursor paste. improves.

(11)
上述(10)の耐熱可撓性電池の製造方法は、塗布工程をさらに備えることが好ましい。塗布工程では、電気絶縁性樹脂前駆体ペーストが、耐熱可撓性セパレータの外周部に含浸しつつ塗布される。
(11)
It is preferable that the manufacturing method of the heat-resistant flexible battery described in (10) further includes a coating step. In the application step, the electrically insulating resin precursor paste is applied while impregnating the outer peripheral portion of the heat-resistant flexible separator.

この耐熱可撓性電池の製造方法では、耐熱可撓性セパレータの外周部に、電気絶縁性樹脂前駆体ペーストが含浸しつつ塗布されることで、第1耐熱可撓性集電体、第2耐熱可撓性集電体、第1電気絶縁性樹脂、第2電気絶縁性樹脂、および第3電気絶縁性樹脂で囲まれる耐熱可撓性電池の内部を容易に密閉することができる。   In this method of manufacturing a heat-resistant flexible battery, the first heat-resistant flexible current collector, the second heat-resistant flexible battery, and the second heat-resistant flexible battery are applied by impregnating the outer peripheral portion of the heat-resistant flexible separator while being impregnated with the electrically insulating resin precursor paste. The inside of the heat-resistant flexible battery surrounded by the heat-resistant flexible current collector, the first electrically insulating resin, the second electrically insulating resin, and the third electrically insulating resin can be easily sealed.

(12)
上述(10)または(11)の耐熱可撓性電池の製造方法は、引き出し電極取り付け工程をさらに備えることが好ましい。引き出し電極取り付け工程では、導電性樹脂前駆体ペーストで、前記第1耐熱可撓性集電体および前記第2耐熱可撓性集電体の少なくとも一方に引き出し電極が取り付けられる。硬化工程では、電気絶縁性樹脂前駆体ペーストおよび前記導電性樹脂前駆体ペーストが硬化させられる。
(12)
It is preferable that the manufacturing method of the heat-resistant flexible battery of the above (10) or (11) further includes a lead electrode attaching step. In the extraction electrode attachment step, the extraction electrode is attached to at least one of the first heat-resistant flexible current collector and the second heat-resistant flexible current collector with a conductive resin precursor paste. In the curing step, the electrically insulating resin precursor paste and the conductive resin precursor paste are cured.

この耐熱可撓性電池の製造方法では、導電性樹脂前駆体ペーストが耐熱可撓性集電体に塗られて加熱されることで、引き出し電極が耐熱可撓性集電体に接着される。そのため、この耐熱可撓性電池の製造方法では、引き出し電極と、耐熱可撓性集電体との取り付けをスポット溶接で行う場合に比べて、金属不純物が混じりにくい。また、この耐熱可撓性電池の製造方法では、引き出し電極と、耐熱可撓性集電体との取り付けを超音波溶接で行う場合に比べて、煩雑な作業が少なくなる。さらに、この耐熱可撓性電池の製造方法では、超音波溶接用の高価な設備が不要となるため、耐熱可撓性電池の製造コストを低減させることができる。   In this method for manufacturing a heat-resistant flexible battery, the conductive resin precursor paste is applied to the heat-resistant flexible current collector and heated, whereby the extraction electrode is bonded to the heat-resistant flexible current collector. Therefore, in this heat-resistant flexible battery manufacturing method, metal impurities are less likely to be mixed as compared with the case where the extraction electrode and the heat-resistant flexible current collector are attached by spot welding. In addition, in this method for manufacturing a heat-resistant flexible battery, complicated operations are reduced as compared with the case where the extraction electrode and the heat-resistant flexible current collector are attached by ultrasonic welding. Furthermore, this heat-resistant flexible battery manufacturing method eliminates the need for expensive equipment for ultrasonic welding, thereby reducing the manufacturing cost of the heat-resistant flexible battery.

本発明に係る耐熱可撓性電池は、良好な耐熱性と可撓性とを兼ね備える。   The heat-resistant flexible battery according to the present invention has both good heat resistance and flexibility.

本発明の第1実施形態にかかる耐熱可撓性電池の断面図である。It is sectional drawing of the heat-resistant flexible battery concerning 1st Embodiment of this invention. 本発明の第1実施形態の変形例(A)にかかる耐熱可撓性電池の断面図である。It is sectional drawing of the heat-resistant flexible battery concerning the modification (A) of 1st Embodiment of this invention. 本発明の第1実施形態の変形例(B)にかかる耐熱可撓性電池の断面図である。It is sectional drawing of the heat-resistant flexible battery concerning the modification (B) of 1st Embodiment of this invention. 本発明の第1実施形態の変形例(B)にかかる耐熱可撓性電池の分解図である。It is an exploded view of the heat-resistant flexible battery concerning the modification (B) of 1st Embodiment of this invention. 本発明の第2実施形態にかかる耐熱可撓性電池の断面図である。It is sectional drawing of the heat-resistant flexible battery concerning 2nd Embodiment of this invention. 本発明の第2実施形態にかかる耐熱可撓性電池の分解図である。It is an exploded view of the heat-resistant flexible battery concerning 2nd Embodiment of this invention. 本発明の第2実施形態の変形例(A)にかかる耐熱可撓性電池の断面図である。It is sectional drawing of the heat-resistant flexible battery concerning the modification (A) of 2nd Embodiment of this invention. 本発明の第2実施形態の変形例(B)にかかる耐熱可撓性電池積層体の断面図である。It is sectional drawing of the heat-resistant flexible battery laminated body concerning the modification (B) of 2nd Embodiment of this invention. 本発明の第3実施形態にかかる耐熱可撓性電池の断面図である。It is sectional drawing of the heat-resistant flexible battery concerning 3rd Embodiment of this invention. 本発明の第3実施形態にかかる耐熱可撓性電池の分解図である。It is an exploded view of the heat-resistant flexible battery concerning 3rd Embodiment of this invention. 本発明の第3実施形態の変形例(A)にかかる耐熱可撓性電池の断面図である。It is sectional drawing of the heat-resistant flexible battery concerning the modification (A) of 3rd Embodiment of this invention. 本発明の第3実施形態の変形例(B)にかかる耐熱可撓性電池積層体の断面図である。It is sectional drawing of the heat-resistant flexible battery laminated body concerning the modification (B) of 3rd Embodiment of this invention.

−第1実施形態−
図1に示されるように、本発明の第1実施形態にかかる耐熱可撓性電池100は、第1耐熱可撓性集電体210と、耐熱可撓性正極220と、第1引き出し電極230と、第1導電性樹脂240と、耐熱可撓性セパレータ300と、第2耐熱可撓性集電体410と、耐熱可撓性負極420と、第2引き出し電極430と、第2導電性樹脂440と、電解質含有媒体および包材(図示せず)とを備える。耐熱可撓性電池100は、二次電池であることが好ましく、非水電解質二次電池であることがより好ましい。なお、本発明において「耐熱性を備える」とは、電解質含有媒体の注入工程より前の乾燥工程で、200℃までの熱処理に耐える構造および材料で構成されていることをいう。
-First embodiment-
As shown in FIG. 1, the heat-resistant flexible battery 100 according to the first embodiment of the present invention includes a first heat-resistant flexible current collector 210, a heat-resistant flexible positive electrode 220, and a first extraction electrode 230. A first conductive resin 240, a heat resistant flexible separator 300, a second heat resistant flexible current collector 410, a heat resistant flexible negative electrode 420, a second extraction electrode 430, and a second conductive resin. 440 and an electrolyte-containing medium and a packaging material (not shown). The heat-resistant flexible battery 100 is preferably a secondary battery, and more preferably a non-aqueous electrolyte secondary battery. In the present invention, “having heat resistance” means that it is composed of a structure and material that can withstand heat treatment up to 200 ° C. in the drying step prior to the step of injecting the electrolyte-containing medium.

第1耐熱可撓性集電体210として、例えば、導電性フィラーを含有するポリイミド樹脂が用いられる。ポリイミド樹脂は、例えば、モノマー型ポリイミド前駆体、またはポリアミック酸型ポリイミド前駆体から得られる。モノマー型ポリイミド前駆体は、主に、テトラカルボン酸ジエステル化合物とジアミン化合物とからなり、例えば、加熱されることによりイミド化して高分子量化してポリイミド樹脂となる。ポリアミック酸型ポリイミド前駆体は、主に、ポリアミック酸からなり、例えば、加熱されることによりイミド化してポリイミド樹脂となる。なお、第1耐熱可撓性集電体210は、導電性ポリイミドの他、正極ではアルミニウム、ステンレススチールなどの単体金属およびそれらの合金、ならびに導電性を有する黒鉛であってもよい。   As the first heat-resistant flexible current collector 210, for example, a polyimide resin containing a conductive filler is used. The polyimide resin is obtained from, for example, a monomer type polyimide precursor or a polyamic acid type polyimide precursor. The monomer-type polyimide precursor is mainly composed of a tetracarboxylic acid diester compound and a diamine compound. For example, the monomer-type polyimide precursor is imidized by heating to have a high molecular weight to be a polyimide resin. The polyamic acid type polyimide precursor is mainly composed of a polyamic acid, and is imidized by heating to become a polyimide resin. The first heat-resistant flexible current collector 210 may be a single metal such as aluminum or stainless steel and alloys thereof, and graphite having conductivity, in addition to the conductive polyimide.

導電性フィラーは、導電助剤として機能する。この導電性フィラーとして、例えば、カーボンブラック(オイルファーネスブラック、チャンネルブラック、ランプブラック、サーマルブラック、ケッチェンブラック、アセチレンブラック)、カーボンナノチューブ、カーボンナノファイバー、フラーレン、カーボンマイクロコイル、グラファイト(天然グラファイト、人造グラファイト)カーボンブラック、カーボンファイバー短繊維(PAN系カーボン短繊維、ピッチ系カーボン短繊維)などが用いられる。これら導電性フィラーは、単独で用いられてもよいし、組み合わせて用いられてもよい。   The conductive filler functions as a conductive additive. Examples of the conductive filler include carbon black (oil furnace black, channel black, lamp black, thermal black, ketjen black, acetylene black), carbon nanotube, carbon nanofiber, fullerene, carbon microcoil, graphite (natural graphite, Artificial graphite) carbon black, carbon fiber short fibers (PAN-based carbon short fibers, pitch-based carbon short fibers) and the like are used. These conductive fillers may be used alone or in combination.

第1耐熱可撓性集電体210の表面は、耐熱可撓性正極220との接着性を向上させるために、粗面化されることが好ましい。第1耐熱可撓性集電体210の粗面化は、例えば、第1耐熱可撓性集電体210の表面に粗面化処理を施すことによって行われる。粗面化処理としては、気相成長法、エッチング法、研磨法などが挙げられる。気相成長法としては、スパッタリング法、CVD法、蒸着法などが挙げられる。エッチング法としては、物理的エッチング、または化学的エッチングによる方法が挙げられる。研磨法としては、サンドペーパーによる研磨、またはブラスト法による研磨などが挙げられる。   The surface of the first heat-resistant flexible current collector 210 is preferably roughened in order to improve adhesion with the heat-resistant flexible positive electrode 220. The roughening of the first heat-resistant flexible current collector 210 is performed, for example, by subjecting the surface of the first heat-resistant flexible current collector 210 to a roughening process. Examples of the roughening treatment include a vapor deposition method, an etching method, and a polishing method. Examples of the vapor phase growth method include a sputtering method, a CVD method, and a vapor deposition method. Examples of the etching method include a physical etching method and a chemical etching method. Examples of the polishing method include polishing by sandpaper or polishing by a blast method.

