JP7275300B2 - All-solid lithium secondary battery and method for manufacturing all-solid lithium secondary battery - Google Patents

All-solid lithium secondary battery and method for manufacturing all-solid lithium secondary battery Download PDF

Info

Publication number
JP7275300B2
JP7275300B2 JP2021552390A JP2021552390A JP7275300B2 JP 7275300 B2 JP7275300 B2 JP 7275300B2 JP 2021552390 A JP2021552390 A JP 2021552390A JP 2021552390 A JP2021552390 A JP 2021552390A JP 7275300 B2 JP7275300 B2 JP 7275300B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
layer
oxide solid
lithium ion
ion conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021552390A
Other languages
Japanese (ja)
Other versions
JPWO2021075420A1 (en
Inventor
一 佐藤
甲相 朴
博幸 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2021075420A1 publication Critical patent/JPWO2021075420A1/ja
Application granted granted Critical
Publication of JP7275300B2 publication Critical patent/JP7275300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、全固体リチウム二次電池及び全固体リチウム二次電池の製造方法に関する。 TECHNICAL FIELD The present invention relates to an all-solid lithium secondary battery and a method for manufacturing an all-solid lithium secondary battery.

非水系電解液を用いたリチウムイオン電池が一般に普及している。しかし、リチウムイオン電池は、電解液が可燃性であり発火等の危惧があることや、有機溶媒が用いられているため、使用温度の制限がある。このため、ポリマー電解質を用いた全固体リチウム二次電池が開発されている。しかし、ポリマー電解質は低温におけるイオン導電率が低く、使用温度範囲が上記非水系電解液を用いたリチウムイオン電池より狭くなる。そこで、硫化物系固体電解質を用いた全固体リチウム二次電池が開発されている。しかし、硫化物は水と反応して硫化水素を発生する可能性があるため使用温度範囲が制限される。そのため、ポリマー電解質や硫化物系電解質のこのような欠点を補うことができる酸化物系固体電解質を用いた全固体電池の開発が期待されている。 Lithium-ion batteries using non-aqueous electrolytes are commonly used. However, the lithium-ion battery has a flammable electrolyte, which may cause a fire or the like, and an organic solvent is used. Therefore, an all-solid lithium secondary battery using a polymer electrolyte has been developed. However, the polymer electrolyte has low ionic conductivity at low temperatures, and the usable temperature range is narrower than that of the lithium ion battery using the non-aqueous electrolyte. Therefore, an all-solid lithium secondary battery using a sulfide-based solid electrolyte has been developed. However, sulfides can react with water to generate hydrogen sulfide, which limits the temperature range in which they can be used. Therefore, development of an all-solid-state battery using an oxide-based solid electrolyte that can compensate for such drawbacks of polymer electrolytes and sulfide-based electrolytes is expected.

例えば、下記特許文献1には、リチウムイオン導電性の酸化物粒子及び当該酸化物粒子間に入り込んだリチウムイオン導電性の非晶質部を有する複合固体電解質層が、正極活物質を有する正極と負極活物質を有する負極とに挟持された全固体リチウム二次電池が記載されている。 For example, in Patent Document 1 below, a composite solid electrolyte layer having lithium ion conductive oxide particles and a lithium ion conductive amorphous portion interposed between the oxide particles is combined with a positive electrode having a positive electrode active material. An all-solid-state lithium secondary battery sandwiched between a negative electrode having a negative electrode active material is described.

また、下記特許文献2には、酸化物固体電解質を用いた全固体リチウムイオン二次電池用の固体電解質が記載されている。この固体電解質においては、固体電解質本体と電極との界面の抵抗を下げる目的で、リチウムイオン伝導性を有する接着層が当該固体電解質本体の表面に設けられている。 Further, Patent Document 2 below describes a solid electrolyte for an all-solid lithium ion secondary battery using an oxide solid electrolyte. In this solid electrolyte, an adhesive layer having lithium ion conductivity is provided on the surface of the solid electrolyte body for the purpose of reducing the resistance at the interface between the solid electrolyte body and the electrode.

特開2015-138741号公報JP 2015-138741 A 特開2017-069036号公報JP 2017-069036 A

上記特許文献1に記載されるような酸化物固体電解質を用いた全固体リチウム二次電池は、水と反応して硫化水素を発生しにくく取り扱いが容易であるが、上記硫化物電解質を用いた全固体リチウム二次電池と比べて、内部抵抗が高く導電性が低い。 The all-solid lithium secondary battery using the oxide solid electrolyte as described in Patent Document 1 is easy to handle because it does not easily react with water to generate hydrogen sulfide, but the sulfide electrolyte is used. High internal resistance and low conductivity compared to all-solid lithium secondary batteries.

また、上記特許文献2に記載される固体電解質の接着層は、固体電解質本体と比べてイオン伝導度が一桁低いためできるだけ薄いことが好ましい。しかし、接着層を薄くすると、電極と固体電解質本体との隙間を埋めることができなくなる可能性があり、却って内部抵抗が高くなるという懸念がある。 Further, the adhesive layer of the solid electrolyte described in Patent Document 2 is preferably as thin as possible because the ionic conductivity is one order of magnitude lower than that of the solid electrolyte body. However, if the adhesive layer is made thin, there is a possibility that the gap between the electrode and the solid electrolyte body cannot be filled, and there is a concern that the internal resistance will rather increase.

