JP2006277997A - High-performance all-solid state lithium battery - Google Patents

High-performance all-solid state lithium battery Download PDF

Info

Publication number
JP2006277997A
JP2006277997A JP2005091533A JP2005091533A JP2006277997A JP 2006277997 A JP2006277997 A JP 2006277997A JP 2005091533 A JP2005091533 A JP 2005091533A JP 2005091533 A JP2005091533 A JP 2005091533A JP 2006277997 A JP2006277997 A JP 2006277997A
Authority
JP
Japan
Prior art keywords
lithium
sulfide
electrode active
battery
lithium battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005091533A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Kiyono
美勝 清野
Kazunori Takada
和典 高田
Original Assignee
Idemitsu Kosan Co Ltd
出光興産株式会社
National Institute For Materials Science
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, 出光興産株式会社, National Institute For Materials Science, 独立行政法人物質・材料研究機構 filed Critical Idemitsu Kosan Co Ltd
Priority to JP2005091533A priority Critical patent/JP2006277997A/en
Publication of JP2006277997A publication Critical patent/JP2006277997A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-performance lithium battery high in heat resistance and storage stability and excelling in a charge-discharge cycle characteristic and safety. <P>SOLUTION: This lithium battery is characterized in that a positive electrode active material and a negative electrode active material having an operating potential below 2.5 V and an operating potential below 0.5 V on a lithium electrode basis, respectively, are used; and a lithium ion conducting inorganic solid electrolyte in contact with at least the negative electrode active material is manufactured by using lithium sulfide and one or more kinds of constituent(s) selected from diphosphorus pentasulfide, elemental phosphorous and elemental sulfur. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体電解質として、硫化リチウムと、五硫化二燐、単体燐、及び単体硫黄から選ばれる一種以上の成分とから製造したリチウムイオン伝導性無機固体電解質を用いた高性能全固体リチウム電池に関するものであり、更に詳しくは、作動電位がリチウム電極基準で2.5V以下である正極活物質と、0.5V以下である負極活物質とを用い、少なくとも負極活物質に接するリチウムイオン伝導性無機固体電解質として、硫化リチウムと、五硫化二燐、単体燐、及び単体硫黄から選ばれる一種以上の成分とから製造したリチウムイオン伝導性無機固体電解質を用いたリチウム電池であり、300℃程度の温度にさらされても作動する全固体リチウム電池に関するものである。   The present invention relates to a high performance all solid lithium battery using a lithium ion conductive inorganic solid electrolyte produced from lithium sulfide and one or more components selected from diphosphorus pentasulfide, simple phosphorus and simple sulfur as the solid electrolyte. More specifically, a positive electrode active material having an operating potential of 2.5 V or less with respect to a lithium electrode and a negative electrode active material of 0.5 V or less, and at least lithium ion conductivity in contact with the negative electrode active material A lithium battery using a lithium ion conductive inorganic solid electrolyte produced from lithium sulfide and one or more components selected from diphosphorus pentasulfide, simple phosphorus, and simple sulfur as an inorganic solid electrolyte, The present invention relates to an all-solid-state lithium battery that operates even when exposed to temperature.
近年、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーターを動力源とする自動二輪車、電気自動車、ハイブリッド電気自動車などに用いられる高性能リチウム電池などの二次電池の需要が増加している。また、使用される用途が広がるに伴い、二次電池の更なる安全性の向上及び高性能化が要求されるようになってきた。なお、ここで、二次電池とは、充電・放電ができる電池をいう。
従来室温で高いリチウムイオン伝導性を示す電解質はほとんど液体に限られており、例えば、室温で高リチウムイオン伝導性を示す材料として有機系電解液がある。しかし、従来の有機系電解液は有機溶媒を含むために可燃性である。従って、有機溶媒を含むイオン伝導性材料を電池の電解質として実際に用いる際には、液漏れの心配や発火の危険性がある。
また、かかる電解液は、液体であるため、リチウムイオンが伝導するだけでなく、対アニオンが伝導するために、リチウムイオン輸率が1ではない。また、上記電池を高温下(〜300℃)にさらすと電解液の分解および気化、さらにこれに起因する破裂などの問題が生じる可能性があり、使用範囲が制限される。
リチウム電池の安全性を確保する方法としては、有機溶媒電解質に代えて無機固体電解質を用いることが有効である。無機固体電解質は、その性質上不燃で、通常使用される有機溶媒電解質と比較し安全性の高い材料であり、該電解質を用いた高い安全性を備えた全固体リチウム電池の開発が望まれている。
In recent years, there has been an increase in demand for secondary batteries such as high-performance lithium batteries used in personal digital assistants, portable electronic devices, small household power storage devices, motorcycles powered by motors, electric vehicles, and hybrid electric vehicles. ing. In addition, as the applications for use have expanded, further improvements in safety and performance of secondary batteries have been required. Here, the secondary battery refers to a battery that can be charged and discharged.
Conventionally, electrolytes that exhibit high lithium ion conductivity at room temperature are almost limited to liquids. For example, organic electrolytes are materials that exhibit high lithium ion conductivity at room temperature. However, conventional organic electrolytes are flammable because they contain organic solvents. Therefore, when an ion conductive material containing an organic solvent is actually used as an electrolyte of a battery, there is a risk of liquid leakage and a risk of ignition.
In addition, since the electrolytic solution is a liquid, not only lithium ions are conducted but also a counter anion is conducted, so that the lithium ion transport number is not 1. In addition, when the battery is exposed to high temperatures (up to 300 ° C.), there is a possibility that problems such as decomposition and vaporization of the electrolyte and rupture due to this may occur, and the range of use is limited.
In order to ensure the safety of the lithium battery, it is effective to use an inorganic solid electrolyte instead of the organic solvent electrolyte. Inorganic solid electrolytes are nonflammable in nature and are safer materials than commonly used organic solvent electrolytes, and development of all-solid lithium batteries with high safety using such electrolytes is desired. Yes.
上記課題に対して、これまで硫化物系固体電解質の研究が種々なされている。例えば高イオン伝導性を有するリチウムイオン伝導性固体電解質として、1980年代に10-3S/cmのイオン伝導性を有する硫化物ガラス、即ち、LiI−Li2S−P25、LiI−Li2S−B23、LiI−Li2S−SiS2等が見出されている。更に近年では、Li3PO4−Li2S−SiS2、Li4SiO4−Li2S−SiS2等も見出されている。
しかしながら、これら固体電解質のうち、特定の電極活物質に対して好適なものの選択に関してはこれまであまり言及されていない。
負極活物質として炭素材料を用い、固体電解質としてLi3PO4−Li2S−SiS2を用いた全固体二次電池の可能性について言及されている(例えば、非特許文献1)が、固体電解質と負極活物質が反応し固体電解質の還元分解反応が進行するため、この組み合わせでは実用的な二次電池の可能性はない。
