JP7304578B2 - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP7304578B2
JP7304578B2 JP2019218456A JP2019218456A JP7304578B2 JP 7304578 B2 JP7304578 B2 JP 7304578B2 JP 2019218456 A JP2019218456 A JP 2019218456A JP 2019218456 A JP2019218456 A JP 2019218456A JP 7304578 B2 JP7304578 B2 JP 7304578B2
Authority
JP
Japan
Prior art keywords
positive electrode
mixture layer
electrode mixture
layer
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019218456A
Other languages
Japanese (ja)
Other versions
JP2020109748A (en
Inventor
晃宏 堀川
和史 宮武
基裕 大河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to US16/714,604 priority Critical patent/US11342592B2/en
Priority to EP19219373.8A priority patent/EP3675263B1/en
Priority to CN201911370000.XA priority patent/CN111384429A/en
Publication of JP2020109748A publication Critical patent/JP2020109748A/en
Application granted granted Critical
Publication of JP7304578B2 publication Critical patent/JP7304578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本開示は、正極層、負極層、固体電解質層、およびそれを用いた全固体電池に関する。 The present disclosure relates to a positive electrode layer, a negative electrode layer, a solid electrolyte layer, and an all-solid battery using the same.

近年、パソコンおよび携帯電話などの電子機器の軽量化およびコードレス化などにより、繰り返し使用可能な二次電池の開発が求められている。二次電池として、ニッケルカドミウム電池、ニッケル水素電池、鉛畜電池およびリチウムイオン電池などがある。これらの中でも、リチウムイオン電池は、軽量、高電圧および高エネルギー密度といった特徴があることから、注目を集めている。 2. Description of the Related Art In recent years, the development of reusable secondary batteries has been demanded due to the reduction in weight and cordlessness of electronic devices such as personal computers and mobile phones. Secondary batteries include nickel-cadmium batteries, nickel-hydrogen batteries, lead-acid batteries, and lithium-ion batteries. Among these, lithium-ion batteries are attracting attention due to their features such as light weight, high voltage and high energy density.

リチウムイオン電池は、正極層、負極層およびこれらの間に配置された電解質によって構成されており、電解質には、例えば六フッ化リン酸リチウムなどの支持塩を有機溶剤に溶解させた電解液、または固体電解質が用いられる。現在、広く普及しているリチウムイオン電池は、有機溶剤を含む電解液が用いられているため可燃性である。そのため、リチウムイオン電池の安全性を確保するための材料、構造およびシステムが必要である。これに対し、電解質として不燃性である固体電解質を用いることで、上記、材料、構造およびシステムを簡素化できることが期待され、エネルギー密度の増加、製造コストの低減および生産性の向上を図ることができると考えられる。以下、固体電解質を用いたリチウムイオン電池を、「全固体電池」と呼ぶこととする。 Lithium ion batteries are composed of a positive electrode layer, a negative electrode layer, and an electrolyte disposed therebetween. Or a solid electrolyte is used. Lithium-ion batteries, which are currently in wide use, are flammable because they use electrolytes containing organic solvents. Therefore, there is a need for materials, structures and systems to ensure the safety of lithium-ion batteries. On the other hand, by using a nonflammable solid electrolyte as the electrolyte, it is expected that the above-mentioned materials, structures and systems can be simplified, and the energy density can be increased, the manufacturing cost can be reduced, and the productivity can be improved. It is possible. A lithium-ion battery using a solid electrolyte is hereinafter referred to as an "all-solid battery".

固体電解質は、大きくは有機固体電解質と無機固体電解質とに分けることができる。有機固体電解質は、25℃において、イオン伝導度が10-6S/cm程度であり、電解液のイオン伝導度が10-3S/cm程度であることと比べて極めて低い。そのため、有機固体電解質を用いた全固体電池を25℃の環境で動作させることは困難である。無機固体電解質としては、酸化物系固体電解質と硫化物系固体電解質とがある。これらのイオン伝導度は10-4~10-3S/cm程度であり、比較的イオン伝導度が高い。酸化物系固体電解質は、粒界抵抗が大きい。そこで、粒界抵抗を下げる手段として、粉体の焼結および薄膜化が検討されているが、焼結した場合は高温での処理により、正極あるいは負極の構成元素と固体電解質との構成元素が相互拡散するため、十分な特性を得ることが難しい。そのため、酸化物系固体電解質を用いた全固体電池は、薄膜での検討が主流である。一方で、硫化物系固体電解質は、酸化物系固体電解質と比べて粒界抵抗が小さいため、粉体の圧縮成型のみで、良好な特性が得られることから、近年盛んに研究が進められている。 Solid electrolytes can be roughly divided into organic solid electrolytes and inorganic solid electrolytes. The organic solid electrolyte has an ionic conductivity of about 10 −6 S/cm at 25° C., which is extremely low compared to the ionic conductivity of the electrolytic solution, which is about 10 −3 S/cm. Therefore, it is difficult to operate an all-solid-state battery using an organic solid electrolyte in an environment of 25°C. Inorganic solid electrolytes include oxide-based solid electrolytes and sulfide-based solid electrolytes. The ionic conductivity of these materials is about 10 −4 to 10 −3 S/cm, which is relatively high. Oxide-based solid electrolytes have high grain boundary resistance. Therefore, sintering the powder and thinning the film have been investigated as a means of lowering the grain boundary resistance. Due to mutual diffusion, it is difficult to obtain sufficient characteristics. Therefore, all-solid-state batteries using oxide-based solid electrolytes are mainly studied in thin films. On the other hand, since sulfide-based solid electrolytes have lower grain boundary resistance than oxide-based solid electrolytes, good characteristics can be obtained only by compression molding of powder, so research has been actively promoted in recent years. there is

そのような中、全固体電池は、例えば、車載用電池として、さらなる高電池容量化が要求されており、高電池容量化の手段としては、電極活物質層における活物質の高濃度化が挙げられるが、充放電に伴う膨張および収縮によるクラックの発生が顕著となり全固体電池の耐久性が低下するという問題がある。 Under such circumstances, all-solid-state batteries, for example, as batteries for vehicles, are required to have a higher battery capacity. However, there is a problem that the cracks due to expansion and contraction due to charging and discharging become conspicuous and the durability of the all-solid-state battery decreases.

これに対して、特許文献1には、図5に示されるように、正極合剤層212の厚み方向において、電極活物質層である正極合剤層212における活物質濃度が、正極合剤層212の固体電解質層240界面側から正極集電体211界面側に近くなるほど大きくなり、かつ、正極合剤層212における空隙率が、固体電解質層240界面側から正極集電体211界面側に近くなるほど大きくなる全固体電池300が開示されている。 On the other hand, in Patent Document 1, as shown in FIG. The porosity of the positive electrode mixture layer 212 increases from the solid electrolyte layer 240 interface side to the positive electrode current collector 211 interface side of 212, and the porosity in the positive electrode mixture layer 212 is closer to the positive electrode current collector 211 interface side from the solid electrolyte layer 240 interface side. An all-solid-state battery 300 is disclosed that is becoming larger.

特開2012-104270号公報JP 2012-104270 A

しかしながら、前記従来の全固体電池の構成では、全固体電池の高い耐久性と高い電池容量との両立が困難である。そこで、本開示では、高電池容量であり、かつ、耐久性が向上した全固体電池を提供する。 However, in the configuration of the conventional all-solid-state battery, it is difficult to achieve both high durability and high battery capacity of the all-solid-state battery. Therefore, the present disclosure provides an all-solid-state battery with high battery capacity and improved durability.

上記課題を解決するために、本開示における全固体電池は、正極集電体、ならびに、前記正極集電体上に形成され、少なくとも正極活物質および固体電解質を含む正極合剤層を備える正極層と、負極集電体、ならびに、前記負極集電体上に形成され、少なくとも負極活物質および固体電解質を含む負極合剤層を備える負極層と、前記正極合剤層と前記負極合剤層との間に配置され、少なくともイオン伝導性を有する固体電解質を含む固体電解質層と、を備え、前記正極合剤層における前記正極活物質の体積および前記固体電解質の体積の合計に対する前記正極活物質の体積の比である活物質体積比が、前記正極合剤層の厚み方向において、前記正極合剤層の前記固体電解質層界面側から前記正極集電体界面側に近くなるほど大きくなり、前記正極合剤層の空隙率が、前記正極合剤層の厚み方向において、前記正極合剤層の前記固体電解質層界面側から前記正極集電体界面側に近くなるほど小さくなる。 In order to solve the above problems, an all-solid-state battery in the present disclosure includes a positive electrode current collector and a positive electrode layer formed on the positive electrode current collector and including a positive electrode mixture layer containing at least a positive electrode active material and a solid electrolyte. a negative electrode current collector; and a negative electrode layer comprising a negative electrode mixture layer formed on the negative electrode current collector and containing at least a negative electrode active material and a solid electrolyte; the positive electrode mixture layer and the negative electrode mixture layer; a solid electrolyte layer disposed between and containing at least a solid electrolyte having ionic conductivity; The active material volume ratio, which is the volume ratio, increases in the thickness direction of the positive electrode mixture layer as it approaches the positive electrode current collector interface side from the solid electrolyte layer interface side of the positive electrode mixture layer. In the thickness direction of the positive electrode mixture layer, the porosity of the agent layer decreases as the positive electrode mixture layer approaches the positive electrode current collector interface side from the solid electrolyte layer interface side.

本開示によれば、高電池容量であり、かつ、耐久性が向上した全固体電池を提供することができる。 According to the present disclosure, it is possible to provide an all-solid-state battery with high battery capacity and improved durability.

図1は、本実施の形態における全固体電池の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of an all-solid-state battery in this embodiment. 図2は、本実施の形態における第2正極合剤層において活物質体積比が0.5以上である場合の正極合剤層のロールプレス工程の概略図である。FIG. 2 is a schematic diagram of the roll-pressing step of the positive electrode mixture layer when the volume ratio of the active material in the second positive electrode mixture layer is 0.5 or more in the present embodiment. 図3は、本実施の形態における第2正極合剤層において活物質体積比が0.5未満である場合の正極合剤層のロールプレス工程の概略図である。FIG. 3 is a schematic diagram of the roll-pressing step of the positive electrode mixture layer when the volume ratio of the active material in the second positive electrode mixture layer is less than 0.5 in the present embodiment. 図4は、本実施の形態の変形例における全固体電池の一例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing an example of an all-solid-state battery in a modified example of the present embodiment. 図5は、従来技術の全固体電池の一例を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing an example of a conventional all-solid-state battery.

(本開示に至った知見)
従来の特許文献1の技術においては、特に、全固体電池の高電池容量化のために、正極合剤層などの電極活物質層における活物質濃度(活物質体積/[活物質体積+固体電解質体積])を、0.7より大きい組成とする場合は、活物質間を繋ぐことで電極活物質層の形状を保持すると共に、イオン伝導経路を確保する機能を発現させる固体電解質の割合が、非常に少なくなる。さらに、電極活物質層が、活物質をより多く含む集電体界面側に近くなるほど空隙率が大きくなる構造のため、空隙が、電極活物質層の形状を保持する機能、および、イオン伝導経路を確保する機能を更に阻害し、耐久性および電池容量が低下する問題がある。
(Knowledge leading to this disclosure)
In the conventional technique of Patent Document 1, in particular, in order to increase the battery capacity of an all-solid-state battery, the active material concentration in the electrode active material layer such as the positive electrode mixture layer (active material volume / [active material volume + solid electrolyte volume]) is greater than 0.7, the ratio of the solid electrolyte that exhibits the function of maintaining the shape of the electrode active material layer by connecting the active materials and securing the ion conduction path is becomes very low. Furthermore, since the electrode active material layer has a structure in which the porosity increases as it gets closer to the current collector interface containing more active material, the voids have the function of maintaining the shape of the electrode active material layer and the ion conduction path. There is a problem that the function to ensure is further hindered, and the durability and battery capacity are lowered.

本開示は、このような知見に基づいてなされたものであり、高電池容量であり、かつ、耐久性が向上した全固体電池を提供する。 The present disclosure has been made based on such findings, and provides an all-solid-state battery with high battery capacity and improved durability.

本開示の一態様における全固体電池は、正極集電体、ならびに、前記正極集電体上に形成され、少なくとも正極活物質および固体電解質を含む正極合剤層を備える正極層と、負極集電体、ならびに、前記負極集電体上に形成され、少なくとも負極活物質および固体電解質を含む負極合剤層を備える負極層と、前記正極合剤層と前記負極合剤層との間に配置され、少なくともイオン伝導性を有する固体電解質を含む固体電解質層と、を備え、前記正極合剤層における前記正極活物質の体積および前記固体電解質の体積の合計に対する前記正極活物質の体積の比であるの活物質体積比が、前記正極合剤層の厚み方向において、前記正極合剤層の前記固体電解質層界面側から前記正極集電体界面側に近くなるほど大きくなり、前記正極合剤層の空隙率が、前記正極合剤層の厚み方向において、前記正極合剤層の前記固体電解質層界面側から前記正極集電体界面側に近くなるほど小さくなる。 An all-solid-state battery in one aspect of the present disclosure includes a positive electrode current collector, a positive electrode layer formed on the positive electrode current collector and including a positive electrode mixture layer containing at least a positive electrode active material and a solid electrolyte, and a negative electrode current collector. and a negative electrode layer formed on the negative electrode current collector and including a negative electrode mixture layer containing at least a negative electrode active material and a solid electrolyte, and disposed between the positive electrode mixture layer and the negative electrode mixture layer. and a solid electrolyte layer containing at least a solid electrolyte having ionic conductivity, wherein the ratio of the volume of the positive electrode active material to the sum of the volume of the positive electrode active material and the volume of the solid electrolyte in the positive electrode mixture layer is The volume ratio of the active material increases in the thickness direction of the positive electrode mixture layer as it approaches the positive electrode current collector interface side from the solid electrolyte layer interface side of the positive electrode mixture layer, and the voids in the positive electrode mixture layer In the thickness direction of the positive electrode mixture layer, the ratio decreases as the positive electrode mixture layer approaches the positive electrode current collector interface side from the solid electrolyte layer interface side.

なお、本開示において、「正極合剤層の厚み方向において、正極合剤層の固体電解質層界面側から正極集電体界面側に近くなるほど大きくなり」とは、上記活物質体積比が、正極合剤層の固体電解質層界面側から正極集電体界面側に向かって増加することを意味し、より詳細には、正極合剤層中の異なる2つの部分の局所的な活物質体積比を比較した場合に、正極合剤層における、正極集電体により近い部分の局所的な活物質体積比が、固体電解質層により近い部分の局所的な活物質体積比よりも大きいことを意味する。この場合の活物質体積比の増加には、傾斜状増加、線状増加等の連続的増加、および、階段状増加等の間歇的増加が含まれる。 In the present disclosure, “in the thickness direction of the positive electrode mixture layer, it becomes larger as it approaches the positive electrode current collector interface side from the solid electrolyte layer interface side of the positive electrode mixture layer” means that the active material volume ratio is It means increasing from the solid electrolyte layer interface side of the mixture layer toward the positive electrode current collector interface side, more specifically, the local active material volume ratio of two different parts in the positive electrode mixture layer When compared, it means that the local active material volume ratio in the portion closer to the positive electrode current collector in the positive electrode mixture layer is higher than the local active material volume ratio in the portion closer to the solid electrolyte layer. The increase in the active material volume ratio in this case includes a continuous increase such as a gradient increase, a linear increase, and an intermittent increase such as a stepwise increase.

