JP2019096476A - Series laminate type all-solid battery - Google Patents

Series laminate type all-solid battery Download PDF

Info

Publication number
JP2019096476A
JP2019096476A JP2017225032A JP2017225032A JP2019096476A JP 2019096476 A JP2019096476 A JP 2019096476A JP 2017225032 A JP2017225032 A JP 2017225032A JP 2017225032 A JP2017225032 A JP 2017225032A JP 2019096476 A JP2019096476 A JP 2019096476A
Authority
JP
Japan
Prior art keywords
layer
positive electrode
active material
electrode active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017225032A
Other languages
Japanese (ja)
Other versions
JP6885309B2 (en
Inventor
雄志 鈴木
Yushi Suzuki
雄志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017225032A priority Critical patent/JP6885309B2/en
Publication of JP2019096476A publication Critical patent/JP2019096476A/en
Application granted granted Critical
Publication of JP6885309B2 publication Critical patent/JP6885309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

To provide a series laminate type all-solid battery including a sulfide solid electrolyte and having a negative electrode current collector layer containing copper as a conductive material, which can reduce a battery energy density per unit weight and which can suppress the degradation of a battery.SOLUTION: A series laminate type all-solid battery 10 has two or more unit cells (e.g. V, Vand V) which are laminated in series, and comprises a sulfide solid electrolyte. In the series laminate type all-solid battery, the unit cell Vhas an insulating layer 6 on the side face of a positive electrode collector layer 1 and a positive electrode active material layer 2. One side of the insulating layer extends from the side face of the positive electrode active material layer to a part of a surface of the positive electrode collector layer on a side opposed to a negative electrode current collector layer 5 of the unit cell V. The other side of the insulating layer extends from the side face of the positive electrode active material layer to or beyond an end of a surface of a solid electrolyte layer 3 on a side opposed to the positive electrode active material layer.SELECTED DRAWING: Figure 2

Description

本開示は、直列積層型全固体電池に関し、特に、硫化物固体電解質を含み、かつ負極集電体層が導電性材料として銅を含む直列積層型全固体電池に関する。   The present disclosure relates to a series-stacked all-solid-state battery, and more particularly to a series-stacked all-solid-state battery including a sulfide solid electrolyte and a negative electrode current collector layer containing copper as a conductive material.

近年、エネルギー密度が高いリチウム電池が実用化されている。特に、電解液を固体電解質層に変えて、電池を全固体化したリチウム電池は、電池内に可燃性の有機溶媒を用いないため、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。   In recent years, lithium batteries with high energy density have been put to practical use. In particular, since a lithium battery in which the battery is totally solidified by changing the electrolyte solution to a solid electrolyte layer does not use a flammable organic solvent in the battery, the safety device can be simplified, and the manufacturing cost and productivity are excellent. It is believed that.

また、全固体電池として、高エネルギー密度及び高出力密度が達成できる直列積層型全固体電池が注目されている。例えば、特許文献1では、集電体の一方の面に正極活物質層が形成され、他方の面に負極活物質層が形成されたバイポーラ型電極を、電解質層を挟んで少なくとも2層以上直列に積層した全固体バイポーラ電池が開示されている。   In addition, as an all-solid-state battery, a series-stacked all-solid-state battery capable of achieving high energy density and high power density has attracted attention. For example, in Patent Document 1, a bipolar electrode in which a positive electrode active material layer is formed on one side of a current collector and a negative electrode active material layer is formed on the other side is serially connected at least two layers sandwiching an electrolyte layer. U.S. Pat.

直列積層型全固体電池の製造に関して、特許文献2は、電池要素の側面を完全に又は部分的に絶縁層で被覆することを開示している。   For the production of series-stacked all-solid-state batteries, Patent Document 2 discloses covering the side of the battery element completely or partially with an insulating layer.

特開2008−140663号公報JP 2008-140663 A 特開2008−186595号公報JP 2008-186595 A

特許文献2のような直列積層型全固体電池において、電池要素の側面を完全に絶縁層で被覆すると、電池パック全体の重量に対する絶縁層の割合が大きくなり、重量当たりのエネルギー密度が低下してしまう課題があった。その一方で、電池要素の側面を部分的に絶縁層で被覆すると、特に硫化物固体電解質と、負極集電体層として銅箔などの銅製集電体を併用する全固体電池においては、電池の劣化が早いという課題があった。   In the series-stacked all solid-state battery as described in Patent Document 2, when the side of the battery element is completely covered with the insulating layer, the ratio of the insulating layer to the weight of the entire battery pack increases and the energy density per weight decreases. There was a problem that On the other hand, when the side of the battery element is partially covered with the insulating layer, the battery is particularly effective in the all solid battery using a sulfide solid electrolyte and a copper current collector such as copper foil as the negative electrode current collector layer. There is a problem that the deterioration is quick.

したがって、本開示は、上記事情を鑑みてなされたものであり、硫化物固体電解質を含み、かつ負極集電体層が導電性材料として銅を含む直列積層型全固体電池であって、重量当たりのエネルギー密度の低下及び電池の劣化を抑制することができる直列積層型全固体電池を提供することを目的とする。   Therefore, the present disclosure has been made in view of the above circumstances, and is a series-stacked all-solid-state battery including a sulfide solid electrolyte and the negative electrode current collector layer including copper as a conductive material, wherein It is an object of the present invention to provide a series-stacked all-solid-state battery capable of suppressing the reduction in energy density of the battery and the deterioration of the battery.

本発明者は、以下の手段により、上記課題を解決できることを見出した。
2以上の単位電池を直列に積層してなる直列積層型全固体電池において、
前記単位電池が、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層を、この順に積層してなり、
前記正極活物質層、前記固体電解質層、及び前記負極活物質層が、硫化物固体電解質を含み、
前記負極集電体層が、導電性材料として銅を含み、
前記正極集電体層及び前記正極活物質層の面積が、前記固体電解質層、前記負極活物質層及び前記負極集電体層の面積より小さく、
前記正極集電体層及び前記正極活物質層の側面に絶縁層を有し、かつ
前記絶縁層の一方の側は、前記正極活物質層の側面から、前記正極集電体層の、他の単位電池の負極集電体層と対向する側の表面の一部まで延在し、かつ前記絶縁層のもう一方の側は、前記正極活物質層の側面から、前記固体電解質層の、前記正極活物質層と対向する側の表面の端部まで又は端部を越えて延在する、
直列積層型全固体電池。
The present inventor has found that the above-mentioned problems can be solved by the following means.
In a series-stacked all-solid-state battery in which two or more unit cells are stacked in series,
The unit battery is formed by laminating a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order,
The positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer include a sulfide solid electrolyte,
The negative electrode current collector layer contains copper as a conductive material,
The areas of the positive electrode current collector layer and the positive electrode active material layer are smaller than the areas of the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector layer,
An insulating layer is provided on the side surface of the positive electrode current collector layer and the positive electrode active material layer, and one side of the insulating layer is a side surface of the positive electrode active material layer, the other side of the positive electrode current collector layer It extends to a part of the surface of the unit battery on the side facing the negative electrode current collector layer, and the other side of the insulating layer is the side surface of the positive electrode active material layer, the positive electrode of the solid electrolyte layer Extends to or beyond the edge of the surface opposite to the active material layer,
Series stacked all solid battery.

