JP2015018670A - Bipolar battery - Google Patents

Bipolar battery Download PDF

Info

Publication number
JP2015018670A
JP2015018670A JP2013144751A JP2013144751A JP2015018670A JP 2015018670 A JP2015018670 A JP 2015018670A JP 2013144751 A JP2013144751 A JP 2013144751A JP 2013144751 A JP2013144751 A JP 2013144751A JP 2015018670 A JP2015018670 A JP 2015018670A
Authority
JP
Japan
Prior art keywords
layer
negative electrode
current collector
bipolar battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013144751A
Other languages
Japanese (ja)
Inventor
雄志 鈴木
Yushi Suzuki
雄志 鈴木
昌士 児玉
Masashi Kodama
昌士 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013144751A priority Critical patent/JP2015018670A/en
Publication of JP2015018670A publication Critical patent/JP2015018670A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a bipolar battery capable of simplifying a manufacturing process.SOLUTION: The bipolar battery is configured by laminating a structure having a positive electrode layer on one surface of a negative electrode collector layer capable of playing both roles of a collector and a negative electrode active material through a solid electrolyte layer.

Description

本発明は、バイポーラ電池に関し、さらに詳しくは特定の構成を有する負極集電体層によって製造工程を簡略化し得るバイポーラ電池に関する。   The present invention relates to a bipolar battery, and more particularly to a bipolar battery that can simplify a manufacturing process by a negative electrode current collector layer having a specific configuration.

近年、高電圧および高エネルギー密度を有する電池としてリチウム電池が実用化されている。リチウム電池の用途が広い分野に拡大していることおよび高性能の要求から、リチウム電池の更なる性能向上のために様々な研究が行われている。
その中で、リチウム電池のエネルギー密度の向上にとって、電極厚みの低減が最も効果的であり、正極層、セパレータおよび負極層が順次積層された単電池が複数積層されたバイポーラ電池が提案されている。
しかし、従来のバイポーラ電池では、正極集電体と負極集電体とを直列に接続するための接続部によってエネルギー密度が低下することが知られている。
In recent years, lithium batteries have been put into practical use as batteries having high voltage and high energy density. Due to the expansion of the use of lithium batteries in a wide range of fields and the demand for high performance, various studies have been conducted to further improve the performance of lithium batteries.
Among them, reduction of the electrode thickness is most effective for improving the energy density of the lithium battery, and a bipolar battery in which a plurality of unit cells in which a positive electrode layer, a separator, and a negative electrode layer are sequentially stacked is proposed. .
However, in the conventional bipolar battery, it is known that the energy density is lowered by the connection portion for connecting the positive electrode current collector and the negative electrode current collector in series.

このため、例えば、特許文献1には、正極活物質層、集電体および負極活物質層がこの順序で積層されたバイポーラ電極と、高分子固体電解質層とを含み、前記正極活物質層又は負極活物質層の少なくとも一方が高分子固体電解質を含み、前記集電体の表面材質がアルミニウムであるバイポーラ電池が記載されており、具体例として表面材質がアルミニウムである金属製集電体の両面に各々負極活物質層および正極活物質層を形成したバイポーラ電極を、高分子固体電解質層を介して複数積層したバイポーラ電池が示されている。   Therefore, for example, Patent Document 1 includes a bipolar electrode in which a positive electrode active material layer, a current collector, and a negative electrode active material layer are laminated in this order, and a polymer solid electrolyte layer, and the positive electrode active material layer or A bipolar battery is described in which at least one of the negative electrode active material layers contains a solid polymer electrolyte, and the surface material of the current collector is aluminum. As a specific example, both surfaces of a metal current collector whose surface material is aluminum are described. 1 shows a bipolar battery in which a plurality of bipolar electrodes each having a negative electrode active material layer and a positive electrode active material layer are stacked via a polymer solid electrolyte layer.

また、特許文献2には、集電体の一方の面に正極が形成され、他方の面に負極が形成されたバイポーラ電極を、電解質を挟んで複数枚直列に積層してなり、負極材料としてSn、Ge、In、Pb、Ag、Sbの酸化物、硫化物もしくは塩、又はホウ素添加炭素を用いたバイポーラ電池が記載されている。そして、具体例として集電体の片面に正極電極(正極活物質層)を、他の面にホウ素添加グラファイトを含む負極(負極活物質層)を作製し、正極側と負極側にゲル電解質を順次積層したバイポーラ型電池が示されている。   In Patent Document 2, a plurality of bipolar electrodes in which a positive electrode is formed on one surface of a current collector and a negative electrode is formed on the other surface are stacked in series with an electrolyte interposed therebetween. Bipolar batteries using oxides, sulfides or salts of Sn, Ge, In, Pb, Ag, Sb, or boron-added carbon are described. As a specific example, a positive electrode (positive electrode active material layer) is prepared on one side of the current collector, and a negative electrode (negative electrode active material layer) containing boron-added graphite is prepared on the other side. A sequentially stacked bipolar battery is shown.

