JP2008257962A - All solid lithium secondary battery - Google Patents

All solid lithium secondary battery Download PDF

Info

Publication number
JP2008257962A
JP2008257962A JP2007097856A JP2007097856A JP2008257962A JP 2008257962 A JP2008257962 A JP 2008257962A JP 2007097856 A JP2007097856 A JP 2007097856A JP 2007097856 A JP2007097856 A JP 2007097856A JP 2008257962 A JP2008257962 A JP 2008257962A
Authority
JP
Japan
Prior art keywords
electrode layer
positive electrode
layer
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007097856A
Other languages
Japanese (ja)
Other versions
JP5012150B2 (en
Inventor
Fumie Matsuda
文絵 松田
Kazuhiro Yamada
和弘 山田
Masaru Fujino
優 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2007097856A priority Critical patent/JP5012150B2/en
Publication of JP2008257962A publication Critical patent/JP2008257962A/en
Application granted granted Critical
Publication of JP5012150B2 publication Critical patent/JP5012150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide composition of an all solid lithium secondary battery capable of suppressing deterioration of battery characteristics in the all solid lithium secondary battery having a solid electrolyte. <P>SOLUTION: The all solid lithium secondary battery includes a positive electrode layer 101 containing a sulfide solid electrolyte and a sulfide positive active material; a negative electrode layer 102; a sulfide solid electrolyte layer 103 interposed between the positive electrode layer 101 and the negative electrode layer 102; a conductive layer 104 formed on the outer surface of the positive electrode layer 101 containing the sulfide solid electrolyte and carbon material; and a positive terminal 107 connected to the outer surface of the conductive layer 104 through a conductive adhesive 105. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、全固体リチウム二次電池に関するものである。   The present invention relates to an all solid lithium secondary battery.

近年、携帯電話、携帯用パーソナルコンピュータ等の携帯電子機器の電源としてリチウム二次電池が用いられている。リチウム二次電池の電解質としては、一般的に液状の電解質が用いられている。この液状の電解質は、たとえば、有機溶媒等の非水系溶媒に溶質としてリチウム化合物を溶解させた有機溶媒電解質である。電解質に用いられる有機溶媒は可燃性物質であるため、電池が発火する等の危険性がある。また、長期間の使用時または保存時に液状の電解質が漏れるという問題がある。そこで、リチウム二次電池の安全性を確保するために、電解質として、有機溶媒電解質に代えて、不燃性の固体電解質を用いることが提案されている。   In recent years, lithium secondary batteries have been used as power sources for portable electronic devices such as mobile phones and portable personal computers. A liquid electrolyte is generally used as the electrolyte of the lithium secondary battery. This liquid electrolyte is, for example, an organic solvent electrolyte in which a lithium compound is dissolved as a solute in a non-aqueous solvent such as an organic solvent. Since the organic solvent used for the electrolyte is a flammable substance, there is a risk that the battery may ignite. There is also a problem that the liquid electrolyte leaks during long-term use or storage. Therefore, in order to ensure the safety of the lithium secondary battery, it has been proposed to use a nonflammable solid electrolyte as the electrolyte instead of the organic solvent electrolyte.

たとえば、特開平6−275247号公報(特許文献1)には、不燃性の固体電解質を備えた全固体リチウム二次電池の構成が記載されている。   For example, Japanese Patent Laid-Open No. 6-275247 (Patent Document 1) describes a configuration of an all-solid lithium secondary battery including a nonflammable solid electrolyte.

図10は、上記の公報に開示された従来の樹脂封止リチウム電池の縦断面図である。   FIG. 10 is a longitudinal sectional view of a conventional resin-encapsulated lithium battery disclosed in the above publication.

図10に示すように、正極501と負極503とによって、リチウムイオン導電性ガラス状固体電解質(0.5LiS−0.5SiS)からなる固体電解質502を挟み、さらに正極501と負極503のそれぞれに、導電性接着剤としてのカーボンペースト504、505を付着させて正極端子506、負極端子507が接合されている。正極501は二硫化チタン(TiS)とリチウムイオン導電性ガラス状固体電解質(0.5LiS−0.5SiS)との混合物を加圧して円板状に成形されたものであり、負極503は円板状の金属リチウムシートである。このように構成された電池素体を熱硬化性エポキシ樹脂508により封止し、熱処理により熱硬化性エポキシ樹脂508を硬化させることによって、図10に示す全固体リチウム二次電池が得られる。
特開平6−275247号公報
As shown in FIG. 10, a positive electrode 501 and a negative electrode 503 sandwich a solid electrolyte 502 made of lithium ion conductive glassy solid electrolyte (0.5Li 2 S-0.5SiS 2 ). Carbon pastes 504 and 505 as conductive adhesives are attached to each, and the positive terminal 506 and the negative terminal 507 are joined. The positive electrode 501 is formed by pressing a mixture of titanium disulfide (TiS 2 ) and lithium ion conductive glassy solid electrolyte (0.5Li 2 S-0.5SiS 2 ) into a disk shape. Reference numeral 503 denotes a disk-shaped metal lithium sheet. The battery body configured as described above is sealed with a thermosetting epoxy resin 508, and the thermosetting epoxy resin 508 is cured by heat treatment, whereby the all-solid lithium secondary battery shown in FIG. 10 is obtained.
JP-A-6-275247