本開示によれば、硫化物固体電解質を含み、かつ負極集電体層が導電性材料として銅を含む直列積層型全固体電池の、重量当たりのエネルギー密度の低下及び電池の劣化を抑制することができる。   According to the present disclosure, it is intended to suppress the decrease in energy density per weight and the deterioration of a series-stacked all-solid-state battery including a sulfide solid electrolyte and the negative electrode current collector layer containing copper as a conductive material. Can.

図1は、従来の直列積層型全固体電池の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a conventional series-stacked all-solid-state battery. 図2は、本開示の直列積層型全固体電池の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the series-stacked all-solid-state battery of the present disclosure. 図3は、本開示の直列積層型全固体電池の正極活物質層と固体電解質層との面積差を示す概略図である。FIG. 3 is a schematic view showing an area difference between a positive electrode active material layer and a solid electrolyte layer of the series-stacked all-solid battery of the present disclosure. 図4は、本開示の直列積層型全固体電池の一部を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing a part of the series-stacked all-solid-state battery of the present disclosure. 図5は、実施例1の直列積層型全固体電池を示す概略図である。FIG. 5 is a schematic view showing a series-stacked all-solid-state battery of Example 1. 図6は、比較例1の直列積層型全固体電池を示す概略図である。FIG. 6 is a schematic view showing a series-stacked all-solid-state battery of Comparative Example 1. 図7は、実施例1及び比較例1の直列積層型全固体電池を充電して放置した後の結果を示すグラフである。FIG. 7 is a graph showing the results after charging and leaving the serially stacked all solid battery of Example 1 and Comparative Example 1 in charge.

以下、図面を参照しながら、本開示を実施するための形態について、詳細に説明する。なお、説明の便宜上、各図において、同一又は相当する部分には同一の参照符号を付し、重複説明は省略する。実施の形態の各構成要素は、全てが必須のものであるとは限らず、一部の構成要素を省略可能な場合もある。最も、以下の図に示される形態は本開示の例示であり、本開示を限定するものではない。   Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that, for convenience of explanation, in the respective drawings, the same or corresponding parts will be denoted by the same reference symbols, and redundant description will be omitted. Not all of the components of the embodiment are necessarily required, and some components may be omitted. Mostly, the forms shown in the following figures are examples of the present disclosure and do not limit the present disclosure.

《直列積層型全固体電池》
本開示の全固体電池は、
2以上の単位電池を直列に積層してなる直列積層型全固体バイポーラ電池において、
前記単位電池が、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層を、この順に積層してなり、
前記正極活物質層、前記固体電解質層、及び前記負極活物質層が、硫化物固体電解質を含み、
前記負極集電体層が、導電性材料として銅を含み、
前記正極集電体層及び前記正極活物質層の面積が、前記固体電解質層、前記負極活物質層及び前記負極集電体層の面積より小さく、
前記正極集電体層及び前記正極活物質層の側面に絶縁層を有し、
前記絶縁層の一方の側は、前記正極活物質層の側面から、前記正極集電体層の、他の単位電池の負極集電体層と対向する側の表面の一部まで延在し、前記絶縁層のもう一方の側は、前記正極活物質層の側面から、前記固体電解質層の、前記正極活物質層と対向する側の表面の端部まで又は端部を越えて延在する、
直列積層型全固体電池である。
Series-stacked all-solid-state battery
The all solid state battery of the present disclosure is
In a series-stacked all-solid bipolar battery in which two or more unit cells are stacked in series,
The unit battery is formed by laminating a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order,
The positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer include a sulfide solid electrolyte,
The negative electrode current collector layer contains copper as a conductive material,
The areas of the positive electrode current collector layer and the positive electrode active material layer are smaller than the areas of the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector layer,
An insulating layer on side surfaces of the positive electrode current collector layer and the positive electrode active material layer,
One side of the insulating layer extends from the side surface of the positive electrode active material layer to a part of the surface of the positive electrode current collector layer facing the negative electrode current collector layer of the other unit battery, The other side of the insulating layer extends from the side surface of the positive electrode active material layer to the end of the surface of the solid electrolyte layer opposite to the positive electrode active material layer or beyond the end.
It is a series-stacked all-solid-state battery.

本開示において、「直列積層型全固体電池」とは、2以上の単位電池を直列に積層されてなる全固体電池である。   In the present disclosure, “serially stacked all solid state battery” is an all solid state battery in which two or more unit cells are stacked in series.

上述したように、一般的に、硫化物固体電解質を含み、かつ負極集電体層が導電性材料として銅を含む直列積層型全固体電池は、電池要素の側面を部分的にのみ絶縁層で被覆する構成を有する場合、電池の劣化が早いという問題が分かった。   As described above, in general, the series-stacked all-solid-state battery including a sulfide solid electrolyte and the negative electrode current collector layer containing copper as a conductive material only has a partial insulating layer on the side surface of the cell element. In the case of having a configuration to be coated, a problem was found that the battery deteriorated quickly.

この「劣化」の原因について、以下のメカニズムによるものであると考えられる。すなわち、すなわち、図1に示されているように、正極集電体層1、正極活物質層2、固体電解質層3、負極活物質層4、及び負極集電体層5がこの順に積層されてなる単位電池Vaと、同様に積層されてなる単位電池Vbと、同様に積層されてなる単位電池Vcとを有する従来の直列積層型全固体電池100において、充電処理を行うことにより、単位電池Vaの負極集電体層5は、単位電池Vbの固体電解質層3よりも高電位(正極電位)になる。これによって、単位電池Vaの負極集電体層5に含まれる銅は、単位電池Vbの固体電解質層3に含まれる硫化物固体電解質と接触すると、硫化銅を生成し、それによって単位電池Vbの自己放電が生じてしまい、結果として電池の劣化をもたらす。本発明者の鋭意研究により、単位電池Vaの負極集電体層5は、それよりも約2〜3V低い電位の硫化物固体電解質と接すると、特に硫化銅を生成しやすいことが見出された。なお、単位電池Vbと単位電池Vcとの間にも同様なメカニズムで自己放電による電池の劣化が考えられるが、ここでは説明を省略する。   The cause of this "deterioration" is considered to be due to the following mechanism. That is, as shown in FIG. 1, the positive electrode current collector layer 1, the positive electrode active material layer 2, the solid electrolyte layer 3, the negative electrode active material layer 4, and the negative electrode current collector layer 5 are laminated in this order. Unit cell Va, a unit cell Vb similarly stacked, and a unit cell Vc similarly stacked, the conventional series-stacked all-solid-state battery 100 performs a charging process by performing a charging process. The negative electrode collector layer 5 of Va has a higher potential (positive electrode potential) than the solid electrolyte layer 3 of the unit battery Vb. By this, the copper contained in the negative electrode current collector layer 5 of the unit battery Va forms copper sulfide when contacted with the sulfide solid electrolyte contained in the solid electrolyte layer 3 of the unit battery Vb, whereby the unit battery Vb is produced Self-discharge occurs, resulting in deterioration of the battery. The inventors of the present invention have found that the negative electrode current collector layer 5 of the unit cell Va is particularly likely to form copper sulfide when in contact with a sulfide solid electrolyte having a potential about 2-3 V lower than that of the unit battery Va. The Deterioration of the battery due to self-discharge can be considered between the unit battery Vb and the unit battery Vc by the same mechanism, but the description is omitted here.