しかし、これら公知の技術をそのまま固体電解質系バイポーラ電池に適用したのでは、得られるバイポーラ電池が複雑な製造工程を必要とするものである。   However, if these known techniques are applied as they are to a solid electrolyte bipolar battery, the resulting bipolar battery requires a complicated manufacturing process.

特開2004−71405号公報JP 2004-71405 A 特開2004−335167号公報JP 2004-335167 A

従って、本発明の目的は、製造工程を簡略化し得るバイポーラ電池を提供することである。   Accordingly, an object of the present invention is to provide a bipolar battery that can simplify the manufacturing process.

本発明は、集電体および負極活物質のいずれの役割をも果たし得る負極集電体層の片面に正極層を有する構造体が、固体電解質層を介して積層して構成されてなるバイポーラ電池に関する。   The present invention relates to a bipolar battery in which a structure having a positive electrode layer on one side of a negative electrode current collector layer that can serve as both a current collector and a negative electrode active material is laminated via a solid electrolyte layer About.

本発明によれば、製造工程を簡略化し得るバイポーラ電池を得ることができる。   According to the present invention, a bipolar battery that can simplify the manufacturing process can be obtained.

図1は、本発明の基本的な構成を有するバイポーラ電池の模式図である。FIG. 1 is a schematic diagram of a bipolar battery having the basic configuration of the present invention. 図2は、従来のバイポーラ電池の模式図である。FIG. 2 is a schematic diagram of a conventional bipolar battery. 図3は、本発明の他の実施態様のバイポーラ電池の部分的模式図(左図)およびその説明のための部分拡大模式図(右図)である。FIG. 3 is a partial schematic diagram (left diagram) of a bipolar battery according to another embodiment of the present invention and a partially enlarged schematic diagram (right diagram) for explanation thereof. 図4は、本発明の実施態様のバイポーラ電池の積層端の部分拡大模式図である。FIG. 4 is a partially enlarged schematic view of the stacked end of the bipolar battery according to the embodiment of the present invention.

特に、本発明において、以下の実施態様を挙げることができる。
1)前記負極集電体層が、電子伝導性を有し且つLi合金化する材料からなる前記のバイポーラ電池。
2)前記負極集電体層が、Al、InおよびSnからなる群から選択される少なくとも1種を含む材料からなる前記のバイポーラ電池。
3)前記負極集電体層が、実際に使用される容量範囲において、全量がLi合金化されない量の材料からなる前記のバイポーラ電池。
In particular, in the present invention, the following embodiments can be mentioned.
1) The bipolar battery as described above, wherein the negative electrode current collector layer is made of a material having electron conductivity and forming a Li alloy.
2) The bipolar battery, wherein the negative electrode current collector layer is made of a material containing at least one selected from the group consisting of Al, In, and Sn.
3) The bipolar battery as described above, wherein the negative electrode current collector layer is made of a material whose amount is not made into a Li alloy in a capacity range actually used.

以下、図面を参照して本発明の実施の形態を詳説する。
本発明の実施態様のバイポーラ電池1は、図1に示すように、集電体および負極活物質のいずれの役割をも果たし得る負極集電体層2の片面に正極層3を有する構造体が、固体電解質層4を介して複数枚積層して構成されてなり、負極と集電体とが一体化されていることにより、用いられる部材数が少ないためバイポーラ電池製造プロセスを簡略化し得て、且つ体積エネルギー密度の向上に繋がり得る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the bipolar battery 1 according to the embodiment of the present invention has a structure having a positive electrode layer 3 on one side of a negative electrode current collector layer 2 that can serve as both a current collector and a negative electrode active material. In addition, a plurality of layers are laminated via the solid electrolyte layer 4, and the negative electrode and the current collector are integrated, so that the number of members used is small, so that the bipolar battery manufacturing process can be simplified. In addition, the volume energy density can be improved.

これに対して、従来のバイポーラ電池10は、図2に示すように、正極層3、集電体111および負極層12がこの順序で積層されたバイポーラ電極と、固体電解質層4とを複数枚積層したものであり、用いられている部材数が多くバイポーラ電池製造プロセスが複雑となる。   On the other hand, as shown in FIG. 2, a conventional bipolar battery 10 includes a plurality of bipolar electrodes each including a positive electrode layer 3, a current collector 111, and a negative electrode layer 12 stacked in this order, and a plurality of solid electrolyte layers 4. These are stacked, and the number of members used is large, and the bipolar battery manufacturing process becomes complicated.