このため、取り扱いが容易な酸化物固体電解質を用いた全固体リチウム二次電池において、内部抵抗が低減され、大電流化を達成することが望まれている。 Therefore, in all-solid lithium secondary batteries using an oxide solid electrolyte that is easy to handle, it is desired to reduce the internal resistance and achieve a large current.

そこで、本発明は、取り扱いが容易で大電流化を達成し得る全固体リチウム二次電池及び全固体リチウム二次電池の製造方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide an all-solid lithium secondary battery that is easy to handle and can achieve a large current, and a method for manufacturing the all-solid lithium secondary battery.

上記課題を解決するため、本発明の全固体リチウム二次電池は、リチウムイオン導電性を有する酸化物固体電解質粒子を含む酸化物固体電解質層と、前記酸化物固体電解質層の一方の面側に配置される正極活物質層と、前記酸化物固体電解質層の他方の面側に配置される負極活物質層と、前記正極活物質層及び前記負極活物質層の少なくとも一方と前記酸化物固体電解質層との間に配置され、リチウムイオン導電性を有するリチウムイオン導電性高分子材料中に前記酸化物固体電解質粒子が分散される固体電解質分散高分子層と、を備え、前記正極活物質層と、前記負極活物質層と、前記固体電解質分散高分子層と、前記酸化物固体電解質層とが一体とされることを特徴とするものである。 In order to solve the above problems, the all-solid lithium secondary battery of the present invention comprises an oxide solid electrolyte layer containing oxide solid electrolyte particles having lithium ion conductivity, and on one surface side of the oxide solid electrolyte layer a positive electrode active material layer disposed; a negative electrode active material layer disposed on the other side of the oxide solid electrolyte layer; at least one of the positive electrode active material layer and the negative electrode active material layer; and the oxide solid electrolyte a solid electrolyte dispersed polymer layer in which the oxide solid electrolyte particles are dispersed in a lithium ion conductive polymer material having lithium ion conductivity, the positive electrode active material layer and and the negative electrode active material layer, the solid electrolyte-dispersed polymer layer, and the oxide solid electrolyte layer are integrated.

酸化物は、上記の硫化物と異なり、水と反応しても硫化水素のような取り扱いに注意を要するガスを発生しづらい。従って、酸化物固体電解質を用いる本発明の全固体リチウム二次電池は、取り扱いが容易である。 Unlike the above sulfides, oxides do not easily generate gases such as hydrogen sulfide that require careful handling even when reacted with water. Therefore, the all-solid lithium secondary battery of the present invention using an oxide solid electrolyte is easy to handle.

また、本明細書における層と層とが一体とされる状態とは、剥離することができず、無理に剥離しようとする場合に破壊が生じる状態であることを意味する。従って、本発明の全固体リチウム二次電池では、正極活物質層と、負極活物質層と、固体電解質分散高分子層と、酸化物固体電解質層とが剥離できない状態とされている。このように一体化された正極活物質層と、負極活物質層と、固体電解質分散高分子層と、酸化物固体電解質層との間における抵抗は、一体化されておらず単に隣接して配置された正極活物質層と、負極活物質層と、固体電解質分散高分子層と、酸化物固体電解質層との間における抵抗よりも低減される。 In addition, the state in which layers are integrated in this specification means a state in which they cannot be separated and breakage occurs when they are forcibly separated. Therefore, in the all-solid lithium secondary battery of the present invention, the positive electrode active material layer, the negative electrode active material layer, the solid electrolyte dispersed polymer layer, and the oxide solid electrolyte layer are in a state in which they cannot be separated. The resistors among the positive electrode active material layer, the negative electrode active material layer, the solid electrolyte-dispersed polymer layer, and the oxide solid electrolyte layer, which are integrated in this way, are not integrated and are simply arranged adjacent to each other. It is lower than the resistance between the positive electrode active material layer, the negative electrode active material layer, the solid electrolyte dispersed polymer layer, and the oxide solid electrolyte layer.

また、本発明の全固体リチウム二次電池では、固体電解質分散高分子層が、リチウムイオン導電性を有するリチウムイオン導電性高分子材料と、この材料中に分散される酸化物固体電解質粒子とを含む。一般に酸化物固体電解質粒子はリチウムイオン導電性高分子材料よりもリチウムイオン伝導度が高いため、上記固体電解質分散高分子層のイオン伝導度は、上記特許文献2の接着層のようなリチウムイオン導電性高分子材料のみから成る層よりも高い。従って、本発明の固体電解質分散高分子層は、上記特許文献2の接着層のようなリチウムイオン導電性高分子材料のみから成る層よりも厚く形成され得る。このため、上記特許文献2の接着層のように、電極と固体電解質本体との隙間を埋めることができなくなることで内部抵抗が高くなることを抑制することができる。従って、本発明の全固体リチウム二次電池によれば、内部抵抗が低減され、大電流化を達成することができる。 Further, in the all-solid lithium secondary battery of the present invention, the solid electrolyte dispersed polymer layer comprises a lithium ion conductive polymer material having lithium ion conductivity and oxide solid electrolyte particles dispersed in this material. include. In general, oxide solid electrolyte particles have higher lithium ion conductivity than lithium ion conductive polymer materials. higher than a layer consisting only of a flexible polymeric material. Therefore, the solid electrolyte-dispersed polymer layer of the present invention can be formed thicker than the layer composed only of the lithium ion conductive polymer material such as the adhesive layer of Patent Document 2 above. Therefore, it is possible to suppress an increase in internal resistance caused by the inability to fill the gap between the electrode and the solid electrolyte body, unlike the adhesive layer of Patent Document 2 described above. Therefore, according to the all-solid-state lithium secondary battery of the present invention, the internal resistance is reduced and a large current can be achieved.