耐熱可撓性正極220は、第1耐熱可撓性集電体210上に形成される。この耐熱可撓性正極220は、正極活物質層(図示せず)を有する。正極活物質層は、例えば、主に、正極用の活物質粒子と、正極用の多孔質ポリイミド樹脂とから成る。   The heat-resistant flexible positive electrode 220 is formed on the first heat-resistant flexible current collector 210. The heat-resistant flexible positive electrode 220 has a positive electrode active material layer (not shown). The positive electrode active material layer is mainly composed of, for example, positive electrode active material particles and a positive electrode porous polyimide resin.

正極用の活物質粒子として、リチウム電池用の場合、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、リン酸金属リチウムLiMPO(M=Fe,Mn,Co,Ni)、ホウ酸金属リチウムLiMBO(M=Fe,Mn,Co,Ni)、珪酸金属リチウムLiMSiO(M=Fe,Mn,Co,Ni)、硫酸金属リチウムLiMSO(M=Fe,Mn,Co,Ni)などのリチウム含有遷移金属酸化物、FeF、TiS、FeS、硫化物系高分子活物質を1種類、または2種類以上の混合物として用いることが出来る。この中でも耐熱性の観点から、リン酸金属リチウムLiMPO(M=Fe,Mn,Co,Ni)、ホウ酸金属リチウムLiMBO(M=Fe,Mn,Co,Ni)、珪酸金属リチウムLiMSiO(M=Fe,Mn,Co,Ni)、硫酸金属リチウムLiMSO(M=Fe,Mn,Co,Ni)などのリチウム含有遷移金属酸化物および、耐熱性の高い硫化物系高分子活物質が好適も用いられる。またナトリウム電池用の場合、Fe(MnO、Fe(WO、Fe(SO、LiFe(PO、FeF、NaFeO、TiS、FeS、硫化物系高分子などのナトリウム金属電池正極材料を1種類、または2種類以上の混合物として用いることが出来る。 As the active material particles for the positive electrode, for lithium batteries, for example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium metal phosphate LiMPO 4 (M = Fe, Mn, Co, Ni), lithium metal borate LiMBO 3 (M = Fe, Mn, Co, Ni), lithium metal silicate Li 2 MSiO 4 (M = Fe, Mn, Co, Ni), lithium metal sulfate Lithium-containing transition metal oxides such as LiMSO 4 (M = Fe, Mn, Co, Ni), FeF 3 , TiS 2 , FeS 2 , sulfide-based polymer active materials are used as one type or a mixture of two or more types I can do it. Among these, from the viewpoint of heat resistance, lithium metal phosphate LiMPO 4 (M = Fe, Mn, Co, Ni), lithium metal borate LiMBO 3 (M = Fe, Mn, Co, Ni), lithium metal silicate Li 2 MSiO 4 (M = Fe, Mn, Co, Ni), lithium-containing transition metal oxides such as lithium metal sulfate LiMSO 4 (M = Fe, Mn, Co, Ni), and sulfide-based polymer active materials having high heat resistance Is also preferably used. For sodium batteries, Fe 2 (MnO 4 ) 3 , Fe 2 (WO 4 ) 3 , Fe 2 (SO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , FeF 3 , NaFeO 2 , TiS 2 , Sodium metal battery positive electrode materials such as FeS 2 and sulfide-based polymers can be used as one type or as a mixture of two or more types.

正極用の多孔質ポリイミド樹脂は、正極活物質層において、多孔質構造を有し、正極用の活物質粒子を包含する鋳型材料として機能し、その孔内の活物質粒子を結着させると共に、第1耐熱可撓性集電体210と正極用の活物質粒子とを結着させる役目を担っている。この正極用の多孔質ポリイミド樹脂は、例えば、モノマー型ポリイミド前駆体から得られる。また、正極用の多孔質ポリイミド樹脂は、多孔質であれば、上記の第1耐熱可撓性集電体210のポリイミド樹脂と同じものであってもよいし、異なるものであってもよい。   The porous polyimide resin for the positive electrode has a porous structure in the positive electrode active material layer, functions as a template material including the active material particles for the positive electrode, binds the active material particles in the pores, It plays the role of binding the first heat-resistant flexible current collector 210 and the active material particles for the positive electrode. The porous polyimide resin for the positive electrode is obtained from, for example, a monomer type polyimide precursor. Further, the porous polyimide resin for the positive electrode may be the same as or different from the polyimide resin of the first heat-resistant flexible current collector 210 as long as it is porous.

正極用の多孔質ポリイミド樹脂には、上記の第1耐熱可撓性集電体210の材料として用いることのできる導電性フィラーが含有されることが好ましい。正極用の多孔質ポリイミド樹脂に含有される導電性フィラーは、上記の第1耐熱可撓性集電体210の導電性フィラーと同じものであってもよいし、異なるものであってもよい。   The porous polyimide resin for the positive electrode preferably contains a conductive filler that can be used as the material of the first heat-resistant flexible current collector 210. The conductive filler contained in the porous polyimide resin for the positive electrode may be the same as or different from the conductive filler of the first heat-resistant flexible current collector 210 described above.

第1引き出し電極230は、導電性を有する第1導電性樹脂240によって第1耐熱可撓性集電体210に電気的に接続される。第1引き出し電極230として、例えば、銅からなる導電性テープ等が用いられる。この第1引き出し電極230は、第1耐熱可撓性集電体210の面上に取り付けられることが好ましい。この第1耐熱可撓性集電体210の面上に取り付けられる第1引き出し電極230は、第1耐熱可撓性集電体210の周縁に取り付けられる第1引き出し電極230に比べて、第1耐熱可撓性集電体210との接触面積を広くすることができる。そのため、この第1引き出し電極230は、第1耐熱可撓性集電体210から電気を取り出しやすい。この第1引き出し電極230は、例えば、アルミニウム、ステンレスおよびその合金、ならびに導電性を有する黒鉛などからなる。   The first lead electrode 230 is electrically connected to the first heat-resistant flexible current collector 210 by a first conductive resin 240 having conductivity. As the first extraction electrode 230, for example, a conductive tape made of copper or the like is used. The first lead electrode 230 is preferably attached on the surface of the first heat-resistant flexible current collector 210. The first lead electrode 230 attached on the surface of the first heat-resistant flexible current collector 210 has a first lead electrode 230 as compared with the first lead electrode 230 attached to the periphery of the first heat-resistant flexible current collector 210. The contact area with the heat-resistant flexible current collector 210 can be increased. Therefore, the first lead electrode 230 can easily take out electricity from the first heat-resistant flexible current collector 210. The first extraction electrode 230 is made of, for example, aluminum, stainless steel and an alloy thereof, and conductive graphite.

第1導電性樹脂240は、例えば、導電性樹脂前駆体ペーストから形成される。導電性樹脂前駆体ペーストは、例えば、モノマー型ポリイミド前駆体またはポリアミック酸型ポリイミド前駆体と、導電性フィラーとを有する。導電性フィラーには、上記の第1耐熱可撓性集電体210の材料として用いることのできる導電性フィラーを用いることができる。なお、第1引き出し電極230を第1耐熱可撓性集電体210に取り付ける方法については後述する。   The first conductive resin 240 is formed from, for example, a conductive resin precursor paste. The conductive resin precursor paste includes, for example, a monomer type polyimide precursor or a polyamic acid type polyimide precursor, and a conductive filler. As the conductive filler, a conductive filler that can be used as the material of the first heat-resistant flexible current collector 210 can be used. A method of attaching the first extraction electrode 230 to the first heat-resistant flexible current collector 210 will be described later.

耐熱可撓性セパレータ300として、公知の耐熱可撓性を有するリチウム二次電池用のセパレータ等が用いられ、例えば、ポリイミド樹脂製のセパレータ、ガラス不織布セパレータ、パルプセパレータ、アラミドセパレータ、またはポリアミドイミド樹脂製のセパレータ等が用いられる。   As the heat-resistant flexible separator 300, a known separator for a lithium secondary battery having heat-resistant flexibility is used. For example, a polyimide resin separator, a glass nonwoven fabric separator, a pulp separator, an aramid separator, or a polyamideimide resin A separator made of metal is used.

第2耐熱可撓性集電体410には、導電性フィラーを含有するポリイミド樹脂が用いられる。この導電性フィラーおよびポリイミド樹脂には、上記の第1耐熱可撓性集電体210の材料として用いることのできる導電性フィラーおよびポリイミド樹脂が用いられる。なお、この第2耐熱可撓性集電体410は、導電性ポリイミドの他、負極では銅、ニッケル、ステンレススチール、鉄、錫などの単体金属およびそれらの合金、ならびに導電性を有する黒鉛であってもよい。また、第2耐熱可撓性集電体410の表面は、耐熱可撓性負極420との接着性を向上させるために、上記の第1耐熱可撓性集電体210と同様の方法で粗面化されることが好ましい。   For the second heat-resistant flexible current collector 410, a polyimide resin containing a conductive filler is used. As the conductive filler and the polyimide resin, a conductive filler and a polyimide resin that can be used as the material of the first heat-resistant flexible current collector 210 are used. The second heat-resistant flexible current collector 410 is composed of simple metals such as copper, nickel, stainless steel, iron and tin, and alloys thereof, as well as conductive graphite, in addition to conductive polyimide. May be. Further, the surface of the second heat-resistant flexible current collector 410 is roughened in the same manner as the first heat-resistant flexible current collector 210 in order to improve the adhesion to the heat-resistant flexible negative electrode 420. It is preferable to face.

耐熱可撓性負極420は、第2耐熱可撓性集電体410上に形成される。この耐熱可撓性負極420は、負極活物質層(図示せず)を有する層構造をとることが好ましい。また、耐熱可撓性負極420は、耐熱可撓性セパレータ300を挟んで耐熱可撓性正極220に対向するように配置される。負極活物質層は、主に、負極用の活物質粒子と、負極用の多孔質ポリイミド樹脂とから成る。   The heat resistant flexible negative electrode 420 is formed on the second heat resistant flexible current collector 410. The heat-resistant flexible negative electrode 420 preferably has a layer structure having a negative electrode active material layer (not shown). Further, the heat-resistant flexible negative electrode 420 is disposed so as to face the heat-resistant flexible positive electrode 220 with the heat-resistant flexible separator 300 interposed therebetween. The negative electrode active material layer is mainly composed of negative electrode active material particles and negative electrode porous polyimide resin.

負極用の活物質粒子として、リチウム電池用の場合、例えば、黒鉛(C)、チタン酸リチウム(LiTi12)、ケイ素(Si)粒子、酸化ケイ素(SiO)粒子、ケイ素合金粒子、錫(Sn)粒子などのリチウム電池負極材料などが用いられる。ケイ素合金として、ケイ素と他の1種以上の元素との固溶体、ケイ素と他の1種以上の元素との金属間化合物、ケイ素と他の1種以上の元素との共晶合金などが用いられる。なお、負極用の活物質粒子には、リチウムと合金化する材料からなる粒子が含まれていてもよい。そのような材料として、例えば、ゲルマニウム、錫、鉛、亜鉛、マグネシウム、ナトリウム、アルミニウム、ガリウム、インジウム、およびこれらの合金などが挙げられる。また、ナトリウム電池用の場合、負極用の活物質粒子にハードカーボンや錫(Sn)、錫酸化物(SnO)、錫合金などのナトリウム金属電池負極材料を1種類、または2種類以上の混合物として用いることが出来る。 As the active material particles for the negative electrode, for lithium batteries, for example, graphite (C), lithium titanate (Li 4 Ti 5 O 12 ), silicon (Si) particles, silicon oxide (SiO) particles, silicon alloy particles, A lithium battery negative electrode material such as tin (Sn) particles is used. Examples of silicon alloys include solid solutions of silicon and one or more other elements, intermetallic compounds of silicon and one or more other elements, and eutectic alloys of silicon and one or more other elements. . The active material particles for the negative electrode may include particles made of a material that is alloyed with lithium. Examples of such materials include germanium, tin, lead, zinc, magnesium, sodium, aluminum, gallium, indium, and alloys thereof. Further, in the case of a sodium battery, one kind or a mixture of two or more kinds of sodium metal battery anode materials such as hard carbon, tin (Sn), tin oxide (SnO), and tin alloy are used as the active material particles for the anode. Can be used.