本発明の実施態様のバイポーラ電池1において、前記の負極集電体層2は、集電体および負極活物質のいずれの役割をも果たし得るものであることが必要である。
前記の負極集電体層の材料として、電子伝導性を有し且つLi合金化する材料が挙げられ、例えばAl、In、Snなどが挙げられる。前記材料はこれらのうち1種であってもよく複数であってもよい。
In the bipolar battery 1 according to the embodiment of the present invention, the negative electrode current collector layer 2 must be capable of fulfilling any role of a current collector and a negative electrode active material.
Examples of the material for the negative electrode current collector layer include materials having electron conductivity and forming a Li alloy, and examples thereof include Al, In, and Sn. One of these materials may be used, or a plurality of materials may be used.

前記の負極集電体層における前記材料の量は、実際に使用される充電放電の容量範囲において、Al、In、Snなどの全量がLi合金化されない量であることが望ましい。前記材料の量を前記の範囲内にすることによって、全量がLi合金化しても隣接する正極層との間でイオン短絡が生じないので好適である。   The amount of the material in the negative electrode current collector layer is preferably an amount that does not allow the total amount of Al, In, Sn, etc. to be Li alloyed in the capacity range of charge and discharge actually used. By making the amount of the material within the above range, even if the total amount is Li alloyed, it is preferable because no ion short circuit occurs between the adjacent positive electrode layers.

本発明の実施態様のバイポーラ電池1においては、図3に示すように、正極層3/固体電解質層4を介して隣接する2つの負極集電体層2の間で電子(e)の移動が行われ、固体電解質層4を介して隣接する負極集電体層2と正極層3との間でLiの移動が行われる。 In the bipolar battery 1 according to the embodiment of the present invention, as shown in FIG. 3, electrons (e ) move between two adjacent negative electrode current collector layers 2 via the positive electrode layer 3 / solid electrolyte layer 4. Li + is transferred between the negative electrode current collector layer 2 and the positive electrode layer 3 that are adjacent to each other through the solid electrolyte layer 4.

本発明の実施態様のバイポーラ電池1は、図4に示すように、負極集電体層2/正極層3間にLiブロック層5を設けてもよい。
前記ブロック層5としては、Liと反応しない材料又は負極集電体層2よりも酸化還元電位の低い材料、例えばFeあるいは炭素(C)からなるものであり得る。放置時間が極端に長い場合、Liが負極集電体層2の全体に拡散し、隣接する正極とイオン短絡が生じてしまう恐れがあるが、このLiブロック層5によって防止し得る。
In the bipolar battery 1 according to the embodiment of the present invention, a Li + block layer 5 may be provided between the negative electrode current collector layer 2 and the positive electrode layer 3 as shown in FIG.
The block layer 5 may be made of a material that does not react with Li + or a material having a lower oxidation-reduction potential than the negative electrode current collector layer 2, such as Fe or carbon (C). If the standing time is extremely long, Li may diffuse throughout the negative electrode current collector layer 2 and cause an ion short circuit with the adjacent positive electrode, but this Li + block layer 5 can prevent this.

前記のLiブロック層5を設ける場合、このブロック層5の膜厚は負極集電体層2よりも小さいことが望ましい。
前記のLiブロック層5はLiをブロックできていればよく、体積エネルギー密度の低下を考慮すると薄膜である程好適である。
When the Li + block layer 5 is provided, the thickness of the block layer 5 is preferably smaller than that of the negative electrode current collector layer 2.
The Li + block layer 5 only needs to block Li + , and a thin film is more suitable in consideration of a decrease in volume energy density.

また、本発明の実施態様のバイポーラ電池1は、図4に示すように、積層端の負極集電体層2において、保護集電体層6を設けてもよい。その材料として、Al、SUS、Cuなどが挙げられる。
前記のバイポーラ電池1においては、保護集電体層6によって積層端の負極集電体層2が合金化および脱合金化反応を繰り返し、引っ張りに対して弱くなるのを防止乃至は抑制し得る。
Moreover, as shown in FIG. 4, the bipolar battery 1 of the embodiment of the present invention may be provided with a protective current collector layer 6 in the negative electrode current collector layer 2 at the stack end. Examples of the material include Al, SUS, and Cu.
In the bipolar battery 1, the protective current collector layer 6 can prevent or suppress the negative electrode current collector layer 2 at the end of the stack from repeating alloying and dealloying reactions and becoming weak against tension.