上述のように構成された全固体リチウム二次電池においては、サイクル特性が低下し、電池容量も低下するという問題がある。   In the all-solid lithium secondary battery configured as described above, there are problems that cycle characteristics are reduced and battery capacity is also reduced.

そこで、この発明の目的は、固体電解質を備えた全固体リチウム二次電池において電池特性の劣化を抑制することが可能な全固体リチウム二次電池の構成を提供することである。   Accordingly, an object of the present invention is to provide a configuration of an all-solid lithium secondary battery capable of suppressing deterioration of battery characteristics in an all-solid lithium secondary battery provided with a solid electrolyte.

上述の課題を解決するために、本発明者は、電池特性が劣化する理由が正極と導電性接着剤との直接接触に起因するものであると推定し、種々検討した結果、全固体二次電池において外部電極を接合するための導電性接着剤と正極との間に所定の材料の導電層を介在させると、電池特性の劣化を抑制することができることを見出した。この知見に基いて本発明はなされたものである。   In order to solve the above-mentioned problems, the present inventor presumed that the reason that the battery characteristics deteriorated was due to the direct contact between the positive electrode and the conductive adhesive, and as a result of various studies, the all-solid secondary It has been found that when a conductive layer made of a predetermined material is interposed between a conductive adhesive for joining external electrodes and a positive electrode in a battery, deterioration of battery characteristics can be suppressed. The present invention has been made based on this finding.

この発明に従った全固体リチウム二次電池は、硫化物固体電解質と硫化物正極活物質とを含む正極層と、負極層と、正極層と負極層との間に介在する硫化物固体電解質層と、正極層の外表面上に形成され、硫化物固体電解質と炭素材料とを含む導電層と、導電層の外表面上に導電性接着剤を介在して接合された外部電極とを備える。   An all-solid lithium secondary battery according to the present invention includes a positive electrode layer including a sulfide solid electrolyte and a sulfide positive electrode active material, a negative electrode layer, and a sulfide solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer. And a conductive layer formed on the outer surface of the positive electrode layer and containing a sulfide solid electrolyte and a carbon material, and an external electrode bonded to the outer surface of the conductive layer with a conductive adhesive interposed therebetween.

この発明の全固体リチウム二次電池においては、正極層の外表面上には硫化物固体電解質と炭素材料とを含む導電層が形成され、この導電層の外表面上に導電性接着剤を介在して外部電極が接合されている。これにより、正極層は導電性接着剤に直接接触しないので、導電性接着剤中の成分が正極層の構成物質に反応するのを導電層の介在によって抑制されるものと推定される。その結果、電池特性の低下、具体的には電池容量の低下を抑制することができるものと推定される。   In the all solid lithium secondary battery of the present invention, a conductive layer containing a sulfide solid electrolyte and a carbon material is formed on the outer surface of the positive electrode layer, and a conductive adhesive is interposed on the outer surface of the conductive layer. And the external electrode is joined. Thereby, since the positive electrode layer does not directly contact the conductive adhesive, it is presumed that the reaction of the components in the conductive adhesive to the constituent material of the positive electrode layer is suppressed by the intervention of the conductive layer. As a result, it is presumed that the deterioration of battery characteristics, specifically, the reduction of battery capacity can be suppressed.

以上のようにこの発明によれば、従来の全固体リチウム二次電池よりも、電池特性の劣化を抑制することができるので、電池容量を高めることができる。   As described above, according to the present invention, since the deterioration of battery characteristics can be suppressed as compared with the conventional all-solid lithium secondary battery, the battery capacity can be increased.

以下、この発明の一つの実施の形態を図面に基いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1〜図4は、この発明の一つの実施の形態として全固体リチウム二次電池の構成を製造工程に従って順に示す模式的な断面図である。   1 to 4 are schematic cross-sectional views sequentially showing the configuration of an all-solid lithium secondary battery according to a manufacturing process as one embodiment of the present invention.