本開示は、(i)正極集電体層及び正極活物質層の面積が、固体電解質層、負極活物質層及び負極集電体層の面積より小さいこと、並びに(ii)正極集電体層及び正極活物質層の側面に絶縁層を有し、この絶縁層の一方の側が、正極活物質層の側面から、正極集電体層の、他の単位電池の負極集電体層と対向する側の表面の一部まで延在し、前記絶縁層のもう一方の側は、正極活物質層の側面から、固体電解質層の、前記正極活物質層と対向する側の表面の端部まで又は端部を越えて延在すること、という二つの特徴を有する。   In the present disclosure, (i) the areas of the positive electrode current collector layer and the positive electrode active material layer are smaller than the areas of the solid electrolyte layer, the negative electrode active material layer and the negative electrode current collector layer, and (ii) the positive electrode current collector layer And an insulating layer on the side surface of the positive electrode active material layer, and one side of the insulating layer faces the negative electrode collector layer of another unit battery of the positive electrode collector layer from the side surface of the positive electrode active material layer It extends to a part of the side surface, and the other side of the insulating layer extends from the side surface of the positive electrode active material layer to the end of the surface of the solid electrolyte layer opposite to the positive electrode active material layer or It has two features of extending beyond the end.

この特徴(i)及び特徴(ii)を組み合わせることによって、単位電池の負極集電体層に含まれる銅が、この単位電池と隣接する単位電池の固体電解質層に含まれる硫化物固体電解質と接触して、硫化銅を生成することを抑制でき、電池の劣化を抑制することができる。また、上述したように、本開示の絶縁層は、単位電池の側面全体を被覆するのではないため、電池パック全体の重量に対する絶縁層の割合が小さくなり、重量当たりのエネルギー密度を向上させることもできる。すなわち、本開示の効果を達成することができる。さらに、正極集電体層及び正極活物質層の面積を、固体電解質層、負極活物質層、及び負極集電体層の面積よりも小さくして、かつ単位電池の側面の特定の場所に絶縁層を設けることによって、電極間の短絡も抑制することができる。   By combining this feature (i) and feature (ii), the copper contained in the negative electrode current collector layer of the unit cell is in contact with the sulfide solid electrolyte contained in the solid electrolyte layer of the unit cell adjacent to this unit cell. As a result, generation of copper sulfide can be suppressed, and deterioration of the battery can be suppressed. Further, as described above, since the insulating layer of the present disclosure does not cover the entire side surface of the unit cell, the ratio of the insulating layer to the weight of the entire battery pack is reduced, and the energy density per weight is improved. You can also. That is, the effects of the present disclosure can be achieved. Furthermore, the areas of the positive electrode current collector layer and the positive electrode active material layer are smaller than the areas of the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector layer, and insulated at specific locations on the side of the unit cell. By providing the layer, a short circuit between the electrodes can also be suppressed.

以下では、特徴(i)及び特徴(ii)のそれぞれについて、詳細に説明する。   Hereinafter, each of the feature (i) and the feature (ii) will be described in detail.

ここで、図2は、本開示の直列積層型全固体電池の一例を示す概略断面図である。本開示の直列積層型全固体電池10には、少なくとも単位電池Vと、単位電池Vと、が直列に積層されている。また、単位電池Vの積層方向には、他の単位電池(例えば単位電池V)が、必要に応じて必要な数で直列に積層されてもよい。さらに、本開示の直列積層型全固体電池は、上記構成のほかに、電池ケースや拘束治具を有していてもよい(図示せず)。 Here, FIG. 2 is a schematic cross-sectional view showing an example of the series-stacked all-solid-state battery of the present disclosure. Serially stacked all-solid-state battery 10 of the present disclosure, at least the unit cell V 1, the unit battery V 2, are stacked in series. In addition, other unit cells (for example, unit cell V 3 ) may be stacked in series in a necessary number in the stacking direction of the unit cell V 2 as necessary. Furthermore, the series-stacked all-solid-state battery of the present disclosure may have a battery case and a restraint jig in addition to the above configuration (not shown).

〈特徴(i)〉
本開示において、正極集電体層及び正極活物質層の面積は、固体電解質層、負極活物質層及び負極集電体層の面積より小さい。図2の単位電池Vを例として説明すると、正極集電体層1及び正極活物質層2の面積は、固体電解質層3、負極活物質層4及び負極集電体層5の面積より小さいことを示している。この際、正極集電体層1の面積と、正極活物質層2の面積とは、同じであってもよく、異なっていてもよいが、固体電解質層3、負極活物質層4及び負極集電体層5の面積より小さければよい。同様に、固体電解質層3の面積と、負極活物質層4の面積と、負極集電体層5の面積とは、同じであってもよく、異なっていてもよいが、正極集電体層1及び正極活物質層2の面積より大きければよい。
<Feature (i)>
In the present disclosure, the areas of the positive electrode current collector layer and the positive electrode active material layer are smaller than the areas of the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector layer. When the unit cell V 1 of the FIG. 2 will be described as an example, the area of the positive electrode collector layer 1 and the cathode active material layer 2 is smaller than the area of the solid electrolyte layer 3, the anode active material layer 4 and the negative electrode collector layer 5 It is shown that. At this time, the area of the positive electrode current collector layer 1 and the area of the positive electrode active material layer 2 may be the same or different, but the solid electrolyte layer 3, the negative electrode active material layer 4 and the negative electrode collection layer The area may be smaller than the area of the conductive layer 5. Similarly, the area of the solid electrolyte layer 3, the area of the negative electrode active material layer 4, and the area of the negative electrode current collector layer 5 may be the same or different, but the positive electrode current collector layer It may be larger than 1 and the area of the positive electrode active material layer 2.

また、正極集電体層1及び正極活物質層2は、必ず固体電解質層3、負極活物質層4及び負極集電体層5の中央部分に積層されなくてもよい。例えば、図3のように、正極活物質層2を固体電解質層3の上に積層する際に、固体電解質層3が、幅r(r>0)のはみ出し部を有すればよい。なお、図3では、単位電池を正方形の形態で描いているが、直列積層型全固体電池の形態に合わせて、正方形に限定されず任意の形態であってもよい。   In addition, the positive electrode current collector layer 1 and the positive electrode active material layer 2 may not necessarily be laminated on the central portions of the solid electrolyte layer 3, the negative electrode active material layer 4 and the negative electrode current collector layer 5. For example, as shown in FIG. 3, when the positive electrode active material layer 2 is stacked on the solid electrolyte layer 3, the solid electrolyte layer 3 may have a protrusion with a width r (r> 0). In FIG. 3, the unit cell is drawn in the form of a square, but the form is not limited to the square but may be any form according to the form of the series-stacked all solid battery.