また、「正極合剤層の固体電解質層界面側から正極集電体界面側に近くなるほど小さくなる」とは、正極合剤層の空隙率が、正極合剤層の固体電解質層界面側から正極集電体界面側に向かって減少することを意味し、より詳細には、正極合剤層中の異なる2つの部分の局所的な空隙率を比較した場合に、正極合剤層における、正極集電体により近い部分の局所的な空隙率が、固体電解質層により近い部分の局所的な空隙率よりも小さいことを意味する。この場合の空隙率の減少には、傾斜状減少、線状減少等の連続的減少、および、階段状減少等の間歇的減少が含まれる。 In addition, "the porosity of the positive electrode mixture layer becomes smaller as it approaches the positive electrode current collector interface side from the solid electrolyte layer interface side of the positive electrode mixture layer" means that the porosity of the positive electrode mixture layer decreases from the solid electrolyte layer interface side of the positive electrode mixture layer to the positive electrode layer interface side. It means that it decreases toward the current collector interface side, and more specifically, when comparing the local porosity of two different parts in the positive electrode mixture layer, the positive electrode collector It means that the local porosity of the portion closer to the electrode is smaller than the local porosity of the portion closer to the solid electrolyte layer. The porosity reduction in this case includes continuous reduction such as gradient reduction and linear reduction, and intermittent reduction such as stepwise reduction.

本開示によれば、正極合剤層における活物質体積比が、正極合剤層と正極集電体との界面側に近くなるほど大きくなり、正極合剤層の空隙率が、正極合剤層と正極集電体との界面側に近くなるほど小さくなる。これにより、正極活物質の活物質体積比が大きい高電池容量向け組成を有する正極合剤層においても、特に活物質体積比の大きい、正極合剤層の正極集電体に近い部分では、正極合剤層内にて正極活物質同士が近接するため正極活物質の膨張および収縮に対して相互に拘束力が働くことで正極合剤層内でのクラック等のダメージが抑制される効果が得られる。また、正極活物質の膨張および収縮の影響が顕在化しやすい、正極合剤層の固体電解質層に近い部分では、空隙率が比較的高くなるため、正極活物質の膨張および収縮の影響を空隙により吸収することができる。 According to the present disclosure, the volume ratio of the active material in the positive electrode mixture layer increases toward the interface side between the positive electrode mixture layer and the positive electrode current collector, and the porosity of the positive electrode mixture layer increases with the positive electrode mixture layer. It becomes smaller as it approaches the interface side with the positive electrode current collector. As a result, even in a positive electrode mixture layer having a composition for high battery capacity in which the active material volume ratio of the positive electrode active material is large, the portion of the positive electrode mixture layer near the positive electrode current collector, in which the active material volume ratio is particularly high, does not Since the positive electrode active materials are close to each other in the mixture layer, the expansion and contraction of the positive electrode active materials are mutually restrained, thereby obtaining the effect of suppressing damage such as cracks in the positive electrode mixture layer. be done. In addition, since the porosity is relatively high in the portion of the positive electrode mixture layer near the solid electrolyte layer, where the influence of the expansion and contraction of the positive electrode active material is likely to become apparent, the influence of the expansion and contraction of the positive electrode active material is suppressed by the voids. can be absorbed.

さらに、固体電解質は、正極活物質間を繋ぐことで電極としての形状を保持すると共に、イオン伝導経路を確保する機能を発現させるが、固体電解質の体積比が非常に小さい高電池容量向け組成となる正極合剤層においても、特に固体電解質の体積比が小さい、正極合剤層の正極集電体に近い部分では、空隙率が小さいため、正極合剤層の形状が保持できる構造的な強度を空隙の影響により失うことがなく、かつ、イオン伝導経路を確保できる。また、正極合剤層の固体電解質層に近い部分では、比較的固体電解質の体積比が大きいため、固体電解質層へのイオン伝導経路が確保されやすくなる。 Furthermore, the solid electrolyte maintains the shape of the electrode by connecting the positive electrode active materials, and exhibits the function of securing the ion conduction path. Even in the positive electrode mixture layer, the porosity is small in the portion of the positive electrode mixture layer near the positive electrode current collector, where the volume ratio of the solid electrolyte is particularly small. is not lost due to the influence of voids, and an ionic conduction path can be secured. In addition, since the volume ratio of the solid electrolyte is relatively large in the portion of the positive electrode mixture layer near the solid electrolyte layer, an ion conduction path to the solid electrolyte layer is easily secured.

よって、高電池容量向け組成を有する正極合剤層を備える場合であっても、全固体電池の耐久性を向上させることができ、高電池容量であり、かつ、耐久性が向上した全固体電池となる。 Therefore, even when a positive electrode mixture layer having a composition for high battery capacity is provided, the durability of the all-solid-state battery can be improved, and the all-solid-state battery has a high battery capacity and improved durability. becomes.

また、例えば、前記全固体電池は、前記正極合剤層、前記負極合剤層、および前記固体電解質層よりなる群から選ばれた少なくとも一層に含まれる、溶剤の濃度が50ppm以下であり、かつ、バインダーの濃度が100ppm以下であってもよい。 Further, for example, in the all-solid-state battery, the solvent contained in at least one layer selected from the group consisting of the positive electrode mixture layer, the negative electrode mixture layer, and the solid electrolyte layer has a concentration of 50 ppm or less, and , the concentration of the binder may be 100 ppm or less.

これにより、正極合剤層、負極合剤層、および固体電解質層よりなる群から選ばれた少なくとも一層は、溶剤およびバインダーをほとんど含まないことから、溶剤の影響による固体電解質の劣化を抑制できると共に、電池特性に寄与しないバインダーを含まないことで、電池容量が向上する。よって、より高電池容量であり、かつ、耐久性が向上した全固体電池となる。 As a result, at least one layer selected from the group consisting of the positive electrode mixture layer, the negative electrode mixture layer, and the solid electrolyte layer contains almost no solvent or binder, so that deterioration of the solid electrolyte due to the influence of the solvent can be suppressed. , battery capacity is improved by not containing a binder that does not contribute to battery characteristics. Therefore, an all-solid-state battery with higher battery capacity and improved durability is obtained.

また、例えば、前記全固体電池は、前記正極合剤層において、前記正極集電体に近い部分の前記活物質体積比が、0.7より大きくてもよい。 Further, for example, in the all-solid-state battery, the active material volume ratio of a portion of the positive electrode mixture layer near the positive electrode current collector may be greater than 0.7.

これにより、正極集電体に近い部分の正極活物質の活物質体積比が高くなるため、正極合剤層内のリチウムイオン量を増加でき、より高電池容量の全固体電池となる。 As a result, the active material volume ratio of the positive electrode active material in the portion close to the positive electrode current collector increases, so that the amount of lithium ions in the positive electrode mixture layer can be increased, resulting in an all-solid-state battery with a higher battery capacity.

また、例えば、前記全固体電池は、前記正極合剤層において、前記固体電解質層に近い部分の前記活物質体積比が、0.5以上であってもよい。 Further, for example, in the all-solid-state battery, the active material volume ratio of a portion near the solid electrolyte layer in the positive electrode mixture layer may be 0.5 or more.

これにより、固体電解質層に近い部分の正極活物質の活物質体積比が高くなるため、正極合剤層内のリチウムイオン量を増加でき、より高電池容量の全固体電池となる。 As a result, the active material volume ratio of the positive electrode active material in the portion close to the solid electrolyte layer increases, so that the amount of lithium ions in the positive electrode mixture layer can be increased, resulting in an all-solid battery with a higher battery capacity.

また、例えば、前記全固体電池は、前記正極合剤層は、前記正極集電体側に配置された第1正極合剤層と、前記固体電解質層側に配置された第2正極合剤層と、を有し、前記第1正極合剤層における前記物質体積比が、前記第2正極合剤層における前記活物質体積比よりも大きく、前記第1正極合剤層の空隙率が、前記第2正極合剤層の空隙率よりも小さくてもよい。 Further, for example, in the all-solid-state battery, the positive electrode mixture layer includes a first positive electrode mixture layer disposed on the positive electrode current collector side and a second positive electrode mixture layer disposed on the solid electrolyte layer side. , wherein the material volume ratio in the first positive electrode mixture layer is higher than the active material volume ratio in the second positive electrode mixture layer, and the porosity of the first positive electrode mixture layer is It may be smaller than the porosity of the two positive electrode mixture layers.

これにより、正極合剤層が複数の層を有するため、層ごとに活物質体積比および空隙率を設定できることから、簡便に全固体電池を製造することができる。 Accordingly, since the positive electrode mixture layer has a plurality of layers, the active material volume ratio and the porosity can be set for each layer, so that the all-solid-state battery can be easily manufactured.

また、例えば、前記全固体電池は、前記第1正極合剤層における前記活物質体積比が、0.7より大きくてもよい。 Further, for example, in the all-solid-state battery, the volume ratio of the active material in the first positive electrode mixture layer may be greater than 0.7.

これにより、正極集電体に近い第1正極合剤層における正極活物質の活物質体積比が高くなるため、正極合剤層内のリチウムイオン量を増加でき、より高電池容量の全固体電池となる。 As a result, the active material volume ratio of the positive electrode active material in the first positive electrode mixture layer close to the positive electrode current collector increases, so the amount of lithium ions in the positive electrode mixture layer can be increased, and the all-solid-state battery with a higher battery capacity. becomes.

また、例えば、前記全固体電池は、前記第1正極合剤層における空隙率が、0.05%以上8%以下であってもよい。 Further, for example, in the all-solid-state battery, the first positive electrode mixture layer may have a porosity of 0.05% or more and 8% or less.

これにより、第1正極合剤層の空隙率が小さい範囲となるため、空隙による正極合剤層内の電気抵抗が低下し、より高電池容量の全固体電池となる。 As a result, since the porosity of the first positive electrode mixture layer is in a small range, the electric resistance in the positive electrode mixture layer due to the voids is reduced, resulting in an all-solid-state battery with a higher battery capacity.

また、例えば、前記全固体電池は、前記第2正極合剤層における前記活物質体積比が、0.5以上であってもよい。 Further, for example, in the all-solid-state battery, the volume ratio of the active material in the second positive electrode mixture layer may be 0.5 or more.

これにより、固体電解質層に近い第2正極合剤層における正極活物質の活物質体積比が高くなるため、正極合剤層内のリチウムイオン量を増加でき、より高電池容量の全固体電池となる。また、第2正極合剤層内において、流動性が低く硬度の高い正極活物質が多数を占めることになるため、ロールプレスなどで正極合剤層をプレスする場合には、第2正極合剤層の形状が保持されることで、正極合剤層全体にプレスの力が伝わり、押し固められることから、より固体電解質と正極活物質とが密着し、イオン伝導経路が確保されるため、電池特性が向上した全固体電池となる。 As a result, the active material volume ratio of the positive electrode active material in the second positive electrode mixture layer close to the solid electrolyte layer increases, so the amount of lithium ions in the positive electrode mixture layer can be increased, and an all-solid-state battery with a higher battery capacity can be obtained. Become. Further, in the second positive electrode mixture layer, the positive electrode active material with low fluidity and high hardness occupies the majority. By maintaining the shape of the layer, the force of the press is transmitted to the entire positive electrode mixture layer, and the solid electrolyte and the positive electrode active material are further adhered to each other. It becomes an all-solid-state battery with improved characteristics.

また、例えば、前記全固体電池は、前記第2正極合剤層の空隙率が、5%以上35%以下であってもよい。 Further, for example, in the all-solid-state battery, the porosity of the second positive electrode mixture layer may be 5% or more and 35% or less.

これにより、第1正極合剤層の空隙率が適切な範囲となるため、空隙による正極合剤層内の電気抵抗の増加を抑制しつつ、正極活物質の膨張および収縮の影響を空隙により吸収することができるため、高電池容量と耐久性の向上を両立した全固体電池となる。 As a result, since the porosity of the first positive electrode mixture layer is within an appropriate range, the effect of expansion and contraction of the positive electrode active material is absorbed by the voids while suppressing an increase in electrical resistance in the positive electrode mixture layer due to the voids. Therefore, it becomes an all-solid-state battery that achieves both high battery capacity and improved durability.

また、例えば、前記全固体電池は、前記正極層が、前記正極集電体と前記正極合剤層との間に配置され、少なくとも導電剤を含む正極接合層をさらに備えてもよい。 Further, for example, in the all-solid-state battery, the positive electrode layer may further include a positive electrode junction layer that is disposed between the positive electrode current collector and the positive electrode mixture layer and that contains at least a conductive agent.

これにより、正極接合層を介して、正極集電体と正極合剤層とが接合させることになる。正極合剤層は、正極活物質よりも硬度の低い正極接合層へ食込み、正極接合層と正極合剤層の接着力が高くなる。また、正極接合層に、少量のバインダーが含まれる場合には、バインダーの接着力により、正極接合層と正極集電体との接着力が高くなる。よって、正極接合層を介して、正極集電体と正極合剤層とが接合させることにより、電子伝導度を損なうことなく正極集電体と正極合剤層との接着力を高くなり、さらに耐久性の向上した全固体電池となる。 As a result, the positive electrode current collector and the positive electrode mixture layer are bonded through the positive electrode bonding layer. The positive electrode mixture layer cuts into the positive electrode bonding layer, which has a lower hardness than the positive electrode active material, and the adhesive strength between the positive electrode bonding layer and the positive electrode mixture layer increases. Further, when the positive electrode bonding layer contains a small amount of binder, the bonding strength of the binder increases the bonding strength between the positive electrode bonding layer and the positive electrode current collector. Therefore, by bonding the positive electrode current collector and the positive electrode mixture layer through the positive electrode bonding layer, the adhesive strength between the positive electrode current collector and the positive electrode mixture layer is increased without impairing the electronic conductivity. It becomes an all-solid-state battery with improved durability.

以下、本開示の実施の形態に係る全固体電池について、図面を参照しながら説明する。なお、以下の実施の形態は、いずれも本開示の一具体例を示すものであり、数値、形状、材料、構成要素、構成要素の配置位置および接続形態などは一例であり、本開示を限定するものではない。また、以下の実施の形態における構成要素のうちの、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, all-solid-state batteries according to embodiments of the present disclosure will be described with reference to the drawings. It should be noted that the following embodiments all show one specific example of the present disclosure, and the numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of the constituent elements, etc. are examples, and do not limit the present disclosure. not something to do. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in independent claims representing the highest concept of the present disclosure will be described as optional constituent elements.

また、各図は、本開示を示すために適宜強調、省略、または比率の調整を行った模式図であり、必ずしも厳密に図示されたものではなく、実際の形状、位置関係、および比率とは異なる場合がある。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡素化される場合がある。 In addition, each figure is a schematic diagram that has been appropriately emphasized, omitted, or adjusted in proportion to show the present disclosure, and is not necessarily strictly illustrated, and the actual shape, positional relationship, and ratio may differ. In each figure, substantially the same configurations are denoted by the same reference numerals, and redundant description may be omitted or simplified.

また、本明細書において、平行などの要素間の関係性を示す用語、および、矩形などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。 Also, in this specification, terms that indicate the relationship between elements such as parallel, terms that indicate the shape of elements such as rectangles, and numerical ranges are not expressions that express only strict meanings, but substantially It is an expression that means to include a difference in an equivalent range, for example, a few percent difference.

