JP6885309B2 - Series stacked all-solid-state battery - Google Patents

Series stacked all-solid-state battery Download PDF

Info

Publication number
JP6885309B2
JP6885309B2 JP2017225032A JP2017225032A JP6885309B2 JP 6885309 B2 JP6885309 B2 JP 6885309B2 JP 2017225032 A JP2017225032 A JP 2017225032A JP 2017225032 A JP2017225032 A JP 2017225032A JP 6885309 B2 JP6885309 B2 JP 6885309B2
Authority
JP
Japan
Prior art keywords
layer
positive electrode
active material
electrode active
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017225032A
Other languages
Japanese (ja)
Other versions
JP2019096476A (en
Inventor
雄志 鈴木
雄志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017225032A priority Critical patent/JP6885309B2/en
Publication of JP2019096476A publication Critical patent/JP2019096476A/en
Application granted granted Critical
Publication of JP6885309B2 publication Critical patent/JP6885309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本開示は、直列積層型全固体電池に関し、特に、硫化物固体電解質を含み、かつ負極集電体層が導電性材料として銅を含む直列積層型全固体電池に関する。 The present disclosure relates to a series-stacked all-solid-state battery, and more particularly to a series-stacked all-solid-state battery containing a sulfide solid electrolyte and a negative electrode current collector layer containing copper as a conductive material.

近年、エネルギー密度が高いリチウム電池が実用化されている。特に、電解液を固体電解質層に変えて、電池を全固体化したリチウム電池は、電池内に可燃性の有機溶媒を用いないため、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。 In recent years, lithium batteries having a high energy density have been put into practical use. In particular, a lithium battery in which the electrolyte is changed to a solid electrolyte layer and the battery is completely solidified does not use a flammable organic solvent in the battery, so that the safety device can be simplified and the manufacturing cost and productivity are excellent. It is believed that.

また、全固体電池として、高エネルギー密度及び高出力密度が達成できる直列積層型全固体電池が注目されている。例えば、特許文献1では、集電体の一方の面に正極活物質層が形成され、他方の面に負極活物質層が形成されたバイポーラ型電極を、電解質層を挟んで少なくとも2層以上直列に積層した全固体バイポーラ電池が開示されている。 Further, as an all-solid-state battery, a series-stacked all-solid-state battery capable of achieving high energy density and high output density is attracting attention. For example, in Patent Document 1, at least two or more bipolar electrodes having a positive electrode active material layer formed on one surface of a current collector and a negative electrode active material layer formed on the other surface are connected in series with an electrolyte layer interposed therebetween. The all-solid-state bipolar battery laminated in the above is disclosed.

直列積層型全固体電池の製造に関して、特許文献2は、電池要素の側面を完全に又は部分的に絶縁層で被覆することを開示している。 Regarding the manufacture of a series-stacked all-solid-state battery, Patent Document 2 discloses that the side surface of a battery element is completely or partially covered with an insulating layer.

特開2008−140663号公報Japanese Unexamined Patent Publication No. 2008-140663 特開2008−186595号公報Japanese Unexamined Patent Publication No. 2008-186595

特許文献2のような直列積層型全固体電池において、電池要素の側面を完全に絶縁層で被覆すると、電池パック全体の重量に対する絶縁層の割合が大きくなり、重量当たりのエネルギー密度が低下してしまう課題があった。その一方で、電池要素の側面を部分的に絶縁層で被覆すると、特に硫化物固体電解質と、負極集電体層として銅箔などの銅製集電体を併用する全固体電池においては、電池の劣化が早いという課題があった。 In a series-stacked all-solid-state battery as in Patent Document 2, when the side surface of the battery element is completely covered with an insulating layer, the ratio of the insulating layer to the weight of the entire battery pack increases, and the energy density per weight decreases. There was a problem to end up. On the other hand, if the side surface of the battery element is partially covered with an insulating layer, especially in an all-solid-state battery in which a sulfide solid electrolyte and a copper current collector such as copper foil are used together as the negative electrode current collector layer, the battery There was a problem that it deteriorated quickly.

したがって、本開示は、上記事情を鑑みてなされたものであり、硫化物固体電解質を含み、かつ負極集電体層が導電性材料として銅を含む直列積層型全固体電池であって、重量当たりのエネルギー密度の低下及び電池の劣化を抑制することができる直列積層型全固体電池を提供することを目的とする。 Therefore, the present disclosure has been made in view of the above circumstances, and is a series-laminated all-solid-state battery containing a sulfide solid electrolyte and having a negative electrode current collector layer containing copper as a conductive material, per weight. It is an object of the present invention to provide a series-stacked all-solid-state battery capable of suppressing a decrease in energy density and deterioration of a battery.

本発明者は、以下の手段により、上記課題を解決できることを見出した。
2以上の単位電池を直列に積層してなる直列積層型全固体電池において、
前記単位電池が、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層を、この順に積層してなり、
前記正極活物質層、前記固体電解質層、及び前記負極活物質層が、硫化物固体電解質を含み、
前記負極集電体層が、導電性材料として銅を含み、
前記正極集電体層及び前記正極活物質層の面積が、前記固体電解質層、前記負極活物質層及び前記負極集電体層の面積より小さく、
前記正極集電体層及び前記正極活物質層の側面に絶縁層を有し、かつ
前記絶縁層の一方の側は、前記正極活物質層の側面から、前記正極集電体層の、他の単位電池の負極集電体層と対向する側の表面の一部まで延在し、かつ前記絶縁層のもう一方の側は、前記正極活物質層の側面から、前記固体電解質層の、前記正極活物質層と対向する側の表面の端部まで又は端部を越えて延在する、
直列積層型全固体電池。
The present inventor has found that the above problems can be solved by the following means.
In a series-stacked all-solid-state battery in which two or more unit batteries are stacked in series,
The unit battery comprises a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer laminated in this order.
The positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer contain a sulfide solid electrolyte.
The negative electrode current collector layer contains copper as a conductive material and contains copper.
The areas of the positive electrode current collector layer and the positive electrode active material layer are smaller than the areas of the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector layer.
The positive electrode current collector layer and the positive electrode active material layer have an insulating layer on the side surface, and one side of the insulating layer is from the side surface of the positive electrode active material layer to the other positive electrode current collector layer. The positive electrode of the solid electrolyte layer extends from the side surface of the positive electrode active material layer so as to extend to a part of the surface of the unit battery facing the negative electrode current collector layer and the other side of the insulating layer. Extends to or beyond the edge of the surface opposite the active material layer,
Series stacked all-solid-state battery.

本開示によれば、硫化物固体電解質を含み、かつ負極集電体層が導電性材料として銅を含む直列積層型全固体電池の、重量当たりのエネルギー密度の低下及び電池の劣化を抑制することができる。 According to the present disclosure, it is possible to suppress a decrease in energy density per weight and deterioration of a battery of a series-laminated all-solid-state battery containing a sulfide solid electrolyte and a negative electrode current collector layer containing copper as a conductive material. Can be done.