また、負極活物質として炭素材料、正極活物質としてコバルト酸リチウム(LiCoO2)を用いた各種全固体二次電池について言及されている(例えば、非特許文献2)。
固体電解質として、Li2S−P25−LiIとLi2S−GeS2−P25の二種の電解質を二層にして使用し、高容量、高電圧(4V級)の全固体リチウム電池を作製している。
この理由は、以下のとおりである。
負極活物質として、炭素を用いた全固体二次電池の固体電解質の構成の中で、硫化ケイ素又は硫化ゲルマニウムを原料として用いた固体電解質を使用する場合、充電時にリチウムイオンが炭素材料の層間に挿入される反応に加えて、ケイ素又はゲルマニウムの還元反応が副反応として起こる。
即ち、Li2S−SiS2、Li2S−GeS2等のケイ素又はゲルマニウムを含む固体電解質を用いた場合、電池の充電中に流れた電流は、炭素材料へのリチウムイオンの挿入反応とケイ素又はゲルマニウムの還元反応に消費される。
これらの反応のうち、後者の反応は可逆性に乏しく、充電した電気量のうち、ケイ素又はゲルマニウムの還元反応に消費された電気量は、充電時に取り出すことはできない。
このような課題に鑑みなされた改良点としては、負極活物質として炭素材料又は炭素材料の層間にリチウムイオンが挿入された物質を用いた全固体リチウム二次電池において、該負極活物質に接する固体電解質としてケイ素及びゲルマニウムを含有しない物質を用い、電解質の原料として硫化リン(P25)を用いることである。
これは、リンが特に還元され難い元素であるからである。
また、上記負極活物質を用いる場合、高イオン伝導固体電解質として、Li2S−P25−LiIを用いることである。
しかしながら、イオン伝導度を高める目的でヨウ化リチウム(LiI)を用いると、該電解質の酸化電位が2.9Vであるため、電池作動電位が3V以上の正極活物質を用いると、酸化分解反応が起こり、二次電池として作動しないことになる。
よって、ヨウ化リチウムのような化合物は使用しないほうが好ましい。
従って、負極活物質の還元電位が0.5V以下であるような炭素材料と正極活物質として作動電位が3V以上のものを用いた場合、負極側にLi2S−P25−LiI、正極側にLi2S−GeS2−P25という二種類の電解質を用い課題を解決した。しかし、これら電解質は発火の問題や破裂等の問題は解決できるが、ガラス転移温度や相転移温度が低く300℃程度の温度下にさらすと性能が劣化する。ひいては電池性能も低下する。
Kazunori Takada, Satoshi Naknano, Taro Inada, Akihisa Kajiyama, Hideki Sasaki, Shigeo Kondo and Mamoru Watanabe, Journal of Electrochemical, 150 (3) A274-A277 (2003) Kazunori Takada, Taro Inada, Akihisa Kajiyama, Hideki Sasaki, Shigeo Kondo, Mamoru Watanabe, Masahiro Murayama, Ryoji Kanno, Solid State Ionics 158 (2003) 269-274
To date, various studies have been conducted on sulfide-based solid electrolytes. For example, as a lithium ion conductive solid electrolyte having high ionic conductivity, sulfide glass having an ion conductivity of 10 −3 S / cm in the 1980s, that is, LiI—Li 2 S—P 2 S 5 , LiI—Li 2 S-B 2 S 3, LiI-Li 2 S-SiS 2 , etc. have been found. In recent years, Li 3 PO 4 —Li 2 S—SiS 2 , Li 4 SiO 4 —Li 2 S—SiS 2, etc. have also been found.
However, there has been little mention of selection of suitable solid electrolytes for specific electrode active materials.
The possibility of an all-solid secondary battery using a carbon material as a negative electrode active material and using Li 3 PO 4 —Li 2 S—SiS 2 as a solid electrolyte is mentioned (for example, Non-Patent Document 1). Since the electrolyte and the negative electrode active material react to cause the reductive decomposition reaction of the solid electrolyte, there is no possibility of a practical secondary battery with this combination.
Further, various all solid state secondary batteries using a carbon material as a negative electrode active material and lithium cobaltate (LiCoO 2 ) as a positive electrode active material are mentioned (for example, Non-Patent Document 2).
As a solid electrolyte, two types of electrolytes of Li 2 S—P 2 S 5 —LiI and Li 2 S—GeS 2 —P 2 S 5 are used in two layers, and all of high capacity and high voltage (4V class) are used. A solid lithium battery is manufactured.
The reason for this is as follows.
When a solid electrolyte using silicon sulfide or germanium sulfide as a raw material is used as a negative electrode active material in a solid electrolyte structure of an all-solid secondary battery using carbon, lithium ions are placed between carbon material layers during charging. In addition to the inserted reaction, a reduction reaction of silicon or germanium occurs as a side reaction.
That is, when a solid electrolyte containing silicon or germanium such as Li 2 S—SiS 2 or Li 2 S—GeS 2 is used, the current flowing during the charging of the battery is caused by the insertion reaction of lithium ions into the carbon material and silicon. Or it is consumed for the reduction reaction of germanium.
Among these reactions, the latter reaction is poor in reversibility, and the amount of electricity consumed in the reduction reaction of silicon or germanium out of the charged amount of electricity cannot be taken out during charging.
As an improvement made in view of such a problem, in an all-solid lithium secondary battery using a carbon material or a material in which lithium ions are inserted between layers of a carbon material as a negative electrode active material, a solid in contact with the negative electrode active material A material that does not contain silicon and germanium is used as the electrolyte, and phosphorus sulfide (P 2 S 5 ) is used as the electrolyte raw material.
This is because phosphorus is an element that is particularly difficult to reduce.
In the case of using the negative electrode active material, a high ionic conductivity solid electrolytes is the use of Li 2 S-P 2 S 5 -LiI.
However, when lithium iodide (LiI) is used for the purpose of increasing ionic conductivity, the oxidation potential of the electrolyte is 2.9 V. Therefore, when a positive electrode active material having a battery operating potential of 3 V or more is used, an oxidative decomposition reaction occurs. Will occur and will not operate as a secondary battery.
Therefore, it is preferable not to use a compound such as lithium iodide.
Therefore, when a carbon material having a reduction potential of the negative electrode active material of 0.5 V or less and a positive electrode active material having an operating potential of 3 V or more are used, Li 2 S—P 2 S 5 —LiI on the negative electrode side, The problem was solved by using two types of electrolytes of Li 2 S—GeS 2 —P 2 S 5 on the positive electrode side. However, these electrolytes can solve problems such as ignition and rupture, but their glass transition temperature and phase transition temperature are low and their performance deteriorates when exposed to temperatures of about 300 ° C. As a result, the battery performance also decreases.
Kazunori Takada, Satoshi Naknano, Taro Inada, Akihisa Kajiyama, Hideki Sasaki, Shigeo Kondo and Mamoru Watanabe, Journal of Electrochemical, 150 (3) A274-A277 (2003) Kazunori Takada, Taro Inada, Akihisa Kajiyama, Hideki Sasaki, Shigeo Kondo, Mamoru Watanabe, Masahiro Murayama, Ryoji Kanno, Solid State Ionics 158 (2003) 269-274