図1に示すように、硫化物固体電解質と硫化物正極活物質の混合物からなる正極層101と、硫化物固体電解質と炭素材料の混合物からなる負極層102との間に、硫化物固体電解質からなる固体電解質層103を挟むように積層し、正極層101の外側表面には硫化物固体電解質と炭素材料とを含む導電層104が形成されている。一例として、正極層101は、正極活物質としてのLiFeSと、固体電解質としてのLiS−P系組成物とを含む。負極層102は、負極活物質としての炭素であるグラファイトと、固体電解質としてのLiS−P系組成物とを含む。正極層101と負極層102との間に挟まれた固体電解質層103はLiS−P系組成物である。導電層104は、負極活物質としての炭素であるグラファイトと、固体電解質としてのLiS−P系組成物とを含む。 As shown in FIG. 1, a sulfide solid electrolyte is disposed between a positive electrode layer 101 made of a mixture of a sulfide solid electrolyte and a sulfide positive electrode active material and a negative electrode layer 102 made of a mixture of a sulfide solid electrolyte and a carbon material. A conductive layer 104 containing a sulfide solid electrolyte and a carbon material is formed on the outer surface of the positive electrode layer 101. As an example, the positive electrode layer 101 includes Li 2 FeS 2 as a positive electrode active material and a Li 2 S—P 2 S 5 composition as a solid electrolyte. The negative electrode layer 102 includes graphite, which is carbon as a negative electrode active material, and a Li 2 S—P 2 S 5 -based composition as a solid electrolyte. Solid electrolyte layer 103 sandwiched between the positive electrode layer 101 and the negative electrode layer 102 is a Li 2 S-P 2 S 5 based composition. The conductive layer 104 includes a graphite carbon as the anode active material, and Li 2 S-P 2 S 5 based composition as a solid electrolyte.

次に、図2に示すように、正極側の導電層104の外表面上には、導電性接着剤105が付着され、導電性接着剤105を介在して外部電極としての正極端子107が接合される。一方、負極層102の外表面上には、導電性接着剤106が付着され、導電性接着剤106を介在して外部電極としての負極端子108が接合される。導電性接着剤105、106は、導電性成分と樹脂と溶剤とを含み、一例を挙げれば、導電性成分として銀(Ag)からなるフィラーを含む銀ペーストである。   Next, as shown in FIG. 2, a conductive adhesive 105 is attached on the outer surface of the conductive layer 104 on the positive electrode side, and a positive electrode terminal 107 serving as an external electrode is joined via the conductive adhesive 105. Is done. On the other hand, a conductive adhesive 106 is attached on the outer surface of the negative electrode layer 102, and a negative electrode terminal 108 as an external electrode is joined through the conductive adhesive 106. The conductive adhesives 105 and 106 include a conductive component, a resin, and a solvent. For example, the conductive adhesives 105 and 106 are silver pastes that include a filler made of silver (Ag) as the conductive component.

さらに、図3に示すように、負極端子108の上のすべての積層物を被覆するように封止樹脂層109が形成される。一例として、封止樹脂層109はエポキシ樹脂から形成される。   Further, as shown in FIG. 3, a sealing resin layer 109 is formed so as to cover all the laminates on the negative electrode terminal. As an example, the sealing resin layer 109 is formed of an epoxy resin.

最後に、図4に示すように、正極端子107の表面が露出するように封止樹脂層109が除去される。このようにして本発明の一つの実施の形態として全固体リチウム二次電池1が製造される。   Finally, as shown in FIG. 4, the sealing resin layer 109 is removed so that the surface of the positive electrode terminal 107 is exposed. Thus, the all-solid lithium secondary battery 1 is manufactured as one embodiment of the present invention.

以上のように構成されたこの発明の一つの実施の形態としての全固体リチウム二次電池1においては、正極層101の外表面上には硫化物固体電解質と炭素材料とを含む導電層104が形成され、この導電層104の外表面上に導電性接着剤105を介在して正極端子107が接合されている。これにより、正極層101は導電性接着剤105に直接接触しないので、導電性接着剤105中の成分と正極層101の構成物質との反応が導電層104の介在によって妨げられ、抑制されるものと推定される。その結果、電池特性の低下、具体的には電池容量の低下を抑制することができるものと推定される。これにより、従来の全固体リチウム二次電池よりも、電池特性の劣化を抑制することができるので、電池容量を高めることができる。   In the all solid lithium secondary battery 1 according to one embodiment of the present invention configured as described above, a conductive layer 104 containing a sulfide solid electrolyte and a carbon material is formed on the outer surface of the positive electrode layer 101. The positive electrode terminal 107 is formed on the outer surface of the conductive layer 104 with a conductive adhesive 105 interposed therebetween. Thereby, since the positive electrode layer 101 does not directly contact the conductive adhesive 105, the reaction between the components in the conductive adhesive 105 and the constituent materials of the positive electrode layer 101 is hindered and suppressed by the intervention of the conductive layer 104. It is estimated to be. As a result, it is presumed that the deterioration of battery characteristics, specifically, the reduction of battery capacity can be suppressed. Thereby, since the deterioration of battery characteristics can be suppressed as compared with the conventional all solid lithium secondary battery, the battery capacity can be increased.