図1は、従来の直列積層型全固体電池の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a conventional series-stacked all-solid-state battery. 図2は、本開示の直列積層型全固体電池の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the series-stacked all-solid-state battery of the present disclosure. 図3は、本開示の直列積層型全固体電池の正極活物質層と固体電解質層との面積差を示す概略図である。FIG. 3 is a schematic view showing the area difference between the positive electrode active material layer and the solid electrolyte layer of the series-stacked all-solid-state battery of the present disclosure. 図4は、本開示の直列積層型全固体電池の一部を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing a part of the series-stacked all-solid-state battery of the present disclosure. 図5は、実施例1の直列積層型全固体電池を示す概略図である。FIG. 5 is a schematic view showing the series-stacked all-solid-state battery of Example 1. 図6は、比較例1の直列積層型全固体電池を示す概略図である。FIG. 6 is a schematic view showing a series-stacked all-solid-state battery of Comparative Example 1. 図7は、実施例1及び比較例1の直列積層型全固体電池を充電して放置した後の結果を示すグラフである。FIG. 7 is a graph showing the results of the series-stacked all-solid-state batteries of Example 1 and Comparative Example 1 after being charged and left to stand.

以下、図面を参照しながら、本開示を実施するための形態について、詳細に説明する。なお、説明の便宜上、各図において、同一又は相当する部分には同一の参照符号を付し、重複説明は省略する。実施の形態の各構成要素は、全てが必須のものであるとは限らず、一部の構成要素を省略可能な場合もある。最も、以下の図に示される形態は本開示の例示であり、本開示を限定するものではない。 Hereinafter, embodiments for carrying out the present disclosure will be described in detail with reference to the drawings. For convenience of explanation, the same or corresponding parts are designated by the same reference numerals in each figure, and duplicate description will be omitted. Not all of the components of the embodiment are essential, and some components may be omitted. Most of all, the forms shown in the following figures are examples of the present disclosure and do not limit the present disclosure.

《直列積層型全固体電池》
本開示の全固体電池は、
2以上の単位電池を直列に積層してなる直列積層型全固体バイポーラ電池において、
前記単位電池が、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層を、この順に積層してなり、
前記正極活物質層、前記固体電解質層、及び前記負極活物質層が、硫化物固体電解質を含み、
前記負極集電体層が、導電性材料として銅を含み、
前記正極集電体層及び前記正極活物質層の面積が、前記固体電解質層、前記負極活物質層及び前記負極集電体層の面積より小さく、
前記正極集電体層及び前記正極活物質層の側面に絶縁層を有し、
前記絶縁層の一方の側は、前記正極活物質層の側面から、前記正極集電体層の、他の単位電池の負極集電体層と対向する側の表面の一部まで延在し、前記絶縁層のもう一方の側は、前記正極活物質層の側面から、前記固体電解質層の、前記正極活物質層と対向する側の表面の端部まで又は端部を越えて延在する、
直列積層型全固体電池である。
<< Series-stacked all-solid-state battery >>
The all-solid-state battery of the present disclosure is
In a series-stacked all-solid-state bipolar battery in which two or more unit batteries are stacked in series,
The unit battery comprises a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer laminated in this order.
The positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer contain a sulfide solid electrolyte.
The negative electrode current collector layer contains copper as a conductive material and contains copper.
The areas of the positive electrode current collector layer and the positive electrode active material layer are smaller than the areas of the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector layer.
An insulating layer is provided on the side surface of the positive electrode current collector layer and the positive electrode active material layer.
One side of the insulating layer extends from the side surface of the positive electrode active material layer to a part of the surface of the positive electrode current collector layer on the side facing the negative electrode current collector layer of the other unit battery. The other side of the insulating layer extends from the side surface of the positive electrode active material layer to or beyond the end of the surface of the solid electrolyte layer on the side facing the positive electrode active material layer.
It is a series-stacked all-solid-state battery.

本開示において、「直列積層型全固体電池」とは、2以上の単位電池を直列に積層されてなる全固体電池である。 In the present disclosure, the "series-stacked all-solid-state battery" is an all-solid-state battery in which two or more unit batteries are stacked in series.

上述したように、一般的に、硫化物固体電解質を含み、かつ負極集電体層が導電性材料として銅を含む直列積層型全固体電池は、電池要素の側面を部分的にのみ絶縁層で被覆する構成を有する場合、電池の劣化が早いという問題が分かった。 As described above, in general, a series laminated all-solid-state battery containing a sulfide solid electrolyte and having a negative electrode current collector layer containing copper as a conductive material has an insulating layer only partially on the side surface of the battery element. It has been found that the battery deteriorates quickly when it has a covering configuration.

この「劣化」の原因について、以下のメカニズムによるものであると考えられる。すなわち、すなわち、図1に示されているように、正極集電体層1、正極活物質層2、固体電解質層3、負極活物質層4、及び負極集電体層5がこの順に積層されてなる単位電池Vaと、同様に積層されてなる単位電池Vbと、同様に積層されてなる単位電池Vcとを有する従来の直列積層型全固体電池100において、充電処理を行うことにより、単位電池Vaの負極集電体層5は、単位電池Vbの固体電解質層3よりも高電位(正極電位)になる。これによって、単位電池Vaの負極集電体層5に含まれる銅は、単位電池Vbの固体電解質層3に含まれる硫化物固体電解質と接触すると、硫化銅を生成し、それによって単位電池Vbの自己放電が生じてしまい、結果として電池の劣化をもたらす。本発明者の鋭意研究により、単位電池Vaの負極集電体層5は、それよりも約2〜3V低い電位の硫化物固体電解質と接すると、特に硫化銅を生成しやすいことが見出された。なお、単位電池Vbと単位電池Vcとの間にも同様なメカニズムで自己放電による電池の劣化が考えられるが、ここでは説明を省略する。 The cause of this "deterioration" is considered to be due to the following mechanism. That is, as shown in FIG. 1, the positive electrode current collector layer 1, the positive electrode active material layer 2, the solid electrolyte layer 3, the negative electrode active material layer 4, and the negative electrode current collector layer 5 are laminated in this order. In a conventional series-stacked all-solid-state battery 100 having a unit battery Va, a unit battery Vb similarly laminated, and a unit battery Vc similarly laminated, the unit battery is charged by performing a charging process. The negative electrode current collector layer 5 of Va has a higher potential (positive electrode potential) than the solid electrolyte layer 3 of the unit battery Vb. As a result, when the copper contained in the negative electrode current collector layer 5 of the unit battery Va comes into contact with the sulfide solid electrolyte contained in the solid electrolyte layer 3 of the unit battery Vb, copper sulfide is generated, thereby producing copper sulfide of the unit battery Vb. Self-discharge occurs, resulting in deterioration of the battery. According to the diligent research of the present inventor, it has been found that the negative electrode current collector layer 5 of the unit battery Va is particularly likely to generate copper sulfide when it comes into contact with a sulfide solid electrolyte having a potential lower than that of the negative electrode current collector layer 5. It was. It should be noted that the deterioration of the battery due to self-discharge is considered between the unit battery Vb and the unit battery Vc by the same mechanism, but the description thereof will be omitted here.