また、本明細書において「平面視」とは、全固体電池の積層方向に沿って全固体電池を見た場合を意味し、本明細書における「厚み」とは、全固体電池および各層の積層方向の長さである。 In this specification, "plan view" means the case of viewing the all-solid-state battery along the stacking direction of the all-solid-state battery. is the length of the direction.

また、本明細書において、全固体電池の構成における「上」および「下」という用語は、絶対的な空間認識における上方向(鉛直上方)および下方向(鉛直下方)を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上」および「下」という用語は、2つの構成要素が互いに間隔を空けて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。 Also, in this specification, the terms “top” and “bottom” in the configuration of the all-solid-state battery do not refer to the upward direction (vertically upward) and the downward direction (vertically downward) in absolute spatial recognition, but It is used as a term defined by a relative positional relationship based on the stacking order in the configuration. Also, the terms "above" and "below" are used only when two components are spaced apart from each other and there is another component between the two components, as well as when two components are spaced apart from each other. It also applies when two components are in contact with each other and are placed in close contact with each other.

また、本明細書において、断面図は、全固体電池の中心部を積層方向に切断した場合の断面を示す図である。 Further, in this specification, a cross-sectional view is a view showing a cross section when the central portion of the all-solid-state battery is cut in the stacking direction.

(実施の形態)
[A.全固体電池]
図1は、本実施の形態における全固体電池の一例を示す概略断面図である。全固体電池100は、図1における全固体電池100は、正極集電体11、ならびに、正極集電体11上に形成され、少なくとも正極活物質1および固体電解質2を含む正極合剤層12を備える正極層20と、負極集電体13、ならびに、負極集電体13上に形成され、少なくとも負極活物質3および固体電解質2を含む負極合剤層14を備える負極層30と、正極合剤層12と負極合剤層14との間に配置され、少なくともイオン伝導性を有する固体電解質2を含む固体電解質層40と、を備える。さらに、正極層20は、正極集電体11と正極合剤層12との間に配置され、少なくとも導電剤を含む正極接合層5を備える。
(Embodiment)
[A. All-solid-state battery]
FIG. 1 is a schematic cross-sectional view showing an example of an all-solid-state battery in this embodiment. The all-solid-state battery 100 in FIG. 1 includes a positive electrode current collector 11 and a positive electrode mixture layer 12 formed on the positive electrode current collector 11 and containing at least a positive electrode active material 1 and a solid electrolyte 2. A positive electrode layer 20, a negative electrode current collector 13, and a negative electrode layer 30 including a negative electrode mixture layer 14 formed on the negative electrode current collector 13 and containing at least the negative electrode active material 3 and the solid electrolyte 2, and a positive electrode mixture A solid electrolyte layer 40 disposed between the layer 12 and the negative electrode mixture layer 14 and containing at least a solid electrolyte 2 having ionic conductivity. Furthermore, the positive electrode layer 20 includes a positive electrode bonding layer 5 that is arranged between the positive electrode current collector 11 and the positive electrode mixture layer 12 and contains at least a conductive agent.

なお、正極層20は、正極接合層5を備えず、正極合剤層12と正極集電体11とが、接した状態で形成されていてもよい。 The positive electrode layer 20 may not include the positive electrode bonding layer 5, and the positive electrode mixture layer 12 and the positive electrode current collector 11 may be formed in contact with each other.

また、全固体電池100は、正極合剤層12における正極活物質1の体積および固体電解質2の体積の合計に対する正極活物質1の体積の比である活物質体積比が、正極合剤層12の厚み方向において、正極合剤層12の固体電解質層40界面側から正極集電体11界面側に近くなるほど大きくなり、正極合剤層12の空隙率が、正極合剤層12の厚み方向において、正極合剤層12の固体電解質層40界面側から正極集電体11界面側に近くなるほど小さくなる。活物質体積比は、正極活物質1の体積および固体電解質2の体積の合計に対する正極活物質1の体積の比であり、活物質体積比=正極活物質体積/(正極活物質体積+固体電解質体積)で計算される値である。 Further, in the all-solid-state battery 100, the active material volume ratio, which is the ratio of the volume of the positive electrode active material 1 to the sum of the volume of the positive electrode active material 1 and the volume of the solid electrolyte 2 in the positive electrode mixture layer 12, is In the thickness direction of the positive electrode mixture layer 12, the porosity increases from the solid electrolyte layer 40 interface side of the positive electrode mixture layer 12 toward the positive electrode current collector 11 interface side, and the porosity of the positive electrode mixture layer 12 in the thickness direction of the positive electrode mixture layer 12 is , becomes smaller as it approaches the positive electrode current collector 11 interface side from the solid electrolyte layer 40 interface side of the positive electrode mixture layer 12 . The active material volume ratio is the ratio of the volume of the positive electrode active material 1 to the total volume of the positive electrode active material 1 and the volume of the solid electrolyte 2, and the active material volume ratio = positive electrode active material volume / (positive electrode active material volume + solid electrolyte volume).

図1においては、正極合剤層12は、第1正極合剤層12aおよび第2正極合剤層12bを有し、正極合剤層12において、第1正極合剤層12aは、正極合剤層12の中で正極集電体11により近い側に配置されており、第2正極合剤層12bは、正極合剤層12の中で固体電解質層40により近い側に配置されている。第1正極合剤層12aおよび第2正極合剤層12bは、いずれも正極活物質1および固体電解質2を含有しており、第1正極合剤層12aの活物質体積比(正極活物質体積/[正極活物質体積+固体電解質体積])をa1、第1正極合剤層12aの空隙率(正極合剤層12における空隙4の比率)をb1とし、第2正極合剤層12bの活物質体積比をa2とし、第2正極合剤層12bの空隙率をb2としたとき、a1>a2、かつ、b1<b2という関係を満たす。すなわち、第1正極合剤層12a中の正極活物質1の体積比で表される活物質体積比は、第2正極合剤層12b中の正極活物質1の体積比で表される活物質体積比よりも大きく、かつ、第1正極合剤層12aの空隙率は、第2正極合剤層12bの空隙率よりも小さい。 In FIG. 1, the positive electrode mixture layer 12 has a first positive electrode mixture layer 12a and a second positive electrode mixture layer 12b. The second positive electrode mixture layer 12 b is arranged on the side closer to the positive electrode current collector 11 in the layer 12 , and the second positive electrode mixture layer 12 b is arranged on the side closer to the solid electrolyte layer 40 in the positive electrode mixture layer 12 . The first positive electrode mixture layer 12a and the second positive electrode mixture layer 12b both contain the positive electrode active material 1 and the solid electrolyte 2, and the active material volume ratio of the first positive electrode mixture layer 12a (the positive electrode active material volume /[positive electrode active material volume + solid electrolyte volume]) is a1, the porosity of the first positive electrode mixture layer 12a (the ratio of the voids 4 in the positive electrode mixture layer 12) is b1, and the activity of the second positive electrode mixture layer 12b is When the material volume ratio is a2 and the porosity of the second positive electrode mixture layer 12b is b2, the relationships a1>a2 and b1<b2 are satisfied. That is, the active material volume ratio represented by the volume ratio of the positive electrode active material 1 in the first positive electrode mixture layer 12a is the active material volume ratio represented by the volume ratio of the positive electrode active material 1 in the second positive electrode mixture layer 12b. The porosity of the first positive electrode mixture layer 12a is larger than the volume ratio, and the porosity of the second positive electrode mixture layer 12b is lower than that of the second positive electrode mixture layer 12b.

本実施の形態によれば、固体電解質2は、正極活物質1間を繋ぐことで正極合剤層12の形状を保持し、イオン伝導経路を確保する機能を発現するが、固体電解質2の体積比が非常に小さい高電池容量向け組成となる正極合剤層12においても、正極合剤層12は、特に固体電解質2の体積比が小さい正極集電体11側に近い部分で空隙率が小さいため、正極合剤層12の形状を保持できる構造的な強度を空隙の影響により失うことなく、かつ、正極合剤層12内のイオン伝導経路を確保できる。 According to the present embodiment, the solid electrolyte 2 maintains the shape of the positive electrode mixture layer 12 by connecting the positive electrode active materials 1, and exhibits a function of securing an ion conduction path. Even in the positive electrode mixture layer 12 having a composition for high battery capacity with a very small ratio, the porosity of the positive electrode mixture layer 12 is particularly small in a portion near the positive electrode current collector 11 side where the volume ratio of the solid electrolyte 2 is small. Therefore, the structural strength capable of maintaining the shape of the positive electrode mixture layer 12 is not lost due to the effect of the voids, and the ionic conduction paths in the positive electrode mixture layer 12 can be secured.

また、正極活物質1の体積比の非常に大きい組成の正極合剤層12を有する高電池容量向けの全固体電池の場合、正極合剤層12内にて正極活物質1同士が近接するため正極活物質1の膨張および収縮に対して相互に拘束力が働くことで、正極合剤層12内部では、クラック等によるダメージが抑制される効果が得られる。正極活物質1の膨張および収縮の影響は、固体電解質層40との界面で顕在化することになるが、本実施の形態によれば、正極合剤層12の厚み方向において、正極合剤層12の正極集電体11界面側から固体電解質層40界面側へ近くなるほど前記正極合剤層内の空隙率が大きいため、正極合剤層12と固体電解質層40との界面で顕在化する正極活物質1の膨張および収縮の影響を、空隙が存在することにより吸収することができ、全固体電池100の耐久性を向上させることが可能となる。 In addition, in the case of an all-solid-state battery for high battery capacity having the positive electrode mixture layer 12 having a composition with a very large volume ratio of the positive electrode active material 1, the positive electrode active materials 1 are close to each other in the positive electrode mixture layer 12. Since the expansion and contraction of the positive electrode active material 1 are mutually restrained, damage due to cracks or the like is suppressed inside the positive electrode mixture layer 12 . Although the influence of the expansion and contraction of the positive electrode active material 1 becomes apparent at the interface with the solid electrolyte layer 40, according to the present embodiment, in the thickness direction of the positive electrode mixture layer 12, the positive electrode mixture layer Since the porosity in the positive electrode mixture layer increases from the positive electrode current collector 11 interface side of 12 to the solid electrolyte layer 40 interface side, the positive electrode materialized at the interface between the positive electrode mixture layer 12 and the solid electrolyte layer 40 The effect of expansion and contraction of the active material 1 can be absorbed by the existence of the voids, and the durability of the all-solid-state battery 100 can be improved.

また、全固体電池100は、正極合剤層12、負極合剤層14、および固体電解質層40よりなる群から選ばれた少なくとも一層に含まれる溶剤の濃度が50ppm以下であり、かつ、正極合剤層12、負極合剤層14、および固体電解質層40よりなる群から選ばれた少なくとも一層に含まれるバインダーの濃度が100ppm以下であってもよい。 Further, in the all-solid-state battery 100, at least one layer selected from the group consisting of the positive electrode mixture layer 12, the negative electrode mixture layer 14, and the solid electrolyte layer 40 has a solvent concentration of 50 ppm or less, and The concentration of the binder contained in at least one layer selected from the group consisting of the agent layer 12, the negative electrode mixture layer 14, and the solid electrolyte layer 40 may be 100 ppm or less.

以下、本実施の形態に係る全固体電池100について、構成ごとに説明する。 Hereinafter, the all-solid-state battery 100 according to the present embodiment will be described for each configuration.

[B.正極層]
まず、本実施の形態における正極層20について説明する。本実施の形態における正極層20は、正極集電体11ならびに正極集電体11上に形成され、正極活物質1および固体電解質2を含有する正極合剤層12を備える。
[B. Positive electrode layer]
First, the positive electrode layer 20 in this embodiment will be described. Positive electrode layer 20 in the present embodiment includes positive electrode current collector 11 and positive electrode mixture layer 12 formed on positive electrode current collector 11 and containing positive electrode active material 1 and solid electrolyte 2 .

さらに、正極層20は、正極集電体11と正極合剤層12との間に配置され、少なくとも導電剤を含む正極接合層5を備える。 Furthermore, the positive electrode layer 20 includes a positive electrode bonding layer 5 that is arranged between the positive electrode current collector 11 and the positive electrode mixture layer 12 and contains at least a conductive agent.

[B-1.正極合剤層]
本実施の形態における正極合剤層12は、少なくとも正極活物質1および固体電解質2を含有する層であり、必要に応じて、導電助剤をさらに含有していてもよい。
[B-1. Positive electrode mixture layer]
Positive electrode mixture layer 12 in the present embodiment is a layer containing at least positive electrode active material 1 and solid electrolyte 2, and may further contain a conductive aid as necessary.

[B-1-2.正極活物質]
本実施の形態における正極活物質1は、負極層30よりも高い電位で結晶構造内にリチウム(Li)などの金属イオンが挿入または離脱され、リチウムなどの金属イオンの挿入または離脱に伴って酸化または還元が行われる物質である。正極活物質1の種類は、全固体電池100の種類に応じて適宜選択されればよいが、例えば、酸化物活物質、硫化物活物質等が挙げられる。
[B-1-2. Positive electrode active material]
In the positive electrode active material 1 of the present embodiment, metal ions such as lithium (Li) are inserted into or removed from the crystal structure at a potential higher than that of the negative electrode layer 30, and oxidation occurs as the metal ions such as lithium are inserted or removed. or a substance to be reduced. The type of the positive electrode active material 1 may be appropriately selected according to the type of the all-solid-state battery 100, and examples thereof include oxide active materials and sulfide active materials.

本実施の形態における正極活物質1は、例えば、酸化物活物質(リチウム含有遷移金属酸化物)が用いられる。酸化物活物質としては、例えば、LiCoO、LiNiO、LiMn、LiCoPO、LiNiPO、LiFePO、LiMnPO、これらの化合物の遷移金属を1または2の異種元素で置換することによって得られる化合物などが挙げられる。上記化合物の遷移金属を1または2の異種元素で置換することによって得られる化合物としては、LiNi1/3Co1/3Mn1/3、LiNi0.8Co0.15Al0.05、LiNi0.5Mn1.5など、公知の材料が用いられる。正極活物質は、1種で使用してもよく、2種以上を組み合わせて使用してもよい。 For example, an oxide active material (lithium-containing transition metal oxide) is used as the positive electrode active material 1 in the present embodiment. Examples of oxide active materials include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCoPO 4 , LiNiPO 4 , LiFePO 4 , LiMnPO 4 , and by substituting transition metals of these compounds with one or two different elements. The obtained compound etc. are mentioned. Compounds obtained by substituting one or two different elements for the transition metal of the above compounds include LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 Known materials such as O 2 and LiNi 0.5 Mn 1.5 O 2 are used. One type of positive electrode active material may be used, or two or more types may be used in combination.

正極活物質の形状としては、例えば、粒子状および薄膜状などが挙げられる。正極活物質が粒子状である場合、正極活物質の平均粒径(D50)は、例えば、50nm以上50μm以下の範囲が好ましく、1μm以上15μm以下の範囲内であることがより好ましい。正極活物質の平均粒径を50nm以上とすることで、取扱性が良くなりやすく、一方、平均粒径を50μm以下とすることで、平坦な正極層が得られやすいことから、当該範囲が好ましい。なお、本明細書における「平均粒径」は、レーザ解析および散乱式粒度分布測定装置によって測定される体積基準の平均径である。 Examples of the shape of the positive electrode active material include particulate and thin film. When the positive electrode active material is particulate, the average particle diameter (D 50 ) of the positive electrode active material is, for example, preferably in the range of 50 nm or more and 50 μm or less, and more preferably in the range of 1 μm or more and 15 μm or less. When the average particle size of the positive electrode active material is 50 nm or more, the handleability tends to be improved. . The "average particle diameter" in the present specification is the volume-based average diameter measured by a laser analysis and a scattering particle size distribution analyzer.