前記正極層3に含有させる正極活物質としては、リチウムイオン二次電池の正極層に含有させることが可能な公知の活物質を適宜用いることができる。そのような正極活物質としては、コバルト酸リチウム(LiCoO)やニッケル酸リチウム(LiNiO)等の層状活物質のほか、オリビン型リン酸鉄リチウム(LiFePO)等のオリビン型活物質や、スピネル型マンガン酸リチウム(LiMn)等のスピネル型活物質等を例示することができる。また、正極層3には、リチウムイオン二次電池の正極層に含有させることが可能な公知の固体電解質を適宜含有させることができる。このほか、正極層3には、正極活物質や固体電解質を結着させるバインダーや導電性を向上させる導電材が含有されていてもよい。 As the positive electrode active material contained in the positive electrode layer 3, a known active material that can be contained in the positive electrode layer of the lithium ion secondary battery can be appropriately used. As such a positive electrode active material, in addition to a layered active material such as lithium cobaltate (LiCoO 2 ) and lithium nickelate (LiNiO 2 ), an olivine type active material such as olivine type lithium iron phosphate (LiFePO 4 ), A spinel type active material such as spinel type lithium manganate (LiMn 2 O 4 ) can be exemplified. The positive electrode layer 3 can appropriately contain a known solid electrolyte that can be contained in the positive electrode layer of the lithium ion secondary battery. In addition, the positive electrode layer 3 may contain a binder for binding the positive electrode active material and the solid electrolyte and a conductive material for improving conductivity.

また、前記固体電解質層4は、リチウム二次電池の固体電解質材料として用いられ得る材料、例えばLiO−B−P、LiO−SiO、LiO−B、LiO−B−ZnOなどの固体酸化物系非晶質電解質粉末、LiS−SiS、LiI−LiS−SiS、liI−liS−P、LiI−LiS−B、LiPO−LiS−SiS、LiPO−LiS−SiS、LiPO−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、LiPS、LiS−Pなどの固体硫化物系非晶質電解質粉末を圧縮して形成され得る。 The solid electrolyte layer 4 is a material that can be used as a solid electrolyte material of a lithium secondary battery, for example, Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 2 O—B. Solid oxide amorphous electrolyte powders such as 2 O 3 and Li 2 O—B 2 O 3 —ZnO, Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , and liI-li 2 S—P 2 S 5, LiI-Li 2 S -B 2 S 3, Li 3 PO 4 -Li 2 S-Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2, LiPO 4 -Li 2 S-SiS, LiI- Li 2 S-P 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5, Li 3 PS 4, Li 2 S-P 2 formed by compressing the solid sulfide-based amorphous electrolyte powder such as S 5 Can be done.

本発明のバイポーラ電池1は、前記の負極集電体層2の片面に正極層を積層一体化して構造体(電極)を形成し、この構造体と固体電解質層4とを順次重ねてプレスすることによって作製し得る。
本発明のバイポーラ電極1は、前記の構成を有することによって、製造プロセスが簡潔になり得る。
In the bipolar battery 1 of the present invention, a positive electrode layer is laminated and integrated on one surface of the negative electrode current collector layer 2 to form a structure (electrode), and this structure and the solid electrolyte layer 4 are sequentially stacked and pressed. Can be produced.
Since the bipolar electrode 1 of the present invention has the above-described configuration, the manufacturing process can be simplified.

本発明によれば、製造工程を簡略化し得るバイポーラ電池を得ることが可能となる。   According to the present invention, a bipolar battery that can simplify the manufacturing process can be obtained.

1 本発明の実施態様のバイポーラ電池
2 負極集電体層
3 正極層
4 固体電解質層
5 Liブロック層
6 保護集電体層
10 従来のバイポーラ電池
11 集電体
12 負極層
DESCRIPTION OF SYMBOLS 1 Bipolar battery of embodiment of this invention 2 Negative electrode collector layer 3 Positive electrode layer 4 Solid electrolyte layer 5 Li + Block layer 6 Protective collector layer 10 Conventional bipolar battery 11 Current collector 12 Negative electrode layer

Claims (4)