本開示は、(i)正極集電体層及び正極活物質層の面積が、固体電解質層、負極活物質層及び負極集電体層の面積より小さいこと、並びに(ii)正極集電体層及び正極活物質層の側面に絶縁層を有し、この絶縁層の一方の側が、正極活物質層の側面から、正極集電体層の、他の単位電池の負極集電体層と対向する側の表面の一部まで延在し、前記絶縁層のもう一方の側は、正極活物質層の側面から、固体電解質層の、前記正極活物質層と対向する側の表面の端部まで又は端部を越えて延在すること、という二つの特徴を有する。 In the present disclosure, (i) the area of the positive electrode current collector layer and the positive electrode active material layer is smaller than the area of the solid electrolyte layer, the negative electrode active material layer and the negative electrode current collector layer, and (ii) the positive electrode current collector layer. And has an insulating layer on the side surface of the positive electrode active material layer, and one side of the insulating layer faces the negative electrode current collector layer of the other unit battery of the positive electrode current collector layer from the side surface of the positive electrode active material layer. It extends to a part of the surface on the side, and the other side of the insulating layer extends from the side surface of the positive electrode active material layer to the end of the surface of the solid electrolyte layer on the side facing the positive electrode active material layer or. It has two characteristics: it extends beyond the ends.

この特徴(i)及び特徴(ii)を組み合わせることによって、単位電池の負極集電体層に含まれる銅が、この単位電池と隣接する単位電池の固体電解質層に含まれる硫化物固体電解質と接触して、硫化銅を生成することを抑制でき、電池の劣化を抑制することができる。また、上述したように、本開示の絶縁層は、単位電池の側面全体を被覆するのではないため、電池パック全体の重量に対する絶縁層の割合が小さくなり、重量当たりのエネルギー密度を向上させることもできる。すなわち、本開示の効果を達成することができる。さらに、正極集電体層及び正極活物質層の面積を、固体電解質層、負極活物質層、及び負極集電体層の面積よりも小さくして、かつ単位電池の側面の特定の場所に絶縁層を設けることによって、電極間の短絡も抑制することができる。 By combining the feature (i) and the feature (ii), the copper contained in the negative electrode current collector layer of the unit battery comes into contact with the sulfide solid electrolyte contained in the solid electrolyte layer of the unit battery adjacent to the unit battery. Therefore, the formation of copper sulfide can be suppressed, and the deterioration of the battery can be suppressed. Further, as described above, since the insulating layer of the present disclosure does not cover the entire side surface of the unit battery, the ratio of the insulating layer to the weight of the entire battery pack is reduced, and the energy density per weight is improved. You can also. That is, the effect of the present disclosure can be achieved. Further, the areas of the positive electrode current collector layer and the positive electrode active material layer are made smaller than the areas of the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector layer, and are insulated at a specific location on the side surface of the unit battery. By providing the layer, a short circuit between the electrodes can be suppressed.

以下では、特徴(i)及び特徴(ii)のそれぞれについて、詳細に説明する。 In the following, each of the feature (i) and the feature (ii) will be described in detail.

ここで、図2は、本開示の直列積層型全固体電池の一例を示す概略断面図である。本開示の直列積層型全固体電池10には、少なくとも単位電池Vと、単位電池Vと、が直列に積層されている。また、単位電池Vの積層方向には、他の単位電池(例えば単位電池V)が、必要に応じて必要な数で直列に積層されてもよい。さらに、本開示の直列積層型全固体電池は、上記構成のほかに、電池ケースや拘束治具を有していてもよい(図示せず)。 Here, FIG. 2 is a schematic cross-sectional view showing an example of the series-stacked all-solid-state battery of the present disclosure. In the series-stacked all-solid-state battery 10 of the present disclosure, at least the unit battery V 1 and the unit battery V 2 are stacked in series. Further, in the stacking direction of the unit battery V 2 , other unit batteries (for example, the unit battery V 3 ) may be stacked in series in a required number as required. Further, the series-stacked all-solid-state battery of the present disclosure may have a battery case and a restraint jig in addition to the above configuration (not shown).

〈特徴(i)〉
本開示において、正極集電体層及び正極活物質層の面積は、固体電解質層、負極活物質層及び負極集電体層の面積より小さい。図2の単位電池Vを例として説明すると、正極集電体層1及び正極活物質層2の面積は、固体電解質層3、負極活物質層4及び負極集電体層5の面積より小さいことを示している。この際、正極集電体層1の面積と、正極活物質層2の面積とは、同じであってもよく、異なっていてもよいが、固体電解質層3、負極活物質層4及び負極集電体層5の面積より小さければよい。同様に、固体電解質層3の面積と、負極活物質層4の面積と、負極集電体層5の面積とは、同じであってもよく、異なっていてもよいが、正極集電体層1及び正極活物質層2の面積より大きければよい。
<Feature (i)>
In the present disclosure, the areas of the positive electrode current collector layer and the positive electrode active material layer are smaller than the areas of the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector layer. When the unit cell V 1 of the FIG. 2 will be described as an example, the area of the positive electrode collector layer 1 and the cathode active material layer 2 is smaller than the area of the solid electrolyte layer 3, the anode active material layer 4 and the negative electrode collector layer 5 It is shown that. At this time, the area of the positive electrode current collector layer 1 and the area of the positive electrode active material layer 2 may be the same or different, but the solid electrolyte layer 3, the negative electrode active material layer 4, and the negative electrode collection It may be smaller than the area of the electric body layer 5. Similarly, the area of the solid electrolyte layer 3, the area of the negative electrode active material layer 4, and the area of the negative electrode current collector layer 5 may be the same or different, but the positive electrode current collector layer It may be larger than the area of 1 and the positive electrode active material layer 2.

また、正極集電体層1及び正極活物質層2は、必ず固体電解質層3、負極活物質層4及び負極集電体層5の中央部分に積層されなくてもよい。例えば、図3のように、正極活物質層2を固体電解質層3の上に積層する際に、固体電解質層3が、幅r(r>0)のはみ出し部を有すればよい。なお、図3では、単位電池を正方形の形態で描いているが、直列積層型全固体電池の形態に合わせて、正方形に限定されず任意の形態であってもよい。 Further, the positive electrode current collector layer 1 and the positive electrode active material layer 2 do not necessarily have to be laminated on the central portion of the solid electrolyte layer 3, the negative electrode active material layer 4, and the negative electrode current collector layer 5. For example, as shown in FIG. 3, when the positive electrode active material layer 2 is laminated on the solid electrolyte layer 3, the solid electrolyte layer 3 may have a protruding portion having a width r (r> 0). Although the unit battery is drawn in a square shape in FIG. 3, the unit battery is not limited to a square shape and may be in any shape according to the shape of the series-stacked all-solid-state battery.