固体電解質を用いた全固体リチウム電池の特徴のひとつは、従来の有機溶媒を電解質に用いたリチウム電池と異なり、極めて高い温度での作動やハンダリフローが出来る可能性があることである。特に鉛フリーのハンダに切り替えが進む中でハンダリフロー温度が高まる傾向にある。鉛ハンダで230℃〜240℃であったが鉛フリーハンダでは260℃〜290℃が適用されている。これに耐えうる電池を作成することを目的とするものである。   One of the characteristics of an all-solid lithium battery using a solid electrolyte is that, unlike a lithium battery using a conventional organic solvent as an electrolyte, there is a possibility that it can be operated at an extremely high temperature and solder reflow. In particular, the solder reflow temperature tends to increase while switching to lead-free solder. Although it was 230 degreeC-240 degreeC with lead solder, 260 degreeC-290 degreeC is applied with lead free solder. The object is to create a battery that can withstand this.
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、固体電解質として、硫化リチウムと、五硫化二燐、単体燐、及び単体硫黄から選ばれる一種以上の成分とから製造したリチウムイオン伝導性無機固体電解質を用い、作動電位がリチウム電極基準で2.5V以下である正極活物質と0.5V以下である負極活物質とを用いることにより、上記目的を達成できることを見出し、本発明を完成するに至った。
すなわち、本発明は、作動電位がリチウム電極基準で2.5V以下である正極活物質と、0.5V以下である負極活物質とを用い、少なくとも負極活物質に接するリチウムイオン伝導性無機固体電解質が、硫化リチウムと、五硫化二燐、単体燐、及び単体硫黄から選ばれる一種以上の成分とから製造したものであることを特徴とするリチウム電池を提供するものである。
As a result of intensive research to achieve the above-mentioned object, the present inventors have produced lithium sulfide and one or more components selected from diphosphorus pentasulfide, simple phosphorus, and simple sulfur as a solid electrolyte. It has been found that the above object can be achieved by using a lithium ion conductive inorganic solid electrolyte and using a positive electrode active material having an operating potential of 2.5 V or less and a negative electrode active material of 0.5 V or less with respect to the lithium electrode, The present invention has been completed.
That is, the present invention uses a positive electrode active material having an operating potential of 2.5 V or less with respect to a lithium electrode and a negative electrode active material of 0.5 V or less, and at least a lithium ion conductive inorganic solid electrolyte in contact with the negative electrode active material Is a lithium battery produced from lithium sulfide and at least one component selected from diphosphorus pentasulfide, simple phosphorus, and simple sulfur.
硫化リチウムと、五硫化二燐、単体燐、及び単体硫黄から選ばれる一種以上の成分を原料として製造したリチウムイオン伝導性無機固体電解質は単層として使用することができ、作動電位がリチウム電極基準で2.5V以下である正極活物質と0.5V以下である負極活物質とを用いることにより、上記電解質と接触または混合し高温下にさらしても副反応を起こさず、電池として作動する。また、上記の特性を有する本発明の全固体電池は、エネルギー密度が高く、安全性及び充放電サイクル特性、長期安定性が優れており、高性能の全固体リチウム電池を容易に製造することができる。   Lithium ion conductive inorganic solid electrolytes manufactured from one or more components selected from lithium sulfide and diphosphorus pentasulfide, simple phosphorus, and simple sulfur can be used as a single layer, and the working potential is based on the lithium electrode. By using a positive electrode active material having a voltage of 2.5 V or less and a negative electrode active material having a voltage of 0.5 V or less, a side reaction does not occur even if the electrolyte is brought into contact with or mixed with and exposed to a high temperature, and the battery operates. The all-solid battery of the present invention having the above characteristics has high energy density, excellent safety, charge / discharge cycle characteristics, and long-term stability, and can easily produce a high-performance all-solid lithium battery. it can.
本発明のリチウムイオン伝導性無機固体電解質は、硫化リチウムと、五硫化二燐、単体燐、及び単体硫黄から選ばれる一種以上の成分とから製造することができる。
具体的には、硫化リチウムと、五硫化二燐、単体燐、及び単体硫黄から選ばれる一種以上の成分を原料として、溶融反応した後、急冷することにより製造することができる。
また、硫化リチウムと、五硫化二燐、単体燐、及び単体硫黄から選ばれる一種以上の成分を原料として、メカニカルミリング法により製造することができる。
上記硫化リチウムと五硫化二燐、単体燐、及び単体硫黄から選ばれる一種以上の成分との混合モル比は、五硫化二燐又は単体燐を用いる場合は、通常Li/P比で1〜4、好ましくは1.5〜3である。また、単体硫黄を用いる場合は、硫黄の総量が、通常Li/S比で0.333〜0.889、好ましくは0.462〜0.75である。
The lithium ion conductive inorganic solid electrolyte of the present invention can be produced from lithium sulfide and at least one component selected from diphosphorus pentasulfide, simple phosphorus, and simple sulfur.
Specifically, it can be produced by subjecting one or more components selected from lithium sulfide, diphosphorus pentasulfide, simple phosphorus, and simple sulfur to a raw material and then rapidly cooling.
Further, it can be produced by a mechanical milling method using one or more components selected from lithium sulfide, diphosphorus pentasulfide, simple phosphorus and simple sulfur as raw materials.
The mixing molar ratio of the lithium sulfide to one or more components selected from diphosphorus pentasulfide, simple phosphorus, and simple sulfur is usually 1 to 4 in Li / P ratio when diphosphorus pentasulfide or simple phosphorus is used. , Preferably 1.5-3. Moreover, when using single-piece | unit sulfur, the total amount of sulfur is 0.333-0.889 by normal Li / S ratio, Preferably it is 0.462-0.75.
硫化リチウムと五硫化二燐、単体燐、及び単体硫黄から選ばれる一種以上の成分を原料とする溶融反応温度は、通常500〜1000℃、好ましくは600〜1000℃、更に好ましくは900〜1000℃であり、溶融反応時間は、通常1時間以上、好ましくは6時間以上である。
上記反応物の急冷温度は、通常10℃以下、好ましくは0℃以下であり、その冷却速度は1〜10000K/sec程度、好ましくは1〜1000K/secである。
また、硫化リチウムと五硫化二燐、単体燐、及び単体硫黄から選ばれる一種以上の成分を原料とするメカニカルミリング法は、室温で反応を行うことができる。メカニカルミリング法によれば、室温でガラス状電解質(完全非晶質)を製造できるため、原料の熱分解が起らず、仕込み組成のガラス状電解質を得ることができるという利点がある。又、メカニカルミリング法では、ガラス状電解質(完全非晶質)の製造と同時に、ガラス状電解質を微粉末化できるという利点もある。
メカニカルミリング法は種々の形式を用いることができるが、遊星型ボールミルを使用するのが特に好ましい。遊星型ボールミルは、ポットが自転回転しながら、台盤が公転回転し、非常に高い衝撃エネルギーを効率良く発生させることができる。
メカニカルミリング法の回転速度及び回転時間は特に限定されないが、回転速度が速いほど、ガラス状電解質(完全非晶質)の生成速度は速くなり、回転時間が長いほどガラス質状電解質ヘの原料の転化率は高くなる。
このようにして得られた電解質は、ガラス状電解質(完全非晶質)であり、通常、イオン伝導度は1.0×10-5〜8.0×10-5(S/cm)である。
The melt reaction temperature using at least one component selected from lithium sulfide, diphosphorus pentasulfide, simple phosphorus, and simple sulfur is usually 500 to 1000 ° C, preferably 600 to 1000 ° C, more preferably 900 to 1000 ° C. The melt reaction time is usually 1 hour or longer, preferably 6 hours or longer.
The quenching temperature of the reaction product is usually 10 ° C. or lower, preferably 0 ° C. or lower, and the cooling rate is about 1 to 10,000 K / sec, preferably 1 to 1000 K / sec.