〈特徴(ii)〉
本開示にかかる単位電池の側面の特定の場所に、絶縁層が設けられている。図2の単位電池Vを例として説明すると、正極集電体層1及び正極活物質層2の側面に絶縁層6が設けられている。絶縁層6の一方の側は、正極活物質層2の側面から、正極集電体層1の、単位電池Vの負極集電体層5と対向する側の表面の一部まで延在し、図4に示されているように、この表面上の幅a(a>0)を有している。また、絶縁層6のもう一方の側は、正極活物質層2の側面から、固体電解質層3の前記正極活物質層2と対向する側の表面の端部まで又は端部を越えて延在し、図4に示されているように、この表面上の幅c(c>0)を有している。
<Feature (ii)>
An insulating layer is provided at a specific location on the side of the unit cell according to the present disclosure. When the unit battery V 2 in FIG. 2 will be described as an example, the insulating layer 6 is provided on a side surface of the positive electrode collector layer 1 and the cathode active material layer 2. One side of the insulating layer 6 extends from the side surface of the positive electrode active material layer 2 to a part of the surface of the positive electrode current collector layer 1 facing the negative electrode current collector layer 5 of the unit battery V 1 As shown in FIG. 4, it has a width a (a> 0) on this surface. Also, the other side of the insulating layer 6 extends from the side surface of the positive electrode active material layer 2 to the end of the surface of the solid electrolyte layer 3 on the side facing the positive electrode active material layer 2 or beyond the end And has a width c (c> 0) on this surface, as shown in FIG.

なお、幅cは、固体電解質層3の端部と揃えるように同じ長さであってもよく、固体電解質層3の端部からはみ出してもよい。換言すると、幅cの大きさは、上述した図3に示されているように、正極活物質層2を固体電解質層3の上に積層する際に、固体電解質層3おけるはみ出し部の幅r(r>0)の大きさと同じ又は幅rより大きくすると、より本開示の効果を発揮することができるため好ましい。   The width c may be the same length so as to be aligned with the end of the solid electrolyte layer 3, or may extend from the end of the solid electrolyte layer 3. In other words, as shown in FIG. 3 described above, when the positive electrode active material layer 2 is laminated on the solid electrolyte layer 3, the width c has a width r of the protruding portion in the solid electrolyte layer 3. It is preferable that the size of (r> 0) be equal to or larger than the width r because the effects of the present disclosure can be exhibited more.

また、幅aは0以上であればよく、施工の便宜を考慮し適宜設定すればよい。また、幅aの上限(最大値)としては、正極集電体層1から電流を正極活物質層2に供給することができれば特に限定されず、適宜設定すればよい。   In addition, the width a may be 0 or more, and may be set appropriately in consideration of the convenience of construction. The upper limit (maximum value) of the width a is not particularly limited as long as current can be supplied from the positive electrode current collector layer 1 to the positive electrode active material layer 2 and may be set as appropriate.

図4において、b(b>0)は、絶縁層6の正極集電体層1上に積層される部分の高さ、すなわち絶縁層6の厚さである。ここで、絶縁層6の厚さとしては、単位電池又は直列積層型全固体電池の耐久性を付与する観点、及び単位電池又は直列積層型全固体電池の積層方向に隣接する層の接触による短絡を防止できる観点から、1μm〜100μmの範囲内であることが好ましく、5μm〜50μmの範囲内であることがより好ましく、10μm〜30μmの範囲内であることが特に好ましい。   In FIG. 4, b (b> 0) is the height of the portion of the insulating layer 6 stacked on the positive electrode current collector layer 1, that is, the thickness of the insulating layer 6. Here, the thickness of the insulating layer 6 is a viewpoint to imparting the durability of the unit cell or the series-stacked all solid battery, and a short circuit by contact of adjacent layers in the stack direction of the unit cell or the series stacked all-solid battery It is preferable to be in a range of 1 μm to 100 μm, more preferable to be in a range of 5 μm to 50 μm, and particularly preferable to be in a range of 10 μm to 30 μm from the viewpoint of preventing the

〈単位電池〉
本開示において、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層が積層されてなるものを、「単位電池」と称する。図2に示されている単位電池Vを例として説明すると、正極集電体層1、正極活物質層2、固体電解質層3、負極活物質層4、及び負極集電体層5が、順に積層されている。
<Unit battery>
In the present disclosure, a stack of a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer is referred to as a “unit battery”. When the unit cell V 1 shown in FIG. 2 will be described as an example, the positive electrode collector layer 1, the positive electrode active material layer 2, solid electrolyte layer 3, the anode active material layer 4, and the negative electrode collector layer 5, It is stacked in order.

なお、本開示の直列積層型全固体電池の種類(全固体電池の種類)としては、全固体リチウム電池、全固体ナトリウム電池、全固体マグネシウム電池及び全固体カルシウム電池などを挙げることができ、中でも、全固体リチウム電池及び全固体ナトリウム電池が好ましく、特に、全固体リチウム電池が好ましい。また、本開示の全固体電池は、一次電池であってもよく、二次電池であってもよいが、中でも、二次電池であることが好ましい。繰り返し充放電でき、例えば、車載用電池として有用だからである。本開示の全固体電池の形状としては、例えば、コイン型、ラミネート型、円筒型及び角型などを挙げることができる。   In addition, as a type (type of all solid battery) of the series laminated type all solid battery of the present disclosure, all solid lithium battery, all solid sodium battery, all solid magnesium battery, all solid calcium battery and the like can be mentioned. Preferred are all solid lithium batteries and all solid sodium batteries, and particularly preferred are all solid lithium batteries. Further, the all solid state battery of the present disclosure may be a primary battery or a secondary battery, but among them, a secondary battery is preferable. This is because it can be repeatedly charged and discharged, and is useful, for example, as a vehicle-mounted battery. Examples of the shape of the all-solid-state battery of the present disclosure include coin-type, laminate-type, cylindrical-type and square-type.

以下では、本開示の直列積層型全固体電池が全固体リチウム電池である場合について、各層の各構成について説明する。   Below, each structure of each layer is demonstrated, when the series-stacked all-solid-state battery of this indication is an all-solid-state lithium battery.

(正極集電体層)
本開示において、正極集電体層に用いられる導電性材料は特に限定されず、全固体電池に使用できる公知のものを適宜採用されうる。例えば、SUS、アルミニウム、銅、ニッケル、鉄、チタン、及びカーボンなどが挙げられる。これらのなかで、耐蝕性、作り易さ、経済性などの観点からは、アルミニウムを用いることが好ましい。
(Positive current collector layer)
In the present disclosure, the conductive material used for the positive electrode current collector layer is not particularly limited, and any known material that can be used for the all-solid-state battery can be appropriately adopted. For example, SUS, aluminum, copper, nickel, iron, titanium, carbon and the like can be mentioned. Among these, aluminum is preferably used in view of corrosion resistance, easiness of production, economy and the like.

本開示にかかる正極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状などを挙げることができる。これらの中で、箔状が好ましい。   It does not specifically limit as a shape of the positive electrode collector layer concerning this indication, For example, foil shape, plate shape, mesh shape etc. can be mentioned. Of these, foils are preferred.

また、本開示にかかる正極集電体層の厚さは、特に限定されず、例えば1〜500μm程度の厚さであることができる。   Further, the thickness of the positive electrode current collector layer according to the present disclosure is not particularly limited, and can be, for example, a thickness of about 1 to 500 μm.

(正極活物質層)
正極活物質層は、正極活物質を必須に含む。また、正極活物質層は、硫化物固体電解質も含む。そのほか、使用用途や使用目的などに合わせて、例えば、導電助剤又はバインダーなどの全固体電池の正極活物質層に用いられる添加剤を含むことができる。
(Positive electrode active material layer)
The positive electrode active material layer essentially contains a positive electrode active material. The positive electrode active material layer also contains a sulfide solid electrolyte. In addition, according to a use application, a use purpose, etc., the additive used for the positive electrode active material layer of all the solid batteries, such as a conductive support agent or a binder, can be included.