ケイ素合金の作製方法として、例えば、アーク溶解法、液体急冷法、メカニカルアロイング法、スパッタリング法、化学気相成長法、焼成法などが用いられる。特に、液体急冷法として、単ロール急冷法、双ロール急冷法、ガスアトマイズ法、水アトマイズ法、ディスクアトマイズ法などの各種アトマイズ法が用いられる。   As a method for producing the silicon alloy, for example, an arc melting method, a liquid quenching method, a mechanical alloying method, a sputtering method, a chemical vapor deposition method, a firing method, or the like is used. In particular, as the liquid quenching method, various atomizing methods such as a single roll quenching method, a twin roll quenching method, a gas atomizing method, a water atomizing method, and a disk atomizing method are used.

なお、負極用の活物質粒子は、上述のケイ素(Si)粒子、酸化ケイ素(SiO)粒子、ケイ素合金粒子、錫(Sn)粒子などを、金属などで被覆したコアシェル型の活物質粒子であってもよい。このコアシェル型の活物質粒子は、無電解めっき法、電解めっき法、化学還元法、蒸着法、スパッタリング法、化学気相成長法などによって製造される。シェル部分は、第2耐熱可撓性集電体410を形成する金属と同じ金属で形成されることが好ましい。コアシェル型の活物質粒子は、第2耐熱可撓性集電体410との結合性が大きく向上する。そのため、耐熱可撓性電池100は、優れた充放電サイクル特性を得ることができる。   The active material particles for the negative electrode are core-shell type active material particles in which the above-described silicon (Si) particles, silicon oxide (SiO) particles, silicon alloy particles, tin (Sn) particles, and the like are coated with a metal or the like. May be. The core-shell type active material particles are produced by an electroless plating method, an electrolytic plating method, a chemical reduction method, a vapor deposition method, a sputtering method, a chemical vapor deposition method, or the like. The shell portion is preferably formed of the same metal as that of the second heat-resistant flexible current collector 410. The core-shell type active material particles greatly improve the bondability with the second heat-resistant flexible current collector 410. Therefore, the heat-resistant flexible battery 100 can obtain excellent charge / discharge cycle characteristics.

また、負極用の活物質粒子は、シランカップリング剤で表面処理されてもよい。このようにして負極用の活物質粒子を処理すれば、負極用の多孔質ポリイミド樹脂の前駆体中に、負極用の活物質粒子を良好に分散することができると共に、負極用の多孔質ポリイミド樹脂に対する負極用の活物質粒子の結着性を高めることができる。   The active material particles for the negative electrode may be surface-treated with a silane coupling agent. By treating the negative electrode active material particles in this manner, the negative electrode active material particles can be well dispersed in the negative electrode porous polyimide resin precursor, and the negative electrode porous polyimide. The binding property of the active material particles for the negative electrode to the resin can be enhanced.

負極用の多孔質ポリイミド樹脂は、負極活物質層において、多孔質構造を有し、負極用の活物質粒子を包含する鋳型材料として機能し、その孔内の活物質粒子を結着させると共に、第2耐熱可撓性集電体410と負極用の活物質粒子とを結着させる役目を担っている。多孔質ポリイミド樹脂は、例えば、モノマー型ポリイミド前駆体から得られる。この負極用の多孔質ポリイミド樹脂は、多孔質であれば、上記の第2耐熱可撓性集電体410のポリイミド樹脂と同じものであってもよいし、異なるものであってもよい。   The porous polyimide resin for the negative electrode has a porous structure in the negative electrode active material layer, functions as a template material including the active material particles for the negative electrode, and binds the active material particles in the pores, It plays the role of binding the second heat-resistant flexible current collector 410 and the active material particles for the negative electrode. The porous polyimide resin is obtained from, for example, a monomer type polyimide precursor. The porous polyimide resin for the negative electrode may be the same as or different from the polyimide resin of the second heat-resistant flexible current collector 410 as long as it is porous.

負極用の多孔質ポリイミド樹脂には、上記の第1耐熱可撓性集電体210の材料として用いることのできる導電性フィラーが含有されることが好ましい。負極用の多孔質ポリイミド樹脂に含有される導電性フィラーは、上記の第2耐熱可撓性集電体410の導電性フィラーと同じものであってもよいし、異なるものであってもよい。   The porous polyimide resin for the negative electrode preferably contains a conductive filler that can be used as the material of the first heat-resistant flexible current collector 210. The conductive filler contained in the porous polyimide resin for the negative electrode may be the same as or different from the conductive filler of the second heat-resistant flexible current collector 410.

第2引き出し電極430は、導電性を有する第2導電性樹脂440によって第2耐熱可撓性集電体410に電気的に接続される。第2引き出し電極430として、例えば、銅からなる導電性テープ等が用いられる。この第2引き出し電極430は、第2耐熱可撓性集電体410の面上に取り付けられることが好ましい。この第2耐熱可撓性集電体410の面上に取り付けられる第2引き出し電極430は、第2耐熱可撓性集電体410の周縁に取り付けられる第2引き出し電極430に比べて、第2耐熱可撓性集電体410との接触面積を広くすることができる。そのため、この第2引き出し電極430は、第2耐熱可撓性集電体410から電気を取り出しやすい。   The second extraction electrode 430 is electrically connected to the second heat-resistant flexible current collector 410 by a second conductive resin 440 having conductivity. As the second extraction electrode 430, for example, a conductive tape made of copper or the like is used. The second lead electrode 430 is preferably attached on the surface of the second heat-resistant flexible current collector 410. The second lead electrode 430 attached on the surface of the second heat-resistant flexible current collector 410 is second in comparison with the second lead electrode 430 attached on the periphery of the second heat-resistant flexible current collector 410. The contact area with the heat-resistant flexible current collector 410 can be increased. Therefore, the second extraction electrode 430 can easily extract electricity from the second heat-resistant flexible current collector 410.

第2導電性樹脂440は、例えば、導電性樹脂前駆体ペーストから形成される。導電性樹脂前駆体ペーストは、例えば、モノマー型ポリイミド前駆体またはポリアミック酸型ポリイミド前駆体と、導電性フィラーとを有する。導電性フィラーには、上記の第1耐熱可撓性集電体210の材料として用いることのできる導電性フィラーを用いることができる。なお、第2引き出し電極430を第2耐熱可撓性集電体410に取り付ける方法については後述する。   The second conductive resin 440 is formed from, for example, a conductive resin precursor paste. The conductive resin precursor paste includes, for example, a monomer type polyimide precursor or a polyamic acid type polyimide precursor, and a conductive filler. As the conductive filler, a conductive filler that can be used as the material of the first heat-resistant flexible current collector 210 can be used. A method for attaching the second extraction electrode 430 to the second heat-resistant flexible current collector 410 will be described later.

電解質含有媒体は、耐熱可撓性正極220と耐熱可撓性負極420との間に充填される。この電解質含有媒体として、公知のリチウム二次電池用の電解質含有媒体などが用いられ、例えば、有機溶媒に電解質であるリチウム塩を溶解させたものを用いることができる。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルエーテル、イソプロピルメチルカーボネート、ビニレンカーボネート、γ−ブチロラクトン、アセトニトリル等の非水系溶媒から選ばれる少なくとも一種を用いるのが好ましい。電解質としては、負極活物質としてリチウムを用いる場合には、LiPF、LiBF、LiAsF、LiCFSO、LiI、LiClO等を用いることができる。また、耐熱性の観点から、イオン性液体を溶媒とする液体電解質液が好ましく用いられる。また、ナトリウムイオン二次電池の場合に用いる電解質としては、有機溶媒に電解質であるナトリウム塩を溶解させたものを用いることができる。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、イソプロピルメチルカーボネート、ビニレンカーボネート、ジメチルエーテル、γ−ブチロラクトン、アセトニトリル等の非水系溶媒から選ばれる少なくとも一種を用いるのが好ましい。電解質としては、NaPF、NaBF、NaClO、NaAsF、NaSbF、NaCFSO、NaN(SOCF、低級脂肪酸ナトリウム塩、NaAlCl等から選ばれる一種又は複数種を用いることができる。電解質の濃度は、0.5mol/l以上1.7mol/l以下であればよい。なお、電解質含有媒体は液状に限定されない。例えば、リチウムイオン二次電池がリチウムポリマー二次電池である場合、電解質は固体状(例えば、高分子ゲル状)を用いることが出来る。 The electrolyte-containing medium is filled between the heat-resistant flexible positive electrode 220 and the heat-resistant flexible negative electrode 420. As the electrolyte-containing medium, a known electrolyte-containing medium for a lithium secondary battery is used. For example, a medium in which a lithium salt as an electrolyte is dissolved in an organic solvent can be used. As the organic solvent, it is preferable to use at least one selected from non-aqueous solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl ether, isopropyl methyl carbonate, vinylene carbonate, γ-butyrolactone, and acetonitrile. . As the electrolyte, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiI, LiClO 4 or the like can be used when lithium is used as the negative electrode active material. From the viewpoint of heat resistance, a liquid electrolyte solution using an ionic liquid as a solvent is preferably used. Moreover, as an electrolyte used in the case of a sodium ion secondary battery, what dissolved the sodium salt which is electrolyte in the organic solvent can be used. As the organic solvent, it is preferable to use at least one selected from non-aqueous solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, isopropyl methyl carbonate, vinylene carbonate, dimethyl ether, γ-butyrolactone, and acetonitrile. . As the electrolyte, one or more selected from NaPF 6 , NaBF 4 , NaClO 4 , NaAsF 6 , NaSbF 6 , NaCF 3 SO 3 , NaN (SO 2 CF 3 ) 2 , lower fatty acid sodium salt, NaAlCl 4, etc. are used. be able to. The concentration of the electrolyte may be 0.5 mol / l or more and 1.7 mol / l or less. The electrolyte-containing medium is not limited to liquid. For example, when the lithium ion secondary battery is a lithium polymer secondary battery, the electrolyte can be in a solid state (for example, a polymer gel).

包材は、第1引き出し電極230の一部および第2引き出し電極430の一部を除いて、上記の構成を内部に収納する。この包材として、例えば、ポリイミド樹脂フィルム、芳香族ポリアミド樹脂フィルム、ポリアミドイミド樹脂フィルム、ポリアルキレンテレフタレート樹脂フィルム、アルミラミネートフィルム等が用いられる。   The packaging material accommodates the above-described configuration inside except for a part of the first extraction electrode 230 and a part of the second extraction electrode 430. As this packaging material, for example, a polyimide resin film, an aromatic polyamide resin film, a polyamideimide resin film, a polyalkylene terephthalate resin film, an aluminum laminate film, or the like is used.

<本実施形態における効果>
この耐熱可撓性電池100は、良好な耐熱性と可撓性とを兼ね備える。
<Effect in this embodiment>
This heat-resistant flexible battery 100 has both good heat resistance and flexibility.