The mechanical milling method using one or more components selected from lithium sulfide, diphosphorus pentasulfide, simple phosphorus, and simple sulfur as raw materials can be performed at room temperature. According to the mechanical milling method, since a glassy electrolyte (fully amorphous) can be produced at room temperature, there is an advantage that a glassy electrolyte having a charged composition can be obtained without thermal decomposition of the raw material. Further, the mechanical milling method has an advantage that the glassy electrolyte can be made into fine powder simultaneously with the production of the glassy electrolyte (fully amorphous).
Although various types of mechanical milling methods can be used, it is particularly preferable to use a planetary ball mill. The planetary ball mill can efficiently generate very high impact energy by rotating the platform while the pot rotates.
The rotation speed and rotation time of the mechanical milling method are not particularly limited, but the higher the rotation speed, the faster the glassy electrolyte (completely amorphous) production rate, and the longer the rotation time, the more the raw material for the glassy electrolyte. Conversion is high.
The electrolyte thus obtained is a glassy electrolyte (fully amorphous), and usually has an ionic conductivity of 1.0 × 10 −5 to 8.0 × 10 −5 (S / cm). .
本発明のリチウムイオン伝導性無機固体電解質は、上記ガラス状電解質を更に熱処理することにより製造することが好ましい。熱処理温度は、通常170〜370℃程度、好ましくは180〜330℃、更に好ましくは200〜290℃であり、熱処理時間は、熱処理温度に左右されるが、通常1分以上、好ましくは5分〜3時間である。この熱処理により、一部又は完全に結晶化したリチウムイオン伝導性無機固体電解質を得ることができる。このようにして得られたリチウムイオン伝導性無機固体電解質は、通常、イオン伝導度は、7.0×10-4〜3.0×10-3(S/cm)である。 The lithium ion conductive inorganic solid electrolyte of the present invention is preferably produced by further heat-treating the glassy electrolyte. The heat treatment temperature is usually about 170 to 370 ° C., preferably 180 to 330 ° C., more preferably 200 to 290 ° C., and the heat treatment time depends on the heat treatment temperature, but usually 1 minute or more, preferably 5 minutes to 3 hours. By this heat treatment, a partially or completely crystallized lithium ion conductive inorganic solid electrolyte can be obtained. The lithium ion conductive inorganic solid electrolyte thus obtained usually has an ionic conductivity of 7.0 × 10 −4 to 3.0 × 10 −3 (S / cm).
本発明で用いられる硫化リチウムの製造法としては、少なくとも上記不純物を低減できる方法であれば特に制限はない。例えば、以下の方法で製造された硫化リチウムを精製することにより得ることもできる。以下の製造法の中では、特にa又はbの方法が好ましい。
a.非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを0〜150℃で反応させて水硫化リチウムを生成し、次いでこの反応液を150〜200℃で脱硫化水素化する方法(特開平7−330312号公報)。
b.非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを150〜200℃で反応させ、直接硫化リチウムを生成する方法(特開平7−330312号公報)。
c.水酸化リチウムとガス状硫黄源を130〜445℃の温度で反応させる方法(特開平9−283156号公報)。
The method for producing lithium sulfide used in the present invention is not particularly limited as long as it is a method capable of reducing at least the impurities. For example, it can also be obtained by purifying lithium sulfide produced by the following method. Among the following production methods, the method a or b is particularly preferable.
a. A method in which lithium hydroxide and hydrogen sulfide are reacted at 0 to 150 ° C. in an aprotic organic solvent to produce lithium hydrosulfide, and this reaction solution is then desulfurized at 150 to 200 ° C. -330312).
b. A method of directly producing lithium sulfide by reacting lithium hydroxide and hydrogen sulfide at 150 to 200 ° C. in an aprotic organic solvent (Japanese Patent Laid-Open No. 7-330312).
c. A method of reacting lithium hydroxide and a gaseous sulfur source at a temperature of 130 to 445 ° C. (Japanese Patent Laid-Open No. 9-283156).
上記のようにして得られた硫化リチウムの精製方法としては、特に制限はない。好ましい精製法としては、例えば、特願2003−363403号等が挙げられる。具体的には、上記のようにして得られた硫化リチウムを、有機溶媒を用い、100℃以上の温度で洗浄する。有機溶媒を100℃以上の温度で用いる理由は、硫化リチウム製造時に用いる非プロトン性有機溶媒がN−メチル−2−ピロリドン(NMP)である場合に生成する不純物N−メチルアミノ酪酸リチウム(LMAB)が、有機溶媒に可溶化する温度が100℃だからであり、LMABを洗浄用の有機溶媒に溶解させて、硫化リチウムから除去するためである。
洗浄に用いる有機溶媒は、非プロトン性極性溶媒であることが好ましく、更に、硫化リチウム製造に使用する非プロトン性有機溶媒と洗浄に用いる非プロトン性極性有機溶媒とが同一であることがより好ましい。
洗浄に好ましく用いられる非プロトン性極性有機溶媒としては、例えば、アミド化合物、ラクタム化合物、尿素化合物、有機硫黄化合物、環式有機リン化合物などの非プロトン性の極性有機化合物が挙げられ、単独溶媒または、混合溶媒として好適に使用することができる。
これら非プロトン性の極性有機溶媒のうち、前記アミド化合物としては、例えば、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジプロピルアセトアミド、N,N−ジメチル安息香酸アミドなどを挙げることができる。
また、前記ラクタム化合物としては、例えば、カプロラクタム、N−メチルカプロラクタム、N−エチルカプロラクタム、N−イソプロピルカプロラクタム、N−イソブチルカプロラクタム、N−ノルマルプロピルカプロラクタム、N−ノルマルブチルカプロラクタム、N−シクロヘキシルカプロラクタムなどのN−アルキルカプロラクタム類、N−メチル−2−ピロリドン(NMP)、N−エチル−2−ピロリドン、N−イソプロピル−2−ピロリドン、N−イソブチル−2−ピロリドン、N−ノルマルプロピル−2−ピロリドン、N−ノルマルブチル−2−ピロリドン、N−シクロヘキシル−2−ピロリドン、N−メチル−3−メチル−2−ピロリドン、N−エチル−3−メチル−2−ピロリドン、N−メチル−3,4,5−トリメチル−2−ピロリドン、N−メチル−2−ピペリドン、N−エチル−2−ピペリドン、N−イソプロピル−2−ピペリドン、N−メチル−6−メチル−2−ピペリドン、N−メチル−3−エチル−2−ピペリドンなどを挙げることができる。
前記有機硫黄化合物としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド、ジフェニレンスルホン、1−メチル−1−オキソスルホラン、1−フェニル−1−オキソスルホランなどを挙げることができる。
これら各種の非プロトン性極性有機化合物は、それぞれ一種単独で、叉は二種以上を混合して、更には本発明の目的に支障のない他の溶媒成分と混合して、前記非プロトン性極性有機溶媒として使用することができる。
前記各種の非プロトン性極性有機溶媒の中でも、好ましいのは、N−アルキルカプロラクタム及びN−アルキルピロリドンであり、特に好ましいのは、N−メチル−2−ピロリドン(NMP)である。
洗浄に使用する有機溶媒の量は特に限定されず、また、洗浄の回数も特に限定されないが、2回以上であることが好ましい。
洗浄は、窒素、アルゴンなどの不活性ガス下で行うことが好ましい。
洗浄された硫化リチウムを、洗浄に使用した有機溶媒の沸点以上の温度で、窒素などの不活性ガス気流下、常圧又は減圧下で、5分以上、好ましくは約2〜3時間以上乾燥することにより、本発明で用いられる硫化リチウムを得ることができる。
There is no restriction | limiting in particular as a purification method of the lithium sulfide obtained as mentioned above. Examples of preferable purification methods include Japanese Patent Application No. 2003-363403. Specifically, the lithium sulfide obtained as described above is washed at a temperature of 100 ° C. or higher using an organic solvent. The reason why the organic solvent is used at a temperature of 100 ° C. or higher is that the impurity N-methylaminobutyrate (LMAB) produced when the aprotic organic solvent used in the production of lithium sulfide is N-methyl-2-pyrrolidone (NMP) However, this is because the temperature for solubilization in an organic solvent is 100 ° C., so that LMAB is dissolved in an organic solvent for washing and removed from lithium sulfide.