本開示において、用いられる正極活物質材料として、特に限定されず、公知のものが用いられる。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、LiCo1/3Ni1/3Mn1/3、Li1+xMn2−x−y(Mは、Al、Mg、Co、Fe、Ni、及びZnから選ばれる1種以上の金属元素)で表される組成の異種元素置換Li−Mnスピネルなどが挙げられるが、これらに限定されない。 In the present disclosure, the positive electrode active material to be used is not particularly limited, and known materials can be used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1 + x Mn 2-x- y M y O 4 (M is, Al, Mg, Co, Fe, Ni, and one or more metal elements selected from Zn) such heterogeneous element substituted Li-Mn spinel composition represented by the can be mentioned, It is not limited to these.

本開示において、用いられる硫化物固体電解質として、特に限定されず、全固体電池の硫化物系固体電解質として利用可能な材料を用いることができる。具体的な例として、後述する「固体電解質層」の項目で列挙するものを適宜採用することができる。   In the present disclosure, the sulfide solid electrolyte used is not particularly limited, and a material that can be used as a sulfide-based solid electrolyte of an all solid battery can be used. As a specific example, those listed in the item of “solid electrolyte layer” described later can be appropriately adopted.

なお、本開示にかかる正極活物質層には、硫化物固体電解質以外のその他の固体電解質も含むことができる。その他の固体電解質としては、後述する「固体電解質層」の項目で説明するものを適宜採用することができる。   The positive electrode active material layer according to the present disclosure can also include other solid electrolytes other than the sulfide solid electrolyte. As another solid electrolyte, what is demonstrated by the item of the "solid electrolyte layer" mentioned later can be employ | adopted suitably.

導電助剤としては、特に限定されず、公知のものが用いられる。例えば、VGCF(気相成長法炭素繊維、Vapor Grown Carbon Fiber)及びカーボンナノ繊維などの炭素材並びに金属材などが挙げられるが、これらに限定されない。   The conductive aid is not particularly limited, and known ones may be used. Examples thereof include, but are not limited to, carbon materials such as VGCF (vapor grown carbon fiber) and carbon nanofibers and metal materials such as carbon nanofibers.

バインダーとしては、特に限定されず、公知のものが用いられる。例えば、ポリフッ化ビニリデン(PVdF)若しくはカルボキシメチルセルロース(CMC)などの材料又はこれらの組合せを挙げることができるが、これらに限定されない。   The binder is not particularly limited, and known ones may be used. Examples include, but are not limited to, materials such as polyvinylidene fluoride (PVdF) or carboxymethylcellulose (CMC) or combinations thereof.

本開示にかかる正極活物質層の厚さは、特に限定されず、例えば0.1〜1000μm程度の厚さであることができる。   The thickness of the positive electrode active material layer according to the present disclosure is not particularly limited, and may be, for example, about 0.1 to 1000 μm.

(固体電解質層)
本開示において、固体電解質層は、硫化物固体電解質を必須に含む。かかる硫化物固体電解質として、特に限定されず、全固体電池の硫化物系固体電解質として利用可能な材料を用いることができる。例えば、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiS−P−LiI−LiBr、LiS−P−GeS、LiI−LiS−B、LiPO−LiS−SiS、LiPO−LiS−SiS、LiPO−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、又はLiS−Pなどの硫化物系固体電解質が挙げられる。また、非晶質の硫化物系固体電解質を熱処理して得られるガラスセラミックスを、固体電解質として用いることもできる。
(Solid electrolyte layer)
In the present disclosure, the solid electrolyte layer essentially includes a sulfide solid electrolyte. The sulfide solid electrolyte is not particularly limited, and materials usable as the sulfide-based solid electrolyte of the all solid battery can be used. For example, Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiI—LiBr, Li 2 S—P 2 S 5 -GeS 2, LiI-Li 2 S -B 2 S 3, Li 3 PO 4 -Li 2 S-Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2, LiPO 4 -Li 2 S-SiS, LiI And sulfide-based solid electrolytes such as Li 2 S-P 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , or Li 2 S-P 2 S 5 . Further, glass ceramics obtained by heat treatment of an amorphous sulfide-based solid electrolyte can also be used as a solid electrolyte.

また、上述した硫化物固体電解質以外に、その他の固体電解質もさらに含むことができる。その他の固体電解質として、特に限定されず、全固体電池の固体電解質として利用可能な材料を用いることができる。例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、及びこれらの共重合体などの固体高分子電解質を使用することができる。固体電解質は、イオン伝導性を確保するための支持塩(リチウム塩)を含むことができる。かかる支持塩としては、LiBF、LiPF、LiN(SOCF、LiN(SO、及びこれらの混合物が挙げられる。 In addition to the sulfide solid electrolyte described above, other solid electrolytes can also be further included. It does not specifically limit as another solid electrolyte, The material which can be utilized as a solid electrolyte of an all-solid-state battery can be used. For example, solid polymer electrolytes such as polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof can be used. The solid electrolyte can include a support salt (lithium salt) for securing ion conductivity. Such supporting salts include LiBF 4 , LiPF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , and mixtures thereof.

本開示にかかる固体電解質層は、上述した固体電解質以外に、必要に応じてバインダーなどを含んでもよい。具体例として、上述の「正極活物質層」で列挙された「バインダー」と同様であり、ここでは説明を省略する。   The solid electrolyte layer according to the present disclosure may contain a binder and the like as needed, in addition to the solid electrolyte described above. As a specific example, it is the same as the "binder" listed in the above-mentioned "positive electrode active material layer", and the description is omitted here.

本開示にかかる固体電解質層の厚さは、特に限定されず、例えば0.1〜1000μm程度の厚さであることができる。   The thickness of the solid electrolyte layer according to the present disclosure is not particularly limited, and may be, for example, about 0.1 to 1000 μm.

(負極活物質層)
負極活物質層は、負極活物質を必須に含む。また、負極活物質層は、硫化物固体電解質も含む。そのほか、使用用途や使用目的などに合わせて、例えば、導電助剤又はバインダーなどの全固体電池の負極活物質層に用いられる添加剤を、含むことができる。
(Anode active material layer)
The negative electrode active material layer essentially contains a negative electrode active material. The negative electrode active material layer also contains a sulfide solid electrolyte. In addition, according to the use application, the purpose of use, etc., the additive used for the negative electrode active material layer of all the solid batteries, such as a conductive support agent or a binder, can be included, for example.

本開示において、用いられる負極活物質材料として、特に限定されず、リチウムイオンなどの金属イオンを吸蔵×放出可能であればよい。例えば、Li、Sn、Si若しくはInなどの金属、リチウムとチタンとの合金、又はハードカーボン、ソフトカーボン若しくはグラファイトなどの炭素材料などが挙げられるが、これらに限定されない。   In the present disclosure, the negative electrode active material to be used is not particularly limited, and it may be capable of absorbing and releasing metal ions such as lithium ions. Examples thereof include, but are not limited to, metals such as Li, Sn, Si or In, alloys of lithium and titanium, hard carbon, soft carbon, carbon materials such as graphite, and the like.