正極活物質の表面は、コート層で被覆されていてもよい。コート層を設ける理由は、正極活物質(例えば酸化物活物質)と固体電解質(例えば、硫化物系固体電解質)との反応を抑制することができるからである。コート層の材料としては、例えば、LiNbO3、Li3PO4、LiPON等のLiイオン伝導性酸化物が挙げられる。コート層の平均厚さは、例えば、1nm以上10nm以下の範囲内であることが好ましい。 The surface of the positive electrode active material may be covered with a coat layer. The reason for providing the coat layer is that the reaction between the positive electrode active material (eg, oxide active material) and the solid electrolyte (eg, sulfide-based solid electrolyte) can be suppressed. Examples of materials for the coat layer include Li ion conductive oxides such as LiNbO3, Li3PO4 and LiPON. The average thickness of the coat layer is preferably, for example, within the range of 1 nm or more and 10 nm or less.

[B-1-2.固体電解質]
以下、本実施の形態における固体電解質について説明する。
[B-1-2. Solid electrolyte]
The solid electrolyte in this embodiment will be described below.

図1に示されるように、本実施の形態における正極合剤層12は、正極活物質1と固体電解質2を含有する。固体電解質2は、伝導イオン種(例えば、リチウムイオン)に応じて適宜選択すればよく、例えば、大きくは硫化物系固体電解質と酸化物系固体電解質とに分けることが出来る。 As shown in FIG. 1 , positive electrode mixture layer 12 in the present embodiment contains positive electrode active material 1 and solid electrolyte 2 . The solid electrolyte 2 may be appropriately selected according to the conductive ion species (for example, lithium ion), and can be broadly divided into, for example, sulfide-based solid electrolytes and oxide-based solid electrolytes.

本実施の形態における硫化物系固体電解質の種類は、特に限定しないが、例えば、硫化物系固体電解質としては、例えば、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-PおよびLiS-Pなどが挙げられ、特に、リチウムイオン伝導性が優れているためLi、PおよびSを含むことが好ましい。硫化物系固体電解質は、1種で使用してもよく、2種以上を組み合わせて使用してもよい。また、硫化物系固体電解質は、結晶質であってもよく、非晶質であってもよく、ガラスセラミックスであってもよい。なお、上記「LiS-P」の記載は、LiSおよびPを含む原料組成を用いてなる硫化物系固体電解質を意味し、他の記載についても同様である。 The type of sulfide-based solid electrolyte in the present embodiment is not particularly limited . 2SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 and Li 2 SP 2 S 5 , especially lithium ion conductive It is preferable to contain Li, P and S because the is excellent. The sulfide-based solid electrolytes may be used singly or in combination of two or more. Moreover, the sulfide-based solid electrolyte may be crystalline, amorphous, or glass-ceramics. The above description of "Li 2 SP 2 S 5 " means a sulfide-based solid electrolyte using a raw material composition containing Li 2 S and P 2 S 5 , and the same applies to other descriptions. .

本実施の形態においては、硫化物系固体電解質の一形態は、LiSおよびPを含む硫化物ガラスセラミックスであり、LiSおよびPの割合は、モル換算でLiS:P=70:30~80:20の範囲内であることが好ましく、より好ましくは、LiS:P=75:25~80:20の範囲内である。この範囲内の割合が好ましい理由としては、電池特性に影響するリチウム濃度を保ちながら、イオン伝導性の高い結晶構造とするためである。 In the present embodiment, one form of the sulfide-based solid electrolyte is sulfide glass-ceramics containing Li 2 S and P 2 S 5 , and the ratio of Li 2 S and P 2 S 5 is Li 2 S:P 2 S 5 =70:30 to 80:20, preferably Li 2 S:P 2 S 5 =75:25 to 80:20. The reason why the ratio within this range is preferable is that a crystal structure with high ion conductivity is obtained while maintaining the lithium concentration that affects the battery characteristics.

本実施の形態における硫化物系固体電解質の形状としては、例えば、真球状および楕円球状などの粒子形状ならびに薄膜形状などが挙げられる。硫化物系固体電解質材料が粒子形状である場合、硫化物系固体電解質の平均粒径(D50)は、特に限定されるものではないが、正極層内の密度向上を図りやすくなるため、10μm以下であることが好ましい。 The shape of the sulfide-based solid electrolyte in the present embodiment includes, for example, particle shapes such as spherical and ellipsoidal shapes, and thin film shapes. When the sulfide-based solid electrolyte material is in the form of particles, the average particle size (D 50 ) of the sulfide-based solid electrolyte is not particularly limited. The following are preferable.

本実施の形態における酸化物系固体電解質について説明する。酸化物系固体電解質の種類は特に限定しないが、LiPON、LiPO、LiSiO、LiSiO、Li0.5La0.5TiO、Li1.3Al0.3Ti0.7(PO、La0.51Li0.34TiO0.74、Li1.5Al0.5Ge1.5(POなどが挙げられる。酸化物系固体電解質は、1種を使用しても良く、2種以上を組み合わせて使用してもよい。 The oxide-based solid electrolyte in this embodiment will be described. Although the type of oxide-based solid electrolyte is not particularly limited, LiPON, Li3PO4 , Li2SiO2 , Li2SiO4 , Li0.5La0.5TiO3 , Li1.3Al0.3Ti 0.7 ( PO4 ) 3 , La0.51Li0.34TiO0.74 , Li1.5Al0.5Ge1.5 ( PO4 ) 3 and the like . One type of oxide-based solid electrolyte may be used, or two or more types may be used in combination.

また、正極合剤層12、負極合剤層14および固体電解質層40の各層に含まれる固体電解質の種類および粒径は、各層において異なるものを使い分けてもよい。 Further, the type and particle size of the solid electrolyte contained in each layer of the positive electrode mixture layer 12, the negative electrode mixture layer 14, and the solid electrolyte layer 40 may be different for each layer.

[B-1-3.バインダー]
以下、本実施の形態におけるバインダーについて説明する。
[B-1-3. binder]
The binder in this embodiment will be described below.

バインダーは、正極合剤層12内の正極活物質1同士、正極活物質1と固体電解質2との間、固体電解質2同士、正極合剤層12と正極集電体11との間、および、正極合剤層12と固体電解質層40との間の結着の役割を担うが、電池特性に直接寄与するものではないため、正極合剤層12に含まれるバインダーの濃度は100ppm以下であることが望ましい。バインダーの濃度は100ppm以下にすることにより、正極合剤層12内により多くの正極活物質1を含有させることが可能となり高電池容量化に繋がる。また、バインダーがイオン伝導経路および電子伝導経路を妨げることによる全固体電池100の内部電気抵抗の上昇を防止でき、全固体電池100の充放電特性が向上する。 The binder is used between the positive electrode active materials 1 in the positive electrode mixture layer 12, between the positive electrode active material 1 and the solid electrolyte 2, between the solid electrolytes 2, between the positive electrode mixture layer 12 and the positive electrode current collector 11, and Although it plays a role of binding between the positive electrode mixture layer 12 and the solid electrolyte layer 40, it does not directly contribute to the battery characteristics, so the concentration of the binder contained in the positive electrode mixture layer 12 should be 100 ppm or less. is desirable. By setting the concentration of the binder to 100 ppm or less, it becomes possible to contain more positive electrode active material 1 in the positive electrode mixture layer 12, which leads to a higher battery capacity. In addition, it is possible to prevent an increase in the internal electrical resistance of the all-solid-state battery 100 due to the binder blocking the ion-conducting path and the electron-conducting path, thereby improving the charge-discharge characteristics of the all-solid-state battery 100 .

なお、本明細書において、濃度とは、特に断りのない限り、重量基準濃度である。 In the present specification, concentration is weight-based concentration unless otherwise specified.

具体的にバインダーとは、例えば、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエンゴム(SBR)、スチレン-ブタジエン-スチレン共重合体(SBS)、スチレン-エチレン-ブタジエン-スチレン共重合体(SEBS)、エチレン-プロピレンゴム、ブチルゴム、クロロプレンゴム、アクリロニトリル-ブタジエンゴム、アクリルゴム、シリコーンゴム、フッ素ゴムおよびウレタンゴム等の合成ゴム、ポリビニリデンフロライド(PVDF)、ポリビニリデンフロライド-ヘキサフルオロプロピレン共重合体(PVDF-HFP)、ポリイミド、ポリアミド、ポリアミドイミド、ポリビニルアルコールならびに塩素化ポリエチレン(CPE)等が挙げられる。 Specific examples of binders include butadiene rubber, isoprene rubber, styrene-butadiene rubber (SBR), styrene-butadiene-styrene copolymer (SBS), styrene-ethylene-butadiene-styrene copolymer (SEBS), ethylene - Synthetic rubbers such as propylene rubber, butyl rubber, chloroprene rubber, acrylonitrile-butadiene rubber, acrylic rubber, silicone rubber, fluororubber and urethane rubber, polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer ( PVDF-HFP), polyimide, polyamide, polyamideimide, polyvinyl alcohol and chlorinated polyethylene (CPE).

[B-1-4.導電助剤]
以下、本実施の形態における導電助剤について説明する。
[B-1-4. Conductive agent]
The conductive additive in the present embodiment will be described below.

本実施の形態に係る全固体電池100には、正極合剤層12に導電助剤が含まれていてもよい。 In all-solid-state battery 100 according to the present embodiment, positive electrode mixture layer 12 may contain a conductive aid.

導電助剤を添加することで、正極合剤層12内の電子伝導度を増加させることができるため、正極合剤層12中の電子伝導経路を確保することができ、全固体電池100の内部抵抗を下げることができる。これにより、電子伝導経路を通じて伝導できる電流量が増大するため、全固体電池100の充放電特性が向上する。 By adding a conductive aid, the electron conductivity in the positive electrode mixture layer 12 can be increased, so that the electron conduction path in the positive electrode mixture layer 12 can be secured, and the inside of the all-solid-state battery 100 resistance can be lowered. This increases the amount of current that can be conducted through the electron conduction path, thereby improving the charge/discharge characteristics of the all-solid-state battery 100 .

本実施の形態における導電助剤としては、正極合剤層12の電子伝導度を向上させるものであれば特に限定しないが、例えば、アセチレンブラック、ケッチェンブラック(登録商標)、カーボンブラック、グラファイト、カーボンファイバー等が挙げられる。導電助剤は、1種を使用してもよく、2種以上を組み合わせて使用してもよい。 The conductive aid in the present embodiment is not particularly limited as long as it improves the electron conductivity of the positive electrode mixture layer 12. Examples include acetylene black, Ketjenblack (registered trademark), carbon black, graphite, A carbon fiber etc. are mentioned. One type of conductive aid may be used, or two or more types may be used in combination.

[B-2.正極集電体]
正極集電体11には、例えば、アルミニウム、金、白金、亜鉛、銅、SUS、ニッケル、スズ、チタン、または、これらの2種以上の合金などからなる箔状体、板状体、網目状体などが用いられる。
[B-2. Positive electrode current collector]
The positive electrode current collector 11 is made of, for example, aluminum, gold, platinum, zinc, copper, SUS, nickel, tin, titanium, or an alloy of two or more of these foil-shaped, plate-shaped, or mesh-shaped bodies. A body is used.

また、正極集電体11の厚さおよび形状などについては、全固体電池の用途に応じて適宜選択してよい。 Moreover, the thickness and shape of the positive electrode current collector 11 may be appropriately selected according to the application of the all-solid-state battery.

また、含まれるバインダーの濃度が100ppm以下である正極合剤層12と正極集電体11との接着については、後述する製造工程において、正極合剤層12形成後にプレスされることで、正極合剤層12が正極集電体11に食込み接着力を得る。ここで、製造工程の詳細は後述するが、更に正極合剤層12と正極集電体11との接着力を高めるために、図1および図2の(a)に示されるように、正極合剤層12を形成する側の正極集電体11上に、導電性を持ち、かつ、正極活物質1よりも硬度の低い、カーボンなどの導電性炭素材料の導電剤を主成分とする正極接合層5を形成することが望ましい。これにより、図2の(b)に示されるように、正極合剤層12をロール7でプレスした際に、正極合剤層12が正極接合層5へ食込むことが促進され、正極接合層5と正極合剤層12の接着力が高くなる。また、正極接合層5には、少量のバインダーが含まれるため、バインダーの接着力により、正極接合層5と正極集電体11との接着力が高くなる。よって、正極接合層5を介して、正極集電体11と正極合剤層12とが接合させることにより、電子伝導度を損なうことなく正極集電体11と正極合剤層12との接着力を高くすることができる。 As for the adhesion between the positive electrode mixture layer 12 and the positive electrode current collector 11 containing a binder having a concentration of 100 ppm or less, the positive electrode mixture layer 12 is pressed after forming the positive electrode mixture layer 12 in the manufacturing process described below. The agent layer 12 bites into the positive electrode current collector 11 to obtain adhesive strength. Here, although the details of the manufacturing process will be described later, in order to further increase the adhesion between the positive electrode mixture layer 12 and the positive electrode current collector 11, as shown in FIGS. On the positive electrode current collector 11 on the side where the agent layer 12 is formed, a positive electrode junction mainly composed of a conductive carbon material such as carbon, which has conductivity and has lower hardness than the positive electrode active material 1. It is desirable to form layer 5 . As a result, as shown in FIG. 2(b), when the positive electrode mixture layer 12 is pressed by the roll 7, the positive electrode mixture layer 12 is promoted to bite into the positive electrode bonding layer 5, and the positive electrode bonding layer The adhesive strength between 5 and the positive electrode mixture layer 12 is increased. In addition, since the positive electrode bonding layer 5 contains a small amount of binder, the adhesive strength of the binder increases the adhesive strength between the positive electrode bonding layer 5 and the positive electrode current collector 11 . Therefore, by bonding the positive electrode current collector 11 and the positive electrode mixture layer 12 through the positive electrode bonding layer 5, the adhesive strength between the positive electrode current collector 11 and the positive electrode mixture layer 12 is maintained without impairing the electron conductivity. can be raised.

[B-3.正極接合層]
正極接合層5は、導電剤が主成分であり、バインダーも含まれる。正極接合層5の役割は、正極集電体11と正極合剤層12とを正極接合層5を介して接合することである。
[B-3. Positive electrode bonding layer]
The positive electrode bonding layer 5 is mainly composed of a conductive agent and also contains a binder. The role of the positive electrode bonding layer 5 is to bond the positive electrode current collector 11 and the positive electrode mixture layer 12 via the positive electrode bonding layer 5 .

導電剤は、例えば、アセチレンブラック、ケッチェンブラック(登録商標)、カーボンブラック、グラファイト、カーボンファイバー等の導電性炭素材料が挙げられる。導電剤は、1種を用いてもよく、2種以上を組み合わせて使用してもよい。 Conductive agents include, for example, conductive carbon materials such as acetylene black, Ketjenblack (registered trademark), carbon black, graphite, and carbon fiber. One type of conductive agent may be used, or two or more types may be used in combination.