The organic solvent used for washing is preferably an aprotic polar solvent, and more preferably, the aprotic organic solvent used for lithium sulfide production and the aprotic polar organic solvent used for washing are the same. .
Examples of the aprotic polar organic solvent preferably used for washing include aprotic polar organic compounds such as amide compounds, lactam compounds, urea compounds, organic sulfur compounds, and cyclic organic phosphorus compounds. Can be suitably used as a mixed solvent.
Among these aprotic polar organic solvents, examples of the amide compound include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-dipropylacetamide, N, Examples thereof include N-dimethylbenzoic acid amide.
Examples of the lactam compound include caprolactam, N-methylcaprolactam, N-ethylcaprolactam, N-isopropylcaprolactam, N-isobutylcaprolactam, N-normalpropylcaprolactam, N-normalbutylcaprolactam, and N-cyclohexylcaprolactam. N-alkylcaprolactams, N-methyl-2-pyrrolidone (NMP), N-ethyl-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-isobutyl-2-pyrrolidone, N-normalpropyl-2-pyrrolidone, N-normal butyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N-methyl-3-methyl-2-pyrrolidone, N-ethyl-3-methyl-2-pyrrolidone, N-methyl-3,4,5 -Trimethyl 2-pyrrolidone, N-methyl-2-piperidone, N-ethyl-2-piperidone, N-isopropyl-2-piperidone, N-methyl-6-methyl-2-piperidone, N-methyl-3-ethyl-2- And piperidone.
Examples of the organic sulfur compound include dimethyl sulfoxide, diethyl sulfoxide, diphenylene sulfone, 1-methyl-1-oxosulfolane, 1-phenyl-1-oxosulfolane, and the like.
Each of these various aprotic polar organic compounds may be used alone or in combination of two or more and further mixed with other solvent components that do not hinder the object of the present invention. It can be used as an organic solvent.
Among the various aprotic polar organic solvents, N-alkylcaprolactam and N-alkylpyrrolidone are preferable, and N-methyl-2-pyrrolidone (NMP) is particularly preferable.
The amount of the organic solvent used for washing is not particularly limited, and the number of times of washing is not particularly limited, but is preferably 2 or more.
Cleaning is preferably performed under an inert gas such as nitrogen or argon.
The washed lithium sulfide is dried at a temperature equal to or higher than the boiling point of the organic solvent used for washing for 5 minutes or more, preferably about 2 to 3 hours or more in an inert gas stream such as nitrogen under normal pressure or reduced pressure. Thus, lithium sulfide used in the present invention can be obtained.
本発明で用いられる五硫化二燐、単体燐、及び単体硫黄から選ばれる一種以上の成分は、市販品を使用することができる。   Commercially available products can be used as one or more components selected from diphosphorus pentasulfide, simple phosphorus, and simple sulfur used in the present invention.
上記のように優れた特性を有するリチウムイオン伝導性無機固体電解質を用いることにより、長期安定性に優れる全固体リチウム電池が得られる。
本発明における作動電位が0.5V以下である負極活物質としては、炭素材料又は炭素材料の層間にリチウムイオンが挿入された物質が挙げられ、好ましくは炭素材料である。これは、リチウム電池を高エネルギー密度化する上において、炭素材料が約0.1Vの極めて卑な電位を示し、リチウム電池を高エネルギー密度化する上において優れているからである。黒鉛に代表される炭素材料をリチウム電池の負極活物質として用いる場合、充電状態においては炭素材料の層間にリチウムイオンが挿入された状態となり、完全放電状態においては層間のリチウムイオンは脱離し、元の炭素材料に戻る。
また、本発明における作動電位が2.5V以下である正極活物質としては、硫化チタン(TiS2)、硫化モリブデン(MoS2)、硫化鉄(FeS、FeS2)、硫化銅(CuS)、硫化ニッケル(Ni3S2)、硫化リチウムチタン(LiTiS2)、硫化リチウムモリブデン(LiMoS2)などの硫化物;酸化ビスマス(Bi2O3)、酸化ビスマス鉛(Bi2Pb2O5)、酸化銅(CuO)、酸化バナジウム(V6O13)、酸化リチウムバナジウム(LiV6O13)などの酸化物;セレン化ニオブ(NbSe3)、セレン化リチウムニオブ(LiNbSe3)などのセレン化合物が挙げられる。これらの化合物の中で、硫化チタン(TiS2)及び硫化リチウムチタン(LiTiS2)が最適である。
本発明の方法により得られたリチウムイオン伝導性無機固体電解質を全固体リチウム電池に組み込む場合は、特に制限はなく、公知の態様に適用して使用することができる。
例えば、電池ケース内に、封口板、絶縁パッキング、極板群、正極板、正極リード、負極板、負極リード、固体電解質、絶縁リングにより構成する全固体リチウム電池において、固体電解質をシート状に成形して、組み込んで使用することができる。
全固体リチウム電池の形状としては、コイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型、電気自動車等に用いる大型のものなどいずれにも適用できる。
本発明の方法によって得られたリチウムイオン伝導性無機固体電解質を用いて全固体リチウム電池を製造する方法は、従来公知の方法を用いることができる。
本発明の方法により得られたリチウムイオン伝導性無機固体電解質は、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーターを電力源とする自動二輪車、電気自動車、ハイブリッド電気自動車等の全固体リチウム電池として用いることができるが、特にこれらに限定されるものではない。
By using the lithium ion conductive inorganic solid electrolyte having excellent characteristics as described above, an all solid lithium battery having excellent long-term stability can be obtained.
Examples of the negative electrode active material having an operating potential of 0.5 V or less in the present invention include a carbon material or a material in which lithium ions are inserted between carbon material layers, and is preferably a carbon material. This is because the carbon material exhibits an extremely low potential of about 0.1 V in increasing the energy density of the lithium battery, and is excellent in increasing the energy density of the lithium battery. When a carbon material typified by graphite is used as the negative electrode active material of a lithium battery, lithium ions are inserted between the carbon material layers in the charged state, and lithium ions between the layers are desorbed in the fully discharged state. Return to carbon material.
In addition, as the positive electrode active material having an operating potential of 2.5 V or less in the present invention, titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 ), copper sulfide (CuS), sulfide Sulfides such as nickel (Ni 3 S 2 ), lithium titanium sulfide (LiTiS 2 ), lithium molybdenum sulfide (LiMoS 2 ); bismuth oxide (Bi 2 O 3 ), lead bismuth oxide (Bi 2 Pb 2 O 5 ), oxidation Oxides such as copper (CuO), vanadium oxide (V 6 O 13 ), lithium vanadium oxide (LiV 6 O 13 ); and selenium compounds such as niobium selenide (NbSe 3 ) and lithium niobium selenide (LiNbSe 3 ) It is done. Of these compounds, titanium sulfide (TiS 2 ) and lithium titanium sulfide (LiTiS 2 ) are optimal.