また、本発明の全固体リチウム二次電池の製造方法は、酸化物固体電解質粒子を含みリチウムイオン導電性を有する酸化物固体電解質層の一方の面側に正極活物質層が位置し、酸化物固体電解質層の他方の面側に負極活物質層が位置し、前記正極活物質層及び前記負極活物質層の少なくとも一方と前記酸化物固体電解質層との間に、リチウムイオン導電性を有するリチウムイオン導電性高分子材料中に前記酸化物固体電解質粒子が分散される固体電解質分散高分子層が位置するように、前記酸化物固体電解質層、前記正極活物質層、前記負極活物質層、及び前記固体電解質分散高分子層を配置する配置工程と、前記正極活物質層と、前記負極活物質層と、前記固体電解質分散高分子層と、前記酸化物固体電解質層とを一体化する一体化工程と、を備えることを特徴とするものである。 Further, in the method for producing an all-solid lithium secondary battery of the present invention, a positive electrode active material layer is positioned on one side of an oxide solid electrolyte layer containing oxide solid electrolyte particles and having lithium ion conductivity, and an oxide A negative electrode active material layer is positioned on the other side of the solid electrolyte layer, and lithium having lithium ion conductivity is present between at least one of the positive electrode active material layer and the negative electrode active material layer and the oxide solid electrolyte layer. The oxide solid electrolyte layer, the positive electrode active material layer, the negative electrode active material layer, and the an arrangement step of arranging the solid electrolyte-dispersed polymer layer; and integration of integrating the positive electrode active material layer, the negative electrode active material layer, the solid electrolyte-dispersed polymer layer, and the oxide solid electrolyte layer. and a step.

このような全固体リチウム二次電池の製造方法によれば、取り扱いが容易な酸化物固体電解質を用い、内部抵抗が低減され、大電流化を達成し得る全固体リチウム二次電池を製造することができる。 According to such a method for manufacturing an all-solid lithium secondary battery, it is possible to manufacture an all-solid lithium secondary battery that uses an oxide solid electrolyte that is easy to handle, has a reduced internal resistance, and can achieve a large current. can be done.

以上のように、本発明によれば、取り扱いが容易で大電流化を達成し得る全固体リチウム二次電池及び全固体リチウム二次電池の製造方法が提供される。 INDUSTRIAL APPLICABILITY As described above, according to the present invention, an all-solid lithium secondary battery that is easy to handle and can achieve a large current, and a method for manufacturing an all-solid lithium secondary battery are provided.

本発明の実施形態に係る全固体リチウム二次電池の断面図を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows sectional drawing of the all-solid-state lithium secondary battery which concerns on embodiment of this invention. 図1における正極活物質層から酸化物固体電解質層にかけての拡大図である。FIG. 2 is an enlarged view from a positive electrode active material layer to an oxide solid electrolyte layer in FIG. 1; 図1における負極活物質層から酸化物固体電解質層にかけての拡大図である。2 is an enlarged view from the negative electrode active material layer to the oxide solid electrolyte layer in FIG. 1. FIG. 本発明の実施形態に係る全固体リチウム二次電池の製造方法のフローチャートである。1 is a flow chart of a method for manufacturing an all-solid lithium secondary battery according to an embodiment of the present invention; 準備工程の様子を示す図である。It is a figure which shows the mode of a preparation process. 配置工程の様子を示す図である。It is a figure which shows the mode of an arrangement|positioning process. 一体化工程の様子を示す図である。It is a figure which shows the mode of an integration process. 実施例の測定結果を示すコール・コール・プロットである4 is a Cole-Cole plot showing the measurement results of Examples.

以下、本発明に係る全固体リチウム二次電池及び全固体リチウム二次電池の製造方法の好適な実施形態について図面を参照しながら詳細に説明する。なお、以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができる。また、理解の容易のため、それぞれの図において一部が誇張して記載される場合等がある。 BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of an all-solid lithium secondary battery and a method for manufacturing an all-solid lithium secondary battery according to the present invention will now be described in detail with reference to the drawings. In addition, the embodiment illustrated below is for facilitating understanding of the present invention, and is not for limiting and interpreting the present invention. The present invention can be modified and improved without departing from its spirit. Also, for ease of understanding, there are cases where a part of each drawing is exaggerated.