本開示にかかる負極活物質層に用いられる硫化物固体電解質、導電助剤、バインダーなどその他の添加剤については、上述した「正極活物質層」及び「固体電解質層」の項目で説明したものを適宜採用することができる。   With regard to other additives such as a sulfide solid electrolyte, a conductive auxiliary agent, and a binder used for the negative electrode active material layer according to the present disclosure, those described in the above-mentioned "positive electrode active material layer" and "solid electrolyte layer" It can be adopted appropriately.

本開示にかかる負極活物質層の厚さは、特に限定されず、例えば0.1〜1000μm程度の厚さであることができる。   The thickness of the negative electrode active material layer according to the present disclosure is not particularly limited, and can be, for example, a thickness of about 0.1 to 1000 μm.

(負極集電体層)
本開示は、導電性材料として銅を含む負極集電体層における課題を解決するものであるため、負極集電体層の導電性材料として、銅を必須に含む。なお、銅を含む合金であってもよい。
(Anode current collector layer)
Since the present disclosure solves the problem in the negative electrode current collector layer containing copper as the conductive material, copper is essentially included as the conductive material of the negative electrode current collector layer. In addition, an alloy containing copper may be used.

本開示にかかる負極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状などを挙げることができる。これらの中で、箔状が好ましい。   It does not specifically limit as a shape of the negative electrode collector layer concerning this indication, For example, foil shape, plate shape, mesh shape etc. can be mentioned. Of these, foils are preferred.

また、本開示にかかる負極集電体層の厚さは、特に限定されず、例えば1〜500μm程度の厚さであることができる。   Further, the thickness of the negative electrode current collector layer according to the present disclosure is not particularly limited, and can be, for example, a thickness of about 1 to 500 μm.

(絶縁層)
本開示において、絶縁層の材料は、特に限定されず、所望の絶縁性を有するものであればよく、一般的な全固体電池に用いられる材料と同様であってもよい。中でも、樹脂材料であることが好ましい。樹脂材料は耐久性が高く、弾性を有することから、例えば絶縁層が形成されている領域において単位電池に破れが生じた場合であっても、絶縁層が伸びることにより短絡が発生することを好適に防止することが可能となる。
(Insulating layer)
In the present disclosure, the material of the insulating layer is not particularly limited as long as it has a desired insulating property, and may be similar to the material used for a general all-solid-state battery. Among them, a resin material is preferable. Since the resin material has high durability and elasticity, for example, even if the unit cell is broken in the region where the insulating layer is formed, it is preferable that the short circuit occurs due to the extension of the insulating layer. It is possible to prevent

本開示にかかる絶縁層に用いられる樹脂材料としては、例えばポリイミド、ポリエステル、ポリプロピレン、ポリアミド、ポリスチレン、ポリ塩化ビニル、ポリカーボネートなどが挙げられるが、これらに限定されない。   Examples of the resin material used for the insulating layer according to the present disclosure include, but are not limited to, polyimide, polyester, polypropylene, polyamide, polystyrene, polyvinyl chloride, polycarbonate and the like.

また、本開示にかかる絶縁層は、単位電池側面に粘着層を有していてもよい。絶縁層と単位電池との密着性を向上させることが可能となるからである。なお、粘着層に用いられる材料については、一般的な粘着剤とすることができるので、ここでの説明は省略する。   Further, the insulating layer according to the present disclosure may have an adhesive layer on the side surface of the unit cell. This is because the adhesion between the insulating layer and the unit cell can be improved. In addition, about the material used for an adhesion layer, since it can be set as a general adhesive, description here is abbreviate | omitted.

本開示において、絶縁層の形成方法としては、正極集電体層や固体電解質層の表面の所望の領域(例えば、図4に示す幅aを有する領域)に所望の厚さを有する絶縁層を形成することが可能な方法であれば特に限定されず、例えば、上述した樹脂材料を塗布することにより形成する方法、上述した樹脂材料のフィルムを、粘着層などを用いて、正極集電体層や固体電解質層の表面に貼り付ける方法などを挙げることができる。   In the present disclosure, as a method of forming the insulating layer, an insulating layer having a desired thickness in a desired region (for example, a region having a width a shown in FIG. 4) of the surface of the positive electrode current collector layer or the solid electrolyte layer. The method is not particularly limited as long as it can be formed, for example, a method of forming by applying the above-described resin material, a film of the above-described resin material using a pressure-sensitive adhesive layer or the like, a positive electrode current collector layer And the method of affixing on the surface of a solid electrolyte layer etc. can be mentioned.

また、本開示において、例えば図2に示されている一番正極電位側に配置する単位電池Vには、図4のような絶縁層6を設けていてもよく、設けていなくてもよい。 Further, in the present disclosure, the unit battery V 1 to place the most positive potential side shown in FIG. 2, for example, it may have an insulating layer 6 as shown in FIG. 4, may not be provided .

(導電性ペースト)
図4に示されているように、負極集電体層5と、積層方向の下方向に位置する正極集電体層1と間に、厚さb(すなわち、絶縁層の厚さ)の隙間があるため、当該隙間を埋めるための導電ペースト7を設置することができる。本開示に用いられる導電ペースト7としては、特に限定されず、公知の導電性があるものであればよく、例えば、カーボンペースト又は導電金属を含むペーストであってもよい。
(Conductive paste)
As shown in FIG. 4, a gap of thickness b (that is, the thickness of the insulating layer) between the negative electrode current collector layer 5 and the positive electrode current collector layer 1 located in the lower direction of the stacking direction Therefore, the conductive paste 7 can be installed to fill the gap. The conductive paste 7 used in the present disclosure is not particularly limited as long as it has a known conductivity, and may be, for example, a carbon paste or a paste containing a conductive metal.

以下、本開示の実施例を示す。なお、以下の実施例は、単に説明するためのものであり、本開示を限定するものではない。   Examples of the present disclosure will be shown below. In addition, the following examples are for the purpose of illustration only and do not limit the present disclosure.

〈実施例1〉
以下の材料を用いて、4ton/cmのプレス圧で、図5に示されているように、単位電池VとVとを有する直列積層型全固体電池20を作製した。
Example 1
Using the following materials, a press pressure of 4 ton / cm 2, as shown in Figure 5, to produce a series stacked all-solid-state battery 20 and a unit cell V 1 and V 2.