<変形例>
(A)
図2に示されるように、耐熱可撓性電池100aでは、第1アンダーコート層250および第2アンダーコート層450が形成されてもよい。
<Modification>
(A)
As shown in FIG. 2, in the heat-resistant flexible battery 100a, the first undercoat layer 250 and the second undercoat layer 450 may be formed.

第1アンダーコート層250は、第1耐熱可撓性集電体210と耐熱可撓性正極220との間に形成される。この第1アンダーコート層250は、第1耐熱可撓性集電体210と耐熱可撓性正極220との接着性を向上させる。この第1アンダーコート層250は、正極用の多孔質ポリイミド樹脂と良好に接着することができる樹脂と、第1アンダーコート層250に導電性を付与する導電性フィラーとから形成される。   The first undercoat layer 250 is formed between the first heat-resistant flexible current collector 210 and the heat-resistant flexible positive electrode 220. The first undercoat layer 250 improves the adhesion between the first heat-resistant flexible current collector 210 and the heat-resistant flexible positive electrode 220. The first undercoat layer 250 is formed of a resin that can be satisfactorily bonded to the porous polyimide resin for the positive electrode, and a conductive filler that imparts conductivity to the first undercoat layer 250.

第2アンダーコート層450は、第2耐熱可撓性集電体410と耐熱可撓性負極420との間に形成される。この第2アンダーコート層450は、第2耐熱可撓性集電体410と耐熱可撓性負極420との接着性を向上させる。この第2アンダーコート層450は、負極用の多孔質ポリイミド樹脂と良好に接着することができる樹脂と、第2アンダーコート層450に導電性を付与する導電性フィラーとから形成される。   The second undercoat layer 450 is formed between the second heat-resistant flexible current collector 410 and the heat-resistant flexible negative electrode 420. The second undercoat layer 450 improves the adhesion between the second heat-resistant flexible current collector 410 and the heat-resistant flexible negative electrode 420. The second undercoat layer 450 is formed of a resin that can be satisfactorily adhered to the porous polyimide resin for the negative electrode, and a conductive filler that imparts conductivity to the second undercoat layer 450.

アンダーコート層250、450の樹脂は、例えば、モノマー型ポリイミド前駆体、またはポリアミック酸型ポリイミド前駆体から得られる。アンダーコート層250、450の導電性フィラーには、上記の第1耐熱可撓性集電体210の材料として用いることのできる導電性フィラーを用いることができる。   The resin of the undercoat layers 250 and 450 is obtained from, for example, a monomer type polyimide precursor or a polyamic acid type polyimide precursor. As the conductive filler of the undercoat layers 250 and 450, a conductive filler that can be used as the material of the first heat-resistant flexible current collector 210 can be used.

第1アンダーコート層250は、第1耐熱可撓性集電体210と耐熱可撓性正極220との接着性を向上させる。同様に、第2アンダーコート層450は、第2耐熱可撓性集電体410と耐熱可撓性負極420との接着性を向上させる。   The first undercoat layer 250 improves the adhesion between the first heat-resistant flexible current collector 210 and the heat-resistant flexible positive electrode 220. Similarly, the second undercoat layer 450 improves the adhesion between the second heat-resistant flexible current collector 410 and the heat-resistant flexible negative electrode 420.

(B)
図3に示されるように、耐熱可撓性電池100bは、第1耐熱可撓性リブ部260と、第2耐熱可撓性リブ部460とをさらに備えてもよい。耐熱可撓性リブ部260、460は、耐熱可撓性セパレータ300の両面において、耐熱可撓性セパレータ300の外周にそれぞれ設けられる。
(B)
As shown in FIG. 3, the heat-resistant flexible battery 100 b may further include a first heat-resistant flexible rib portion 260 and a second heat-resistant flexible rib portion 460. The heat-resistant flexible rib portions 260 and 460 are provided on the outer periphery of the heat-resistant flexible separator 300 on both sides of the heat-resistant flexible separator 300, respectively.

この耐熱可撓性リブ部260、460は、内部空間を有する枠状であり、耐熱可撓性の樹脂フィルムを四角枠状に打ち抜き加工することによって得らえる。耐熱可撓性の樹脂フィルムとして、例えば、ポリイミド樹脂フィルム、芳香族ポリアミド樹脂フィルム、ポリアミドイミド樹脂フィルム、ポリアルキレンテレフタレート樹脂フィルム、アルミラミネートフィルム等が用いられる。また、耐熱可撓性リブ部260、460は、耐熱性接着剤(例えば、株式会社アイ.エス.テイ製のSKYBONDシリーズ)を介して耐熱可撓性セパレータ300に接着されることが好ましい。耐熱性接着剤は、耐熱可撓性リブ部260、460と、耐熱可撓性セパレータ300との接着性を向上させる。   The heat-resistant and flexible rib portions 260 and 460 have a frame shape having an internal space, and can be obtained by punching a heat-resistant and flexible resin film into a square frame shape. As the heat-resistant flexible resin film, for example, a polyimide resin film, an aromatic polyamide resin film, a polyamideimide resin film, a polyalkylene terephthalate resin film, an aluminum laminate film, or the like is used. Moreover, it is preferable that the heat-resistant flexible ribs 260 and 460 are bonded to the heat-resistant flexible separator 300 via a heat-resistant adhesive (for example, SKYBOND series manufactured by IST Corporation). The heat resistant adhesive improves the adhesion between the heat resistant flexible rib portions 260 and 460 and the heat resistant flexible separator 300.

耐熱可撓性正極220は、第1耐熱可撓性リブ部260の内部空間に挿入される(特に図4参照)。同様に、耐熱可撓性負極420は、第2耐熱可撓性リブ部460の内部空間に挿入される。電解質含有媒体は、耐熱可撓性セパレータ300内部に充填される。   The heat-resistant flexible positive electrode 220 is inserted into the internal space of the first heat-resistant flexible rib portion 260 (see particularly FIG. 4). Similarly, the heat-resistant flexible negative electrode 420 is inserted into the internal space of the second heat-resistant flexible rib portion 460. The electrolyte-containing medium is filled in the heat-resistant flexible separator 300.

第1アンダーコート層250は、第1耐熱可撓性集電体210と、耐熱可撓性正極220と、第1耐熱可撓性リブ部260との接着性を向上させる。同様に、第2アンダーコート層450は、第2耐熱可撓性集電体410と、耐熱可撓性負極420と、第2耐熱可撓性リブ部460との接着性を向上させる。なお、耐熱可撓性電池100bの製造コストを低減させるために、アンダーコート層250、460が形成されなくてもよい。   The first undercoat layer 250 improves the adhesion between the first heat-resistant flexible current collector 210, the heat-resistant flexible positive electrode 220, and the first heat-resistant flexible rib portion 260. Similarly, the second undercoat layer 450 improves adhesion between the second heat-resistant flexible current collector 410, the heat-resistant flexible negative electrode 420, and the second heat-resistant flexible rib portion 460. Note that the undercoat layers 250 and 460 may not be formed in order to reduce the manufacturing cost of the heat-resistant flexible battery 100b.

耐熱可撓性電池100bを組み立てる際に、耐熱可撓性リブ部260、460は、耐熱可撓性正極220および耐熱可撓性負極420の設置位置の位置決めを補助する役目を果たす。そのため、ユーザは、耐熱可撓性電池100bを容易に組み立てることができる。   When assembling the heat-resistant flexible battery 100b, the heat-resistant flexible rib portions 260 and 460 serve to assist the positioning of the heat-resistant flexible positive electrode 220 and the heat-resistant flexible negative electrode 420. Therefore, the user can easily assemble the heat-resistant flexible battery 100b.

−第2実施形態−
図5、6に示されるように、本発明の第2実施形態に係る耐熱可撓性電池100cは、上記の第1実施形態に係る耐熱可撓性電池100と異なり、第1電気絶縁層510、第2電気絶縁層520、第3電気絶縁層530をさらに備える。なお、第2実施形態に係る耐熱可撓性電池100cと、上記の第1実施形態に係る耐熱可撓性電池100とで共通する構成については、適宜その説明を省略する。
-Second Embodiment-
As shown in FIGS. 5 and 6, the heat-resistant flexible battery 100 c according to the second embodiment of the present invention is different from the heat-resistant flexible battery 100 according to the first embodiment, and the first electrical insulating layer 510. The second electrical insulation layer 520 and the third electrical insulation layer 530 are further provided. In addition, about the structure which is common in the heat resistant flexible battery 100c which concerns on 2nd Embodiment, and the heat resistant flexible battery 100 which concerns on said 1st Embodiment, the description is abbreviate | omitted suitably.

第1電気絶縁性樹脂510、第2電気絶縁性樹脂520、および第3電気絶縁性樹脂530は、一体的で枠状である(特に図6参照)。具体的に、第1電気絶縁性樹脂510は、耐熱可撓性セパレータ300の外周上、かつ、第1耐熱可撓性集電体210と耐熱可撓性セパレータ300との間に形成される。第2電気絶縁性樹脂520は、耐熱可撓性セパレータ300の外周上、かつ、第2耐熱可撓性集電体410と耐熱可撓性セパレータ300との間に形成される。第3電気絶縁性樹脂530は、耐熱可撓性セパレータ300の外周部、かつ、第1電気絶縁性樹脂510と第2電気絶縁性樹脂520との間に形成される。   The first electrical insulating resin 510, the second electrical insulating resin 520, and the third electrical insulating resin 530 are integrated and have a frame shape (see particularly FIG. 6). Specifically, the first electrically insulating resin 510 is formed on the outer periphery of the heat resistant flexible separator 300 and between the first heat resistant flexible current collector 210 and the heat resistant flexible separator 300. The second electrically insulating resin 520 is formed on the outer periphery of the heat resistant flexible separator 300 and between the second heat resistant flexible current collector 410 and the heat resistant flexible separator 300. The third electrically insulating resin 530 is formed between the outer periphery of the heat resistant flexible separator 300 and between the first electrically insulating resin 510 and the second electrically insulating resin 520.

第1電気絶縁性樹脂510、第2電気絶縁性樹脂520、および第3電気絶縁性樹脂530は、耐熱可撓性を有し、耐熱可撓性セパレータ300と、第1耐熱可撓性集電体210と、第2耐熱可撓性集電体410との接着性を向上させる。この第1電気絶縁性樹脂510、第2電気絶縁性樹脂520、および第3電気絶縁性樹脂530は、電気絶縁性樹脂前駆体ペーストから得られる。電気絶縁性樹脂前駆体ペーストは、例えば、モノマー型ポリイミド前駆体、またはポリアミック酸型ポリイミド前駆体からなる。   The first electric insulating resin 510, the second electric insulating resin 520, and the third electric insulating resin 530 have heat-resistant flexibility, and the heat-resistant flexible separator 300 and the first heat-resistant flexible current collector. The adhesion between the body 210 and the second heat-resistant flexible current collector 410 is improved. The first electrically insulating resin 510, the second electrically insulating resin 520, and the third electrically insulating resin 530 are obtained from an electrically insulating resin precursor paste. The electrically insulating resin precursor paste is made of, for example, a monomer type polyimide precursor or a polyamic acid type polyimide precursor.