〈特徴(ii)〉
本開示にかかる単位電池の側面の特定の場所に、絶縁層が設けられている。図2の単位電池Vを例として説明すると、正極集電体層1及び正極活物質層2の側面に絶縁層6が設けられている。絶縁層6の一方の側は、正極活物質層2の側面から、正極集電体層1の、単位電池Vの負極集電体層5と対向する側の表面の一部まで延在し、図4に示されているように、この表面上の幅a(a>0)を有している。また、絶縁層6のもう一方の側は、正極活物質層2の側面から、固体電解質層3の前記正極活物質層2と対向する側の表面の端部まで又は端部を越えて延在し、図4に示されているように、この表面上の幅c(c>0)を有している。
<Features (ii)>
An insulating layer is provided at a specific location on the side surface of the unit battery according to the present disclosure. Taking the unit battery V 2 of FIG. 2 as an example, the insulating layer 6 is provided on the side surfaces of the positive electrode current collector layer 1 and the positive electrode active material layer 2. One side of the insulating layer 6 extends from the side surface of the positive electrode active material layer 2, the positive electrode collector layer 1, to a part of the negative electrode collector layer 5 opposite to the side surface of the unit battery V 1 , Has a width a (a> 0) on this surface, as shown in FIG. Further, the other side of the insulating layer 6 extends from the side surface of the positive electrode active material layer 2 to or beyond the end of the surface of the solid electrolyte layer 3 on the side facing the positive electrode active material layer 2. However, as shown in FIG. 4, it has a width c (c> 0) on this surface.

なお、幅cは、固体電解質層3の端部と揃えるように同じ長さであってもよく、固体電解質層3の端部からはみ出してもよい。換言すると、幅cの大きさは、上述した図3に示されているように、正極活物質層2を固体電解質層3の上に積層する際に、固体電解質層3おけるはみ出し部の幅r(r>0)の大きさと同じ又は幅rより大きくすると、より本開示の効果を発揮することができるため好ましい。 The width c may be the same length as the end portion of the solid electrolyte layer 3, or may protrude from the end portion of the solid electrolyte layer 3. In other words, the size of the width c is the width r of the protruding portion in the solid electrolyte layer 3 when the positive electrode active material layer 2 is laminated on the solid electrolyte layer 3, as shown in FIG. It is preferable that the size is the same as (r> 0) or larger than the width r because the effects of the present disclosure can be more exerted.

また、幅aは0以上であればよく、施工の便宜を考慮し適宜設定すればよい。また、幅aの上限(最大値)としては、正極集電体層1から電流を正極活物質層2に供給することができれば特に限定されず、適宜設定すればよい。 Further, the width a may be 0 or more, and may be appropriately set in consideration of the convenience of construction. The upper limit (maximum value) of the width a is not particularly limited as long as the current can be supplied from the positive electrode current collector layer 1 to the positive electrode active material layer 2, and may be appropriately set.

図4において、b(b>0)は、絶縁層6の正極集電体層1上に積層される部分の高さ、すなわち絶縁層6の厚さである。ここで、絶縁層6の厚さとしては、単位電池又は直列積層型全固体電池の耐久性を付与する観点、及び単位電池又は直列積層型全固体電池の積層方向に隣接する層の接触による短絡を防止できる観点から、1μm〜100μmの範囲内であることが好ましく、5μm〜50μmの範囲内であることがより好ましく、10μm〜30μmの範囲内であることが特に好ましい。 In FIG. 4, b (b> 0) is the height of the portion of the insulating layer 6 laminated on the positive electrode current collector layer 1, that is, the thickness of the insulating layer 6. Here, the thickness of the insulating layer 6 is a short circuit due to contact between layers adjacent to each other in the stacking direction of the unit battery or the series-stacked all-solid-state battery from the viewpoint of imparting durability of the unit battery or the series-stacked all-solid-state battery. From the viewpoint of preventing the above, it is preferably in the range of 1 μm to 100 μm, more preferably in the range of 5 μm to 50 μm, and particularly preferably in the range of 10 μm to 30 μm.

〈単位電池〉
本開示において、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層が積層されてなるものを、「単位電池」と称する。図2に示されている単位電池Vを例として説明すると、正極集電体層1、正極活物質層2、固体電解質層3、負極活物質層4、及び負極集電体層5が、順に積層されている。
<Unit battery>
In the present disclosure, a stack of a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer is referred to as a "unit battery". When the unit cell V 1 shown in FIG. 2 will be described as an example, the positive electrode collector layer 1, the positive electrode active material layer 2, solid electrolyte layer 3, the anode active material layer 4, and the negative electrode collector layer 5, They are stacked in order.

なお、本開示の直列積層型全固体電池の種類(全固体電池の種類)としては、全固体リチウム電池、全固体ナトリウム電池、全固体マグネシウム電池及び全固体カルシウム電池などを挙げることができ、中でも、全固体リチウム電池及び全固体ナトリウム電池が好ましく、特に、全固体リチウム電池が好ましい。また、本開示の全固体電池は、一次電池であってもよく、二次電池であってもよいが、中でも、二次電池であることが好ましい。繰り返し充放電でき、例えば、車載用電池として有用だからである。本開示の全固体電池の形状としては、例えば、コイン型、ラミネート型、円筒型及び角型などを挙げることができる。 Examples of the type of the series-stacked all-solid-state battery (type of the all-solid-state battery) of the present disclosure include an all-solid-state lithium battery, an all-solid-state sodium battery, an all-solid-state magnesium battery, and an all-solid-state calcium battery. , All-solid-state lithium battery and all-solid-state sodium battery are preferable, and all-solid-state lithium battery is particularly preferable. Further, the all-solid-state battery of the present disclosure may be a primary battery or a secondary battery, but among them, a secondary battery is preferable. This is because it can be repeatedly charged and discharged, and is useful as, for example, an in-vehicle battery. Examples of the shape of the all-solid-state battery of the present disclosure include a coin type, a laminated type, a cylindrical type, and a square type.

以下では、本開示の直列積層型全固体電池が全固体リチウム電池である場合について、各層の各構成について説明する。 In the following, each configuration of each layer will be described in the case where the series-stacked all-solid-state battery of the present disclosure is an all-solid-state lithium battery.

(正極集電体層)
本開示において、正極集電体層に用いられる導電性材料は特に限定されず、全固体電池に使用できる公知のものを適宜採用されうる。例えば、SUS、アルミニウム、銅、ニッケル、鉄、チタン、及びカーボンなどが挙げられる。これらのなかで、耐蝕性、作り易さ、経済性などの観点からは、アルミニウムを用いることが好ましい。
(Positive current collector layer)
In the present disclosure, the conductive material used for the positive electrode current collector layer is not particularly limited, and a known material that can be used for an all-solid-state battery can be appropriately adopted. For example, SUS, aluminum, copper, nickel, iron, titanium, carbon and the like can be mentioned. Among these, aluminum is preferably used from the viewpoint of corrosion resistance, ease of production, economy, and the like.