・正極集電体層1:アルミニウム集電箔(厚さ:15μm)
・正極活物質層2:正極活物質+硫化物固体電解質+導電助剤+バインダー(厚さ:40μm)
−正極活物質:LiNi1/3Mn1/3Co1/3
−硫化物固体電解質:75LiS−25P
−導電助剤:気相成長法炭素繊維(VGCF)
−バインダー:ポリフッ化ビニリデン(PVdF)
・固体電解質層3:硫化物固体電解質+バインダー(厚さ:30μm)
−硫化物固体電解質:75LiS−25P
−バインダー:ポリフッ化ビニリデン(PVdF)
・負極活物質層4:炭素材料+硫化物固体電解質+バインダー(厚さ:60μm)
−炭素材料:カーボン
−硫化物固体電解質:75LiS−25P
−バインダー:ポリフッ化ビニリデン(PVdF)
・負極集電体層5:銅集電体箔(厚さ:10μm)
・絶縁層6:ポリイミドテープ(厚さ:50μm)
・導電ペースト7:カーボンペースト(厚さ:50μm)
· Positive electrode current collector layer 1: Aluminum current collector foil (thickness: 15 μm)
· Positive electrode active material layer 2: positive electrode active material + sulfide solid electrolyte + conductive support agent + binder (thickness: 40 μm)
-Positive electrode active material: LiNi 1/3 Mn 1/3 Co 1/3 O 2
Sulfide solid electrolyte: 75Li 2 S-25P 2 S 5
-Conducting auxiliary: Vapor grown carbon fiber (VGCF)
-Binder: polyvinylidene fluoride (PVdF)
Solid electrolyte layer 3: sulfide solid electrolyte + binder (thickness: 30 μm)
Sulfide solid electrolyte: 75Li 2 S-25P 2 S 5
-Binder: polyvinylidene fluoride (PVdF)
· Negative electrode active material layer 4: Carbon material + sulfide solid electrolyte + binder (thickness: 60 μm)
-Carbon material: Carbon-Sulfide solid electrolyte: 75Li 2 S-25P 2 S 5
-Binder: polyvinylidene fluoride (PVdF)
-Negative electrode collector layer 5: Copper collector foil (thickness: 10 μm)
Insulating layer 6: polyimide tape (thickness: 50 μm)
· Conductive paste 7: carbon paste (thickness: 50 μm)

〈比較例1〉
上記実施例1の直列積層型全固体電池20の作製において、図6に示されているように、導電ペースト7を使用しなかったこと、及び固体電解質層3上の一部分のみ絶縁層6を設けたこと以外は、実施例1と同様にして、比較例1用の直列積層型全固体電池20’を作製した。
Comparative Example 1
In the production of the series-stacked all-solid-state battery 20 of Example 1 described above, as shown in FIG. 6, the conductive paste 7 was not used, and the insulating layer 6 was provided only on a part of the solid electrolyte layer 3. A series-stacked all-solid-state battery 20 'for Comparative Example 1 was produced in the same manner as Example 1 except for the above.

〈評価〉
上記作製した実施例及び比較例の直列積層型全固体電池20及び20’に対して、1/3(3時間率)で8Vまで定電流充電をし、そして8Vで終止電流1/100C(100時間率)まで定電圧充電し、その後、25℃で100時間を放置した。放置前後のそれぞれの直列積層型全固体電池に対して電圧を測定した。実施例の直列積層型全固体電池20についての結果を図7(a)に示し、比較例の直列積層型全固体電池20’についての結果を図7(b)に示す。
<Evaluation>
The series-stacked all-solid-state batteries 20 and 20 'of the above-described Examples and Comparative Examples are charged at constant current up to 8 V at 1/3 (3 hour rate), and the termination current at 8 V is 1/100 C (100 The battery was charged at a constant voltage to a time rate) and then left at 25 ° C. for 100 hours. The voltage was measured for each series-stacked all-solid-state battery before and after standing. The results for the series-stacked all-solid-state battery 20 of the example are shown in FIG. 7A, and the results for the series-stacked all-solid-state battery 20 ′ of the comparative example are shown in FIG.

図7(a)に示されているように、実施例の直列積層型全固体電池20では、それぞれの単位電池(V及びV)の放置前の電圧と放置後の電圧とは、ほぼ同程度であった。これに対して、図7(b)に示されているように、比較例の直列積層型全固体電池20’では、積層方向の下側(負極電位側)に位置する単位電池V2’は、放置後の電圧が放置後の電圧よりも遥かに低いことがわかった。これは、比較例の直列積層型全固体電池20’では、単位電池Vの負極集電体層5に含まれる銅が、単位電池V2’の固体電解質層3に含まれる硫化物固体電解質と接触して硫化銅を生成し、それによって、単位電池V2’の自己放電が生じてしまったことによると考えられる。 As shown in FIG. 7A, in the series-stacked all solid-state battery 20 of the embodiment, the voltage before leaving and the voltage after leaving each unit cell (V 1 and V 2 ) are substantially It was comparable. On the other hand, as shown in FIG. 7B, in the series-stacked all-solid-state battery 20 ′ of the comparative example, the unit battery V 2 ′ positioned on the lower side (negative electrode potential side) in the stacking direction The voltage after standing was found to be much lower than the voltage after standing. This is because the sulfide contained in the solid electrolyte layer 3 of the unit battery V 2 ′ is copper contained in the negative electrode current collector layer 5 of the unit battery V 1 in the series laminated all solid battery 20 ′ of the comparative example. It is considered that this causes copper sulfide to be generated in contact therewith, thereby causing self-discharge of unit cell V 2 ′ .

図7の結果から、明らかであるように、実施例の直列積層型全固体電池20は、電池の自己放電による劣化を抑制することができた。   As is clear from the results of FIG. 7, the series-stacked all-solid-state battery 20 of the example was able to suppress deterioration of the battery due to self-discharge.

1 正極集電体層
2 正極活物質層
3 固体電解質層
4 負極活物質層
5 負極集電体層
6 絶縁層
7 導電ペースト
10、20、20’、100 直列積層型全固体電池
、V、V3、2’、、V、V 単位電池
DESCRIPTION OF SYMBOLS 1 positive electrode collector layer 2 positive electrode active material layer 3 solid electrolyte layer 4 negative electrode active material layer 5 negative electrode collector layer 6 insulating layer 7 conductive paste 10, 20, 20 ', 100 series-stacked all-solid-state battery V 1 , V 2, V 3, V 2 ' , V a, V b, V c unit cell

Claims (1)

2以上の単位電池を直列に積層してなる直列積層型全固体電池において、
前記単位電池が、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層を、この順に積層してなり、
前記正極活物質層、前記固体電解質層、及び前記負極活物質層が、硫化物固体電解質を含み、
前記負極集電体層が、導電性材料として銅を含み、
前記正極集電体層及び前記正極活物質層の面積が、前記固体電解質層、前記負極活物質層及び前記負極集電体層の面積より小さく、
前記正極集電体層及び前記正極活物質層の側面に絶縁層を有し、
前記絶縁層の一方の側は、前記正極活物質層の側面から、前記正極集電体層の、他の単位電池の負極集電体層と対向する側の表面の一部まで延在し、前記絶縁層のもう一方の側は、前記正極活物質層の側面から、前記固体電解質層の、前記正極活物質層と対向する側の表面の端部まで又は端部を越えて延在する、直列積層型全固体電池。
In a series-stacked all-solid-state battery in which two or more unit cells are stacked in series,
The unit battery is formed by laminating a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order,
The positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer include a sulfide solid electrolyte,
The negative electrode current collector layer contains copper as a conductive material,
The areas of the positive electrode current collector layer and the positive electrode active material layer are smaller than the areas of the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector layer,
An insulating layer on side surfaces of the positive electrode current collector layer and the positive electrode active material layer,
One side of the insulating layer extends from the side surface of the positive electrode active material layer to a part of the surface of the positive electrode current collector layer facing the negative electrode current collector layer of the other unit battery, The other side of the insulating layer extends from the side surface of the positive electrode active material layer to the end of the surface of the solid electrolyte layer opposite to the positive electrode active material layer or beyond the end. Series stacked all solid battery.
JP2017225032A 2017-11-22 2017-11-22 Series stacked all-solid-state battery Active JP6885309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017225032A JP6885309B2 (en) 2017-11-22 2017-11-22 Series stacked all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017225032A JP6885309B2 (en) 2017-11-22 2017-11-22 Series stacked all-solid-state battery