図1は、本発明の実施形態に係る全固体リチウム二次電池の断面図を示す図である。図1に示すように、本実施形態の全固体リチウム二次電池1は、包材10内に電池素体1bが配置されたものである。電池素体1bは、酸化物固体電解質層11と、正極側固体電解質分散高分子層12と、正極活物質層13と、正極集電体層14と、負極側固体電解質分散高分子層15と、負極活物質層16と、負極集電体層17と、を主な構成として備える。 FIG. 1 is a diagram showing a cross-sectional view of an all-solid lithium secondary battery according to an embodiment of the present invention. As shown in FIG. 1, the all-solid lithium secondary battery 1 of this embodiment has a battery body 1b arranged in a packaging material 10. As shown in FIG. The battery body 1b includes an oxide solid electrolyte layer 11, a positive electrode side solid electrolyte dispersed polymer layer 12, a positive electrode active material layer 13, a positive electrode current collector layer 14, and a negative electrode side solid electrolyte dispersed polymer layer 15. , a negative electrode active material layer 16 and a negative electrode current collector layer 17 as main components.

<酸化物固体電解質層>
図2は、図1における正極活物質層13から酸化物固体電解質層11にかけての拡大図である。図2に示すように、酸化物固体電解質層11は、酸化物固体電解質粒子11aの粒子間の少なくとも一部にリチウムイオン導電性高分子材料11bが入り込んだ、すなわち、酸化物固体電解質粒子11aの粒子間の少なくとも一部にリチウムイオン導電性高分子材料11bが配置された構成とされる。
<Oxide solid electrolyte layer>
FIG. 2 is an enlarged view from the positive electrode active material layer 13 to the oxide solid electrolyte layer 11 in FIG. As shown in FIG. 2, in the oxide solid electrolyte layer 11, the lithium ion conductive polymer material 11b enters at least partly between the oxide solid electrolyte particles 11a. It is configured such that the lithium ion conductive polymer material 11b is arranged at least partly between the particles.

酸化物固体電解質粒子11aを構成する酸化物固体電解質としては、リチウムイオン導電性を有する酸化物固体電解質であれば特に限定されないが、例えば、リン酸リチウムアルミニウムチタン(LATP)、リチウムランタンジルコニウム酸化物(LLZO)、リチウムランタンチタン酸化物(LLTO)、アルミニウム置換リン酸ゲルマニウムリチウム(LAGP)等を挙げることができる。なお、LATPには、ケイ素(Si)やゲルマニウム(Ge)が添加されてもよい。 The oxide solid electrolyte constituting the oxide solid electrolyte particles 11a is not particularly limited as long as it is an oxide solid electrolyte having lithium ion conductivity. Examples include lithium aluminum titanium phosphate (LATP) and lithium lanthanum zirconium oxide. (LLZO), lithium lanthanum titanium oxide (LLTO), aluminum-substituted lithium germanium phosphate (LAGP), and the like. Silicon (Si) or germanium (Ge) may be added to LATP.

酸化物固体電解質粒子11aの平均粒径は、例えば、0.1μm以上5μm以下とされる。なお、本明細書で粒径は、例えば、CILAS社製1090L型レーザー回折式粒子径分布測定装置で測定した平均粒径を指す。 The average particle diameter of the oxide solid electrolyte particles 11a is, for example, 0.1 μm or more and 5 μm or less. In this specification, the particle size refers to an average particle size measured by, for example, a 1090L laser diffraction particle size distribution analyzer manufactured by CILAS.

酸化物固体電解質粒子11aの粒子間に入り込むリチウムイオン導電性高分子材料11bは、リチウムイオン導電性を有する。このようなリチウムイオン導電性高分子材料11bとして、高分子材料がリチウムイオン導電性を有するものを挙げることができる。このような高分子材料としては、例えば、ポリエチレンオキサイド(PEO)、ポリエチレングリコール(PEG)、ポリフッ化ビニリデン(PVDF)等を挙げることができる。また、リチウムイオン導電性高分子材料11bとして、リチウム塩を含有する高分子を挙げることができる。つまり、高分子はリチウムイオン導電性を有さずに、支持塩であるリチウム塩がこの高分子に含有されることで、リチウムイオン導電性を有するのである。このようなリチウム塩としては、例えば、ヘキサフルオロリン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、リチウムビス(オキサラ-ト)ボレート(LiBOB)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(フルオロスルホニル)イミド(LiFSI)を挙げることができる。なお、PEO、PEG、PVDF等のリチウムイオン導電性を有する高分子がリチウム塩を含有する構成であってもよい。さらに、リチウムイオン導電性を有する高分子に、リチウムイオン導電性の酸化物固体電解質粒子が混合させることが好ましい。この場合の酸化物固体電解質粒子としては、酸化物固体電解質粒子11aに用いることができる酸化物固体電解質と同様の粒子を挙げることができる。特にLATPやLLZOのようなリチウムイオン導電性酸化物は、リチウムイオン導電性高分子イオン導電性が大きい傾向にあるので、混合することによりさらにリチウムイオン導電性を増加させることができる。The lithium ion conductive polymer material 11b that enters between the particles of the oxide solid electrolyte particles 11a has lithium ion conductivity. As such a lithium ion conductive polymer material 11b, a polymer material having lithium ion conductivity can be mentioned. Examples of such polymer materials include polyethylene oxide (PEO), polyethylene glycol (PEG), and polyvinylidene fluoride (PVDF). Further, as the lithium ion conductive polymer material 11b, a polymer containing a lithium salt can be mentioned. In other words, the polymer does not have lithium ion conductivity, but has lithium ion conductivity when the lithium salt, which is a supporting salt, is contained in the polymer. Examples of such lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium bis(oxalate)borate (LiBOB), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI ), lithium bis(fluorosulfonyl)imide (LiFSI). In addition, a configuration in which a polymer having lithium ion conductivity such as PEO, PEG, or PVDF contains a lithium salt may be used. Furthermore, it is preferable to mix lithium ion conductive oxide solid electrolyte particles with the polymer having lithium ion conductivity. As the oxide solid electrolyte particles in this case, particles similar to the oxide solid electrolyte that can be used for the oxide solid electrolyte particles 11a can be mentioned. In particular, lithium ion conductive oxides such as LATP and LLZO tend to have high lithium ion conductive polymer ion conductivity, so mixing them can further increase the lithium ion conductivity.