本開示にかかる正極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状などを挙げることができる。これらの中で、箔状が好ましい。 The shape of the positive electrode current collector layer according to the present disclosure is not particularly limited, and examples thereof include a foil shape, a plate shape, and a mesh shape. Of these, foil-like is preferable.

また、本開示にかかる正極集電体層の厚さは、特に限定されず、例えば1〜500μm程度の厚さであることができる。 The thickness of the positive electrode current collector layer according to the present disclosure is not particularly limited, and may be, for example, about 1 to 500 μm.

(正極活物質層)
正極活物質層は、正極活物質を必須に含む。また、正極活物質層は、硫化物固体電解質も含む。そのほか、使用用途や使用目的などに合わせて、例えば、導電助剤又はバインダーなどの全固体電池の正極活物質層に用いられる添加剤を含むことができる。
(Positive electrode active material layer)
The positive electrode active material layer essentially contains the positive electrode active material. The positive electrode active material layer also contains a sulfide solid electrolyte. In addition, additives used in the positive electrode active material layer of an all-solid-state battery, such as a conductive auxiliary agent or a binder, can be included according to the intended use and purpose of use.

本開示において、用いられる正極活物質材料として、特に限定されず、公知のものが用いられる。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、LiCo1/3Ni1/3Mn1/3、Li1+xMn2−x−y(Mは、Al、Mg、Co、Fe、Ni、及びZnから選ばれる1種以上の金属元素)で表される組成の異種元素置換Li−Mnスピネルなどが挙げられるが、これらに限定されない。 In the present disclosure, the positive electrode active material used is not particularly limited, and known materials are used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1 + x Mn 2-x- Examples thereof include dissimilar element-substituted Li-Mn spinels having a composition represented by y My O 4 (M is one or more metal elements selected from Al, Mg, Co, Fe, Ni, and Zn). Not limited to these.

本開示において、用いられる硫化物固体電解質として、特に限定されず、全固体電池の硫化物系固体電解質として利用可能な材料を用いることができる。具体的な例として、後述する「固体電解質層」の項目で列挙するものを適宜採用することができる。 In the present disclosure, the sulfide solid electrolyte used is not particularly limited, and a material that can be used as a sulfide-based solid electrolyte of an all-solid-state battery can be used. As a specific example, those listed in the item of "solid electrolyte layer" described later can be appropriately adopted.

なお、本開示にかかる正極活物質層には、硫化物固体電解質以外のその他の固体電解質も含むことができる。その他の固体電解質としては、後述する「固体電解質層」の項目で説明するものを適宜採用することができる。 The positive electrode active material layer according to the present disclosure may also contain other solid electrolytes other than the sulfide solid electrolyte. As the other solid electrolyte, those described in the item of "solid electrolyte layer" described later can be appropriately adopted.

導電助剤としては、特に限定されず、公知のものが用いられる。例えば、VGCF(気相成長法炭素繊維、Vapor Grown Carbon Fiber)及びカーボンナノ繊維などの炭素材並びに金属材などが挙げられるが、これらに限定されない。 The conductive auxiliary agent is not particularly limited, and known ones are used. Examples thereof include, but are not limited to, carbon materials such as VGCF (gas phase growth method carbon fiber, Vapor Green Carbon Fiber) and carbon nanofibers, and metal materials.

バインダーとしては、特に限定されず、公知のものが用いられる。例えば、ポリフッ化ビニリデン(PVdF)若しくはカルボキシメチルセルロース(CMC)などの材料又はこれらの組合せを挙げることができるが、これらに限定されない。 The binder is not particularly limited, and known binders are used. Examples include, but are not limited to, materials such as polyvinylidene fluoride (PVdF) or carboxymethyl cellulose (CMC) or combinations thereof.

本開示にかかる正極活物質層の厚さは、特に限定されず、例えば0.1〜1000μm程度の厚さであることができる。 The thickness of the positive electrode active material layer according to the present disclosure is not particularly limited, and can be, for example, about 0.1 to 1000 μm.

(固体電解質層)
本開示において、固体電解質層は、硫化物固体電解質を必須に含む。かかる硫化物固体電解質として、特に限定されず、全固体電池の硫化物系固体電解質として利用可能な材料を用いることができる。例えば、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiS−P−LiI−LiBr、LiS−P−GeS、LiI−LiS−B、LiPO−LiS−SiS、LiPO−LiS−SiS、LiPO−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、又はLiS−Pなどの硫化物系固体電解質が挙げられる。また、非晶質の硫化物系固体電解質を熱処理して得られるガラスセラミックスを、固体電解質として用いることもできる。
(Solid electrolyte layer)
In the present disclosure, the solid electrolyte layer essentially comprises a sulfide solid electrolyte. The sulfide solid electrolyte is not particularly limited, and a material that can be used as a sulfide-based solid electrolyte for an all-solid-state battery can be used. For example, Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -Li I-LiBr, Li 2 S-P 2 S 5 -GeS 2, LiI-Li 2 S -B 2 S 3, Li 3 PO 4 -Li 2 S-Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2, LiPO 4 -Li 2 S-SiS, LiI -Li 2 S-P 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5, or Li 2 S-P 2 S 5 the sulfide-based solid electrolyte and the like. Further, glass ceramics obtained by heat-treating an amorphous sulfide-based solid electrolyte can also be used as the solid electrolyte.

また、上述した硫化物固体電解質以外に、その他の固体電解質もさらに含むことができる。その他の固体電解質として、特に限定されず、全固体電池の固体電解質として利用可能な材料を用いることができる。例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、及びこれらの共重合体などの固体高分子電解質を使用することができる。固体電解質は、イオン伝導性を確保するための支持塩(リチウム塩)を含むことができる。かかる支持塩としては、LiBF、LiPF、LiN(SOCF、LiN(SO、及びこれらの混合物が挙げられる。 In addition to the above-mentioned sulfide solid electrolyte, other solid electrolytes can be further included. The other solid electrolyte is not particularly limited, and a material that can be used as the solid electrolyte of the all-solid-state battery can be used. For example, solid polymer electrolytes such as polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof can be used. The solid electrolyte can contain a supporting salt (lithium salt) for ensuring ionic conductivity. Such supporting salts include LiBF 4 , LiPF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , and mixtures thereof.

本開示にかかる固体電解質層は、上述した固体電解質以外に、必要に応じてバインダーなどを含んでもよい。具体例として、上述の「正極活物質層」で列挙された「バインダー」と同様であり、ここでは説明を省略する。 The solid electrolyte layer according to the present disclosure may contain a binder or the like, if necessary, in addition to the above-mentioned solid electrolyte. As a specific example, it is the same as the “binder” listed in the above-mentioned “cathode active material layer”, and the description thereof will be omitted here.