バインダーとしては、上述のバインダーを用いればよいことから、ここでの説明は省略する。 As the binder, the above-described binder may be used, so the description is omitted here.

[C.負極層]
本実施の形態における、負極層30について、図1を用いて説明する。
[C. Negative electrode layer]
The negative electrode layer 30 in this embodiment will be described with reference to FIG.

本実施の形態における負極層30は、例えば、金属箔からなる負極集電体13と、負極集電体13上に形成された負極合剤層14と、を備える。 The negative electrode layer 30 in the present embodiment includes, for example, a negative electrode current collector 13 made of metal foil and a negative electrode mixture layer 14 formed on the negative electrode current collector 13 .

[C-1.負極合剤層]
負極合剤層14は、最低限、負極活物質3と固体電解質2を含んで構成される膜である。
[C-1. Negative electrode mixture layer]
The negative electrode mixture layer 14 is a film including at least the negative electrode active material 3 and the solid electrolyte 2 .

負極合剤層14は、負極合剤層14に含まれるバインダーの濃度は100ppm以下であることが望ましい。また、負極合剤層14には、導電助剤が含まれていてもよい。バインダーおよび導電助剤の詳細については、正極合剤層と同様である。 The negative electrode mixture layer 14 preferably has a binder concentration of 100 ppm or less. Further, the negative electrode mixture layer 14 may contain a conductive aid. The details of the binder and conductive aid are the same as those of the positive electrode mixture layer.

[C-1-1.負極活物質]
以下、本実施の形態における負極活物質3について説明する。
[C-1-1. Negative electrode active material]
The negative electrode active material 3 in this embodiment will be described below.

負極活物質は、正極合剤層12よりも低い電位で結晶構造内にリチウムなどの金属イオンが挿入または離脱され、リチウムなどの金属イオンの挿入または離脱に伴って酸化または還元が行われる物質である。 The negative electrode active material is a material in which metal ions such as lithium are inserted into or removed from the crystal structure at a potential lower than that of the positive electrode mixture layer 12, and oxidized or reduced as the metal ions such as lithium are inserted or removed. be.

本実施の形態における負極活物質3としては、例えば、リチウム、インジウム、スズ、ケイ素といったリチウムとの易合金化金属、ハードカーボン、黒鉛などの炭素材料、あるいは、LiTi12、SiOなどの酸化物活物質等の、公知の材料が用いられる。また、負極活物質3としては、上述した負極活物質を適宜混合した複合体等も用いてもよい。 Examples of the negative electrode active material 3 in the present embodiment include metals that are easily alloyed with lithium such as lithium, indium, tin, and silicon; carbon materials such as hard carbon and graphite; or Li 4 Ti 5 O 12 and SiO x . A known material such as an oxide active material such as is used. As the negative electrode active material 3, a composite or the like obtained by appropriately mixing the above-described negative electrode active materials may also be used.

負極合剤層14に含まれる負極活物質と固体電解質との割合は、重量換算で負極活物質/固体電解質=重量比とした場合に、重量比が0.67以上19以下の範囲内であることが好ましく、より好ましくは1以上5.67以下の範囲内である。この重量比の範囲内が好ましい理由としては、負極合剤層14内でのイオン伝導経路と電子伝導経路の両方を確保するためである。 The ratio of the negative electrode active material and the solid electrolyte contained in the negative electrode mixture layer 14 is in the range of 0.67 or more and 19 or less when the weight ratio of the negative electrode active material/solid electrolyte is calculated in terms of weight. is preferably within the range of 1 or more and 5.67 or less. The reason why the weight ratio is preferably within this range is to secure both the ion conduction path and the electron conduction path in the negative electrode mixture layer 14 .

[C-1-2.固体電解質]
固体電解質については、[B.正極層]の項で上述した固体電解質を用いればよいため、ここでの説明を省略する。
[C-1-2. Solid electrolyte]
For solid electrolytes, see [B. Positive Electrode Layer], the solid electrolyte described above may be used, so the description is omitted here.

[C-1-3.バインダー]
バインダーについても、[B.正極層]の項で上述したバインダーを用いればよいため、ここでの説明を省略する。
[C-1-3. binder]
Regarding binders, see [B. Positive Electrode Layer], the binder described above may be used, so the description is omitted here.

[C-1-4.導電助剤]
導電助剤についても、[B.正極層]の項で上述した導電助剤を用いればよいため、ここでの説明を省略する。
[C-1-4. Conductive agent]
Regarding the conductive aid, see [B. Positive Electrode Layer], the conductive aid described above may be used, so the description is omitted here.

[C-2.負極集電体]
負極集電体13には、例えば、SUS、金、白金、亜鉛、銅、ニッケル、チタン、スズ、または、これらの2種以上の合金などからなる箔状体、板状体、網目状体などが用いられる。
[C-2. Negative electrode current collector]
The negative electrode current collector 13 is, for example, a foil-shaped body, a plate-shaped body, a mesh-shaped body, or the like made of SUS, gold, platinum, zinc, copper, nickel, titanium, tin, or an alloy of two or more of these. is used.

また、負極集電体13の厚さおよび形状などについては、全固体電池の用途に応じて適宜選択してもよい。 Moreover, the thickness and shape of the negative electrode current collector 13 may be appropriately selected according to the application of the all-solid-state battery.

[D.固体電解質層]
本実施の形態における、固体電解質層40について、図1を用いて説明する。
[D. Solid electrolyte layer]
Solid electrolyte layer 40 in the present embodiment will be described with reference to FIG.

本実施の形態における固体電解質層40は、少なくとも、イオン伝導性を有する固体電解質2を含む。バインダーは、電池特性に直接寄与するものではないため、固体電解質層40に含まれるバインダーの濃度は、100ppm以下であることが望ましい。これにより、バインダーがイオン伝導経路を妨げることによる全固体電池100の内部電気抵抗の上昇を防止でき、全固体電池100の充放電特性が向上する。 Solid electrolyte layer 40 in the present embodiment includes at least solid electrolyte 2 having ion conductivity. Since the binder does not directly contribute to the battery characteristics, the concentration of the binder contained in the solid electrolyte layer 40 is desirably 100 ppm or less. As a result, it is possible to prevent an increase in the internal electric resistance of the all-solid-state battery 100 due to the binder interfering with the ion conduction path, and the charge-discharge characteristics of the all-solid-state battery 100 are improved.

[D-1.固体電解質]
固体電解質については、[B.正極層]の項で上述した固体電解質を用いればよいため、ここでの説明を省略する。
[D-1. Solid electrolyte]
For solid electrolytes, see [B. Positive Electrode Layer], the solid electrolyte described above may be used, so the description is omitted here.

[D-2.バインダー]
バインダーについては、[B.正極層]の項で上述したバインダーを用いればよいため、ここでの説明を省略する。
[D-2. binder]
For the binder, see [B. Positive Electrode Layer], the binder described above may be used, so the description is omitted here.

[E.その他の構成]
本実施の形態に係る全固体電池100には、図示しないが、正極集電体11の正極合剤層12とは反対側の表面に端子(金属製正極リード)を溶接して取り付けられてもよく、負極集電体13の負極合剤層14とは反対側の表面に端子(金属製負極リード)を溶接して取り付けられてもよい。こうして端子が取り付けられて得られた全固体電池、または複数個の上記全固体電池が接続して得られた電池群は、電池用ケースに収納され、正極リードおよび負極リードが電池用ケースの外部に導出され、電池用ケースを封止されるように構成された全固体電池としてもよい。
[E. Other configurations]
In the all-solid-state battery 100 according to the present embodiment, although not shown, a terminal (metal positive electrode lead) may be attached by welding to the surface of the positive electrode current collector 11 opposite to the positive electrode mixture layer 12. A terminal (metal negative electrode lead) may be attached by welding to the surface of the negative electrode current collector 13 opposite to the negative electrode mixture layer 14 . The all-solid-state battery obtained by attaching the terminals in this manner, or the battery group obtained by connecting a plurality of the above-mentioned all-solid-state batteries, is housed in a battery case, and the positive electrode lead and the negative electrode lead are outside the battery case. It may be an all-solid-state battery constructed so that the battery case is sealed.

以上が、本実施の形態における全固体電池100の説明である。 The above is the description of the all-solid-state battery 100 in the present embodiment.

[F.製造方法]
[F-1.全固体電池の製造方法]
本実施の形態に係る全固体電池100の製造方法は、例えば、正極合剤層12を有する正極層20、負極合剤層14を有する負極層30、および固体電解質層40を準備する成膜工程と、準備した正極層20、負極層30、および固体電解質層40を、正極合剤層12と負極合剤層14との間に固体電解質層40が配置されるように合わせ、または、積層し、積層構造体を得る積層工程と、得られた積層構造体に積層方向上下からプレスを行うプレス工程と、を有する。
[F. Production method]
[F-1. Method for manufacturing all-solid-state battery]
The method for manufacturing the all-solid-state battery 100 according to the present embodiment includes, for example, a film formation step of preparing the positive electrode layer 20 having the positive electrode mixture layer 12, the negative electrode layer 30 having the negative electrode mixture layer 14, and the solid electrolyte layer 40. Then, the prepared positive electrode layer 20, negative electrode layer 30, and solid electrolyte layer 40 are aligned or laminated such that the solid electrolyte layer 40 is disposed between the positive electrode mixture layer 12 and the negative electrode mixture layer 14. 1, a lamination step of obtaining a laminated structure; and a pressing step of pressing the obtained laminated structure from above and below in the lamination direction.

[F-2.正極層の成膜工程]
本実施の形態における正極層20の成膜工程は、正極集電体11上に正極合剤層12を形成する工程である。正極層20の成膜工程は、例えば、正極集電体11上に粉体状態の(スラリー化していない)固体電解質2、正極活物質1および必要に応じて導電助剤を混合した正極合剤を均一に積層する粉体積層工程と、粉体積層工程により得られた積層体をプレスする粉体プレス工程と、を含む。
[F-2. Film formation process of positive electrode layer]
The film forming step of the positive electrode layer 20 in the present embodiment is a step of forming the positive electrode mixture layer 12 on the positive electrode current collector 11 . In the film forming process of the positive electrode layer 20, for example, a positive electrode mixture obtained by mixing a solid electrolyte 2 in a powder state (not slurried), a positive electrode active material 1, and a conductive aid as necessary on a positive electrode current collector 11. and a powder pressing step of pressing the laminate obtained by the powder laminating step.

一方、正極層20の他の製造方法として、正極活物質1、固体電解質2、ならびに必要に応じてバインダーおよび導電助剤を有機溶剤に分散させてスラリーを作製し、得られたスラリーを正極集電体11の表面に塗布する塗布工程と、得られた塗膜を加熱乾燥させて有機溶剤を除去する乾燥および焼成工程と、正極集電体11上に形成された乾燥塗膜をプレスする塗膜プレス工程と、を含む成膜工程により作製してもよい。バインダーは、電池特性に直接寄与するものではないため、正極合剤にバインダーを含有しないことが望ましい。もしくは、正極合剤に含まれるバインダーの濃度は、100ppm以下であることが望ましい。 On the other hand, as another method for manufacturing the positive electrode layer 20, the positive electrode active material 1, the solid electrolyte 2, and if necessary, a binder and a conductive aid are dispersed in an organic solvent to prepare a slurry, and the obtained slurry is used as a positive electrode collector. A coating step of applying to the surface of the current collector 11, a drying and baking step of heating and drying the obtained coating film to remove the organic solvent, and a coating of pressing the dried coating film formed on the positive electrode current collector 11. It may be manufactured by a film forming process including a film pressing process. Since the binder does not directly contribute to battery characteristics, it is desirable that the positive electrode mixture does not contain a binder. Alternatively, the concentration of the binder contained in the positive electrode mixture is desirably 100 ppm or less.

また、有機溶剤によりスラリー化する場合、正極合剤層12に残留した有機溶剤の影響により固体電解質のイオン伝導度低下が生じたり、有機溶剤を除去するために巨大な乾燥設備が必要となり、乾燥設備の初期投資コストおよびエネルギー消費によるランニングコストが非常に大きくなったりするため、上述のスラリー化していない粉体状態の材料を用いて、有機溶剤を用いないで成膜する方法、もしくは、正極合剤層12に含まれる溶剤の濃度が50ppm以下となるように微少量の溶剤を用いて成膜する方法が望ましい。 In the case of slurrying with an organic solvent, the ionic conductivity of the solid electrolyte may be lowered due to the influence of the organic solvent remaining in the positive electrode mixture layer 12, and a huge drying facility is required to remove the organic solvent. Since the initial investment cost of equipment and the running cost due to energy consumption are very large, a method of forming a film without using an organic solvent using the above-mentioned material in a powder state that is not slurried, or a positive electrode synthesis method. It is preferable to use a very small amount of solvent so that the concentration of the solvent contained in the agent layer 12 is 50 ppm or less.

また、局所的な活物質体積比が、正極合剤層の固体電解質層界面側から正極集電体界面側に向けて間歇的に増加する組成分布を有する正極合剤層の形成方法としては、例えば、正極活物質1および固体電解質2の体積比が異なる比率で含まれる正極合剤をプレス成形することで複数の正極合剤層を形成し、得られた複数の正極合剤層を貼り合わせて一体化させる方法、正極活物質1および固体電解質2の体積比が異なる比率で含まれる正極合剤層形成用インクを重ね塗りする方法、正極活物質1および固体電解質2の体積比が異なる比率で含まれる正極合剤をCVD蒸着、PVD蒸着などによって重ねて形成する方法等を挙げることができる。このとき、正極合剤層形成用インクとしては、正極合剤を溶媒に分散させてスラリー状にしたものを用いてもよいが、上述のように有機溶剤の影響による電池特性の低下および乾燥設備によるコスト増加を避けるため、有機溶剤を用いないで成膜する方法、もしくは正極合剤層12に含まれる溶剤の濃度が50ppm以下となるように微少量の溶剤を含む正極合剤で成膜する方法が望ましい。 Further, as a method for forming a positive electrode mixture layer having a composition distribution in which the local active material volume ratio intermittently increases from the solid electrolyte layer interface side of the positive electrode mixture layer toward the positive electrode current collector interface side, For example, a plurality of positive electrode mixture layers are formed by press-molding a positive electrode mixture containing the positive electrode active material 1 and the solid electrolyte 2 at different volume ratios, and the obtained positive electrode mixture layers are bonded together. a method of overcoating the positive electrode mixture layer forming ink containing the positive electrode active material 1 and the solid electrolyte 2 at different volume ratios; A method of stacking the positive electrode mixture contained in (1) by CVD vapor deposition, PVD vapor deposition, or the like can be mentioned. At this time, as the ink for forming the positive electrode mixture layer, a slurry obtained by dispersing the positive electrode mixture in a solvent may be used. In order to avoid an increase in cost due to this, a method of forming a film without using an organic solvent, or a positive electrode mixture containing a small amount of solvent so that the concentration of the solvent contained in the positive electrode mixture layer 12 is 50 ppm or less is used. method is preferred.