このように本実施形態の酸化物固体電解質層11は、酸化物固体電解質粒子11a間にリチウムイオン導電性高分子材料11bが入り込んだ構成とされるため、酸化物固体電解質層11が酸化物固体電解質粒子11aのみから成り、酸化物固体電解質粒子11a間にリチウムイオン導電性高分子材料11bが入り込まない場合と比べて、低抵抗とすることができる。このような構成の酸化物固体電解質層11は、複合固体電解質層と呼ばれる場合がある。 As described above, the oxide solid electrolyte layer 11 of the present embodiment has a structure in which the lithium ion conductive polymer material 11b enters between the oxide solid electrolyte particles 11a. The resistance can be reduced compared to the case where the lithium ion conductive polymer material 11b does not enter between the oxide solid electrolyte particles 11a, which are composed only of the electrolyte particles 11a. The oxide solid electrolyte layer 11 having such a configuration is sometimes called a composite solid electrolyte layer.

<正極活物質層>
本実施形態の正極活物質層13は、リチウムイオン導電性高分子材料13bが正極活物質13a間に入り込んだ構成とされ、リチウムイオン導電性を有する。
<Positive electrode active material layer>
The positive electrode active material layer 13 of the present embodiment has a structure in which the lithium ion conductive polymer material 13b is inserted between the positive electrode active materials 13a, and has lithium ion conductivity.

正極活物質13aを構成する材料としては、リチウムを含有し、リチウムイオンの取り込みと放出ができるものであれば、特に限定されないが、例えば、マンガン酸リチウム(LMO)、コバルト酸リチウム(LCO)、ニッケル酸リチウム(LNO)、三元系(NMCあるいはNCA)、リン酸鉄リチウム(LFP)、リン酸バナジウム系酸化物(LVP)、リン酸コバルトマンガン酸化物(LCMP)、及びこれらの混合物等を挙げることができる。なお、ここで言う三元系とは、例えば、ニッケル、マンガンもしくはアルミニウム、コバルトを含有することを指す。 The material constituting the positive electrode active material 13a is not particularly limited as long as it contains lithium and can take in and release lithium ions. Examples include lithium manganate (LMO), lithium cobalt oxide (LCO), Lithium nickel oxide (LNO), ternary system (NMC or NCA), lithium iron phosphate (LFP), vanadium phosphate oxide (LVP), cobalt manganese phosphate (LCMP), and mixtures thereof can be mentioned. The term "ternary system" as used herein means containing, for example, nickel, manganese or aluminum, and cobalt.

正極活物質13a間に入り込むリチウムイオン導電性高分子材料13bとしては、リチウムイオン導電性高分子材料11bに用いることができる材料と同様の材料を挙げることができる。なお、本実施形態において、正極活物質13a間に入り込むリチウムイオン導電性高分子材料13bと、酸化物固体電解質粒子11aの粒子間に入り込むリチウムイオン導電性高分子材料11bとが、同じ材料であっても、異なる材料であってもよい。 As the lithium ion conductive polymer material 13b that enters between the positive electrode active materials 13a, materials similar to those that can be used for the lithium ion conductive polymer material 11b can be used. In this embodiment, the lithium ion conductive polymer material 13b that enters between the positive electrode active materials 13a and the lithium ion conductive polymer material 11b that enters between the oxide solid electrolyte particles 11a are made of the same material. or different materials.

また、正極活物質層13のリチウムイオン導電性高分子材料13bには、アセチレンブラック等の導電助剤が分散されていてもよい。 Further, a conductive aid such as acetylene black may be dispersed in the lithium ion conductive polymer material 13b of the positive electrode active material layer 13 .

<正極側固体電解質分散高分子層>
本実施形態では、正極活物質層13と酸化物固体電解質層11との間にリチウムイオン導電性高分子材料12b中に酸化物固体電解質粒子12aが分散されて成る固体電解質分散高分子層としての正極側固体電解質分散高分子層12が介在している。正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料12bとしては、酸化物固体電解質層11のリチウムイオン導電性高分子材料11bに用いることができる材料と同様の材料を挙げることができる。
<Positive electrode side solid electrolyte dispersed polymer layer>
In this embodiment, a solid electrolyte dispersed polymer layer in which oxide solid electrolyte particles 12a are dispersed in a lithium ion conductive polymer material 12b between the positive electrode active material layer 13 and the oxide solid electrolyte layer 11 A positive electrode-side solid electrolyte-dispersed polymer layer 12 is interposed. As the lithium ion conductive polymer material 12b constituting the positive electrode-side solid electrolyte dispersed polymer layer 12, materials similar to those that can be used for the lithium ion conductive polymer material 11b of the oxide solid electrolyte layer 11 are listed. be able to.