第1耐熱可撓性集電体210、第2耐熱可撓性集電体410、第1電気絶縁性樹脂510、第2電気絶縁性樹脂520、および第3電気絶縁性樹脂530で囲まれる耐熱可撓性電池100cの内部は、電解質含有媒体が充填された状態で密閉されている。なお、第1電気絶縁性樹脂510、または第2電気絶縁性樹脂520に、電解液注入口、安全弁が設けられていることが好ましい。電解液注入口は、電解質含有媒体を耐熱可撓性電池100cの内部に注入するためのものである。電解液注入口から電解質含有媒体が注入された後、電解液注入口にポリイミド前駆体が塗布される。塗布されたポリイミド前駆体が100℃から200℃で熱処理されて硬化することで、電解液注入口が封止されることにより、液漏れが防止される。安全弁は、耐熱可撓性電池100cの内部中の圧力が所定の圧力になったとき、耐熱可撓性電池100cの内部中のガスを抜くためのものである。   The heat resistance surrounded by the first heat-resistant flexible current collector 210, the second heat-resistant flexible current collector 410, the first electrically insulating resin 510, the second electrically insulating resin 520, and the third electrically insulating resin 530. The inside of the flexible battery 100c is sealed in a state filled with an electrolyte-containing medium. In addition, it is preferable that the 1st electrical insulation resin 510 or the 2nd electrical insulation resin 520 is provided with the electrolyte solution injection port and the safety valve. The electrolyte solution injection port is for injecting the electrolyte-containing medium into the heat-resistant flexible battery 100c. After the electrolyte-containing medium is injected from the electrolyte solution injection port, the polyimide precursor is applied to the electrolyte solution injection port. The applied polyimide precursor is heat-treated at 100 ° C. to 200 ° C. and cured, whereby the electrolyte solution inlet is sealed, thereby preventing liquid leakage. The safety valve is for venting the gas inside the heat-resistant flexible battery 100c when the pressure inside the heat-resistant flexible battery 100c reaches a predetermined pressure.

<耐熱可撓性電池の製造方法>
耐熱可撓性電池100cの製造方法は、塗布工程と、貼付工程と、引き出し電極取り付け工程と、硬化工程とを備える。
<Method for producing heat-resistant flexible battery>
The manufacturing method of the heat-resistant flexible battery 100c includes an application step, a pasting step, a lead electrode attaching step, and a curing step.

塗布工程では、耐熱可撓性セパレータ300の外周部に、電気絶縁性樹脂前駆体ペーストを含浸させつつ塗布する。なお、耐熱可撓性電池100cの内部を密閉しなくてもよい場合には、電気絶縁性樹脂前駆体ペーストを耐熱可撓性セパレータ300に含浸させなくてもよい。   In the application step, the outer peripheral portion of the heat-resistant flexible separator 300 is applied while being impregnated with the electrically insulating resin precursor paste. In the case where the inside of the heat-resistant flexible battery 100c does not need to be sealed, the heat-resistant flexible separator 300 may not be impregnated with the electrically insulating resin precursor paste.

貼付工程では、耐熱可撓性正極220上に形成される第1耐熱可撓性集電体210を、電気絶縁性樹脂前駆体ペーストを介して耐熱可撓性セパレータ300に貼り付ける。さらに、耐熱可撓性負極420上に形成される第2耐熱可撓性集電体410を、電気絶縁性樹脂前駆体ペーストを介して耐熱可撓性セパレータ300に貼り付ける。具体的に、第1耐熱可撓性集電体210は、耐熱可撓性正極220が耐熱可撓性セパレータ300に対向するように配置される。第2耐熱可撓性集電体410は、耐熱可撓性負極420が耐熱可撓性セパレータ300に対向するように配置される。   In the attaching step, the first heat-resistant flexible current collector 210 formed on the heat-resistant flexible positive electrode 220 is attached to the heat-resistant flexible separator 300 via an electrically insulating resin precursor paste. Further, the second heat-resistant flexible current collector 410 formed on the heat-resistant flexible negative electrode 420 is attached to the heat-resistant flexible separator 300 via an electrically insulating resin precursor paste. Specifically, the first heat-resistant flexible current collector 210 is disposed so that the heat-resistant flexible positive electrode 220 faces the heat-resistant flexible separator 300. The second heat-resistant flexible current collector 410 is disposed so that the heat-resistant flexible negative electrode 420 faces the heat-resistant flexible separator 300.

電極取り付け工程では、導電性樹脂前駆体ペーストで、第1耐熱可撓性集電体210に第1引き出し電極230が取り付けられ、第2耐熱可撓性集電体410に第2引き出し電極430が取り付けられる。なお、電極取り付け工程は、塗布工程の前に行ってもよいし、塗布工程と貼付工程との間で行ってもよい。   In the electrode attaching step, the first extraction electrode 230 is attached to the first heat-resistant flexible current collector 210 and the second extraction electrode 430 is attached to the second heat-resistant flexible current collector 410 with a conductive resin precursor paste. It is attached. In addition, an electrode attachment process may be performed before an application | coating process and may be performed between an application | coating process and a sticking process.

硬化工程では、電気絶縁性樹脂前駆体ペーストおよび導電性樹脂前駆体ペーストが硬化される。硬化された電気絶縁性樹脂前駆体ペーストは、第1電気絶縁性樹脂510、第2電気絶縁性樹脂520、および第3電気絶縁性樹脂530となる。また、硬化された導電性樹脂前駆体ペーストは、第1導電性樹脂240、および第2導電性樹脂440となる。なお、耐熱可撓性電池100cに第1導電性樹脂240、および第2導電性樹脂440を設けない場合、電極取り付け工程が省略され、硬化工程では電気絶縁性樹脂前駆体ペーストが硬化される。硬化工程は、150℃から400℃の温度で行われるのがよく、好ましくは200℃から300℃の間で行われるのがよい。   In the curing step, the electrically insulating resin precursor paste and the conductive resin precursor paste are cured. The cured electrically insulating resin precursor paste becomes the first electrically insulating resin 510, the second electrically insulating resin 520, and the third electrically insulating resin 530. Further, the cured conductive resin precursor paste becomes the first conductive resin 240 and the second conductive resin 440. When the first conductive resin 240 and the second conductive resin 440 are not provided in the heat-resistant flexible battery 100c, the electrode attachment process is omitted, and the electrically insulating resin precursor paste is cured in the curing process. The curing step may be performed at a temperature of 150 ° C. to 400 ° C., preferably 200 ° C. to 300 ° C.

<本実施形態における効果>
第1耐熱可撓性集電体210、第2耐熱可撓性集電体410、第1電気絶縁性樹脂510、第2電気絶縁性樹脂520、および第3電気絶縁性樹脂530で囲まれる耐熱可撓性電池100cの内部は密閉される。そのため、耐熱可撓性電池100cは、充填された電解質含有媒体の液漏れを気にする必要がないので取り扱いやすい。よって、耐熱可撓性電池100cは、高電圧化のために、容易に複数積層させることができる。
<Effect in this embodiment>
The heat resistance surrounded by the first heat-resistant flexible current collector 210, the second heat-resistant flexible current collector 410, the first electrically insulating resin 510, the second electrically insulating resin 520, and the third electrically insulating resin 530. The inside of the flexible battery 100c is sealed. Therefore, the heat-resistant flexible battery 100c is easy to handle because there is no need to worry about leakage of the filled electrolyte-containing medium. Therefore, a plurality of heat-resistant flexible batteries 100c can be easily stacked in order to increase the voltage.

この耐熱可撓性電池100cの製造方法では、電気絶縁性樹脂前駆体ペーストによって、耐熱可撓性セパレータ300と第1耐熱可撓性集電体210と第2耐熱可撓性集電体410との接着性が向上する。   In the manufacturing method of the heat-resistant flexible battery 100c, the heat-resistant flexible separator 300, the first heat-resistant flexible current collector 210, and the second heat-resistant flexible current collector 410 are formed using an electrically insulating resin precursor paste. Improves the adhesion.

この耐熱可撓性電池100cの製造方法では、耐熱可撓性セパレータ300の外周部に、電気絶縁性樹脂前駆体ペーストが含浸しつつ塗布されることで、第1耐熱可撓性集電体210、第2耐熱可撓性集電体410、第1電気絶縁性樹脂510、第2電気絶縁性樹脂520、および第3電気絶縁性樹脂530で囲まれる耐熱可撓性電池100cの内部を容易に密閉することができる。   In the manufacturing method of the heat-resistant flexible battery 100c, the first heat-resistant flexible current collector 210 is applied to the outer peripheral portion of the heat-resistant flexible separator 300 while being impregnated with the electrically insulating resin precursor paste. The inside of the heat-resistant flexible battery 100c surrounded by the second heat-resistant flexible current collector 410, the first electrically insulating resin 510, the second electrically insulating resin 520, and the third electrically insulating resin 530 can be easily obtained. Can be sealed.

この耐熱可撓性電池100cの製造方法では、導電性樹脂前駆体ペーストが耐熱可撓性集電体210、410に塗られて加熱されることで、引き出し電極230、430が耐熱可撓性集電体210、410に接着される。そのため、この耐熱可撓性電池の製造方法では、引き出し電極230、430と、耐熱可撓性集電体210、410との取り付けをスポット溶接で行う場合に比べて、金属不純物が混じりにくい。また、この耐熱可撓性電池の製造方法では、引き出し電極230、430と、耐熱可撓性集電体210、410との取り付けを超音波溶接で行う場合に比べて、煩雑な作業が少なくなる。さらに、この耐熱可撓性電池の製造方法では、超音波溶接用の高価な設備が不要となるため、耐熱可撓性電池100cの製造コストを低減させることができる。   In this method of manufacturing the heat-resistant flexible battery 100c, the conductive resin precursor paste is applied to the heat-resistant flexible current collectors 210 and 410 and heated so that the extraction electrodes 230 and 430 are heat-resistant and flexible. Bonded to the electric bodies 210 and 410. Therefore, in this heat-resistant flexible battery manufacturing method, metal impurities are less likely to be mixed as compared with the case where the extraction electrodes 230 and 430 and the heat-resistant flexible current collectors 210 and 410 are attached by spot welding. Further, in this heat-resistant flexible battery manufacturing method, complicated work is reduced as compared with the case where the extraction electrodes 230 and 430 and the heat-resistant flexible current collectors 210 and 410 are attached by ultrasonic welding. . Furthermore, in this method for manufacturing a heat-resistant flexible battery, expensive equipment for ultrasonic welding is not required, so that the manufacturing cost of the heat-resistant flexible battery 100c can be reduced.

<変形例>
(A)
図7に示されるように、耐熱可撓性電池100dは、第1アンダーコート層250と、第2アンダーコート層450とをさらに備えてもよい。第1アンダーコート層250は、第1耐熱可撓性集電体210上に形成される。第2アンダーコート層450は、第2耐熱可撓性集電体410上に形成される。耐熱可撓性正極220および第1導電性樹脂510は、第1アンダーコート層250上に形成される。耐熱可撓性負極420および第2導電性樹脂520は、第2アンダーコート層450上に形成される。
<Modification>
(A)
As shown in FIG. 7, the heat-resistant flexible battery 100 d may further include a first undercoat layer 250 and a second undercoat layer 450. The first undercoat layer 250 is formed on the first heat resistant flexible current collector 210. The second undercoat layer 450 is formed on the second heat resistant flexible current collector 410. The heat-resistant flexible positive electrode 220 and the first conductive resin 510 are formed on the first undercoat layer 250. The heat-resistant flexible negative electrode 420 and the second conductive resin 520 are formed on the second undercoat layer 450.

第1アンダーコート層250は、第1耐熱可撓性集電体210と、耐熱可撓性正極220と、第1導電性樹脂510との接着性を向上させる。同様に、第2アンダーコート層450は、第2耐熱可撓性集電体410と、耐熱可撓性負極420と、第2導電性樹脂520との接着性を向上させる。   The first undercoat layer 250 improves adhesion between the first heat-resistant flexible current collector 210, the heat-resistant flexible positive electrode 220, and the first conductive resin 510. Similarly, the second undercoat layer 450 improves the adhesion between the second heat-resistant flexible current collector 410, the heat-resistant flexible negative electrode 420, and the second conductive resin 520.