本開示にかかる固体電解質層の厚さは、特に限定されず、例えば0.1〜1000μm程度の厚さであることができる。 The thickness of the solid electrolyte layer according to the present disclosure is not particularly limited, and can be, for example, about 0.1 to 1000 μm.

(負極活物質層)
負極活物質層は、負極活物質を必須に含む。また、負極活物質層は、硫化物固体電解質も含む。そのほか、使用用途や使用目的などに合わせて、例えば、導電助剤又はバインダーなどの全固体電池の負極活物質層に用いられる添加剤を、含むことができる。
(Negative electrode active material layer)
The negative electrode active material layer essentially contains the negative electrode active material. The negative electrode active material layer also contains a sulfide solid electrolyte. In addition, additives used in the negative electrode active material layer of an all-solid-state battery, such as a conductive auxiliary agent or a binder, can be included according to the intended use and purpose of use.

本開示において、用いられる負極活物質材料として、特に限定されず、リチウムイオンなどの金属イオンを吸蔵×放出可能であればよい。例えば、Li、Sn、Si若しくはInなどの金属、リチウムとチタンとの合金、又はハードカーボン、ソフトカーボン若しくはグラファイトなどの炭素材料などが挙げられるが、これらに限定されない。 In the present disclosure, the negative electrode active material used is not particularly limited as long as it can occlude and release metal ions such as lithium ions. Examples thereof include, but are not limited to, metals such as Li, Sn, Si or In, alloys of lithium and titanium, and carbon materials such as hard carbon, soft carbon and graphite.

本開示にかかる負極活物質層に用いられる硫化物固体電解質、導電助剤、バインダーなどその他の添加剤については、上述した「正極活物質層」及び「固体電解質層」の項目で説明したものを適宜採用することができる。 Regarding other additives such as the sulfide solid electrolyte, the conductive auxiliary agent, and the binder used for the negative electrode active material layer according to the present disclosure, those described in the above-mentioned "Positive electrode active material layer" and "Solid electrolyte layer" are used. It can be adopted as appropriate.

本開示にかかる負極活物質層の厚さは、特に限定されず、例えば0.1〜1000μm程度の厚さであることができる。 The thickness of the negative electrode active material layer according to the present disclosure is not particularly limited, and can be, for example, about 0.1 to 1000 μm.

(負極集電体層)
本開示は、導電性材料として銅を含む負極集電体層における課題を解決するものであるため、負極集電体層の導電性材料として、銅を必須に含む。なお、銅を含む合金であってもよい。
(Negative electrode current collector layer)
Since the present disclosure solves a problem in a negative electrode current collector layer containing copper as a conductive material, copper is indispensably included as a conductive material in the negative electrode current collector layer. It may be an alloy containing copper.

本開示にかかる負極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状などを挙げることができる。これらの中で、箔状が好ましい。 The shape of the negative electrode current collector layer according to the present disclosure is not particularly limited, and examples thereof include a foil shape, a plate shape, and a mesh shape. Of these, foil-like is preferable.

また、本開示にかかる負極集電体層の厚さは、特に限定されず、例えば1〜500μm程度の厚さであることができる。 The thickness of the negative electrode current collector layer according to the present disclosure is not particularly limited, and may be, for example, about 1 to 500 μm.

(絶縁層)
本開示において、絶縁層の材料は、特に限定されず、所望の絶縁性を有するものであればよく、一般的な全固体電池に用いられる材料と同様であってもよい。中でも、樹脂材料であることが好ましい。樹脂材料は耐久性が高く、弾性を有することから、例えば絶縁層が形成されている領域において単位電池に破れが生じた場合であっても、絶縁層が伸びることにより短絡が発生することを好適に防止することが可能となる。
(Insulation layer)
In the present disclosure, the material of the insulating layer is not particularly limited as long as it has a desired insulating property, and may be the same as the material used for a general all-solid-state battery. Above all, a resin material is preferable. Since the resin material has high durability and elasticity, it is preferable that a short circuit occurs due to the elongation of the insulating layer even if the unit battery is torn, for example, in the region where the insulating layer is formed. It is possible to prevent it.

本開示にかかる絶縁層に用いられる樹脂材料としては、例えばポリイミド、ポリエステル、ポリプロピレン、ポリアミド、ポリスチレン、ポリ塩化ビニル、ポリカーボネートなどが挙げられるが、これらに限定されない。 Examples of the resin material used for the insulating layer according to the present disclosure include, but are not limited to, polyimide, polyester, polypropylene, polyamide, polystyrene, polyvinyl chloride, and polycarbonate.

また、本開示にかかる絶縁層は、単位電池側面に粘着層を有していてもよい。絶縁層と単位電池との密着性を向上させることが可能となるからである。なお、粘着層に用いられる材料については、一般的な粘着剤とすることができるので、ここでの説明は省略する。 Further, the insulating layer according to the present disclosure may have an adhesive layer on the side surface of the unit battery. This is because it is possible to improve the adhesion between the insulating layer and the unit battery. The material used for the pressure-sensitive adhesive layer can be a general pressure-sensitive adhesive, and thus the description thereof is omitted here.

本開示において、絶縁層の形成方法としては、正極集電体層や固体電解質層の表面の所望の領域(例えば、図4に示す幅aを有する領域)に所望の厚さを有する絶縁層を形成することが可能な方法であれば特に限定されず、例えば、上述した樹脂材料を塗布することにより形成する方法、上述した樹脂材料のフィルムを、粘着層などを用いて、正極集電体層や固体電解質層の表面に貼り付ける方法などを挙げることができる。 In the present disclosure, as a method for forming the insulating layer, an insulating layer having a desired thickness is provided in a desired region (for example, a region having a width a shown in FIG. 4) on the surface of the positive electrode current collector layer or the solid electrolyte layer. The method is not particularly limited as long as it can be formed, and for example, a method of forming by applying the above-mentioned resin material, a film of the above-mentioned resin material, using an adhesive layer or the like, a positive electrode current collector layer. And the method of sticking to the surface of the solid electrolyte layer.

また、本開示において、例えば図2に示されている一番正極電位側に配置する単位電池Vには、図4のような絶縁層6を設けていてもよく、設けていなくてもよい。 Further, in the present disclosure, the unit battery V 1 to place the most positive potential side shown in FIG. 2, for example, it may have an insulating layer 6 as shown in FIG. 4, may not be provided ..

(導電性ペースト)
図4に示されているように、負極集電体層5と、積層方向の下方向に位置する正極集電体層1と間に、厚さb(すなわち、絶縁層の厚さ)の隙間があるため、当該隙間を埋めるための導電ペースト7を設置することができる。本開示に用いられる導電ペースト7としては、特に限定されず、公知の導電性があるものであればよく、例えば、カーボンペースト又は導電金属を含むペーストであってもよい。
(Conductive paste)
As shown in FIG. 4, a gap having a thickness b (that is, the thickness of the insulating layer) between the negative electrode current collector layer 5 and the positive electrode current collector layer 1 located in the downward direction in the stacking direction. Therefore, the conductive paste 7 for filling the gap can be installed. The conductive paste 7 used in the present disclosure is not particularly limited as long as it has known conductivity, and may be, for example, a carbon paste or a paste containing a conductive metal.