また、正極側固体電解質分散高分子層12の酸化物固体電解質粒子12aを構成する酸化物固体電解質としては、酸化物固体電解質層11の酸化物固体電解質粒子11aに用いることができる酸化物固体電解質と同様の酸化物固体電解質を挙げることができる。なお、正極側固体電解質分散高分子層12の酸化物固体電解質粒子12aと酸化物固体電解質層11の酸化物固体電解質粒子11aとが、同じ酸化物固体電解質から成ることが接触抵抗低減の観点から好ましい。また、正極側固体電解質分散高分子層12の酸化物固体電解質粒子12aと酸化物固体電解質層11の酸化物固体電解質粒子11aとが、互いに異なる酸化物固体電解質から成ることとしてもよい。この場合、例えば、酸化物固体電解質層11の酸化物固体電解質粒子11aを構成する酸化物固体電解質には、LAGP、LLZOが用いられ、正極側固体電解質分散高分子層12の酸化物固体電解質粒子12aを構成する酸化物固体電解質には、LATPが用いられる。このような組み合わせであれば、酸化物固体電解質の還元耐性を向上することができる。 As the oxide solid electrolyte forming the oxide solid electrolyte particles 12a of the positive electrode-side solid electrolyte-dispersed polymer layer 12, an oxide solid electrolyte that can be used for the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 can include oxide solid electrolytes similar to . From the viewpoint of reducing contact resistance, the oxide solid electrolyte particles 12a of the positive electrode-side solid electrolyte-dispersed polymer layer 12 and the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 are made of the same oxide solid electrolyte. preferable. Further, the oxide solid electrolyte particles 12a of the positive electrode-side solid electrolyte-dispersed polymer layer 12 and the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 may be made of different oxide solid electrolytes. In this case, for example, LAGP or LLZO is used as the oxide solid electrolyte constituting the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11, and the oxide solid electrolyte particles of the positive electrode-side solid electrolyte-dispersed polymer layer 12 are used. LATP is used for the oxide solid electrolyte that constitutes 12a. With such a combination, the reduction resistance of the oxide solid electrolyte can be improved.

また、正極側固体電解質分散高分子層12の酸化物固体電解質粒子12aの粒径が、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒径と同じでもよい。この場合、酸化物固体電解質粒子12aの平均粒径は、例えば、0.1μm以上5μm以下とされる。ただし、正極側固体電解質分散高分子層12の酸化物固体電解質粒子12aの粒径が、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒径と異なってもよい。例えば、正極側固体電解質分散高分子層12の酸化物固体電解質粒子12aの粒径が、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒径よりも小さければ、正極側固体電解質分散高分子層12を薄くでき、全固体リチウム二次電池1の低抵抗化に貢献できるため好ましい。また、後述のように正極側固体電解質分散高分子層12を塗布で形成する際に、酸化物固体電解質層11の酸化物固体電解質粒子11a間に、酸化物固体電解質粒子12aをリチウムイオン導電性高分子材料12bと共に入り込ませ得る。但し、正極側固体電解質分散高分子層12の酸化物固体電解質粒子12aの粒径が、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒径よりも大きくてもよい。 Moreover, the particle size of the oxide solid electrolyte particles 12 a of the positive electrode-side solid electrolyte dispersed polymer layer 12 may be the same as the particle size of the oxide solid electrolyte particles 11 a of the oxide solid electrolyte layer 11 . In this case, the average particle size of the oxide solid electrolyte particles 12a is, for example, 0.1 μm or more and 5 μm or less. However, the particle size of oxide solid electrolyte particles 12 a in positive electrode-side solid electrolyte-dispersed polymer layer 12 may differ from the particle size of oxide solid electrolyte particles 11 a in oxide solid electrolyte layer 11 . For example, if the particle size of the oxide solid electrolyte particles 12a of the positive electrode-side solid electrolyte dispersed polymer layer 12 is smaller than the particle size of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11, the positive electrode-side solid electrolyte dispersion height This is preferable because the molecular layer 12 can be made thinner and the resistance of the all-solid lithium secondary battery 1 can be reduced. Further, when forming the positive electrode-side solid electrolyte-dispersed polymer layer 12 by coating as described later, the oxide solid electrolyte particles 12a are placed between the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 to provide lithium ion conductivity. It can be embedded with polymeric material 12b. However, the particle size of oxide solid electrolyte particles 12 a in positive electrode-side solid electrolyte-dispersed polymer layer 12 may be larger than the particle size of oxide solid electrolyte particles 11 a in oxide solid electrolyte layer 11 .