(B)
図8に示されるように、耐熱可撓性電池積層体600では、第1耐熱可撓性集電体210と第2耐熱可撓性集電体410とが交互に重なるようにして、2つの耐熱可撓性電池100cが積層されてもよい。この耐熱可撓性電池積層体600では、第1耐熱可撓性集電体210と第2耐熱可撓性集電体410との間の引き出し電極230、430が省略される。なお、耐熱可撓性電池100cは、3つ以上の耐熱可撓性電池100cが、第1耐熱可撓性集電体210と第2耐熱可撓性集電体410とが交互に重なるようにして積層されていてもよい。
(B)
As shown in FIG. 8, in the heat-resistant flexible battery stack 600, the first heat-resistant flexible current collector 210 and the second heat-resistant flexible current collector 410 are overlapped so that two The heat-resistant flexible battery 100c may be stacked. In the heat resistant flexible battery stack 600, the lead electrodes 230 and 430 between the first heat resistant flexible current collector 210 and the second heat resistant flexible current collector 410 are omitted. The heat-resistant flexible battery 100c includes three or more heat-resistant flexible batteries 100c such that the first heat-resistant flexible current collector 210 and the second heat-resistant flexible current collector 410 are alternately overlapped. May be laminated.

隣接する第1耐熱可撓性集電体210と第2耐熱可撓性集電体410とに代えて、1つの耐熱可撓性集電体を用いてもよい。この耐熱可撓性集電体の一方の面には耐熱可撓性正極220が形成され、他方の面には耐熱可撓性負極420が形成される。そのため、この耐熱可撓性集電体を備える耐熱可撓性電池積層体600は、バイポーラ積層型の構造となる。   Instead of the adjacent first heat-resistant flexible current collector 210 and second heat-resistant flexible current collector 410, one heat-resistant flexible current collector may be used. A heat-resistant flexible positive electrode 220 is formed on one surface of the heat-resistant flexible current collector, and a heat-resistant flexible negative electrode 420 is formed on the other surface. Therefore, the heat-resistant flexible battery stack 600 provided with this heat-resistant flexible current collector has a bipolar stacked structure.

耐熱可撓性電池積層体600では、耐熱可撓性電池100cの積層数を適宜調整することによって、所望の電圧を容易に得ることができる。   In the heat-resistant flexible battery stack 600, a desired voltage can be easily obtained by appropriately adjusting the number of layers of the heat-resistant flexible battery 100c.

−第3実施形態−
図9、10に示されるように、本発明の第3実施形態に係る耐熱可撓性電池100eは、上記の第1実施形態に係る耐熱可撓性電池100と異なり、枠状の耐熱接着フィルム700をさらに備える。
-Third embodiment-
As shown in FIGS. 9 and 10, the heat-resistant flexible battery 100 e according to the third embodiment of the present invention is different from the heat-resistant flexible battery 100 according to the first embodiment, and is a frame-shaped heat-resistant adhesive film. 700 is further provided.

耐熱接着フィルム700は、内部空間を有する枠状であり、耐熱可撓性の樹脂フィルムを四角枠状に打ち抜き加工することによって得らえる。耐熱可撓性の樹脂フィルムとして、例えば、ポリイミド樹脂フィルム、芳香族ポリアミド樹脂フィルム、ポリアミドイミド樹脂フィルム、ポリアルキレンテレフタレート樹脂フィルム、アルミラミネートフィルム等が用いられる。   The heat-resistant adhesive film 700 has a frame shape having an internal space, and can be obtained by punching a heat-resistant flexible resin film into a square frame shape. As the heat-resistant flexible resin film, for example, a polyimide resin film, an aromatic polyamide resin film, a polyamideimide resin film, a polyalkylene terephthalate resin film, an aluminum laminate film, or the like is used.

この耐熱接着フィルム700は、耐熱可撓性セパレータ300、耐熱可撓性正極220、および耐熱可撓性負極420の外周を囲むようにして配置される。また、耐熱接着フィルム700には、耐熱可撓性セパレータ300、第1耐熱可撓性集電体210、および第2耐熱可撓性集電体410が接着される。そのため、耐熱接着フィルム700は、第1耐熱可撓性集電体210と第2耐熱可撓性集電体410との間に形成されることになる。耐熱接着フィルム700は、接着性を向上させるために、耐熱性接着剤(例えば、株式会社アイ.エス.テイ製のSKYBONDシリーズ)を介して耐熱可撓性セパレータ300、第1耐熱可撓性集電体210、および第2耐熱可撓性集電体410に接着されることが好ましい。   The heat resistant adhesive film 700 is disposed so as to surround the outer periphery of the heat resistant flexible separator 300, the heat resistant flexible positive electrode 220, and the heat resistant flexible negative electrode 420. In addition, the heat resistant flexible separator 300, the first heat resistant flexible current collector 210, and the second heat resistant flexible current collector 410 are bonded to the heat resistant adhesive film 700. Therefore, the heat resistant adhesive film 700 is formed between the first heat resistant flexible current collector 210 and the second heat resistant flexible current collector 410. In order to improve the adhesiveness, the heat-resistant adhesive film 700 is provided with a heat-resistant flexible separator 300 and a first heat-resistant flexible collector through a heat-resistant adhesive (for example, SKYBOND series manufactured by IST Corporation). It is preferable to adhere to the electric body 210 and the second heat-resistant flexible current collector 410.

第1耐熱可撓性集電体210、第2耐熱可撓性集電体410、および耐熱接着フィルム700で囲まれる耐熱可撓性電池100eの内部は、電解質含有媒体が充填された状態で密閉されている。なお、耐熱接着フィルム700に、電解液注入口、安全弁が設けられていることが好ましい。   The inside of the heat-resistant flexible battery 100e surrounded by the first heat-resistant flexible current collector 210, the second heat-resistant flexible current collector 410, and the heat-resistant adhesive film 700 is hermetically sealed with an electrolyte-containing medium. Has been. The heat resistant adhesive film 700 is preferably provided with an electrolyte injection port and a safety valve.

<本実施形態における効果>
第1耐熱可撓性集電体210、第2耐熱可撓性集電体410、および耐熱接着フィルム700で囲まれる耐熱可撓性電池100eの内部は密閉される。そのため、耐熱可撓性電池100eは、充填された電解質含有媒体の液漏れを気にする必要がないので取り扱いやすい。よって、耐熱可撓性電池100eは、高電圧化のために、容易に複数積層させることができる。
<Effect in this embodiment>
The inside of the heat resistant flexible battery 100e surrounded by the first heat resistant flexible current collector 210, the second heat resistant flexible current collector 410, and the heat resistant adhesive film 700 is sealed. Therefore, the heat-resistant flexible battery 100e is easy to handle because there is no need to worry about leakage of the filled electrolyte-containing medium. Therefore, a plurality of heat-resistant flexible batteries 100e can be easily stacked in order to increase the voltage.

<変形例>
(A)
図11に示されるように、耐熱可撓性電池100fは、第1アンダーコート層250と、第2アンダーコート層450とをさらに備えてもよい。第1アンダーコート層250は、第1耐熱可撓性集電体210上に形成される。第2アンダーコート層450は、第2耐熱可撓性集電体410上に形成される。耐熱可撓性正極220および耐熱接着フィルム700は、第1アンダーコート層250上に形成される。耐熱可撓性負極420および耐熱接着フィルム700は、第2アンダーコート層450上に形成される。
<Modification>
(A)
As shown in FIG. 11, the heat-resistant flexible battery 100 f may further include a first undercoat layer 250 and a second undercoat layer 450. The first undercoat layer 250 is formed on the first heat resistant flexible current collector 210. The second undercoat layer 450 is formed on the second heat resistant flexible current collector 410. The heat-resistant flexible positive electrode 220 and the heat-resistant adhesive film 700 are formed on the first undercoat layer 250. The heat-resistant flexible negative electrode 420 and the heat-resistant adhesive film 700 are formed on the second undercoat layer 450.

第1アンダーコート層250は、第1耐熱可撓性集電体210と、耐熱可撓性正極220と、耐熱接着フィルム700との接着性を向上させる。第2アンダーコート層450は、第2耐熱可撓性集電体410と、耐熱可撓性負極420と、耐熱接着フィルム700との接着性を向上させる。   The first undercoat layer 250 improves the adhesion between the first heat-resistant flexible current collector 210, the heat-resistant flexible positive electrode 220, and the heat-resistant adhesive film 700. The second undercoat layer 450 improves the adhesion between the second heat-resistant flexible current collector 410, the heat-resistant flexible negative electrode 420, and the heat-resistant adhesive film 700.

(B)
図12に示されるように、耐熱可撓性電池積層体600eでは、第1耐熱可撓性集電体210と第2耐熱可撓性集電体410とが交互に重なるようにして、2つの耐熱可撓性電池100eが積層されてもよい。なお、耐熱可撓性電池積層体600eでは、3つ以上の耐熱可撓性電池100eが、第1耐熱可撓性集電体210と第2耐熱可撓性集電体410とが交互に重なるようにして積層されていてもよい。
(B)
As shown in FIG. 12, in the heat-resistant flexible battery stack 600e, the first heat-resistant flexible current collector 210 and the second heat-resistant flexible current collector 410 are alternately overlapped with each other. The heat-resistant flexible battery 100e may be stacked. In the heat-resistant flexible battery stack 600e, three or more heat-resistant flexible batteries 100e are alternately overlapped with the first heat-resistant flexible current collector 210 and the second heat-resistant flexible current collector 410. Thus, they may be laminated.

隣接する第1耐熱可撓性集電体210と第2耐熱可撓性集電体410とに代えて、1つの耐熱可撓性集電体を用いてもよい。この耐熱可撓性集電体の一方の面には耐熱可撓性正極220が形成され、他方の面には耐熱可撓性負極420が形成される。そのため、この耐熱可撓性集電体を備える耐熱可撓性電池積層体600eは、バイポーラ積層型の構造となる。   Instead of the adjacent first heat-resistant flexible current collector 210 and second heat-resistant flexible current collector 410, one heat-resistant flexible current collector may be used. A heat-resistant flexible positive electrode 220 is formed on one surface of the heat-resistant flexible current collector, and a heat-resistant flexible negative electrode 420 is formed on the other surface. Therefore, the heat-resistant flexible battery stack 600e provided with this heat-resistant flexible current collector has a bipolar stacked structure.

耐熱可撓性電池積層体600eでは、耐熱可撓性電池100eの積層数を適宜調整することによって、所望の電圧を容易に得ることができる。   In the heat resistant flexible battery stack 600e, a desired voltage can be easily obtained by appropriately adjusting the number of layers of the heat resistant flexible battery 100e.