Publications (2)

Publication Number Publication Date
JP2019096476A true JP2019096476A (en) 2019-06-20
JP6885309B2 JP6885309B2 (en) 2021-06-09

Family

ID=66971966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017225032A Active JP6885309B2 (en) 2017-11-22 2017-11-22 Series stacked all-solid-state battery

Country Status (1)

Country Link
JP (1) JP6885309B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015459A1 (en) * 2019-07-23 2021-01-28 주식회사 루트제이드 Electrode assembly for secondary battery, method for manufacturing same, and lithium secondary battery comprising same
CN112599718A (en) * 2019-10-02 2021-04-02 丰田自动车株式会社 Laminated battery
CN112864546A (en) * 2019-11-26 2021-05-28 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
WO2021149382A1 (en) * 2020-01-24 2021-07-29 パナソニックIpマネジメント株式会社 Battery
US11088397B2 (en) * 2018-05-14 2021-08-10 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and production method therefor
CN113270692A (en) * 2020-02-14 2021-08-17 本田技研工业株式会社 Solid battery cell and solid battery module
WO2021177212A1 (en) 2020-03-06 2021-09-10 トヨタ自動車株式会社 Solid-state battery
CN113497276A (en) * 2020-03-19 2021-10-12 本田技研工业株式会社 Solid battery cell
KR20220004556A (en) * 2020-07-03 2022-01-11 도요타지도샤가부시키가이샤 Solid-state battery
WO2022145120A1 (en) * 2020-12-28 2022-07-07 パナソニックIpマネジメント株式会社 Battery, layered battery, and method for manufacturing same
JP7444029B2 (en) 2020-11-11 2024-03-06 株式会社豊田自動織機 Energy storage cells and energy storage devices
WO2024122760A1 (en) * 2022-12-08 2024-06-13 Samsung Electro-Mechanics Co., Ltd. All-solid-state battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273436A (en) * 2003-02-18 2004-09-30 Matsushita Electric Ind Co Ltd All solid thin film laminated battery
WO2012081366A1 (en) * 2010-12-15 2012-06-21 株式会社 村田製作所 Solid battery
WO2012164642A1 (en) * 2011-05-27 2012-12-06 トヨタ自動車株式会社 Bipolar all-solid-state battery
JP2014067519A (en) * 2012-09-25 2014-04-17 Jsr Corp Power storage cell and method for manufacturing the same
JP2015162353A (en) * 2014-02-27 2015-09-07 トヨタ自動車株式会社 Method for manufacturing all-solid battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273436A (en) * 2003-02-18 2004-09-30 Matsushita Electric Ind Co Ltd All solid thin film laminated battery
WO2012081366A1 (en) * 2010-12-15 2012-06-21 株式会社 村田製作所 Solid battery
WO2012164642A1 (en) * 2011-05-27 2012-12-06 トヨタ自動車株式会社 Bipolar all-solid-state battery
JP2014067519A (en) * 2012-09-25 2014-04-17 Jsr Corp Power storage cell and method for manufacturing the same
JP2015162353A (en) * 2014-02-27 2015-09-07 トヨタ自動車株式会社 Method for manufacturing all-solid battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11527778B2 (en) 2018-05-14 2022-12-13 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and production method therefor
US11088397B2 (en) * 2018-05-14 2021-08-10 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and production method therefor
KR20210011584A (en) * 2019-07-23 2021-02-02 주식회사 루트제이드 Electrode assembly for secondary battery, method of manufacturing the same and lithium secondary battery comprising the same
KR102231584B1 (en) * 2019-07-23 2021-03-24 주식회사 루트제이드 Electrode assembly for secondary battery, method of manufacturing the same and lithium secondary battery comprising the same
WO2021015459A1 (en) * 2019-07-23 2021-01-28 주식회사 루트제이드 Electrode assembly for secondary battery, method for manufacturing same, and lithium secondary battery comprising same
CN112599718A (en) * 2019-10-02 2021-04-02 丰田自动车株式会社 Laminated battery
JP2021057321A (en) * 2019-10-02 2021-04-08 トヨタ自動車株式会社 Laminated battery
JP7209191B2 (en) 2019-10-02 2023-01-20 トヨタ自動車株式会社 laminated battery
CN112864546B (en) * 2019-11-26 2023-04-14 丰田自动车株式会社 Non-aqueous electrolyte secondary battery
CN112864546A (en) * 2019-11-26 2021-05-28 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
WO2021149382A1 (en) * 2020-01-24 2021-07-29 パナソニックIpマネジメント株式会社 Battery
CN113270692A (en) * 2020-02-14 2021-08-17 本田技研工业株式会社 Solid battery cell and solid battery module
CN113270692B (en) * 2020-02-14 2023-06-27 本田技研工业株式会社 Solid battery monomer and solid battery module
WO2021177212A1 (en) 2020-03-06 2021-09-10 トヨタ自動車株式会社 Solid-state battery
CN113497276A (en) * 2020-03-19 2021-10-12 本田技研工业株式会社 Solid battery cell
KR20220004556A (en) * 2020-07-03 2022-01-11 도요타지도샤가부시키가이샤 Solid-state battery
KR102610509B1 (en) 2020-07-03 2023-12-07 도요타지도샤가부시키가이샤 Solid-state battery
JP7444029B2 (en) 2020-11-11 2024-03-06 株式会社豊田自動織機 Energy storage cells and energy storage devices
WO2022145120A1 (en) * 2020-12-28 2022-07-07 パナソニックIpマネジメント株式会社 Battery, layered battery, and method for manufacturing same
WO2024122760A1 (en) * 2022-12-08 2024-06-13 Samsung Electro-Mechanics Co., Ltd. All-solid-state battery

Also Published As

Publication number Publication date
JP6885309B2 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
JP6885309B2 (en) Series stacked all-solid-state battery
JP7070052B2 (en) All solid state battery
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
JP2013026057A (en) Collector and nonaqueous secondary battery
US11145922B2 (en) Solid-state battery having a capacitor-assisted interlayer
JP2014532955A (en) Secondary battery
CN110021783B (en) All-solid-state battery
US20140370379A1 (en) Secondary battery and manufacturing method thereof
WO2020224382A1 (en) Lithium metal battery
JP2014127333A (en) Positive electrode collector foil of lithium ion secondary battery, and lithium ion secondary battery
JP6977554B2 (en) All solid state battery
JP2015018670A (en) Bipolar battery
JP2019145285A (en) All-solid battery
JP2006339054A (en) Lithium secondary battery
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JP2019145286A (en) All-solid battery
WO2015029084A1 (en) Electrode structure and secondary battery
JP2019169346A (en) Lithium ion secondary battery
JP2005116304A (en) Secondary battery
CN113728474A (en) Electrochemical device and electronic device
JP4422968B2 (en) Electrochemical element
WO2019244933A1 (en) Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
JP4107214B2 (en) Secondary battery
US10431852B2 (en) Flat secondary battery
JP7462165B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R151 Written notification of patent or utility model registration

Ref document number: 6885309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151