なお、正極側固体電解質分散高分子層12の平均の厚みが酸化物固体電解質粒子12aの粒径よりも小さくてもよい。この場合、正極側固体電解質分散高分子層12は、酸化物固体電解質粒子12aが位置する部位で厚くなり、酸化物固体電解質粒子12aが位置しない部位で薄くなる。このため、酸化物固体電解質粒子12aが酸化物固体電解質層11の酸化物固体電解質粒子11aや正極活物質13aに接触し易くなる。 The average thickness of positive electrode-side solid electrolyte-dispersed polymer layer 12 may be smaller than the particle size of oxide solid electrolyte particles 12a. In this case, the positive electrode-side solid electrolyte-dispersed polymer layer 12 is thicker at portions where the oxide solid electrolyte particles 12a are located, and is thinner at portions where the oxide solid electrolyte particles 12a are not located. Therefore, the oxide solid electrolyte particles 12a easily come into contact with the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 and the positive electrode active material 13a.

また、正極側固体電解質分散高分子層12では、酸化物固体電解質粒子12aの体積比がリチウムイオン導電性高分子材料12bの体積比よりも大きいことが好ましい。このようにすることで、正極側固体電解質分散高分子層12の抵抗をより小さくすることができる。 Moreover, in the positive electrode side solid electrolyte dispersed polymer layer 12, the volume ratio of the oxide solid electrolyte particles 12a is preferably larger than the volume ratio of the lithium ion conductive polymer material 12b. By doing so, the resistance of the positive electrode side solid electrolyte dispersed polymer layer 12 can be further reduced.

本実施形態では、酸化物固体電解質層11と正極側固体電解質分散高分子層12とが一体とされ、さらに正極活物質層13と正極側固体電解質分散高分子層12とが一体とされることで、酸化物固体電解質層11と正極活物質層13とが正極側固体電解質分散高分子層12を介して一体とされている。従って、酸化物固体電解質層11と正極活物質層13とを剥離する場合、セル構造の破壊が生じる。 In this embodiment, the oxide solid electrolyte layer 11 and the positive electrode-side solid electrolyte-dispersed polymer layer 12 are integrated, and the positive electrode active material layer 13 and the positive electrode-side solid electrolyte-dispersed polymer layer 12 are integrated. The oxide solid electrolyte layer 11 and the positive electrode active material layer 13 are integrated with the positive electrode side solid electrolyte dispersed polymer layer 12 interposed therebetween. Therefore, when the oxide solid electrolyte layer 11 and the positive electrode active material layer 13 are peeled off, the cell structure is destroyed.

なお、正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料15bと酸化物固体電解質粒子11a間に入り込むリチウムイオン導電性高分子材料11bとが、互いに同じ材料であることが、正極側固体電解質分散高分子層12と酸化物固体電解質層11との一体化強度を高めることができる観点から好ましい。また、この場合、正極側固体電解質分散高分子層12と酸化物固体電解質粒子11a間に入り込むリチウムイオン導電性高分子材料11bとを塗布により同時に形成できる観点からも好ましい。但し、正極側固体電解質分散高分子層12のリチウムイオン導電性高分子材料12bと酸化物固体電解質粒子11a間に入り込んでいるリチウムイオン導電性高分子材料11bとが、互いに同じ材料であっても、リチウムイオン導電性高分子材料11bが酸化物固体電解質粒子11a間に入り込んだ状態の酸化物固体電解質層11の正極側の面に、正極側固体電解質分散高分子層12を設けてもよい。また、正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料と酸化物固体電解質粒子11a間に入り込むリチウムイオン導電性高分子材料11bとが、互いに異なる材料であってもよい。この場合、例えば、正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料として、PVDFが用いられ、酸化物固体電解質粒子11a間に入り込むリチウムイオン導電性高分子材料11bとして、PEOが用いられることが好ましい。このような組み合わせであれば、高電位側でPEOよりも分解されにくいPVDFが用いられることによりセル電圧を高電圧化することもできる。このため、全固体リチウム二次電池1の高電位化、高エネルギー化に貢献できる。 It should be noted that the lithium ion conductive polymer material 15b constituting the positive electrode side solid electrolyte dispersed polymer layer 12 and the lithium ion conductive polymer material 11b entering between the oxide solid electrolyte particles 11a are made of the same material. , is preferable from the viewpoint that the integration strength between the positive electrode-side solid electrolyte-dispersed polymer layer 12 and the oxide solid electrolyte layer 11 can be increased. In this case, it is also preferable from the viewpoint that the positive electrode-side solid electrolyte-dispersed polymer layer 12 and the lithium ion conductive polymer material 11b entering between the oxide solid electrolyte particles 11a can be simultaneously formed by coating. However, even if the lithium ion conductive polymer material 12b of the positive electrode side solid electrolyte dispersed polymer layer 12 and the lithium ion conductive polymer material 11b interposed between the oxide solid electrolyte particles 11a are the same material. A positive electrode-side solid electrolyte-dispersed polymer layer 12 may be provided on the positive electrode side surface of the oxide solid electrolyte layer 11 in which the lithium ion conductive polymer material 11b is inserted between the oxide solid electrolyte particles 11a. Further, the lithium ion conductive polymer material forming the positive electrode side solid electrolyte dispersed polymer layer 12 and the lithium ion conductive polymer material 11b entering between the oxide solid electrolyte particles 11a may be different materials. . In this case, for example, PVDF is used as the lithium ion conductive polymer material constituting the positive electrode side solid electrolyte dispersed polymer layer 12, and as the lithium ion conductive polymer material 11b that enters between the oxide solid electrolyte particles 11a, Preferably PEO is used. With such a combination, the cell voltage can be increased by using PVDF, which is less likely to be decomposed than PEO on the high potential side. Therefore, it can contribute to increase the potential and energy of the all-solid lithium secondary battery 1 .