また、局所的な活物質体積比が、正極合剤層の固体電解質層界面側から正極集電体界面側に向けて連続的に増加する組成分布を有する正極合剤層の形成方法としては、例えば、正極活物質1および固体電解質2の体積比が連続的な勾配を有するように、スパッタ法、インクジェット法などによって正極合剤層を形成する方法、正極集電体(例えば、アルミニウム箔等)に正極活物質1および固体電解質2が均一に混合された正極合剤を塗布し、磁力をかけて正極活物質1を動かすことにより、正極合剤を塗布した界面において正極活物質1が多い組成となるように形成する方法等を挙げることができる。このとき、正極合剤を溶媒に分散させてスラリー状にしたものを用いる場合は、上述のように有機溶剤の影響による電池特性の低下および乾燥設備によるコスト増加を避けるため、有機溶剤を用いないで成膜する方法、もしくは正極合剤層に含まれる溶剤の濃度が50ppm以下となるように微少量の溶剤を含む正極合剤で成膜する方法が望ましい。 Further, as a method for forming a positive electrode mixture layer having a composition distribution in which the local active material volume ratio continuously increases from the solid electrolyte layer interface side of the positive electrode mixture layer toward the positive electrode current collector interface side, For example, a method of forming a positive electrode mixture layer by a sputtering method, an inkjet method, or the like so that the volume ratio of the positive electrode active material 1 and the solid electrolyte 2 has a continuous gradient, or a positive electrode current collector (eg, aluminum foil, etc.) A positive electrode mixture in which the positive electrode active material 1 and the solid electrolyte 2 are uniformly mixed is applied to the surface, and a magnetic force is applied to move the positive electrode active material 1, so that the positive electrode active material 1 is abundant at the interface where the positive electrode mixture is applied. A method of forming such that At this time, when using a slurry obtained by dispersing the positive electrode mixture in a solvent, the organic solvent is not used in order to avoid deterioration of battery characteristics due to the influence of the organic solvent and an increase in cost due to the drying equipment as described above. or a method of forming a film using a positive electrode mixture containing a very small amount of solvent so that the concentration of the solvent contained in the positive electrode mixture layer is 50 ppm or less.

ここで有機溶剤の測定方法は特に限定されず、例えば、ガスクロマトグラフィー、質量変化法等を挙げることができる。 Here, the method for measuring the organic solvent is not particularly limited, and examples thereof include gas chromatography, mass change method, and the like.

また、正極層20が正極接合層5を備える場合には、正極合剤層12を形成する前に、正極集電体11上に、導電剤とバインダーとを含むペーストを塗布し、乾燥させることにより、正極接合層5を形成する。そして、正極集電体11に形成された正極接合層5上に、上述の方法により正極合剤層12を形成する。 Further, when the positive electrode layer 20 includes the positive electrode bonding layer 5, before forming the positive electrode mixture layer 12, a paste containing a conductive agent and a binder is applied onto the positive electrode current collector 11 and dried. Thus, the positive electrode bonding layer 5 is formed. Then, the positive electrode mixture layer 12 is formed on the positive electrode bonding layer 5 formed on the positive electrode current collector 11 by the method described above.

正極合剤層12を形成した後、正極合剤層12の密度を向上させるため、また、正極合剤層12と正極集電体11との接着性を高めるために、正極合剤層12を積層方向上下からプレスしてもよい。 After forming the positive electrode mixture layer 12 , the positive electrode mixture layer 12 is formed in order to improve the density of the positive electrode mixture layer 12 and to increase the adhesiveness between the positive electrode mixture layer 12 and the positive electrode current collector 11 . You may press from the top and bottom of the lamination direction.

本実施の形態における正極合剤層12は、1層からなる単層構造であってもよく、図1に示されるように2層以上の層からなる多層構造であってもよい。また、正極合剤層12の厚さは、例えば、1μm以上300μm以下の範囲内であることが好ましく、20μm以上200μm以下の範囲内であることがより好ましい。正極合剤層12の厚さを1μm以上にすることで、十分な電気容量が得られやすく、正極合剤層12の厚さを300μm以下にすることで、電気抵抗が増加しにくく、電池の出力特性が低下しにくくなる。なお、正極合剤層12の厚さは、正極合剤層12が複数の層からなる場合は、各正極合剤層の総厚みとする。 Positive electrode mixture layer 12 in the present embodiment may have a single-layer structure consisting of one layer, or may have a multilayer structure consisting of two or more layers as shown in FIG. Further, the thickness of the positive electrode mixture layer 12 is, for example, preferably in the range of 1 μm or more and 300 μm or less, and more preferably in the range of 20 μm or more and 200 μm or less. By setting the thickness of the positive electrode mixture layer 12 to 1 μm or more, it is easy to obtain a sufficient electric capacity, and by setting the thickness of the positive electrode mixture layer 12 to 300 μm or less, it is difficult to increase the electric resistance, and the battery is improved. Output characteristics are less likely to deteriorate. In addition, when the positive electrode mixture layer 12 consists of a plurality of layers, the thickness of the positive electrode mixture layer 12 is the total thickness of each positive electrode mixture layer.

本実施の形態における正極合剤層12が2層構造の場合、例えば、図1に示されるように、正極集電体11により近い側に配置された第1正極合剤層12a、および、固体電解質層40により近い側に配置された第2正極合剤層12bからなる正極合剤層12が用いられる。 When positive electrode mixture layer 12 in the present embodiment has a two-layer structure, for example, as shown in FIG. A positive electrode mixture layer 12 made of the second positive electrode mixture layer 12b arranged closer to the electrolyte layer 40 is used.

正極合剤層12の厚みに対する第1正極合剤層12aの厚みの比率(第1正極合剤層12aの厚み/正極合剤層12の厚み)は、例えば、0.3以上0.9以下の範囲内である。正極合剤層12の厚みに対する第1正極合剤層12aの厚みの比率を0.3以上とすることで、正極活物質1の含まれる比率が大きい第1正極合剤層12aの厚みが確保されるため、十分な容量を得ることができる。正極合剤層12の厚みに対する第1正極合剤層12aの厚みの比率を0.9以下(すなわち正極合剤層12の厚みに対する第2正極合剤層12bの厚みの比率を0.1以上)とすることで、固体電解質2の含まれる比率が比較的大きい第2正極合剤層12bの厚みが確保されるため、固体電解質2による十分なイオン伝導パスを確保することができる。 The ratio of the thickness of the first positive electrode mixture layer 12a to the thickness of the positive electrode mixture layer 12 (thickness of the first positive electrode mixture layer 12a/thickness of the positive electrode mixture layer 12) is, for example, 0.3 or more and 0.9 or less. is within the range of By setting the ratio of the thickness of the first positive electrode mixture layer 12a to the thickness of the positive electrode mixture layer 12 to 0.3 or more, the thickness of the first positive electrode mixture layer 12a containing a large proportion of the positive electrode active material 1 is ensured. sufficient capacity can be obtained. The ratio of the thickness of the first positive electrode mixture layer 12a to the thickness of the positive electrode mixture layer 12 is 0.9 or less (that is, the ratio of the thickness of the second positive electrode mixture layer 12b to the thickness of the positive electrode mixture layer 12 is 0.1 or more. ), the thickness of the second positive electrode mixture layer 12b containing a relatively large proportion of the solid electrolyte 2 is ensured, so that a sufficient ion conduction path by the solid electrolyte 2 can be ensured.

正極合剤層12の中で正極集電体11側の第1正極合剤層12aにおいて、第1正極合剤層12aにおける正極活物質1の含有量としては、第1正極合剤層12aに含まれる正極活物質1の合計の体積が、第1正極合剤層12aに含まれる固体電解質2の合計の体積よりも大きいことが好ましく、つまり、活物質体積比(正極活物質体積/[正極活物質体積+固体電解質体積])が0.5より大きいことが好ましく、0.7より大きいことがより好ましい。第1正極合剤層12aに含まれる正極活物質1の合計の体積が、第1正極合剤層12aに含まれる固体電解質2の合計の体積よりも大きいことが好ましい理由としては、正極合剤層12内でのリチウムイオン量を増加でき、高電池容量の全固体電池を実現できるからである。 In the first positive electrode mixture layer 12a on the positive electrode current collector 11 side in the positive electrode mixture layer 12, the content of the positive electrode active material 1 in the first positive electrode mixture layer 12a is The total volume of the positive electrode active material 1 contained is preferably larger than the total volume of the solid electrolyte 2 contained in the first positive electrode mixture layer 12a. Active material volume+solid electrolyte volume]) is preferably greater than 0.5, more preferably greater than 0.7. The reason why the total volume of the positive electrode active material 1 contained in the first positive electrode mixture layer 12a is preferably larger than the total volume of the solid electrolyte 2 contained in the first positive electrode mixture layer 12a is that the positive electrode mixture This is because the amount of lithium ions in the layer 12 can be increased, and an all-solid-state battery with a high battery capacity can be realized.

また、正極合剤層12の中で固体電解質層40側の第2正極合剤層12bにおいても、第2正極合剤層12bに含まれる正極活物質1の合計の体積が、第2正極合剤層12bに含まれる固体電解質2の合計の体積以上であることが好ましく、つまり、活物質体積比(正極活物質体積/[正極活物質体積+固体電解質体積])が0.5以上であることが好ましく、0.5より大きいことがより好ましい。また、第2正極合剤層12bにおいて、固体電解質2によるイオン伝導経路を確保するため、活物質体積比は、0.85以下であることが好ましい。 Also, in the second positive electrode mixture layer 12b on the solid electrolyte layer 40 side in the positive electrode mixture layer 12, the total volume of the positive electrode active materials 1 included in the second positive electrode mixture layer 12b is equal to the second positive electrode mixture layer 12b. It is preferably equal to or greater than the total volume of the solid electrolyte 2 contained in the agent layer 12b, that is, the active material volume ratio (positive electrode active material volume/[positive electrode active material volume + solid electrolyte volume]) is 0.5 or more. is preferred, and greater than 0.5 is more preferred. In addition, in the second positive electrode mixture layer 12b, the active material volume ratio is preferably 0.85 or less in order to secure an ion conduction path by the solid electrolyte 2. As shown in FIG.

特に、固体電解質2は、正極活物質1間を繋ぐことで正極合剤層12の形状を保持し、イオン伝導経路を確保する機能を発現するが、正極合剤層12に含まれる、電池特性に直接寄与しないバインダーの濃度が100ppm以下であり、かつ、活物質体積比が0.7より大きいような、固体電解質の体積比が非常に小さい高電池容量向け組成を有する正極合剤層12においては、正極合剤層12を形成した後、正極合剤層12をプレスすることが望ましい。これにより、正極活物質1よりも柔らかい固体電解質2が正極活物質1に押し付けられること、および、固体電解質2の焼結を促進させることで、正極合剤層12を押し固めることが可能となり、正極合剤層12の形状保持が可能となる。 In particular, the solid electrolyte 2 maintains the shape of the positive electrode mixture layer 12 by connecting the positive electrode active materials 1, and exhibits a function of securing an ion conduction path. In the positive electrode mixture layer 12 having a composition for high battery capacity with a very small volume ratio of the solid electrolyte such that the concentration of the binder that does not directly contribute to the is 100 ppm or less and the volume ratio of the active material is greater than 0.7 is desirable to press the positive electrode mixture layer 12 after forming the positive electrode mixture layer 12 . As a result, the solid electrolyte 2 softer than the positive electrode active material 1 is pressed against the positive electrode active material 1, and the sintering of the solid electrolyte 2 is promoted, thereby making it possible to press and harden the positive electrode mixture layer 12. It becomes possible to maintain the shape of the positive electrode mixture layer 12 .

粉体プレス工程および塗膜プレス工程については、例えば、生産性を考慮すると連続処理が可能なロールプレスが望ましい。 For the powder pressing process and the coating film pressing process, for example, a roll press capable of continuous processing is desirable in consideration of productivity.

図2および図3は、正極集電体上に形成された正極合剤層をロールプレスする工程を示す模式図である。図2には、第1正極合剤層12aおよび第2電極合剤層12bを有する正極合剤層12が示されており、図3には、第1正極合剤層12cおよび第2正極合剤層12dを有する正極合剤層22が示されている。また、図2は、第2正極合剤層12bにおいて、活物質体積比が0.5以上である場合を示し、図3は、第2正極合剤層12dにおいて、活物質体積比が0.5未満である場合を示す。 2 and 3 are schematic diagrams showing the process of roll-pressing the positive electrode material mixture layer formed on the positive electrode current collector. 2 shows the positive electrode mixture layer 12 having the first positive electrode mixture layer 12a and the second electrode mixture layer 12b, and FIG. 3 shows the first positive electrode mixture layer 12c and the second positive electrode mixture layer 12c. A positive electrode mixture layer 22 having an agent layer 12d is shown. 2 shows the case where the active material volume ratio is 0.5 or more in the second positive electrode mixture layer 12b, and FIG. 3 shows the case where the active material volume ratio is 0.5 in the second positive electrode mixture layer 12d. If less than 5 is indicated.

図2の(a)には、正極集電体11上に正極接合層5を介して正極合剤層12が積層された状態の断面が示されており、図2の(b)には、図2の(a)の積層体のロールプレス中の断面が示されている。また、図3の(a)には、正極集電体11上に、正極合剤層22が積層された積層体のロールプレス開始時の状態の断面が示されており、図3の(b)には、図3の(a)の積層体のロールプレス中の断面が示されている。 FIG. 2(a) shows a cross section of a state in which the positive electrode mixture layer 12 is laminated on the positive electrode current collector 11 with the positive electrode bonding layer 5 interposed therebetween, and FIG. A cross section of the laminate of FIG. 2(a) during roll pressing is shown. In addition, FIG. 3(a) shows a cross section of a laminate in which the positive electrode mixture layer 22 is laminated on the positive electrode current collector 11 at the start of roll pressing, and FIG. ) shows a cross section of the laminate of FIG. 3(a) during roll pressing.

ロール7により直接プレスされる第2正極合剤層12bにおいて、活物質体積比が0.5以上である場合、図2の(b)に示されるように、第2正極合剤層12b内において、流動性が低く硬度の高い正極活物質1が多数を占めることで、ロールプレスにより加えた力が、拡散することなく、正極合剤層12の中で正極集電体11により近い側に配置された第1正極合剤層12aまで十分に伝えられる。よって、正極合剤層12全体が均一にプレスされて押し固められることから、バインダーの濃度が100ppm以下であり、固体電解質2の体積比が非常に小さい高電池容量向け組成を有する正極合剤層12においても、正極合剤層12の形状を保持することか可能となる。つまり、図2の(a)および(b)に示されるように、正極合剤層12にロールプレスしても形状の変化がほとんど無い。また、ロールプレスにより加えた力が、拡散することなく、正極合剤層12の中で正極集電体11により近い側に配置された第1正極合剤層12aまで十分に伝えられることで、第1正極合剤層12a内において、流動性をもつ固体電解質2を正極活物質1間の隙間に十分に押し広げることが可能となり、最小限の固体電解質2にて正極活物質1同士を十分に密着させ、イオン伝導経路を確保することができると共に、第1正極合剤層12aの空隙率を低減することが可能となる。 In the second positive electrode mixture layer 12b directly pressed by the roll 7, when the active material volume ratio is 0.5 or more, as shown in FIG. Since the positive electrode active material 1 with low fluidity and high hardness occupies the majority, the force applied by roll pressing is arranged on the side closer to the positive electrode current collector 11 in the positive electrode mixture layer 12 without diffusing. is sufficiently transmitted to the first positive electrode mixture layer 12a. Therefore, since the entire positive electrode mixture layer 12 is uniformly pressed and compacted, the positive electrode mixture layer has a binder concentration of 100 ppm or less and a composition for high battery capacity in which the volume ratio of the solid electrolyte 2 is very small. 12 as well, the shape of the positive electrode mixture layer 12 can be maintained. That is, as shown in (a) and (b) of FIG. 2, even if the positive electrode mixture layer 12 is roll-pressed, the shape hardly changes. In addition, the force applied by the roll press is sufficiently transmitted to the first positive electrode mixture layer 12a disposed closer to the positive electrode current collector 11 in the positive electrode mixture layer 12 without diffusing. In the first positive electrode mixture layer 12a, the solid electrolyte 2 having fluidity can be sufficiently spread into the gaps between the positive electrode active materials 1, and the minimum amount of the solid electrolyte 2 can sufficiently separate the positive electrode active materials 1. It is possible to secure an ion conducting path and reduce the porosity of the first positive electrode mixture layer 12a.