When the lithium ion conductive inorganic solid electrolyte obtained by the method of the present invention is incorporated in an all solid lithium battery, there is no particular limitation, and the lithium ion conductive inorganic solid electrolyte can be used by applying to a known embodiment.
For example, a solid electrolyte is formed into a sheet in an all-solid lithium battery comprising a sealing plate, insulating packing, electrode plate group, positive electrode plate, positive electrode lead, negative electrode plate, negative electrode lead, solid electrolyte, and insulating ring in the battery case. Thus, it can be incorporated and used.
As the shape of the all-solid-state lithium battery, any of a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, a square type, a large type used for an electric vehicle, etc. can be applied.
As a method for producing an all solid lithium battery using the lithium ion conductive inorganic solid electrolyte obtained by the method of the present invention, a conventionally known method can be used.
Lithium ion conductive inorganic solid electrolytes obtained by the method of the present invention are used in portable information terminals, portable electronic devices, small household electric power storage devices, motorcycles powered by motors, electric vehicles, hybrid electric vehicles, etc. Although it can be used as a solid lithium battery, it is not particularly limited thereto.
次に、本発明を実施例及び比較例により、更に詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these examples.
実施例1
高純度硫化リチウムを0.6508g(0.01417モル)と五硫化二燐を1.3492g(0.00607モル)をよく混合し、カーボンコートを施した石英ガラス管中に入れ、真空封入した。その後、縦型反応炉に投入し、4時間かけて900℃まで昇温し、2時間900℃に保持し反応を行った。反応終了後、石英管を氷水中に投入し急冷した。開管し、X線回折測定によりガラス化を確認し、その後290℃で5時間、熱処理し目的物を得た。イオン伝導度を交流インピーダンス法(測定周波数100Hz〜15MHz)により測定したところ、室温で1.0×10-3S/cmを示した。これを固体電解質として用い負極活物質として、炭素材料である黒鉛(TIMCAL製、SFG-15)を、正極活物質として、硫化リチウムチタン(LiTiS2)を用いて電池を作成し、その電池特性を調べた。
電池は上記で得たリチウムイオン伝導性固体電解質と黒鉛とを1:1の質量比で混合し、負極材料とした。また、硫化リチウムチタン(LiTiS2)とリチウムイオン伝導性固体電解質を7:3の質量比で混合したものを正極材料とした。上記負極材料(10mg)と正極材料(20mg)を用い、これらの間に上記の固体電解質(150mg)を介し3層のペレット状に成型し、測定セルとした。容量は3.36mAh(計算値)であった。
電池評価はまず10μAの定電流で2.4Vまで充電し、その後同電流で1Vまで放電させたところ2.51mAhの放電容量を示した。再び、この電池を同じ電流で2.4Vまで充電し、その後300℃で1時間保持したあと放電させた場合、放電容量は2.51mAhの容量を示し、良好な耐熱性を示した。
Example 1
0.6508 g (0.01417 mol) of high-purity lithium sulfide and 1.3492 g (0.00607 mol) of diphosphorus pentasulfide were mixed well, placed in a quartz glass tube coated with carbon, and sealed in a vacuum. Then, it put into the vertical reactor and heated up to 900 degreeC over 4 hours, and it hold | maintained at 900 degreeC for 2 hours, and reacted. After completion of the reaction, the quartz tube was put into ice water and rapidly cooled. The tube was opened and confirmed to be vitrified by X-ray diffraction measurement, and then heat treated at 290 ° C. for 5 hours to obtain the desired product. When the ionic conductivity was measured by an alternating current impedance method (measurement frequency: 100 Hz to 15 MHz), it showed 1.0 × 10 −3 S / cm at room temperature. Using this as a solid electrolyte, a battery was created using graphite (TIMCAL, SFG-15) as the negative electrode active material, and lithium titanium sulfide (LiTiS 2 ) as the positive electrode active material. Examined.
In the battery, the lithium ion conductive solid electrolyte obtained above and graphite were mixed at a mass ratio of 1: 1 to obtain a negative electrode material. A mixture of lithium titanium sulfide (LiTiS 2 ) and lithium ion conductive solid electrolyte at a mass ratio of 7: 3 was used as the positive electrode material. The negative electrode material (10 mg) and the positive electrode material (20 mg) were used, and the solid electrolyte (150 mg) was interposed between them to form a three-layered pellet to form a measurement cell. The capacity was 3.36 mAh (calculated value).
The battery was first charged to 2.4 V with a constant current of 10 μA and then discharged to 1 V with the same current, and showed a discharge capacity of 2.51 mAh. Again, when this battery was charged to 2.4 V with the same current and then held at 300 ° C. for 1 hour and then discharged, the discharge capacity was 2.51 mAh, indicating good heat resistance.
比較例1
正極活物質としてコバルト酸リチウム(LiCoO2)を用いたこと以外は、実施例1と同様にしてリチウム電池を作製し、その電池特性を評価した。
電池構成はコバルト酸リチウム(LiCoO2)を用いて得たリチウムイオン伝導性固体電解質とカーボングラファイトとを1:1の質量比で混合し、負極材料とした。また、コバルト酸リチウムと上記リチウムイオン伝導性固体電解質を8:5の質量比で混合したものを正極材料とした。
上記負極材料(10mg)と正極材料(20mg)を用い、これらの間に上記リチウムイオン伝導性固体電解質(150mg)を介し3層のペレット状に成型し、測定セルとした。容量は1.68mAhであった。
電池評価はまず10μAの定電流で4.4Vまで充電し、その後同電流で1Vまで放電させたところ1.26mAhの放電容量を示した。再び、この電池を同じ電流で4.4Vまで充電し、その後300℃で1時間保持したあと放電させた場合、放電容量は0.63mAhの容量を示し、耐熱性が低いことがわかる。
Comparative Example 1
A lithium battery was produced in the same manner as in Example 1 except that lithium cobalt oxide (LiCoO 2 ) was used as the positive electrode active material, and the battery characteristics were evaluated.
As a battery configuration, a lithium ion conductive solid electrolyte obtained by using lithium cobalt oxide (LiCoO 2 ) and carbon graphite were mixed at a mass ratio of 1: 1 to obtain a negative electrode material. Moreover, what mixed lithium cobaltate and the said lithium ion conductive solid electrolyte by mass ratio of 8: 5 was used as positive electrode material.
The negative electrode material (10 mg) and the positive electrode material (20 mg) were used, and the lithium ion conductive solid electrolyte (150 mg) was interposed between them to form a three-layered pellet to form a measurement cell. The capacity was 1.68 mAh.
The battery was first charged to 4.4 V with a constant current of 10 μA and then discharged to 1 V with the same current, and showed a discharge capacity of 1.26 mAh. Again, when this battery is charged to 4.4 V with the same current and then held at 300 ° C. for 1 hour and then discharged, the discharge capacity shows a capacity of 0.63 mAh, indicating that the heat resistance is low.
本発明の全固体リチウム電池は、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーターを電力源とする自動二輪車、電気自動車、ハイブリッド電気自動車等の電池として用いることができる。