以下、本開示の実施例を示す。なお、以下の実施例は、単に説明するためのものであり、本開示を限定するものではない。 Hereinafter, examples of the present disclosure will be shown. It should be noted that the following examples are merely for explanation purposes and are not intended to limit the present disclosure.

〈実施例1〉
以下の材料を用いて、4ton/cmのプレス圧で、図5に示されているように、単位電池VとVとを有する直列積層型全固体電池20を作製した。
<Example 1>
Using the following materials, a press pressure of 4 ton / cm 2, as shown in Figure 5, to produce a series stacked all-solid-state battery 20 and a unit cell V 1 and V 2.

・正極集電体層1:アルミニウム集電箔(厚さ:15μm)
・正極活物質層2:正極活物質+硫化物固体電解質+導電助剤+バインダー(厚さ:40μm)
−正極活物質:LiNi1/3Mn1/3Co1/3
−硫化物固体電解質:75LiS−25P
−導電助剤:気相成長法炭素繊維(VGCF)
−バインダー:ポリフッ化ビニリデン(PVdF)
・固体電解質層3:硫化物固体電解質+バインダー(厚さ:30μm)
−硫化物固体電解質:75LiS−25P
−バインダー:ポリフッ化ビニリデン(PVdF)
・負極活物質層4:炭素材料+硫化物固体電解質+バインダー(厚さ:60μm)
−炭素材料:カーボン
−硫化物固体電解質:75LiS−25P
−バインダー:ポリフッ化ビニリデン(PVdF)
・負極集電体層5:銅集電体箔(厚さ:10μm)
・絶縁層6:ポリイミドテープ(厚さ:50μm)
・導電ペースト7:カーボンペースト(厚さ:50μm)
-Positive current collector layer 1: Aluminum current collector foil (thickness: 15 μm)
-Positive electrode active material layer 2: Positive electrode active material + sulfide solid electrolyte + conductive additive + binder (thickness: 40 μm)
− Positive electrode active material: LiNi 1/3 Mn 1/3 Co 1/3 O 2
-Sulfide solid electrolyte: 75Li 2 S-25P 2 S 5
-Conductive aid: Vapor Deposition Carbon Fiber (VGCF)
-Binder: Polyvinylidene fluoride (PVdF)
-Solid electrolyte layer 3: Sulfide solid electrolyte + binder (thickness: 30 μm)
-Sulfide solid electrolyte: 75Li 2 S-25P 2 S 5
-Binder: Polyvinylidene fluoride (PVdF)
-Negative electrode active material layer 4: Carbon material + sulfide solid electrolyte + binder (thickness: 60 μm)
-Carbon material: Carbon-Sulfide solid electrolyte: 75Li 2 S-25P 2 S 5
-Binder: Polyvinylidene fluoride (PVdF)
-Negative electrode current collector layer 5: Copper current collector foil (thickness: 10 μm)
-Insulation layer 6: Polyimide tape (thickness: 50 μm)
-Conductive paste 7: Carbon paste (thickness: 50 μm)

〈比較例1〉
上記実施例1の直列積層型全固体電池20の作製において、図6に示されているように、導電ペースト7を使用しなかったこと、及び固体電解質層3上の一部分のみ絶縁層6を設けたこと以外は、実施例1と同様にして、比較例1用の直列積層型全固体電池20’を作製した。
<Comparative example 1>
In the production of the series-stacked all-solid-state battery 20 of Example 1, as shown in FIG. 6, the conductive paste 7 was not used, and the insulating layer 6 was provided only partially on the solid electrolyte layer 3. A series-stacked all-solid-state battery 20'for Comparative Example 1 was produced in the same manner as in Example 1 except for the above.

〈評価〉
上記作製した実施例及び比較例の直列積層型全固体電池20及び20’に対して、1/3(3時間率)で8Vまで定電流充電をし、そして8Vで終止電流1/100C(100時間率)まで定電圧充電し、その後、25℃で100時間を放置した。放置前後のそれぞれの直列積層型全固体電池に対して電圧を測定した。実施例の直列積層型全固体電池20についての結果を図7(a)に示し、比較例の直列積層型全固体電池20’についての結果を図7(b)に示す。
<Evaluation>
The series-stacked all-solid-state batteries 20 and 20'of the above-produced examples and comparative examples are constantly charged to 8 V at 1/3 (3 hour rate), and the termination current is 1/100 C (100) at 8 V. The battery was charged to a constant voltage (time rate), and then left at 25 ° C. for 100 hours. The voltage was measured for each series-stacked all-solid-state battery before and after leaving. The results for the series-stacked all-solid-state battery 20 of the examples are shown in FIG. 7 (a), and the results for the series-stacked all-solid-state battery 20'of the comparative example are shown in FIG. 7 (b).

図7(a)に示されているように、実施例の直列積層型全固体電池20では、それぞれの単位電池(V及びV)の放置前の電圧と放置後の電圧とは、ほぼ同程度であった。これに対して、図7(b)に示されているように、比較例の直列積層型全固体電池20’では、積層方向の下側(負極電位側)に位置する単位電池V2’は、放置後の電圧が放置後の電圧よりも遥かに低いことがわかった。これは、比較例の直列積層型全固体電池20’では、単位電池Vの負極集電体層5に含まれる銅が、単位電池V2’の固体電解質層3に含まれる硫化物固体電解質と接触して硫化銅を生成し、それによって、単位電池V2’の自己放電が生じてしまったことによると考えられる。 As shown in FIG. 7A, in the series-stacked all-solid-state battery 20 of the embodiment, the voltage before leaving and the voltage after leaving each of the unit batteries (V 1 and V 2) are substantially the same. It was about the same. In contrast, as shown in FIG. 7 (b), 'the unit batteries V 2 located on the lower side of the stacking direction (the negative potential side)' series stacked all-solid-state cell 20 of the comparative example It was found that the voltage after leaving was much lower than the voltage after leaving. This, 'in the copper contained in the negative electrode collector layer 5 of the unit cell V 1 is the unit cell V 2' serial stacked type all-solid-state cell 20 of Comparative Example sulfide solid electrolyte contained in the solid electrolyte layer 3 It is probable that this was due to the fact that copper sulfide was produced in contact with the battery, which caused self-discharge of the unit battery V 2'.

図7の結果から、明らかであるように、実施例の直列積層型全固体電池20は、電池の自己放電による劣化を抑制することができた。 As is clear from the results of FIG. 7, the series-stacked all-solid-state battery 20 of the example was able to suppress deterioration due to self-discharge of the battery.