これに対し、ロールプレスの際に、固体電解質層40側のロール7により直接プレスされる第2正極合剤層12dにおいて、活物質体積比が0.5未満である場合、図3の(a)および(b)に示されるように、流動性の高い固体電解質2が多数を占めることで、固体電解質2の流動により、第2正極合剤層12dが面方向外側に広がる。これにより、ロールプレスにより加えた力が、拡散し、正極合剤層22の中で正極集電体11により近い側に配置された第1正極合剤層12cまで十分に伝わらない。よって、第1正極合剤層12c内での固体電解質2を正極活物質1間の隙間に十分に押し広げることが困難になると共に、第1正極合剤層12c内の固体電解質2を押し固めることができなくなった結果、正極合剤層12の形状を保持することが困難となる。 On the other hand, in the second positive electrode mixture layer 12d directly pressed by the roll 7 on the solid electrolyte layer 40 side during the roll pressing, when the active material volume ratio is less than 0.5, (a ) and (b), the solid electrolyte 2 with high fluidity occupies the majority, and the flow of the solid electrolyte 2 spreads the second positive electrode mixture layer 12d outward in the plane direction. As a result, the force applied by the roll press is diffused and is not sufficiently transmitted to the first positive electrode mixture layer 12 c located closer to the positive electrode current collector 11 in the positive electrode mixture layer 22 . Therefore, it becomes difficult to sufficiently spread the solid electrolyte 2 in the first positive electrode mixture layer 12c into the gap between the positive electrode active materials 1, and the solid electrolyte 2 in the first positive electrode mixture layer 12c is pressed and solidified. As a result, it becomes difficult to maintain the shape of the positive electrode mixture layer 12 .

また、ロールプレスの際に、熱を加えることで、更なる固体電解質2の流動性向上および焼結促進の効果が得られるため、より望ましい。 Moreover, it is more desirable to apply heat during the roll pressing, since the effect of further improving the fluidity of the solid electrolyte 2 and promoting sintering can be obtained.

また、正極合剤層12の空隙率は、正極合剤層12の固体電解質層界面側から集電体界面側に近くなるほど小さくなっていればよいが、例えば、正極合剤層12内のいずれの場所においても、0.05%以上35%以下の範囲内であることが好ましく、0.1%以上15%以下の範囲内であることがより好ましい。 In addition, the porosity of the positive electrode mixture layer 12 may decrease as the positive electrode mixture layer 12 approaches the collector interface side from the solid electrolyte layer interface side. Also at the location of , it is preferably within the range of 0.05% or more and 35% or less, and more preferably within the range of 0.1% or more and 15% or less.

ここで、空隙率について、本実施の形態における正極合剤層12が第1正極合剤層12aおよび第2正極合剤層12bからなる2層構造の場合について説明する。 Here, the porosity will be described in the case where the positive electrode mixture layer 12 in the present embodiment has a two-layer structure composed of the first positive electrode mixture layer 12a and the second positive electrode mixture layer 12b.

一般的に、正極合剤層の空隙率が小さすぎる場合、正極活物質の膨張および収縮による機械的な変位を、空隙が十分に吸収しきれず、正極合剤層12に反り、歪み、クラック等が生じる可能性があり、正極合剤層12の空隙率が大きすぎる場合、正極合剤層12の電気抵抗が増加する可能性がある。 In general, when the porosity of the positive electrode mixture layer is too small, the voids cannot sufficiently absorb the mechanical displacement due to the expansion and contraction of the positive electrode active material, and the positive electrode mixture layer 12 warps, warps, cracks, and the like. may occur, and if the porosity of the positive electrode mixture layer 12 is too large, the electrical resistance of the positive electrode mixture layer 12 may increase.

しかし、正極合剤層12に含まれる、電池特性に直接寄与しないバインダーの濃度が100ppm以下であり、かつ、活物質体積比が0.7より大きいような、固体電解質の体積比が非常に小さい高電池容量向け組成を有する、正極集電体11側の第1正極合剤層12aにおいては、正極活物質1間を繋ぐ機能が空隙により損なわれやすく、第1正極合剤層12aの形状を保持することが困難となりやすいため、空隙率を小さくすることが望ましい。ここで、バインダーの濃度が100ppm以下であり、かつ、活物質体積比が0.7より大きいような、固体電解質の体積比が非常に小さい高電池容量向け組成を有する、正極集電体11側の第1正極合剤層12aにおいては、正極活物質1同士が近接するため正極活物質1の膨張および収縮に対して相互に拘束力が働くことで、第1正極合剤層12a内でのクラック等によるダメージが抑制される効果が得られる。そのため、第1正極合剤層12aの活物質体積比が0.7より大きい場合には、第1正極合剤層12aの活物質体積比が0.7以下の場合と比較して、正極活物質1の膨張および収縮による変位を吸収するための空隙は少なくてもよいため、空隙率を小さく設定してもよい。 However, the concentration of the binder contained in the positive electrode mixture layer 12 that does not directly contribute to the battery characteristics is 100 ppm or less, and the volume ratio of the solid electrolyte is very small, such as the volume ratio of the active material being greater than 0.7. In the first positive electrode mixture layer 12a on the positive electrode current collector 11 side, which has a composition for high battery capacity, the function of connecting the positive electrode active materials 1 is likely to be impaired by voids, and the shape of the first positive electrode mixture layer 12a is It is desirable to reduce the porosity because it is likely to be difficult to hold. Here, the positive electrode current collector 11 side has a composition for high battery capacity with a very small solid electrolyte volume ratio such that the binder concentration is 100 ppm or less and the active material volume ratio is greater than 0.7. In the first positive electrode mixture layer 12a, since the positive electrode active materials 1 are close to each other, the expansion and contraction of the positive electrode active material 1 are mutually constrained, so that in the first positive electrode mixture layer 12a An effect of suppressing damage due to cracks or the like can be obtained. Therefore, when the active material volume ratio of the first positive electrode mixture layer 12a is greater than 0.7, the positive electrode active material is less active than when the active material volume ratio of the first positive electrode mixture layer 12a is 0.7 or less. Since the number of voids to absorb the displacement due to the expansion and contraction of the substance 1 may be small, the void ratio may be set small.

一方で、正極活物質1の膨張および収縮の影響は、活物質体積比が比較的小さい正極合剤層12の固体電解質層40側の界面で顕在化することになるため、正極合剤層12における固体電解質層40側の第2正極合剤層12bでは、正極活物質1の膨張および収縮による機械的な変位を吸収するために十分な空隙を有する必要がある。 On the other hand, the influence of the expansion and contraction of the positive electrode active material 1 becomes apparent at the interface of the positive electrode mixture layer 12, which has a relatively small active material volume ratio, on the solid electrolyte layer 40 side. The second positive electrode material mixture layer 12 b on the solid electrolyte layer 40 side in 1 needs to have sufficient voids to absorb mechanical displacement due to expansion and contraction of the positive electrode active material 1 .

そこで、本実施の形態によれば、正極活物質1を多く含み、固体電解質2の体積比が非常に小さい高電池容量向け組成を有する、正極集電体11側の第1正極合剤層12aにおいては空隙率を小さくし、第1正極合剤層12aよりも固体電解質層40側に第1正極合剤層12aよりも空隙率の大きな第2正極合剤層12bを設けることが望ましい。これにより、正極活物質1を多く含み、固体電解質2の体積比が非常に小さい高電池容量向け組成を有する正極合剤層12においても、正極合剤層12の形状が保持できる構造的な強度を空隙の影響により失うことなく、かつ、十分なイオン伝導経路を確保できると共に、正極合剤層12と固体電解質層40との界面で顕在化する正極活物質1の膨張および収縮の影響を第2正極合剤層12bの空隙により吸収することができる。よって、正極合剤層12に正極活物質1が多量に含まれるために高電池容量となる全固体電池100の耐久性を向上させることが可能となる。第1正極合剤層12aの空隙率は、例えば、0.05%以上8%以下の範囲内であることが好ましく、0.1%以上5%以下であることがより好ましい。第2正極合剤層12bの空隙率は、第1正極合剤層12aよりも空隙率が大きい範囲内で、例えば、5%以上35%以下の範囲内であることが好ましく、8%以上15%以下の範囲内であることがより好ましい。 Therefore, according to the present embodiment, the first positive electrode mixture layer 12a on the positive electrode current collector 11 side has a composition for high battery capacity, which contains a large amount of the positive electrode active material 1 and has a very small volume ratio of the solid electrolyte 2. , it is desirable to reduce the porosity and provide the second positive electrode mixture layer 12b having a higher porosity than the first positive electrode mixture layer 12a on the solid electrolyte layer 40 side of the first positive electrode mixture layer 12a. As a result, even in the positive electrode mixture layer 12 that contains a large amount of the positive electrode active material 1 and has a composition for high battery capacity in which the volume ratio of the solid electrolyte 2 is very small, the positive electrode mixture layer 12 has structural strength that can maintain its shape. is not lost due to the influence of voids, and sufficient ionic conduction paths can be secured, and the influence of the expansion and contraction of the positive electrode active material 1 that becomes apparent at the interface between the positive electrode mixture layer 12 and the solid electrolyte layer 40 is It can be absorbed by the voids of the two positive electrode mixture layers 12b. Therefore, since the positive electrode mixture layer 12 contains a large amount of the positive electrode active material 1, it is possible to improve the durability of the all-solid-state battery 100 having a high battery capacity. The porosity of the first positive electrode mixture layer 12a is, for example, preferably in the range of 0.05% or more and 8% or less, and more preferably 0.1% or more and 5% or less. The porosity of the second positive electrode mixture layer 12b is within a range in which the porosity is higher than that of the first positive electrode mixture layer 12a, for example, preferably in the range of 5% to 35%, and 8% to 15%. % or less is more preferable.

なお、正極合剤層12の空隙率とは、正極合剤層12の見かけ上の体積に対して、正極合剤層12の中で空隙が占める体積の割合であり、正極合剤層12の重量および正極合剤層12に含まれる各材料の密度から算出される各材料の体積の合計と、実際の見かけ上の正極合剤層12の体積とから算出することにより求めることができる。つまり、空隙率は、
空隙率(%)=(見かけ上の体積-各材料の体積の合計)×100/見かけ上の体積
により算出される。
The porosity of the positive electrode mixture layer 12 is the ratio of the volume occupied by voids in the positive electrode mixture layer 12 to the apparent volume of the positive electrode mixture layer 12 . It can be obtained by calculating from the total volume of each material calculated from the weight and density of each material contained in positive electrode mixture layer 12 and the actual apparent volume of positive electrode mixture layer 12 . That is, the porosity is
Porosity (%) = (apparent volume - total volume of each material) x 100/apparent volume.

また、正極合剤層12の空隙率は、正極合剤層12を形成する際に調整することができ、具体的には、正極合剤層12を構成する材料をプレス成形する際のプレス圧力およびプレス温度、正極合剤層12を構成する材料の分散度合等により調整することができる。 Moreover, the porosity of the positive electrode mixture layer 12 can be adjusted when the positive electrode mixture layer 12 is formed. Also, it can be adjusted by the pressing temperature, the degree of dispersion of the material constituting the positive electrode mixture layer 12, and the like.

[F-3.負極層の成膜工程]
本実施の形態における負極層30の成膜工程は、使用する活物質を負極活物質3に変更する点以外は、基本的に正極層20の成膜工程と同じであることから、ここでの説明を省略する。
[F-3. Film formation process of negative electrode layer]
The film forming process of the negative electrode layer 30 in the present embodiment is basically the same as the film forming process of the positive electrode layer 20 except that the active material used is changed to the negative electrode active material 3. Description is omitted.

[F-4.固体電解質層の成膜工程]
本実施の形態における固体電解質層40の成膜工程は、使用する材料を活物質や導電助剤を用いず固体電解質に変更する点、ならびに、正極層20上、負極層30上、および、別の基材上の少なくともいずれかに形成する点以外は、基本的に正極層20の成膜工程と同じであることから、ここでの説明を省略する。
[F-4. Formation process of solid electrolyte layer]
In the film formation process of the solid electrolyte layer 40 in the present embodiment, the material to be used is changed to a solid electrolyte without using an active material or a conductive agent, and the positive electrode layer 20, the negative electrode layer 30, and another Since the process for forming the positive electrode layer 20 is basically the same except that the positive electrode layer 20 is formed on at least one of the substrates, the description thereof is omitted here.

[F-5.積層工程およびプレス工程]
積層工程では、成膜工程により得られた正極層20、負極層30、および固体電解質層40を、正極合剤層12と負極合剤層14との間に固体電解質層40が配置されるように積層し、積層構造体を得る。プレス工程では、積層工程で得られた積層構造体に、正極集電体11および負極集電体13の積層方向外側からプレスを行い、全固体電池100を得る。
[F-5. Lamination process and press process]
In the stacking step, the positive electrode layer 20 , the negative electrode layer 30 , and the solid electrolyte layer 40 obtained in the film forming step are stacked so that the solid electrolyte layer 40 is arranged between the positive electrode mixture layer 12 and the negative electrode mixture layer 14 . to obtain a laminated structure. In the pressing step, the laminated structure obtained in the laminating step is pressed from the outer side of the positive electrode current collector 11 and the negative electrode current collector 13 in the stacking direction to obtain the all-solid-state battery 100 .

プレス工程の目的は、正極合剤層12、負極合剤層14および固体電解質層40の密度(充填率)を増加させることである。密度(充填率)を増加させることで、正極合剤層12、負極合剤層14および固体電解質層40において、リチウムイオン伝導性および電子伝導性を向上させることができ、良好な電池特性が得られる。 The purpose of the pressing step is to increase the density (filling rate) of the positive electrode mixture layer 12 , the negative electrode mixture layer 14 and the solid electrolyte layer 40 . By increasing the density (filling rate), the lithium ion conductivity and electron conductivity can be improved in the positive electrode mixture layer 12, the negative electrode mixture layer 14, and the solid electrolyte layer 40, and good battery characteristics can be obtained. be done.

(変形例)
以下に、実施の形態の変形例について、図4を用いて説明する。なお、以下の変形例の説明において、実施の形態との相違点を中心に説明し、共通点の説明を省略または簡略化する。
(Modification)
A modification of the embodiment will be described below with reference to FIG. In addition, in the following description of the modified example, the differences from the embodiment will be mainly described, and the description of the common points will be omitted or simplified.