以下、この発明の一つの実施例について説明する。   An embodiment of the present invention will be described below.

全固体リチウム二次電池の構成材料として以下のものを用いた。   The following materials were used as constituent materials for the all-solid lithium secondary battery.

正極活物質:LiFeS
固体電解質:硫化物ガラス(LiS−P
負極活物質:グラファイト
導電性接着剤:銀ペースト
封止樹脂剤:エポキシ系樹脂
正極層を形成する材料は、上記の正極活物質500mgと固体電解質500mgを1時間混合したものを用いた。負極層、導電層を形成する材料は、上記の負極活物質500mgと固体電解質500mgを6時間混合したものを用いた。導電性接着剤としては、エチルアセテート系溶剤を含有したポリエステル樹脂系銀ペーストを用いた。
Cathode active material: Li 2 FeS 2
Solid electrolyte: sulfide glass (Li 2 S-P 2 S 5)
Negative electrode active material: Graphite Conductive adhesive: Silver paste Sealing resin agent: Epoxy resin The material for forming the positive electrode layer was a mixture of 500 mg of the positive electrode active material and 500 mg of the solid electrolyte for 1 hour. As a material for forming the negative electrode layer and the conductive layer, a material obtained by mixing 500 mg of the negative electrode active material and 500 mg of the solid electrolyte for 6 hours was used. As the conductive adhesive, a polyester resin silver paste containing an ethyl acetate solvent was used.

図5〜図7は、この発明の実施例と比較例として作製された全固体リチウム二次電池の構成を製造工程に従って順に示す模式的な断面図である。   5-7 is typical sectional drawing which shows the structure of the all-solid-state lithium secondary battery produced as an Example and comparative example of this invention in order according to a manufacturing process.

図5に示すように、全固体リチウム二次電池の比較例として、上記で準備した材料を用いて、内径が10mmの金型に、負極層102、固体電解質層103、正極層101の順に充填して積層した後、ダイスの上下からパンチで挟んで300MPaの圧力で加圧してペレットを作製した。ペレットの厚みは約600μmであった。このとき、ペレットに対して、正極層101が25体積%、固体電解質層103が45体積%、負極層102が30体積%になるようにした。   As shown in FIG. 5, as a comparative example of an all-solid lithium secondary battery, the negative electrode layer 102, the solid electrolyte layer 103, and the positive electrode layer 101 are filled in this order into a mold having an inner diameter of 10 mm using the materials prepared above. After being laminated, the pellets were produced by sandwiching with a punch from above and below the die and pressurizing with a pressure of 300 MPa. The thickness of the pellet was about 600 μm. At this time, the positive electrode layer 101 was 25% by volume, the solid electrolyte layer 103 was 45% by volume, and the negative electrode layer 102 was 30% by volume with respect to the pellet.

一方、図6に示すように、全固体リチウム二次電池の実施例として、上記で準備した材料を用いて、内径が10mmの金型に、負極層102、固体電解質層103、正極層101、導電層104の順に充填して積層した後、ダイスの上下からパンチで挟んで300MPaの圧力で加圧してペレットを成形した。成形後のペレットの厚みは約600μmであった。このとき、ペレットに対して、正極層101と導電層104を合わせた層が25体積%、固体電解質層103が45体積%、負極層102が30体積%になるようにした。   On the other hand, as shown in FIG. 6, as an example of an all-solid lithium secondary battery, the negative electrode layer 102, the solid electrolyte layer 103, the positive electrode layer 101, After the conductive layers 104 were filled and stacked in this order, the pellets were formed by sandwiching them with punches from above and below the die and pressurizing them at a pressure of 300 MPa. The pellet thickness after molding was about 600 μm. At this time, the total of the positive electrode layer 101 and the conductive layer 104 was 25% by volume, the solid electrolyte layer 103 was 45% by volume, and the negative electrode layer 102 was 30% by volume with respect to the pellet.