1 正極集電体層
2 正極活物質層
3 固体電解質層
4 負極活物質層
5 負極集電体層
6 絶縁層
7 導電ペースト
10、20、20’、100 直列積層型全固体電池
、V、V3、2’、、V、V 単位電池
1 Positive electrode current collector layer 2 Positive electrode active material layer 3 Solid electrolyte layer 4 Negative electrode active material layer 5 Negative electrode current collector layer 6 Insulation layer 7 Conductive paste 10, 20, 20', 100 Series-stacked all-solid-state battery V 1 , V 2 , V 3, V 2', V a , V b , V c unit battery

Claims (1)

2以上の単位電池を直列に積層してなる直列積層型全固体電池において、
前記単位電池が、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層を、この順に積層してなり、
前記正極活物質層、前記固体電解質層、及び前記負極活物質層が、硫化物固体電解質を含み、
前記負極集電体層が、導電性材料として銅を含み、
前記正極集電体層及び前記正極活物質層の面積が、前記固体電解質層、前記負極活物質層及び前記負極集電体層の面積より小さく、
前記正極集電体層及び前記正極活物質層の側面に絶縁層を有し、
前記絶縁層の一方の側は、前記正極活物質層の側面から、前記正極集電体層の、他の単位電池の負極集電体層と対向する側の表面の一部まで延在し、前記絶縁層のもう一方の側は、前記正極活物質層の側面から、前記固体電解質層の、前記正極活物質層と対向する側の表面の端部まで又は端部を越えて延在する、直列積層型全固体電池。
In a series-stacked all-solid-state battery in which two or more unit batteries are stacked in series,
The unit battery comprises a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer laminated in this order.
The positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer contain a sulfide solid electrolyte.
The negative electrode current collector layer contains copper as a conductive material and contains copper.
The areas of the positive electrode current collector layer and the positive electrode active material layer are smaller than the areas of the solid electrolyte layer, the negative electrode active material layer, and the negative electrode current collector layer.
An insulating layer is provided on the side surface of the positive electrode current collector layer and the positive electrode active material layer.
One side of the insulating layer extends from the side surface of the positive electrode active material layer to a part of the surface of the positive electrode current collector layer on the side facing the negative electrode current collector layer of the other unit battery. The other side of the insulating layer extends from the side surface of the positive electrode active material layer to or beyond the end of the surface of the solid electrolyte layer on the side facing the positive electrode active material layer. Series stacked all-solid-state battery.
JP2017225032A 2017-11-22 2017-11-22 Series stacked all-solid-state battery Active JP6885309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017225032A JP6885309B2 (en) 2017-11-22 2017-11-22 Series stacked all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017225032A JP6885309B2 (en) 2017-11-22 2017-11-22 Series stacked all-solid-state battery

Publications (2)

Publication Number Publication Date
JP2019096476A JP2019096476A (en) 2019-06-20
JP6885309B2 true JP6885309B2 (en) 2021-06-09

Family

ID=66971966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017225032A Active JP6885309B2 (en) 2017-11-22 2017-11-22 Series stacked all-solid-state battery

Country Status (1)

Country Link
JP (1) JP6885309B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172127B2 (en) 2018-05-14 2022-11-16 トヨタ自動車株式会社 All-solid-state battery and manufacturing method thereof
KR102231584B1 (en) * 2019-07-23 2021-03-24 주식회사 루트제이드 Electrode assembly for secondary battery, method of manufacturing the same and lithium secondary battery comprising the same
JP7209191B2 (en) * 2019-10-02 2023-01-20 トヨタ自動車株式会社 laminated battery
JP7253147B2 (en) * 2019-11-26 2023-04-06 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
WO2021149382A1 (en) * 2020-01-24 2021-07-29 パナソニックIpマネジメント株式会社 Battery
JP7343419B2 (en) * 2020-02-14 2023-09-12 本田技研工業株式会社 Solid state battery cells and solid state battery modules
EP4117053A1 (en) 2020-03-06 2023-01-11 Toyota Jidosha Kabushiki Kaisha Solid-state battery
JP2021150188A (en) * 2020-03-19 2021-09-27 本田技研工業株式会社 Solid-state battery cell
JP7318598B2 (en) * 2020-07-03 2023-08-01 トヨタ自動車株式会社 solid state battery
JP7444029B2 (en) 2020-11-11 2024-03-06 株式会社豊田自動織機 Energy storage cells and energy storage devices
EP4270524A1 (en) * 2020-12-28 2023-11-01 Panasonic Intellectual Property Management Co., Ltd. Battery, layered battery, and method for manufacturing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273436A (en) * 2003-02-18 2004-09-30 Matsushita Electric Ind Co Ltd All solid thin film laminated battery
JPWO2012081366A1 (en) * 2010-12-15 2014-05-22 株式会社村田製作所 Solid battery
US9373869B2 (en) * 2011-05-27 2016-06-21 Toyota Jidosha Kabushiki Kaisha Bipolar all-solid-state battery
JP2014067519A (en) * 2012-09-25 2014-04-17 Jsr Corp Power storage cell and method for manufacturing the same
JP2015162353A (en) * 2014-02-27 2015-09-07 トヨタ自動車株式会社 Method for manufacturing all-solid battery

Also Published As

Publication number Publication date
JP2019096476A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP6885309B2 (en) Series stacked all-solid-state battery
US20220093933A1 (en) Electrode plate, electrochemical apparatus, and apparatus thereof
JP7070052B2 (en) All solid state battery
US20220093932A1 (en) Electrode plate, electrochemical apparatus, and apparatus thereof
JP5697276B2 (en) Electrode assembly having novel structure and method of manufacturing the same
US20220102698A1 (en) Electrode plate, electrochemical apparatus, and apparatus thereof
US20070072077A1 (en) Lithium secondary battery, negative electrode therefor, and method of their manufacture
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
JP2006318892A (en) Square lithium secondary battery
JP2020013729A (en) Manufacturing method of series-stacked all-solid-state battery
JP2014532955A (en) Secondary battery
CN111933999B (en) Solid-state battery, battery module, battery pack and related device thereof
JP6179404B2 (en) Manufacturing method of secondary battery
CN116169243A (en) Negative electrode for lithium secondary battery, method of manufacturing the same, and secondary battery including the same
US20140370379A1 (en) Secondary battery and manufacturing method thereof
JP6051038B2 (en) Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2015018670A (en) Bipolar battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP2017016905A (en) Charging/discharging method for lithium secondary battery
WO2015029084A1 (en) Electrode structure and secondary battery
US11670755B2 (en) Modified electrolyte-anode interface for solid-state lithium batteries
CN112436106A (en) Metal positive electrode and battery based on metal positive electrode
CN114583245B (en) All-solid secondary battery
JP7462165B2 (en) Non-aqueous electrolyte secondary battery
WO2023223581A1 (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R151 Written notification of patent or utility model registration

Ref document number: 6885309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151