The all-solid-state lithium battery of the present invention can be used as a battery for a portable information terminal, a portable electronic device, a small electric power storage device for home use, a motorcycle using a motor as a power source, an electric vehicle, a hybrid electric vehicle, or the like.

Claims (4)

  1. 作動電位がリチウム電極基準で2.5V以下である正極活物質と0.5V以下である負極活物質とを用い、少なくとも負極活物質に接するリチウムイオン伝導性無機固体電解質が、硫化リチウムと、五硫化二燐、単体燐、及び単体硫黄から選ばれる一種以上の成分とから製造したものであることを特徴とするリチウム電池。   Using a positive electrode active material having an operating potential of 2.5 V or less and a negative electrode active material of 0.5 V or less with respect to the lithium electrode, at least a lithium ion conductive inorganic solid electrolyte in contact with the negative electrode active material comprises lithium sulfide, A lithium battery manufactured from one or more components selected from diphosphorous sulfide, simple phosphorus, and simple sulfur.
  2. 正極活物質が、硫化チタン(TiS2)、硫化モリブデン(MoS2)、硫化鉄(FeS、FeS2)、硫化銅(CuS)、硫化ニッケル(Ni3S2)、硫化リチウムチタン(LiTiS2)、及び硫化リチウムモリブデン(LiMoS2)から選ばれる一種以上である請求項1に記載のリチウム電池。 The positive electrode active material is titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 ), copper sulfide (CuS), nickel sulfide (Ni 3 S 2 ), lithium titanium sulfide (LiTiS 2 ) The lithium battery according to claim 1, wherein the lithium battery is at least one selected from lithium molybdenum sulfide (LiMoS 2 ).
  3. 正極活物質が、酸化ビスマス(Bi2O3)、酸化ビスマス鉛(Bi2Pb2O5)、酸化銅(CuO)、酸化バナジウム(V6O13)、及び酸化リチウムバナジウム(LiV6O13)から選ばれる一種以上である請求項1に記載のリチウム電池。 The positive electrode active materials are bismuth oxide (Bi 2 O 3 ), lead bismuth oxide (Bi 2 Pb 2 O 5 ), copper oxide (CuO), vanadium oxide (V 6 O 13 ), and lithium vanadium oxide (LiV 6 O 13). The lithium battery according to claim 1, wherein the lithium battery is at least one selected from the group consisting of
  4. 正極活物質が、セレン化ニオブ(NbSe3)、及びセレン化リチウムニオブ(LiNbSe3)から選ばれる一種以上である請求項1に記載のリチウム電池。

    The lithium battery according to claim 1, wherein the positive electrode active material is at least one selected from niobium selenide (NbSe 3 ) and lithium niobium selenide (LiNbSe 3 ).

JP2005091533A 2005-03-28 2005-03-28 High-performance all-solid state lithium battery Pending JP2006277997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091533A JP2006277997A (en) 2005-03-28 2005-03-28 High-performance all-solid state lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091533A JP2006277997A (en) 2005-03-28 2005-03-28 High-performance all-solid state lithium battery

Publications (1)

Publication Number Publication Date
JP2006277997A true JP2006277997A (en) 2006-10-12

Family

ID=37212569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091533A Pending JP2006277997A (en) 2005-03-28 2005-03-28 High-performance all-solid state lithium battery

Country Status (1)

Country Link
JP (1) JP2006277997A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066539A1 (en) * 2005-12-09 2007-06-14 Idemitsu Kosan Co., Ltd. Lithium ion conductive sulfide-based solid electrolyte and all-solid lithium battery using same
JP2007324079A (en) * 2006-06-05 2007-12-13 Mie Univ Positive electrode material for all-solid lithium battery
JP2008103285A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd All solid bipolar battery
JP2008103282A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Electrode material, and solid secondary battery using it
JP2008235227A (en) * 2007-03-23 2008-10-02 Toyota Motor Corp Solid battery and manufacturing method
JP2008257962A (en) * 2007-04-03 2008-10-23 Murata Mfg Co Ltd All solid lithium secondary battery
JP2010225582A (en) * 2009-02-24 2010-10-07 Idemitsu Kosan Co Ltd Electrical apparatus
WO2015030052A1 (en) 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 Solid-state battery
WO2015030053A1 (en) 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 Solid-state battery and method for manufacturing electrode active material
US9005817B2 (en) 2009-08-18 2015-04-14 Seiko Epson Corporation Electrode for lithium battery comprising solid electrolyte nanoparticles and lithium battery
EP2903060A1 (en) 2014-01-31 2015-08-05 Seiko Epson Corporation Manufacturing method of electrode assembly, electrode assembly, and battery
EP2905830A1 (en) 2014-02-10 2015-08-12 Seiko Epson Corporation Manufacturing method of electrode assembly, electrode assembly battery
EP2996176A1 (en) 2014-09-10 2016-03-16 Seiko Epson Corporation Electrode body for lithium battery, and lithium battery
EP3002805A1 (en) 2014-09-30 2016-04-06 Seiko Epson Corporation Electrode complex, method of producing electrode complex, and lithium battery
JP2016058295A (en) * 2014-09-11 2016-04-21 古河機械金属株式会社 Positive electrode active material for lithium ion battery, positive electrode material, positive electrode, and lithium ion battery
US9350013B2 (en) 2013-02-05 2016-05-24 Seiko Epson Corporation Method for producing electrode assembly
EP3073557A1 (en) 2015-03-26 2016-09-28 Seiko Epson Corporation Electrode assembly and battery
EP3093913A2 (en) 2015-05-15 2016-11-16 Seiko Epson Corporation Solid electrolyte battery, electrode assembly, composite solid electrolyte, and method for producing solid electrolyte battery
EP3104432A1 (en) 2015-06-09 2016-12-14 Seiko Epson Corporation Electrode assembly and battery
EP3104436A1 (en) 2015-06-08 2016-12-14 Seiko Epson Corporation Electrode composite body, method of manufacturing electrode composite body, and lithium battery
EP3104435A1 (en) 2015-06-08 2016-12-14 Seiko Epson Corporation Electrode composite body, method of manufacturing electrode composite body, and lithium battery
US11108083B2 (en) 2015-06-08 2021-08-31 Seiko Epson Corporation Electrode composite body, method of manufacturing electrode composite body, and lithium battery