集電体および負極活物質のいずれの役割をも果たし得る負極集電体層の片面に正極層を有する構造体が、固体電解質層を介して積層して構成されてなるバイポーラ電池。   A bipolar battery in which a structure having a positive electrode layer on one side of a negative electrode current collector layer that can serve as both a current collector and a negative electrode active material is laminated via a solid electrolyte layer. 前記負極集電体層が、電子伝導性を有し且つLi合金化する材料からなる請求項1に記載のバイポーラ電池。   The bipolar battery according to claim 1, wherein the negative electrode current collector layer is made of a material having electronic conductivity and capable of forming a Li alloy. 前記負極集電体層が、Al、InおよびSnからなる群から選択される少なくとも1種を含む材料からなる請求項1に記載のバイポーラ電池。   The bipolar battery according to claim 1, wherein the negative electrode current collector layer is made of a material containing at least one selected from the group consisting of Al, In, and Sn. 前記負極集電体層が、実際に使用される容量範囲において、全量がLi合金化されない量の材料からなる請求項2又は3に記載のバイポーラ電池。   4. The bipolar battery according to claim 2, wherein the negative electrode current collector layer is made of an amount of material that is not entirely Li-alloyed in a capacity range that is actually used.
JP2013144751A 2013-07-10 2013-07-10 Bipolar battery Pending JP2015018670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013144751A JP2015018670A (en) 2013-07-10 2013-07-10 Bipolar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013144751A JP2015018670A (en) 2013-07-10 2013-07-10 Bipolar battery

Publications (1)

Publication Number Publication Date
JP2015018670A true JP2015018670A (en) 2015-01-29

Family

ID=52439509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013144751A Pending JP2015018670A (en) 2013-07-10 2013-07-10 Bipolar battery

Country Status (1)

Country Link
JP (1) JP2015018670A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019207895A1 (en) 2018-06-08 2019-12-12 Toyota Jidosha Kabushiki Kaisha STACK BATTERY
CN110635107A (en) * 2019-10-24 2019-12-31 邦泰宏图(深圳)科技有限责任公司 Bipolar solid-state lithium ion battery without base material and manufacturing method thereof
WO2020218002A1 (en) 2019-04-25 2020-10-29 住友化学株式会社 Non-aqueous electrolyte secondary battery
CN113571754A (en) * 2021-06-22 2021-10-29 惠州锂威新能源科技有限公司 Preparation method of coiled bipolar battery and coiled bipolar battery
CN117613193A (en) * 2024-01-24 2024-02-27 北京希倍动力科技有限公司 Non-negative sodium ion bipolar solid-state battery and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019207895A1 (en) 2018-06-08 2019-12-12 Toyota Jidosha Kabushiki Kaisha STACK BATTERY
US11489238B2 (en) 2018-06-08 2022-11-01 Toyota Jidosha Kabushiki Kaisha Stacked battery
WO2020218002A1 (en) 2019-04-25 2020-10-29 住友化学株式会社 Non-aqueous electrolyte secondary battery
KR20220004638A (en) 2019-04-25 2022-01-11 스미또모 가가꾸 가부시키가이샤 Non-aqueous electrolyte secondary battery
CN110635107A (en) * 2019-10-24 2019-12-31 邦泰宏图(深圳)科技有限责任公司 Bipolar solid-state lithium ion battery without base material and manufacturing method thereof
CN113571754A (en) * 2021-06-22 2021-10-29 惠州锂威新能源科技有限公司 Preparation method of coiled bipolar battery and coiled bipolar battery
CN117613193A (en) * 2024-01-24 2024-02-27 北京希倍动力科技有限公司 Non-negative sodium ion bipolar solid-state battery and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6885309B2 (en) Series stacked all-solid-state battery
JP7070052B2 (en) All solid state battery
JP5333184B2 (en) All solid state secondary battery
JP5217076B2 (en) Lithium ion battery
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
JP6149657B2 (en) All solid battery
JP2013539174A (en) Cable type secondary battery
JP2016018704A (en) All-solid battery
JP5413129B2 (en) Solid battery manufacturing method
US20130065134A1 (en) Nonaqueous-electrolyte battery and method for producing the same
JP2020013729A (en) Manufacturing method of series-stacked all-solid-state battery
JP2016207614A (en) Solid-state battery
JP2015050153A (en) Laminate for all-solid state battery
WO2020256023A1 (en) Secondary battery
JP2020021551A (en) All-solid battery and manufacturing method thereof
JP2015018670A (en) Bipolar battery
JP2013093216A (en) Battery
CN110858663A (en) All-solid-state battery
JP7304578B2 (en) All-solid battery
CN107437609B (en) Rechargeable electrochemical lithium ion battery cell
JP2014120404A (en) Secondary battery
JP2019029339A (en) battery
JP2011159467A (en) Nonaqueous electrolyte battery
JP2023112393A (en) All-solid battery
US20170155142A1 (en) Composite lithium secondary battery