次に、図7に示すように、上記で準備した材料を用いて導電性接着剤106をステンレス鋼製の外部電極108aの上に付着させた。上記で得られた比較例と実施例のペレットをそれぞれ、外部電極108a上の導電性接着剤106の上に載せた状態で押圧することにより、外部電極108aに接合した。外部電極108aに接合された比較例のペレットの上部に位置する正極層101、外部電極108aに接合された実施例のペレットの上部に位置する導電層104のそれぞれに導電性接着剤105を載せ、外部電極107aを付着させた状態で、温度150℃で30分間加熱することによって、導電性接着剤105、106を硬化させた。このようにして、ペレットと外部電極108aと外部電極107aとを一体化した。   Next, as shown in FIG. 7, the conductive adhesive 106 was adhered on the stainless steel external electrode 108a using the material prepared above. The pellets of the comparative example and the example obtained above were each pressed onto the conductive adhesive 106 on the external electrode 108a, and then pressed to join the external electrode 108a. A conductive adhesive 105 is placed on each of the positive electrode layer 101 positioned on the upper part of the pellet of the comparative example bonded to the external electrode 108a and the conductive layer 104 positioned on the upper part of the pellet of the example bonded to the external electrode 108a, The conductive adhesives 105 and 106 were cured by heating at a temperature of 150 ° C. for 30 minutes with the external electrode 107a attached. In this way, the pellet, the external electrode 108a, and the external electrode 107a were integrated.

最後に、図7に示すように、上記で準備した封止樹脂剤で全体を被覆し、温度120℃で30分間、その後、温度150℃で2時間、加熱することによって封止樹脂層109を硬化させた。その後、外部電極108a、107aが露出するように封止樹脂層109の一部を除去した。このようにして、全固体リチウム二次電池の比較例と実施例としてのサンプルを作製した。以上の電池の製造工程は、すべて不活性雰囲気中で行った。   Finally, as shown in FIG. 7, the sealing resin layer 109 is coated with the sealing resin agent prepared above and heated at a temperature of 120 ° C. for 30 minutes, and then at a temperature of 150 ° C. for 2 hours. Cured. Thereafter, a part of the sealing resin layer 109 was removed so that the external electrodes 108a and 107a were exposed. Thus, the comparative example of an all-solid-state lithium secondary battery and the sample as an Example were produced. All the battery manufacturing processes described above were performed in an inert atmosphere.

作製された全固体リチウム二次電池の比較例と実施例のサンプルについて充放電測定を行った。充電は、50μA(63.7μA/cm)で電位が2.8Vになるまで行った。放電は、100μA(127.4μA/cm)で電位が1Vになるまで行った。充放電を終える電圧を以下では、カットオフ電圧という。 Charge / discharge measurement was performed on the samples of the comparative examples and examples of the produced all-solid lithium secondary batteries. Charging was performed at 50 μA (63.7 μA / cm 2 ) until the potential reached 2.8V. Discharging was performed until the electric potential became 1 V at 100 μA (127.4 μA / cm 2 ). Hereinafter, the voltage at which charging and discharging ends is referred to as a cut-off voltage.

得られた全固体リチウム二次電池の比較例と実施例のサンプルの充放電特性の測定結果を表1に示す。なお、内部抵抗は、(充電終了電圧−放電開始電圧)/(充電電流+放電電流)により算出した。   Table 1 shows the measurement results of the charge / discharge characteristics of the samples of the comparative examples and examples of the obtained all-solid lithium secondary battery. The internal resistance was calculated by (charge end voltage−discharge start voltage) / (charge current + discharge current).

Figure 2008257962
Figure 2008257962

表1に示す結果から、実施例は、比較例に比べて充放電容量が高く、内部抵抗が低いことがわかる。内部抵抗が高いと、電流を流した際に観測される電圧値が高くなるため、早くカットオフ電圧に達する。そのため、比較例は、充放電容量が低くなると考えられる。   From the results shown in Table 1, it can be seen that the example has a higher charge / discharge capacity and lower internal resistance than the comparative example. When the internal resistance is high, the voltage value observed when a current is passed increases, and therefore the cut-off voltage is reached quickly. Therefore, it is thought that a charge / discharge capacity becomes low in the comparative example.

上記で作製した全固体リチウム二次電池の比較例と実施例のサンプルの結果を考察するために次のような検証実験を行った。   In order to consider the results of the comparative example of the all-solid lithium secondary battery produced above and the sample of the example, the following verification experiment was performed.

上記で準備した正極層の材料を50mg用いて、図8に示すように正極層101のみのペレットを作製した。   Using 50 mg of the material of the positive electrode layer prepared above, a pellet of only the positive electrode layer 101 was produced as shown in FIG.

一方、上記で準備した正極層の材料を50mg、導電層(負極層)の材料を10mgずつ用いて、図9に示すように、導電層104、正極層101、導電層104の順に積層してペレットを作製した。   On the other hand, using 50 mg of the positive electrode material prepared above and 10 mg of the conductive layer (negative electrode layer) material, the conductive layer 104, the positive electrode layer 101, and the conductive layer 104 are stacked in this order as shown in FIG. 9. A pellet was prepared.

得られた二つのペレットの両面に、上記で準備した導電性接着剤を塗布し、両面から導線で電極を引き出した状態で硬化させた。   The conductive adhesive prepared above was applied to both surfaces of the two pellets obtained, and cured in a state where the electrodes were drawn out from both surfaces with a conductive wire.