図4は、実施の形態の変形例における全固体電池200の概略断面図である。図4には、正極層120において、正極合剤層112が1層である場合が示されている。正極合剤層112が1層の場合、正極合剤層112において正極集電体11に近い部分の活物質体積比は、例えば、0.7以上であることが好ましい。また、正極合剤層112において正極集電体11に近い部分の空隙率は、例えば、0.05%以上8%以下の範囲内であることが好ましく、0.1%以上5%以下であることがより好ましい。ここで、「正極合剤層112において正極集電体11に近い部分」とは、積層方向において、正極合剤層112と正極接合層5(正極接合層5が設けられていない場合は正極集電体11)との界面からの距離が、正極合剤層112の厚みの1/10以内の領域(図4においてAで示される領域)を指すものとする。 FIG. 4 is a schematic cross-sectional view of an all-solid-state battery 200 in a modified example of the embodiment. FIG. 4 shows the case where the positive electrode mixture layer 112 is one layer in the positive electrode layer 120 . When the positive electrode mixture layer 112 is one layer, the active material volume ratio of the portion of the positive electrode mixture layer 112 near the positive electrode current collector 11 is preferably, for example, 0.7 or more. In addition, the porosity of the portion of the positive electrode mixture layer 112 near the positive electrode current collector 11 is, for example, preferably in the range of 0.05% or more and 8% or less, and is 0.1% or more and 5% or less. is more preferable. Here, “a portion of the positive electrode mixture layer 112 close to the positive electrode current collector 11” means the positive electrode mixture layer 112 and the positive electrode junction layer 5 (if the positive electrode junction layer 5 is not provided, A region within 1/10 of the thickness of the positive electrode mixture layer 112 (the region indicated by A in FIG. 4) is defined as the distance from the interface with the conductor 11).

また、正極合剤層112のうち固体電解質層40に近い部分の活物質体積比は、正極合剤層112において正極集電体11に近い部分よりも活物質体積比が小さい範囲で、例えば、0.5以上であることが好ましい。また、正極合剤層112のうち固体電解質層40に近い部分の空隙率は、正極合剤層112において正極集電体11に近い部分よりも空隙率が大きい範囲内で、例えば、5%以上35%以下の範囲内であることが好ましく、8%以上15%以下の範囲内であることがより好ましい。ここで、「正極合剤層112において固体電解質層40に近い部分」とは、積層方向において、正極合剤層112と固体電解質層40との界面からの距離が正極合剤層12の厚みの1/10以内の領域(図4においてBで示される領域)を指すものとする。 Further, the active material volume ratio of the portion of the positive electrode mixture layer 112 near the solid electrolyte layer 40 is within a range where the active material volume ratio is smaller than that of the portion of the positive electrode mixture layer 112 near the positive electrode current collector 11. For example, It is preferably 0.5 or more. Further, the porosity of the portion of the positive electrode mixture layer 112 close to the solid electrolyte layer 40 is within a range where the porosity is higher than that of the portion of the positive electrode mixture layer 112 close to the positive electrode current collector 11, for example, 5% or more. It is preferably within the range of 35% or less, and more preferably within the range of 8% or more and 15% or less. Here, “a portion of the positive electrode mixture layer 112 close to the solid electrolyte layer 40” means that the distance from the interface between the positive electrode mixture layer 112 and the solid electrolyte layer 40 in the stacking direction is the thickness of the positive electrode mixture layer 12. The area within 1/10 (the area indicated by B in FIG. 4) shall be indicated.

(その他の実施の形態)
以上、本開示に係る全固体電池について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
(Other embodiments)
As described above, the all-solid-state battery according to the present disclosure has been described based on the embodiments, but the present disclosure is not limited to these embodiments. As long as it does not deviate from the gist of the present disclosure, various modifications that a person skilled in the art can think of are applied to the embodiments, and other forms constructed by combining some of the constituent elements of the embodiments are also within the scope of the present disclosure. included.

例えば、上記実施の形態では、第1正極合剤層と第2正極合剤層の2層を有する正極合剤層を備える全固体電池であったが、これに限られず、3層以上の異なる組成の正極合剤層を備える正極合剤層としてもよい。また、本開示の効果を妨げない範囲で、局所的には、正極合剤層の活物質体積比が、正極合剤層の固体電解質層界面側から集電体界面側に向かって増加していない部分がってもよく、正極合剤層の空隙率が、正極合剤層の固体電解質層界面側から集電体界面側に向かって減少していない部分があってもよい。 For example, in the above-described embodiment, the all-solid-state battery includes a positive electrode mixture layer having two layers of a first positive electrode mixture layer and a second positive electrode mixture layer. A positive electrode mixture layer having a positive electrode mixture layer having the same composition may be used. In addition, the active material volume ratio of the positive electrode mixture layer locally increases from the solid electrolyte layer interface side of the positive electrode mixture layer toward the current collector interface side within a range that does not interfere with the effects of the present disclosure. The positive electrode mixture layer may have a portion where the porosity of the positive electrode mixture layer does not decrease from the solid electrolyte layer interface side toward the current collector interface side.

本開示による正極層、負極層、固体電解質層、およびそれを用いた全固体電池は、携帯電子機器などの電源や、車載電池など様々な電池への応用が期待される。 The positive electrode layer, negative electrode layer, solid electrolyte layer, and all-solid-state battery using the same according to the present disclosure are expected to be applied to various batteries such as power sources for portable electronic devices and automotive batteries.

1 正極活物質
2 固体電解質
3 負極活物質
4 空隙
5 正極接合層
7 ロール
11 正極集電体
12、112 正極合剤層
12a 第1正極合剤層
12b 第2正極合剤層
13 負極集電体
14 負極合剤層
20、120 正極層
30 負極層
40 固体電解質層
100、200 全固体電池
1 positive electrode active material 2 solid electrolyte 3 negative electrode active material 4 void 5 positive electrode bonding layer 7 roll 11 positive electrode current collectors 12, 112 positive electrode mixture layer 12a first positive electrode mixture layer 12b second positive electrode mixture layer 13 negative electrode current collector 14 negative electrode mixture layers 20, 120 positive electrode layer 30 negative electrode layer 40 solid electrolyte layers 100, 200 all-solid battery

Claims (10)

正極集電体、ならびに、前記正極集電体上に形成され、少なくとも正極活物質および固体電解質を含む正極合剤層を備える正極層と、
負極集電体、ならびに、前記負極集電体上に形成され、少なくとも負極活物質および固体電解質を含む負極合剤層を備える負極層と、
前記正極合剤層と前記負極合剤層との間に配置され、少なくともイオン伝導性を有する固体電解質を含む固体電解質層と、
を備え、
前記正極合剤層における前記正極活物質の体積および前記固体電解質の体積の合計に対する前記正極活物質の体積の比である活物質体積比が、前記正極合剤層の厚み方向において、前記正極合剤層の前記固体電解質層界面側から前記正極集電体界面側に近くなるほど大きくなり、
前記正極合剤層の空隙率が、前記正極合剤層の厚み方向において、前記正極合剤層の前記固体電解質層界面側から前記正極集電体界面側に近くなるほど小さくなる、
全固体電池。
a positive electrode layer comprising a positive electrode current collector and a positive electrode mixture layer formed on the positive electrode current collector and containing at least a positive electrode active material and a solid electrolyte;
a negative electrode layer comprising a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector and containing at least a negative electrode active material and a solid electrolyte;
a solid electrolyte layer disposed between the positive electrode mixture layer and the negative electrode mixture layer and containing at least a solid electrolyte having ionic conductivity;
with
The active material volume ratio, which is the ratio of the volume of the positive electrode active material to the sum of the volume of the positive electrode active material and the volume of the solid electrolyte in the positive electrode mixture layer, in the thickness direction of the positive electrode mixture layer is becomes larger as it approaches the positive electrode current collector interface side from the solid electrolyte layer interface side of the agent layer,
The porosity of the positive electrode mixture layer decreases as the positive electrode mixture layer approaches the positive electrode current collector interface side from the solid electrolyte layer interface side in the thickness direction of the positive electrode mixture layer.
All-solid battery.
前記正極合剤層、前記負極合剤層、および前記固体電解質層よりなる群から選ばれた少なくとも一層に含まれる、溶剤の濃度が50ppm以下であり、かつ、バインダーの濃度が100ppm以下である、
請求項1に記載の全固体電池。
At least one layer selected from the group consisting of the positive electrode mixture layer, the negative electrode mixture layer, and the solid electrolyte layer has a solvent concentration of 50 ppm or less and a binder concentration of 100 ppm or less.
The all-solid-state battery according to claim 1.
前記正極合剤層において、前記正極集電体に近い部分の前記活物質体積比が、0.7より大きい、
請求項1または2に記載の全固体電池。
In the positive electrode mixture layer, the active material volume ratio of a portion near the positive electrode current collector is greater than 0.7,
The all-solid-state battery according to claim 1 or 2.
前記正極合剤層において、前記固体電解質層に近い部分の前記活物質体積比が、0.5以上である、
請求項1~3のいずれか1項に記載の全固体電池。
In the positive electrode mixture layer, the active material volume ratio of a portion near the solid electrolyte layer is 0.5 or more.
The all-solid-state battery according to any one of claims 1 to 3.
前記正極合剤層は、前記正極集電体側に配置された第1正極合剤層と、前記固体電解質層側に配置された第2正極合剤層と、を有し、
前記第1正極合剤層における前記活物質体積比が、前記第2正極合剤層における前記活物質体積比よりも大きく、
前記第1正極合剤層の空隙率が、前記第2正極合剤層の空隙率よりも小さい、
請求項1または2に記載の全固体電池。
The positive electrode mixture layer has a first positive electrode mixture layer arranged on the positive electrode current collector side and a second positive electrode mixture layer arranged on the solid electrolyte layer side,
the volume ratio of the active material in the first positive electrode mixture layer is greater than the volume ratio of the active material in the second positive electrode mixture layer;
The porosity of the first positive electrode mixture layer is smaller than the porosity of the second positive electrode mixture layer.
The all-solid-state battery according to claim 1 or 2.
前記第1正極合剤層における前記活物質体積比が、0.7より大きい、
請求項5に記載の全固体電池。
the volume ratio of the active material in the first positive electrode mixture layer is greater than 0.7;
The all-solid-state battery according to claim 5.
前記第1正極合剤層における空隙率が、0.05%以上8%以下である、
請求項5または6に記載の全固体電池。
The first positive electrode mixture layer has a porosity of 0.05% or more and 8% or less.
The all-solid-state battery according to claim 5 or 6.
前記第2正極合剤層における前記活物質体積比が、0.5以上である、
請求項5~7のいずれか1項に記載の全固体電池。
The volume ratio of the active material in the second positive electrode mixture layer is 0.5 or more.
The all-solid-state battery according to any one of claims 5-7.
前記第2正極合剤層の空隙率が、5%以上35%以下である、
請求項5~8のいずれか1項に記載の全固体電池。
The porosity of the second positive electrode mixture layer is 5% or more and 35% or less.
The all-solid-state battery according to any one of claims 5-8.
前記正極層は、前記正極集電体と前記正極合剤層との間に配置され、少なくとも導電剤を含む正極接合層をさらに備える、
請求項1~9のいずれか1項に記載の全固体電池。
The positive electrode layer further includes a positive electrode bonding layer disposed between the positive electrode current collector and the positive electrode mixture layer and containing at least a conductive agent.
The all-solid-state battery according to any one of claims 1 to 9.
JP2019218456A 2018-12-28 2019-12-03 All-solid battery Active JP7304578B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/714,604 US11342592B2 (en) 2018-12-28 2019-12-13 All-solid battery
EP19219373.8A EP3675263B1 (en) 2018-12-28 2019-12-23 All-solid battery
CN201911370000.XA CN111384429A (en) 2018-12-28 2019-12-26 All-solid-state battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018248456 2018-12-28
JP2018248456 2018-12-28

Publications (2)

Publication Number Publication Date
JP2020109748A JP2020109748A (en) 2020-07-16
JP7304578B2 true JP7304578B2 (en) 2023-07-07

Family

ID=71570117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019218456A Active JP7304578B2 (en) 2018-12-28 2019-12-03 All-solid battery

Country Status (1)

Country Link
JP (1) JP7304578B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020005468T5 (en) * 2019-11-07 2022-08-18 Tdk Corporation SOLID STATE BATTERY
KR102602094B1 (en) * 2020-12-16 2023-11-15 한국전자기술연구원 Electrode composite sheet, all-solid-state battery using the same, and manufacturing method thereof
CN113013475A (en) * 2021-02-25 2021-06-22 深圳吉阳智能科技有限公司 Laminated cell production process, laminated cell production system and laminated cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245024A (en) 2009-03-16 2010-10-28 Toyota Motor Corp All solid-state secondary battery
JP2011124028A (en) 2009-12-09 2011-06-23 Hitachi Zosen Corp Manufacturing method of all solid lithium ion secondary battery
JP2012104270A (en) 2010-11-08 2012-05-31 Toyota Motor Corp All-solid state battery
JP2015225855A (en) 2014-05-26 2015-12-14 現代自動車株式会社Hyundaimotor Company Method for manufacturing all solid electrode having solid electrolyte concentration gradient
JP2017157529A (en) 2016-03-04 2017-09-07 セイコーエプソン株式会社 Electrode composite, method for manufacturing electrode composite, positive electrode active material layer, and lithium battery
JP2018125260A (en) 2017-02-03 2018-08-09 パナソニックIpマネジメント株式会社 All-solid battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245024A (en) 2009-03-16 2010-10-28 Toyota Motor Corp All solid-state secondary battery
JP2011124028A (en) 2009-12-09 2011-06-23 Hitachi Zosen Corp Manufacturing method of all solid lithium ion secondary battery
JP2012104270A (en) 2010-11-08 2012-05-31 Toyota Motor Corp All-solid state battery
JP2015225855A (en) 2014-05-26 2015-12-14 現代自動車株式会社Hyundaimotor Company Method for manufacturing all solid electrode having solid electrolyte concentration gradient
JP2017157529A (en) 2016-03-04 2017-09-07 セイコーエプソン株式会社 Electrode composite, method for manufacturing electrode composite, positive electrode active material layer, and lithium battery
JP2018125260A (en) 2017-02-03 2018-08-09 パナソニックIpマネジメント株式会社 All-solid battery

Also Published As

Publication number Publication date
JP2020109748A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP6887088B2 (en) Stacked all-solid-state battery and its manufacturing method
CN108390066B (en) All-solid-state battery
US11342592B2 (en) All-solid battery
JP7304578B2 (en) All-solid battery
JP7261995B2 (en) All-solid-state battery and manufacturing method thereof
US20220416251A1 (en) Electrode layer and all-solid-state battery
US20200235367A1 (en) All-solid-state battery
JP7182159B2 (en) All-solid battery
US11637326B2 (en) Laminate
US11444319B2 (en) All-solid battery and method of manufacturing the same
JP2015018670A (en) Bipolar battery
US20230016169A1 (en) All-solid-state battery and manufacturing method for all-solid-state battery
JP7398231B2 (en) All-solid-state battery system
CN114613940A (en) All-solid-state battery
JP2020109747A (en) All-solid battery and method of manufacturing the same
JP7182160B2 (en) All-solid battery
US11843120B2 (en) Electrode, battery, and method for manufacturing electrode
JP7275300B2 (en) All-solid lithium secondary battery and method for manufacturing all-solid lithium secondary battery
JP2024013898A (en) Negative electrode for all-solid-state secondary battery, all-solid-state secondary battery and manufacturing method thereof
JP2021027013A (en) All-solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R151 Written notification of patent or utility model registration

Ref document number: 7304578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151