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007066539A1 (en) * 2005-12-09 2009-05-14 出光興産株式会社 Lithium ion conductive sulfide-based solid electrolyte and all-solid-state lithium battery using the same
US8012631B2 (en) 2005-12-09 2011-09-06 Idemitsu Kosan Co., Ltd Lithium ion conductive sulfide-based solid electrolyte and all-solid lithium battery using same
WO2007066539A1 (en) * 2005-12-09 2007-06-14 Idemitsu Kosan Co., Ltd. Lithium ion conductive sulfide-based solid electrolyte and all-solid lithium battery using same
JP2007324079A (en) * 2006-06-05 2007-12-13 Mie Univ Positive electrode material for all-solid lithium battery
JP2008103282A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Electrode material, and solid secondary battery using it
JP2008103285A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd All solid bipolar battery
JP2008235227A (en) * 2007-03-23 2008-10-02 Toyota Motor Corp Solid battery and manufacturing method
JP2008257962A (en) * 2007-04-03 2008-10-23 Murata Mfg Co Ltd All solid lithium secondary battery
JP2010225582A (en) * 2009-02-24 2010-10-07 Idemitsu Kosan Co Ltd Electrical apparatus
US9005817B2 (en) 2009-08-18 2015-04-14 Seiko Epson Corporation Electrode for lithium battery comprising solid electrolyte nanoparticles and lithium battery
US9350013B2 (en) 2013-02-05 2016-05-24 Seiko Epson Corporation Method for producing electrode assembly
WO2015030052A1 (en) 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 Solid-state battery
US10147937B2 (en) 2013-09-02 2018-12-04 Mitsubishi Gas Chemical Company, Inc. Solid-state battery and method for manufacturing electrode active material
US10038192B2 (en) 2013-09-02 2018-07-31 Mitsubishi Gas Chemical Company, Inc. Solid-state battery
WO2015030053A1 (en) 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 Solid-state battery and method for manufacturing electrode active material
KR20160048892A (en) 2013-09-02 2016-05-04 미츠비시 가스 가가쿠 가부시키가이샤 Solid-state battery
KR20160048894A (en) 2013-09-02 2016-05-04 미츠비시 가스 가가쿠 가부시키가이샤 Solid-state battery and method for manufacturing electrode active material
US9831524B2 (en) 2014-01-31 2017-11-28 Seiko Epson Corporation Manufacturing method of electrode assembly, electrode assembly, and battery
EP2903060A1 (en) 2014-01-31 2015-08-05 Seiko Epson Corporation Manufacturing method of electrode assembly, electrode assembly, and battery
EP3079188A1 (en) 2014-01-31 2016-10-12 Seiko Epson Corporation Electrode assembly, and battery
US10056616B2 (en) 2014-02-10 2018-08-21 Seiko Epson Corporation Manufacturing method of electrode assembly, electrode assembly and battery
EP2905830A1 (en) 2014-02-10 2015-08-12 Seiko Epson Corporation Manufacturing method of electrode assembly, electrode assembly battery
EP2996176A1 (en) 2014-09-10 2016-03-16 Seiko Epson Corporation Electrode body for lithium battery, and lithium battery
JP2016058295A (en) * 2014-09-11 2016-04-21 古河機械金属株式会社 Positive electrode active material for lithium ion battery, positive electrode material, positive electrode, and lithium ion battery
US10096818B2 (en) 2014-09-30 2018-10-09 Seiko Epson Corporation Electrode complex, method of producing electrode complex, and lithium battery
EP3002805A1 (en) 2014-09-30 2016-04-06 Seiko Epson Corporation Electrode complex, method of producing electrode complex, and lithium battery
US10340509B2 (en) 2015-03-26 2019-07-02 Seiko Epson Corporation Electrode assembly and battery
EP3073557A1 (en) 2015-03-26 2016-09-28 Seiko Epson Corporation Electrode assembly and battery
US10135091B2 (en) 2015-05-15 2018-11-20 Seiko Epson Corporation Solid electrolyte battery, electrode assembly, composite solid electrolyte, and method for producing solid electrolyte battery
EP3093913A2 (en) 2015-05-15 2016-11-16 Seiko Epson Corporation Solid electrolyte battery, electrode assembly, composite solid electrolyte, and method for producing solid electrolyte battery
EP3104436A1 (en) 2015-06-08 2016-12-14 Seiko Epson Corporation Electrode composite body, method of manufacturing electrode composite body, and lithium battery
EP3104435A1 (en) 2015-06-08 2016-12-14 Seiko Epson Corporation Electrode composite body, method of manufacturing electrode composite body, and lithium battery
US10862162B2 (en) 2015-06-08 2020-12-08 Seiko Epson Corporation Electrode composite body, method of manufacturing electrode composite body, and lithium battery
US11108083B2 (en) 2015-06-08 2021-08-31 Seiko Epson Corporation Electrode composite body, method of manufacturing electrode composite body, and lithium battery
EP3104432A1 (en) 2015-06-09 2016-12-14 Seiko Epson Corporation Electrode assembly and battery
US9831530B2 (en) 2015-06-09 2017-11-28 Seiko Epson Corporation Electrode assembly and battery

Similar Documents

Publication Publication Date Title
JP4873479B2 (en) High performance all solid lithium battery
JP2006277997A (en) High-performance all-solid state lithium battery
JP5311169B2 (en) Lithium ion conductive solid electrolyte, method for producing the same, solid electrolyte for lithium secondary battery using the solid electrolyte, and all solid lithium battery using the solid electrolyte for secondary battery
TWI377718B (en)
WO2005078740A1 (en) Lithium ion conducting sulfide based crystallized glass and method for production thereof
Noi et al. Structure and properties of the Na2S–P2S5 glasses and glass–ceramics prepared by mechanical milling
US20160156064A1 (en) Sulfide-Based Solid Electrolyte for Lithium Ion Battery
JP4621139B2 (en) Method for producing lithium ion conductive solid electrolyte
JP4989183B2 (en) Electrode and solid secondary battery using the same
JP2008103204A (en) Cathode active material and secondary battery using it
JP2008027581A (en) Electrode material, electrode, and all-solid secondary battery
JP2014221714A (en) Lithium ion conductive solid electrolyte sheet method for producing the same
JP2008103203A (en) Solid electrolyte and all-solid secondary battery using it
JP2010033876A (en) Polymer-coated solid electrolyte and all-solid secondary battery using the same
JP2008103288A (en) All-solid battery
JP2010033875A (en) Positive electrode composite containing organic sulfur compound, and all-solid secondary battery using the same
Hayashi et al. High lithium ion conduction of sulfide glass-based solid electrolytes and their application to all-solid-state batteries
JP5001621B2 (en) Solid electrolyte and solid secondary battery using the same
JP3852579B2 (en) Method and apparatus for producing metal element-doped silicon oxide powder
JP2008103145A (en) Battery material manufacturing method and all-solid battery
JP2008124011A (en) Lithium ion conductive solid electrolyte sheet, and its manufacturing method
CN100583543C (en) Lithium ion-conductive solid electrolyte, method for producing same, solid electrolyte for lithium secondary battery using such solid electrolyte, and all-solid lithium battery using such solid electr
CN1965378A (en) High-performance all-solid lithium battery
Chowdari et al. Cathodic performance of anatase (TiO 2)-coated Li (Ni 0.8 Co 0.2) O 2
JP5098288B2 (en) Positive electrode layer for secondary battery and method for producing the same