このようにして作製された二つのサンプルに導線を通じて50μA(63.7μA/cm)の直流電流を流して電気抵抗値を測定した。 The electric resistance value was measured by passing a direct current of 50 μA (63.7 μA / cm 2 ) through the conducting wire through the two samples thus produced.

その結果、図8のサンプルの電気抵抗値が約8030Ωに対して、図9のサンプルの電気抵抗値は約16Ωであった。このように正極層の材料と導電性接着剤とが直接接触する図8のサンプルでは、電気抵抗値が高くなり、導電層(負極層)の材料と導電性接着剤とが直接接触する図9のサンプルでは、電気抵抗値が低くなることがわかる。この原因としては、正極層を構成する固体電解質と正極活物質とはともに硫化物であり、導電層(負極層)に含まれる負極活物質がグラファイトであり、硫化物はグラファイトよりも安定性に劣ることが考えられる。安定性の高いグラファイトが導電性接着剤に接することにより、電子伝導性が確保されて内部抵抗の増加が抑制されるものと考えられる。   As a result, the electric resistance value of the sample of FIG. 8 was about 8030Ω, whereas the electric resistance value of the sample of FIG. 9 was about 16Ω. In the sample of FIG. 8 in which the material of the positive electrode layer and the conductive adhesive are in direct contact in this way, the electric resistance value is high, and the material of the conductive layer (negative electrode layer) and the conductive adhesive are in direct contact with each other. It can be seen that the electrical resistance value is lower in the sample. This is because the solid electrolyte and the positive electrode active material constituting the positive electrode layer are both sulfides, the negative electrode active material contained in the conductive layer (negative electrode layer) is graphite, and sulfide is more stable than graphite. It may be inferior. It is considered that the highly stable graphite is in contact with the conductive adhesive, so that the electron conductivity is ensured and the increase in internal resistance is suppressed.

今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものであることが意図される。   It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the claims. .

この発明の一つの実施の形態として全固体リチウム二次電池の製造工程として第1工程を示す模式的な断面図である。It is typical sectional drawing which shows a 1st process as a manufacturing process of an all-solid-state lithium secondary battery as one embodiment of this invention. この発明の一つの実施の形態として全固体リチウム二次電池の製造工程として第2工程を示す模式的な断面図である。It is typical sectional drawing which shows a 2nd process as a manufacturing process of an all-solid-state lithium secondary battery as one embodiment of this invention. この発明の一つの実施の形態として全固体リチウム二次電池の製造工程として第3工程を示す模式的な断面図である。It is typical sectional drawing which shows a 3rd process as a manufacturing process of an all-solid-state lithium secondary battery as one embodiment of this invention. この発明の一つの実施の形態として全固体リチウム二次電池の製造工程として第4工程を示す模式的な断面図である。It is typical sectional drawing which shows a 4th process as a manufacturing process of an all-solid-state lithium secondary battery as one embodiment of this invention. この発明の比較例として全固体リチウム二次電池のサンプルの製造工程を示す模式的な断面図である。It is typical sectional drawing which shows the manufacturing process of the sample of an all-solid-state lithium secondary battery as a comparative example of this invention. この発明の実施例として全固体リチウム二次電池のサンプルの製造工程を示す模式的な断面図である。It is typical sectional drawing which shows the manufacturing process of the sample of an all-solid-state lithium secondary battery as an Example of this invention. この発明の比較例と実施例として作製された全固体リチウム二次電池のサンプルを示す模式的な断面図である。It is typical sectional drawing which shows the sample of the all-solid-state lithium secondary battery produced as a comparative example and Example of this invention. この発明の検証実験にて作製された一つのペレットを示す模式的な断面図である。It is typical sectional drawing which shows one pellet produced in the verification experiment of this invention. この発明の検証実験にて作製されたもう一つのペレットを示す模式的な断面図である。It is typical sectional drawing which shows another pellet produced in the verification experiment of this invention. 従来の樹脂封止リチウム電池の縦断面図である。It is a longitudinal cross-sectional view of the conventional resin-encapsulated lithium battery.

符号の説明Explanation of symbols

101:正極層、102:負極層、103:固体電解質層、104:導電層、105,106:導電性接着剤、107:正極端子、108:負極端子。   101: positive electrode layer, 102: negative electrode layer, 103: solid electrolyte layer, 104: conductive layer, 105, 106: conductive adhesive, 107: positive electrode terminal, 108: negative electrode terminal.