100、100a、100b、100c、100d、100e、100f 耐熱可撓性電池
210 第1耐熱可撓性集電体
220 耐熱可撓性正極
230 第1引き出し電極(引き出し電極)
250 第1アンダーコート層
260 第1耐熱可撓性リブ部(耐熱可撓性リブ部)
300 耐熱可撓性セパレータ
410 第2耐熱可撓性集電体
420 耐熱可撓性負極
430 第2引き出し電極(引き出し電極)
450 第1アンダーコート層
460 第2耐熱可撓性リブ部(耐熱可撓性リブ部)
510 第1電気絶縁性樹脂
520 第2電気絶縁性樹脂
530 第3電気絶縁性樹脂
600、600e 耐熱可撓性電池
700 耐熱接着フィルム
100, 100a, 100b, 100c, 100d, 100e, 100f Heat-resistant flexible battery 210 First heat-resistant flexible current collector 220 Heat-resistant flexible positive electrode 230 First extraction electrode (extraction electrode)
250 1st undercoat layer 260 1st heat-resistant flexible rib part (heat-resistant flexible rib part)
300 heat-resistant flexible separator 410 second heat-resistant flexible current collector 420 heat-resistant flexible negative electrode 430 second extraction electrode (extraction electrode)
450 1st undercoat layer 460 2nd heat resistant flexible rib part (heat resistant flexible rib part)
510 First Electrical Insulating Resin 520 Second Electrical Insulating Resin 530 Third Electrical Insulating Resin 600, 600e Heat Resistant Flexible Battery 700 Heat Resistant Adhesive Film

Claims (12)

第1耐熱可撓性集電体と、
前記第1耐熱可撓性集電体上に形成される耐熱可撓性正極と、
耐熱可撓性セパレータと、
第2耐熱可撓性集電体と、
前記第2耐熱可撓性集電体上に形成され、前記耐熱可撓性セパレータを挟んで前記耐熱可撓性正極に対向するように配置される耐熱可撓性負極と、
前記耐熱可撓性正極と前記耐熱可撓性負極との間に充填される電解質含有媒体とを備える耐熱可撓性電池。
A first heat-resistant flexible current collector;
A heat-resistant flexible positive electrode formed on the first heat-resistant flexible current collector;
A heat-resistant flexible separator;
A second heat resistant flexible current collector;
A heat-resistant flexible negative electrode formed on the second heat-resistant flexible current collector and disposed to face the heat-resistant flexible positive electrode across the heat-resistant flexible separator;
A heat-resistant flexible battery comprising an electrolyte-containing medium filled between the heat-resistant flexible positive electrode and the heat-resistant flexible negative electrode.
前記第1耐熱可撓性集電体と前記耐熱可撓性セパレータとの間に形成される第1電気絶縁性樹脂と、
前記第2耐熱可撓性集電体と前記耐熱可撓性セパレータとの間に形成される第2電気絶縁性樹脂と、
前記耐熱可撓性セパレータの外周部に形成される第3電気絶縁性樹脂とをさらに備え、
前記第1電気絶縁性樹脂、前記第2電気絶縁性樹脂、および前記第3電気絶縁性樹脂は、一体的で枠状である請求項1に記載の耐熱可撓性電池。
A first electrically insulating resin formed between the first heat-resistant flexible current collector and the heat-resistant flexible separator;
A second electrically insulating resin formed between the second heat-resistant flexible current collector and the heat-resistant flexible separator;
A third electrically insulating resin formed on the outer periphery of the heat-resistant flexible separator,
2. The heat-resistant flexible battery according to claim 1, wherein the first electrically insulating resin, the second electrically insulating resin, and the third electrically insulating resin are integrated and have a frame shape.
前記耐熱可撓性セパレータ、前記耐熱可撓性正極、および前記耐熱可撓性負極の外周を囲む枠状の耐熱接着フィルムをさらに備え、
前記耐熱接着フィルムは、前記第1耐熱可撓性集電体と前記第2耐熱可撓性集電体との間に形成される請求項1に記載の耐熱可撓性電池。
The heat-resistant flexible separator, the heat-resistant flexible positive electrode, and a frame-shaped heat-resistant adhesive film surrounding an outer periphery of the heat-resistant flexible negative electrode;
The heat resistant flexible battery according to claim 1, wherein the heat resistant adhesive film is formed between the first heat resistant flexible current collector and the second heat resistant flexible current collector.
前記耐熱可撓性正極および前記耐熱可撓性負極の少なくとも一方は、主に、活物質粒子と、前記活物質粒子同士を結着させる多孔質ポリイミド樹脂とから成る活物質層を有する請求項1〜3のいずれか一項に記載の耐熱可撓性電池。   2. At least one of the heat-resistant flexible positive electrode and the heat-resistant flexible negative electrode has an active material layer mainly composed of active material particles and a porous polyimide resin that binds the active material particles to each other. The heat-resistant flexible battery as described in any one of -3. 前記第1耐熱可撓性集電体上に形成される第1アンダーコート層と、
前記第2耐熱可撓性集電体上に形成される第2アンダーコート層とをさらに備え、
前記耐熱可撓性正極は、前記第1アンダーコート層上に形成され、
前記耐熱可撓性負極は、前記第2アンダーコート層上に形成される請求項1〜4のいずれか一項に記載の耐熱可撓性電池。
A first undercoat layer formed on the first heat-resistant flexible current collector;
A second undercoat layer formed on the second heat-resistant flexible current collector,
The heat-resistant flexible positive electrode is formed on the first undercoat layer,
The heat-resistant flexible battery according to any one of claims 1 to 4, wherein the heat-resistant flexible negative electrode is formed on the second undercoat layer.
請求項1〜5のいずれか一項に記載の耐熱可撓性電池が、前記第1耐熱可撓性集電体と前記第2耐熱可撓性集電体とが交互に重なるようにして複数積層される耐熱可撓性電池積層体。   The heat-resistant flexible battery according to claim 1, wherein the first heat-resistant flexible current collector and the second heat-resistant flexible current collector are alternately overlapped. A heat-resistant flexible battery laminate to be laminated. 前記耐熱可撓性セパレータの両面において前記耐熱可撓性セパレータの周辺部に設けられる耐熱可撓性リブ部をさらに備え、
前記耐熱可撓性正極および前記耐熱可撓性負極は、前記耐熱可撓性リブ部の内部空間に挿入され、
前記電解質含有媒体は、前記耐熱可撓性セパレータ内部に充填される請求項1に記載の耐熱可撓性電池積層体。
A heat-resistant flexible rib portion provided on a peripheral portion of the heat-resistant flexible separator on both surfaces of the heat-resistant flexible separator;
The heat-resistant flexible positive electrode and the heat-resistant flexible negative electrode are inserted into an internal space of the heat-resistant flexible rib portion,
The heat resistant flexible battery laminate according to claim 1, wherein the electrolyte-containing medium is filled in the heat resistant flexible separator.
前記耐熱可撓性正極および前記耐熱可撓性負極の少なくとも一方は、主に、活物質粒子と、前記活物質粒子同士を結着させる多孔質ポリイミド樹脂とから成る活物質層を有する請求項7に記載の耐熱可撓性電池積層体。   8. At least one of the heat-resistant flexible positive electrode and the heat-resistant flexible negative electrode has an active material layer mainly composed of active material particles and a porous polyimide resin that binds the active material particles. 2. A heat-resistant flexible battery laminate according to 1. 前記第1耐熱可撓性集電体上に形成される第1アンダーコート層と、
前記第2耐熱可撓性集電体上に形成される第2アンダーコート層とをさらに備え、
前記耐熱可撓性正極は、前記第1アンダーコート層上に形成され、
前記耐熱可撓性負極は、前記第2アンダーコート層上に形成される請求項7または8に記載の耐熱可撓性電池。
A first undercoat layer formed on the first heat-resistant flexible current collector;
A second undercoat layer formed on the second heat-resistant flexible current collector,
The heat-resistant flexible positive electrode is formed on the first undercoat layer,
The heat-resistant flexible battery according to claim 7 or 8, wherein the heat-resistant flexible negative electrode is formed on the second undercoat layer.
耐熱可撓性正極が形成される第1耐熱可撓性集電体、および、耐熱可撓性負極が形成される第2耐熱可撓性集電体を、電気絶縁性樹脂前駆体ペーストを介して前記耐熱可撓性セパレータに貼り付ける貼付工程と、
前記電気絶縁性樹脂前駆体ペーストを硬化させる硬化工程とを備える耐熱可撓性電池の製造方法。
The first heat-resistant flexible current collector on which the heat-resistant flexible positive electrode is formed and the second heat-resistant flexible current collector on which the heat-resistant flexible negative electrode is formed are passed through an electrically insulating resin precursor paste. Affixing step to affix to the heat-resistant flexible separator,
A heat-resistant flexible battery manufacturing method comprising: a curing step of curing the electrical insulating resin precursor paste.
前記電気絶縁性樹脂前駆体ペーストを、前記耐熱可撓性セパレータの外周部に含浸させつつ塗布する塗布工程をさらに備える請求項10に記載の耐熱可撓性電池の製造方法。   The method for manufacturing a heat-resistant flexible battery according to claim 10, further comprising an application step of applying the electrical insulating resin precursor paste while impregnating the outer peripheral portion of the heat-resistant flexible separator. 導電性樹脂前駆体ペーストで、前記第1耐熱可撓性集電体および前記第2耐熱可撓性集電体の少なくとも一方に引き出し電極を取り付ける引き出し電極取り付け工程をさらに備え、
前記硬化工程では、前記電気絶縁性樹脂前駆体ペーストおよび前記導電性樹脂前駆体ペーストを硬化させる請求項10または11に記載の耐熱可撓性電池の製造方法。
A conductive resin precursor paste, further comprising a lead electrode attaching step of attaching a lead electrode to at least one of the first heat-resistant flexible current collector and the second heat-resistant flexible current collector;
The method for manufacturing a heat-resistant flexible battery according to claim 10 or 11, wherein, in the curing step, the electrically insulating resin precursor paste and the conductive resin precursor paste are cured.
JP2011068597A 2011-03-25 2011-03-25 Heat-resistant flexible battery and method for manufacturing heat-resistant flexible battery Active JP5754002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011068597A JP5754002B2 (en) 2011-03-25 2011-03-25 Heat-resistant flexible battery and method for manufacturing heat-resistant flexible battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011068597A JP5754002B2 (en) 2011-03-25 2011-03-25 Heat-resistant flexible battery and method for manufacturing heat-resistant flexible battery

Publications (2)

Publication Number Publication Date
JP2012204182A true JP2012204182A (en) 2012-10-22
JP5754002B2 JP5754002B2 (en) 2015-07-22

Family

ID=47184958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011068597A Active JP5754002B2 (en) 2011-03-25 2011-03-25 Heat-resistant flexible battery and method for manufacturing heat-resistant flexible battery

Country Status (1)

Country Link
JP (1) JP5754002B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080853A1 (en) * 2012-11-22 2014-05-30 株式会社カネカ Collector for bipolar lithium ion secondary batteries, and bipolar lithium ion secondary battery
JP2016501427A (en) * 2012-11-30 2016-01-18 ベレノス・クリーン・パワー・ホールディング・アーゲー Tin-based anode material for rechargeable battery and its preparation method
JP2017045530A (en) * 2015-08-24 2017-03-02 三洋化成工業株式会社 Manufacturing method for lithium ion battery
JPWO2015198737A1 (en) * 2014-06-25 2017-04-20 Nok株式会社 Thermoplastic adhesive sheet
JP2017533548A (en) * 2014-11-05 2017-11-09 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. Electrochemical cell having semi-solid electrode and method for producing the same
EP3367472A1 (en) * 2017-02-28 2018-08-29 Commissariat à l'énergie atomique et aux énergies alternatives Electrochemical storage cell with bipolar architecture, with high voltage per electrochemical cell
CN109585904A (en) * 2017-09-29 2019-04-05 辉能科技股份有限公司 Bendable lithium battery
JP2020173953A (en) * 2019-04-10 2020-10-22 本田技研工業株式会社 Solid electrolyte sheet, all solid state battery, separator, and lithium ion battery
KR20210005288A (en) * 2018-07-03 2021-01-13 리나타 에이지 (리나타 에스에이) Multilayer packaging structure for thin film battery and method of manufacturing such structure
US11024903B2 (en) 2015-06-18 2021-06-01 24M Technologies, Inc. Single pouch battery cells and methods of manufacture
US11121437B2 (en) 2012-05-18 2021-09-14 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
US11309531B2 (en) 2011-09-07 2022-04-19 24M Technologies, Inc. Stationary semi-solid battery module and method of manufacture
CZ309281B6 (en) * 2021-05-17 2022-07-13 Oto Mušálek Galvanic cell
US11742525B2 (en) 2020-02-07 2023-08-29 24M Technologies, Inc. Divided energy electrochemical cell systems and methods of producing the same