Claims (1)

硫化物固体電解質と硫化物正極活物質とを含む正極層と、
負極層と、
前記正極層と前記負極層との間に介在する硫化物固体電解質層と、
前記正極層の外表面上に形成され、硫化物固体電解質と炭素材料とを含む導電層と、
前記導電層の外表面上に導電性接着剤を介在して接合された外部電極とを備える、全固体リチウム二次電池。
A positive electrode layer comprising a sulfide solid electrolyte and a sulfide positive electrode active material;
A negative electrode layer;
A sulfide solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer;
A conductive layer formed on the outer surface of the positive electrode layer and including a sulfide solid electrolyte and a carbon material;
An all-solid lithium secondary battery comprising: an external electrode joined via an electrically conductive adhesive on the outer surface of the conductive layer.
JP2007097856A 2007-04-03 2007-04-03 All-solid lithium secondary battery Active JP5012150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007097856A JP5012150B2 (en) 2007-04-03 2007-04-03 All-solid lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007097856A JP5012150B2 (en) 2007-04-03 2007-04-03 All-solid lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2008257962A true JP2008257962A (en) 2008-10-23
JP5012150B2 JP5012150B2 (en) 2012-08-29

Family

ID=39981324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007097856A Active JP5012150B2 (en) 2007-04-03 2007-04-03 All-solid lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5012150B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063747A1 (en) * 2007-11-13 2009-05-22 Sumitomo Electric Industries, Ltd. Lithium battery and method for manufacturing the same
WO2010035602A1 (en) * 2008-09-24 2010-04-01 独立行政法人産業技術総合研究所 Lithium sulfide-carbon complex, process for producing the complex, and lithium ion secondary battery utilizing the complex
WO2011093129A1 (en) * 2010-01-28 2011-08-04 株式会社村田製作所 Electrode active material for all-solid-state secondary battery, and all-solid-state secondary battery using same
JP2012204182A (en) * 2011-03-25 2012-10-22 National Institute Of Advanced Industrial & Technology Heat-resistant flexible battery and method for manufacturing heat-resistant flexible battery
KR20130071365A (en) 2011-12-15 2013-06-28 삼성전자주식회사 Electrodes for solid state batteries and preparing methods thereof, solid state batteries containing the same, and bonding films used for preparing the same
CN104508899A (en) * 2012-08-09 2015-04-08 丰田自动车株式会社 All-solid-state battery and method for manufacturing same
JP2015076179A (en) * 2013-10-07 2015-04-20 古河機械金属株式会社 All-solid-state lithium ion battery and method for manufacturing all-solid-state lithium ion battery
US9425459B2 (en) 2011-12-15 2016-08-23 Samsung Electronics Co., Ltd. Electrode for solid-state batteries and method of preparing the electrode, solid-state battery containing the electrode, and bonding film used for preparing the electrode
CN108155306A (en) * 2017-12-19 2018-06-12 成都亦道科技合伙企业(有限合伙) A kind of solid state lithium battery encapsulating structure, lithium battery and its packaging method
CN109935888A (en) * 2017-12-19 2019-06-25 成都亦道科技合伙企业(有限合伙) Current collector structure, lithium battery electric core and its lithium battery
US10741842B2 (en) 2012-12-07 2020-08-11 Samsung Electronics Co., Ltd. Solid-state battery
CN112868125A (en) * 2018-12-28 2021-05-28 松下知识产权经营株式会社 Battery with a battery cell
EP3905414A4 (en) * 2018-12-28 2022-01-26 Panasonic Intellectual Property Management Co., Ltd. Battery
CN114503357A (en) * 2019-10-11 2022-05-13 株式会社村田制作所 Solid-state battery
CN117913351A (en) * 2024-03-19 2024-04-19 蜂巢能源科技股份有限公司 All-solid-state battery and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257492A (en) * 2001-12-26 2003-09-12 Kyocera Corp Lithium battery
JP2006032232A (en) * 2004-07-20 2006-02-02 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006277997A (en) * 2005-03-28 2006-10-12 Idemitsu Kosan Co Ltd High-performance all-solid state lithium battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257492A (en) * 2001-12-26 2003-09-12 Kyocera Corp Lithium battery
JP2006032232A (en) * 2004-07-20 2006-02-02 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006277997A (en) * 2005-03-28 2006-10-12 Idemitsu Kosan Co Ltd High-performance all-solid state lithium battery