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213052A (en) * 1989-02-14 1990-08-24 Fuji Elelctrochem Co Ltd Lithium paper battery
JP2000021412A (en) * 1998-07-06 2000-01-21 Hitachi Ltd Nonaqueous electrolyte secondary battery and manufacture thereof
JP2000036325A (en) * 1998-07-16 2000-02-02 Asahi Glass Co Ltd Secondary power supply
JP2001518228A (en) * 1997-02-12 2001-10-09 スカイラブ テクノロジーズ グループ,インコーポレイテッド Polyimide battery
JP2004234880A (en) * 2003-01-28 2004-08-19 Kyocera Corp Laminated battery
JP2005005163A (en) * 2003-06-12 2005-01-06 Nissan Motor Co Ltd Bipolar battery
JP2005235738A (en) * 2004-01-19 2005-09-02 Matsushita Electric Ind Co Ltd Energy device, electronic apparatus using it, and manufacturing method of energy device
JP2007122881A (en) * 2005-10-24 2007-05-17 Nissan Motor Co Ltd Bipolar battery, battery pack, and vehicle mounting those batteries
JP2007305574A (en) * 2006-04-12 2007-11-22 Toray Ind Inc Lithium ion secondary battery
JP2008226807A (en) * 2007-02-14 2008-09-25 Nissan Motor Co Ltd Non-aqueous electrolyte secondary battery
JP2008257962A (en) * 2007-04-03 2008-10-23 Murata Mfg Co Ltd All solid lithium secondary battery
JP2009081140A (en) * 2008-11-10 2009-04-16 Toshiba Corp Secondary battery, and manufacturing method of secondary battery
JP2009199761A (en) * 2008-02-19 2009-09-03 Nissan Motor Co Ltd Lithium ion battery
JP2009224309A (en) * 2007-10-25 2009-10-01 Nissan Motor Co Ltd Method of manufacturing bipolar cell, and bipolar cell
JP2010157417A (en) * 2008-12-26 2010-07-15 Nissan Motor Co Ltd Bipolar secondary battery, battery pack which connects two or more of these, and vehicle on which these are mounted
WO2010100979A1 (en) * 2009-03-05 2010-09-10 日産自動車株式会社 Bipolar secondary cell and method for producing the same
JP2010205633A (en) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd Bipolar secondary battery
WO2010113991A1 (en) * 2009-03-31 2010-10-07 宇部興産株式会社 Binder resin precursor solution composition for electrode
JP2011060520A (en) * 2009-09-08 2011-03-24 Nissan Motor Co Ltd Lithium ion secondary battery and its manufacturing method

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213052A (en) * 1989-02-14 1990-08-24 Fuji Elelctrochem Co Ltd Lithium paper battery
JP2001518228A (en) * 1997-02-12 2001-10-09 スカイラブ テクノロジーズ グループ,インコーポレイテッド Polyimide battery
JP2000021412A (en) * 1998-07-06 2000-01-21 Hitachi Ltd Nonaqueous electrolyte secondary battery and manufacture thereof
JP2000036325A (en) * 1998-07-16 2000-02-02 Asahi Glass Co Ltd Secondary power supply
JP2004234880A (en) * 2003-01-28 2004-08-19 Kyocera Corp Laminated battery
JP2005005163A (en) * 2003-06-12 2005-01-06 Nissan Motor Co Ltd Bipolar battery
JP2005235738A (en) * 2004-01-19 2005-09-02 Matsushita Electric Ind Co Ltd Energy device, electronic apparatus using it, and manufacturing method of energy device
JP2007122881A (en) * 2005-10-24 2007-05-17 Nissan Motor Co Ltd Bipolar battery, battery pack, and vehicle mounting those batteries
JP2007305574A (en) * 2006-04-12 2007-11-22 Toray Ind Inc Lithium ion secondary battery
JP2008226807A (en) * 2007-02-14 2008-09-25 Nissan Motor Co Ltd Non-aqueous electrolyte secondary battery
JP2008257962A (en) * 2007-04-03 2008-10-23 Murata Mfg Co Ltd All solid lithium secondary battery
JP2009224309A (en) * 2007-10-25 2009-10-01 Nissan Motor Co Ltd Method of manufacturing bipolar cell, and bipolar cell
JP2009199761A (en) * 2008-02-19 2009-09-03 Nissan Motor Co Ltd Lithium ion battery
JP2009081140A (en) * 2008-11-10 2009-04-16 Toshiba Corp Secondary battery, and manufacturing method of secondary battery
JP2010157417A (en) * 2008-12-26 2010-07-15 Nissan Motor Co Ltd Bipolar secondary battery, battery pack which connects two or more of these, and vehicle on which these are mounted
WO2010100979A1 (en) * 2009-03-05 2010-09-10 日産自動車株式会社 Bipolar secondary cell and method for producing the same
JP2010205633A (en) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd Bipolar secondary battery
WO2010113991A1 (en) * 2009-03-31 2010-10-07 宇部興産株式会社 Binder resin precursor solution composition for electrode
JP2011060520A (en) * 2009-09-08 2011-03-24 Nissan Motor Co Ltd Lithium ion secondary battery and its manufacturing method

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11888144B2 (en) 2011-09-07 2024-01-30 24M Technologies, Inc. Stationary semi-solid battery module and method of manufacture
US11309531B2 (en) 2011-09-07 2022-04-19 24M Technologies, Inc. Stationary semi-solid battery module and method of manufacture
US11121437B2 (en) 2012-05-18 2021-09-14 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
US11646437B2 (en) 2012-05-18 2023-05-09 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
KR102171239B1 (en) * 2012-11-22 2020-10-28 닛산 지도우샤 가부시키가이샤 Collector for bipolar lithium ion secondary batteries, and bipolar lithium ion secondary battery
JPWO2014080853A1 (en) * 2012-11-22 2017-01-05 株式会社カネカ Bipolar lithium-ion secondary battery current collector and bipolar lithium-ion secondary battery
WO2014080853A1 (en) * 2012-11-22 2014-05-30 株式会社カネカ Collector for bipolar lithium ion secondary batteries, and bipolar lithium ion secondary battery
KR20150088254A (en) * 2012-11-22 2015-07-31 가부시키가이샤 가네카 Collector for bipolar lithium ion secondary batteries, and bipolar lithium ion secondary battery
JP2016501427A (en) * 2012-11-30 2016-01-18 ベレノス・クリーン・パワー・ホールディング・アーゲー Tin-based anode material for rechargeable battery and its preparation method
JPWO2015198737A1 (en) * 2014-06-25 2017-04-20 Nok株式会社 Thermoplastic adhesive sheet
US10637038B2 (en) 2014-11-05 2020-04-28 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
US11611061B2 (en) 2014-11-05 2023-03-21 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
US10886521B2 (en) 2014-11-05 2021-01-05 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
JP2017533548A (en) * 2014-11-05 2017-11-09 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. Electrochemical cell having semi-solid electrode and method for producing the same
US11831026B2 (en) 2015-06-18 2023-11-28 24M Technologies, Inc. Single pouch battery cells and methods of manufacture
US11024903B2 (en) 2015-06-18 2021-06-01 24M Technologies, Inc. Single pouch battery cells and methods of manufacture
JP2017045530A (en) * 2015-08-24 2017-03-02 三洋化成工業株式会社 Manufacturing method for lithium ion battery
FR3063389A1 (en) * 2017-02-28 2018-08-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives ELECTROCHEMICAL ACCUMULATOR WITH BIPOLAR ARCHITECTURE, HIGH VOLTAGE BY ELECTROCHEMICAL CELL
EP3367472A1 (en) * 2017-02-28 2018-08-29 Commissariat à l'énergie atomique et aux énergies alternatives Electrochemical storage cell with bipolar architecture, with high voltage per electrochemical cell
EP3637521A4 (en) * 2017-09-29 2021-03-03 Prologium Technology Co., Ltd. Flexible lithium battery
CN109585904B (en) * 2017-09-29 2021-11-23 辉能科技股份有限公司 Flexible lithium battery
JP2020510974A (en) * 2017-09-29 2020-04-09 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. Flexible lithium battery
CN109585904A (en) * 2017-09-29 2019-04-05 辉能科技股份有限公司 Bendable lithium battery
KR20210005288A (en) * 2018-07-03 2021-01-13 리나타 에이지 (리나타 에스에이) Multilayer packaging structure for thin film battery and method of manufacturing such structure
KR102402132B1 (en) * 2018-07-03 2022-05-25 리나타 에이지 (리나타 에스에이) Multilayer packaging structures for thin film batteries and methods of manufacturing such structures
US11349169B2 (en) 2018-07-03 2022-05-31 Renata Ag Multilayer packaging structure for a thin film battery and a method for manufacturing of such a structure
CN111816909A (en) * 2019-04-10 2020-10-23 本田技研工业株式会社 Solid electrolyte sheet, all-solid-state battery, separator, and lithium ion battery
JP2020173953A (en) * 2019-04-10 2020-10-22 本田技研工業株式会社 Solid electrolyte sheet, all solid state battery, separator, and lithium ion battery
JP7366574B2 (en) 2019-04-10 2023-10-23 本田技研工業株式会社 Solid electrolyte sheets, all solid batteries, separators and lithium ion batteries
US11742525B2 (en) 2020-02-07 2023-08-29 24M Technologies, Inc. Divided energy electrochemical cell systems and methods of producing the same
CZ309281B6 (en) * 2021-05-17 2022-07-13 Oto Mušálek Galvanic cell

Also Published As

Publication number Publication date
JP5754002B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5754002B2 (en) Heat-resistant flexible battery and method for manufacturing heat-resistant flexible battery
RU2566741C2 (en) Current lead for bipolar lithium-ion battery
JP5389391B2 (en) Electrode material sheet for lithium battery, solid lithium battery, and device including solid lithium battery
US7858231B2 (en) Current collector sheet and electrochemical device
JP5492999B2 (en) Cable type secondary battery
JP5266618B2 (en) Bipolar battery
WO2012029556A1 (en) Non-aqueous secondary battery and method for manufacturing non-aqueous secondary battery
US10608257B2 (en) Electrode for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell
JP2010055755A (en) Electrode with porous protective film layer, nonaqueous electrolyte secondary battery, and method for manufacturing electrode with porous protective film layer
JP2010160983A (en) Nonaqueous electrolyte secondary battery and its electrode
JPWO2012153865A1 (en) Non-aqueous secondary battery, mounting body, and non-aqueous secondary battery manufacturing method
EP3367476B1 (en) Electrode and manufacturing method therefor
JP2012009209A (en) Negative electrode for lithium ion secondary battery
JP2011210450A (en) Cell electrode plate and cell
JP4472259B2 (en) Electrochemical element
WO2019054216A1 (en) Separator for lithium ion battery
US11404694B2 (en) Resin composition
JP2019164964A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN109273673A (en) Lithium ion secondary battery cathode and the lithium ion secondary battery for using it
JP2019175778A (en) Bipolar battery unit and bipolar battery
JP2011249046A (en) Method of manufacturing lithium ion secondary battery
CN111697261A (en) Lithium secondary battery
JP4721622B2 (en) Nonaqueous electrolyte secondary battery
JP6861016B2 (en) Lithium ion battery
JP4422968B2 (en) Electrochemical element

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120702

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150416

R150 Certificate of patent or registration of utility model

Ref document number: 5754002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250