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063747A1 (en) * 2007-11-13 2009-05-22 Sumitomo Electric Industries, Ltd. Lithium battery and method for manufacturing the same
WO2010035602A1 (en) * 2008-09-24 2010-04-01 独立行政法人産業技術総合研究所 Lithium sulfide-carbon complex, process for producing the complex, and lithium ion secondary battery utilizing the complex
US9337476B2 (en) 2008-09-24 2016-05-10 National Institute Of Advanced Industrial Science And Technology Lithium sulfide-carbon complex, process for producing the complex, and lithium ion secondary battery utilizing the complex
US8808926B2 (en) 2010-01-28 2014-08-19 Murata Manufacturing Co., Ltd. Electrode active material for all-solid-state secondary battery and all-solid-state secondary battery using the same
JP5686101B2 (en) * 2010-01-28 2015-03-18 株式会社村田製作所 Electrode active material for all-solid-state secondary battery and all-solid-state secondary battery using the same
WO2011093129A1 (en) * 2010-01-28 2011-08-04 株式会社村田製作所 Electrode active material for all-solid-state secondary battery, and all-solid-state secondary battery using same
JP2012204182A (en) * 2011-03-25 2012-10-22 National Institute Of Advanced Industrial & Technology Heat-resistant flexible battery and method for manufacturing heat-resistant flexible battery
US9425459B2 (en) 2011-12-15 2016-08-23 Samsung Electronics Co., Ltd. Electrode for solid-state batteries and method of preparing the electrode, solid-state battery containing the electrode, and bonding film used for preparing the electrode
KR20130071365A (en) 2011-12-15 2013-06-28 삼성전자주식회사 Electrodes for solid state batteries and preparing methods thereof, solid state batteries containing the same, and bonding films used for preparing the same
CN104508899A (en) * 2012-08-09 2015-04-08 丰田自动车株式会社 All-solid-state battery and method for manufacturing same
EP2884573A4 (en) * 2012-08-09 2015-11-11 Toyota Motor Co Ltd All-solid-state battery and method for manufacturing same
US10741842B2 (en) 2012-12-07 2020-08-11 Samsung Electronics Co., Ltd. Solid-state battery
JP2015076179A (en) * 2013-10-07 2015-04-20 古河機械金属株式会社 All-solid-state lithium ion battery and method for manufacturing all-solid-state lithium ion battery
CN108155306A (en) * 2017-12-19 2018-06-12 成都亦道科技合伙企业(有限合伙) A kind of solid state lithium battery encapsulating structure, lithium battery and its packaging method
CN109935888A (en) * 2017-12-19 2019-06-25 成都亦道科技合伙企业(有限合伙) Current collector structure, lithium battery electric core and its lithium battery
CN108155306B (en) * 2017-12-19 2024-05-03 成都大超科技有限公司 Solid-state lithium battery packaging structure, lithium battery and packaging method thereof
CN112868125A (en) * 2018-12-28 2021-05-28 松下知识产权经营株式会社 Battery with a battery cell
EP3905416A4 (en) * 2018-12-28 2022-01-26 Panasonic Intellectual Property Management Co., Ltd. Battery
EP3905414A4 (en) * 2018-12-28 2022-01-26 Panasonic Intellectual Property Management Co., Ltd. Battery
US11990581B2 (en) 2018-12-28 2024-05-21 Panasonic Intellectual Property Management Co., Ltd. Battery including member having end region with Young's modulus smaller than Young's modulus of central region
CN114503357A (en) * 2019-10-11 2022-05-13 株式会社村田制作所 Solid-state battery
CN117913351A (en) * 2024-03-19 2024-04-19 蜂巢能源科技股份有限公司 All-solid-state battery and preparation method thereof

Also Published As

Publication number Publication date
JP5012150B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5012150B2 (en) All-solid lithium secondary battery
US7881042B2 (en) Cell assembly for an energy storage device with activated carbon electrodes
TWI222233B (en) Method for treating electrode tabs of crude cell for lithium secondary battery and crude cell and lithium secondary battery according to the method
JP5218586B2 (en) Solid lithium secondary battery and manufacturing method thereof
JP7199033B2 (en) battery
JP5773080B2 (en) All solid state secondary battery
CN110249467A (en) All-solid-state battery and its manufacturing method
TW200835020A (en) Method for manufacturing a secondary battery
KR101578265B1 (en) Bi-cell for secondary battery with improved stability and manufacturing method thereof
JP5001616B2 (en) All solid state secondary battery
JP5163026B2 (en) Nonaqueous electrolyte secondary battery
JP2015220102A (en) Battery mounting substrate
KR102285978B1 (en) Secondry battery and manufacturing method for the same
JP2008310987A (en) Battery
JP2009283218A (en) Nonaqueous electrolyte secondary battery
JP2006019199A (en) Electrode plate for secondary battery, its manufacturing method and secondary battery using electrode plate
CN112838275A (en) Battery monomer
JP5908116B2 (en) Built-in battery cell with new structure
CN204257745U (en) Lug lead-in wire and electric energy storage device
JP2008198490A (en) Manufacturing method of all-solid lithium secondary battery
JP4214455B2 (en) battery
JP2001345090A (en) Sealed-type battery
EP3218953B1 (en) Secondary battery with non-aqueous electrolyte
US10601045B1 (en) Porous carbon electrode assembly for electrochemical devices
JP4665513B2 (en) Method for producing coin-type electrochemical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5012150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150