また、正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料と正極活物質13a間に入り込むリチウムイオン導電性高分子材料13bとが、互いに同じ材料であることが、正極側固体電解質分散高分子層12と正極活物質層13との一体化強度を高めることができる観点から好ましい。また、正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料と正極活物質13a間に入り込むリチウムイオン導電性高分子材料13bとが、互いに異なる材料であってもよい。この場合、例えば、正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料12bとして、PEOが用いられ、正極活物質13a間に入り込むリチウムイオン導電性高分子材料13bとして、PVDFが用いられることが好ましい。このような組み合わせであれば、高電位側でPEOよりも分解されにくいPVDFが用いることによりセル電圧を高電圧化することもできる。このため、全固体リチウム二次電池1の高電位化、高エネルギー化に貢献できる。 Further, the lithium ion conductive polymer material forming the positive electrode side solid electrolyte dispersed polymer layer 12 and the lithium ion conductive polymer material 13b inserted between the positive electrode active materials 13a are made of the same material. This is preferable from the viewpoint that the integration strength between the solid electrolyte-dispersed polymer layer 12 and the positive electrode active material layer 13 can be increased. Further, the lithium ion conductive polymer material forming the positive electrode side solid electrolyte dispersed polymer layer 12 and the lithium ion conductive polymer material 13b inserted between the positive electrode active materials 13a may be different materials. In this case, for example, PEO is used as the lithium ion conductive polymer material 12b constituting the positive electrode side solid electrolyte dispersed polymer layer 12, and PVDF is used as the lithium ion conductive polymer material 13b that enters between the positive electrode active materials 13a. is preferably used. With such a combination, the cell voltage can be increased by using PVDF, which is less likely to be decomposed than PEO on the high potential side. Therefore, it can contribute to increase the potential and energy of the all-solid lithium secondary battery 1 .

<正極集電体層>
正極集電体層14は、正極活物質層13の酸化物固体電解質層11側と反対側の面側に配置され、正極活物質層13と一体にされている。正極集電体層14は導電性かつ非イオン導電性の材料から成る。このような材料としては、金属やカーボンシートを挙げることができ、例えば、このような金属として、銅、アルミニウム、鉄ニッケル合金等を挙げることができる。
<Positive collector layer>
The positive electrode current collector layer 14 is arranged on the side of the positive electrode active material layer 13 opposite to the oxide solid electrolyte layer 11 side, and is integrated with the positive electrode active material layer 13 . The positive electrode current collector layer 14 is made of an electrically conductive and non-ionically conductive material. Examples of such materials include metals and carbon sheets, and examples of such metals include copper, aluminum, iron-nickel alloys, and the like.

<負極活物質層>
図3は、図1における負極活物質層16から酸化物固体電解質層11にかけての拡大図である。本実施形態の負極活物質層16は、リチウムイオン導電性高分子材料16bが負極活物質16a間に入り込んだ構成とされ、リチウムイオン導電性を有する。
<Negative electrode active material layer>
FIG. 3 is an enlarged view from the negative electrode active material layer 16 to the oxide solid electrolyte layer 11 in FIG. The negative electrode active material layer 16 of the present embodiment has lithium ion conductivity because the lithium ion conductive polymer material 16b is inserted between the negative electrode active materials 16a.

負極活物質16aを構成する材料としては、リチウムイオンの取り込みと放出ができるものであれば、特に限定されないが、例えば、易黒鉛化カーボン、難黒鉛化カーボン、LTO、LMO、Si、Li、及びこれらの混合物等を挙げることができる。 The material constituting the negative electrode active material 16a is not particularly limited as long as it can take in and release lithium ions. A mixture of these and the like can be mentioned.

負極活物質16a間に入り込むリチウムイオン導電性高分子材料16bとしては、リチウムイオン導電性高分子材料11bに用いることができる材料を挙げることができる。なお、本実施形態において、負極活物質16a間に入り込むリチウムイオン導電性高分子材料16bと、酸化物固体電解質粒子11aの粒子間に入り込むリチウムイオン導電性高分子材料11bとが、同じ材料であっても、異なる材料であってもよい。また、負極活物質16a間に入り込むリチウムイオン導電性高分子材料16bと、正極活物質13a間に入り込むリチウムイオン導電性高分子材料13bとが同じ材料であっても、異なる材料であってもよい。 Examples of the lithium ion conductive polymer material 16b that enters between the negative electrode active materials 16a include materials that can be used for the lithium ion conductive polymer material 11b. In the present embodiment, the lithium ion conductive polymer material 16b that enters between the negative electrode active materials 16a and the lithium ion conductive polymer material 11b that enters between the oxide solid electrolyte particles 11a are made of the same material. or different materials. In addition, the lithium ion conductive polymer material 16b inserted between the negative electrode active materials 16a and the lithium ion conductive polymer material 13b inserted between the positive electrode active materials 13a may be the same material or different materials. .

また、負極活物質層16のリチウムイオン導電性高分子材料16bには、アセチレンブラック等の導電助剤が分散されていてもよい。 Further, a conductive aid such as acetylene black may be dispersed in the lithium ion conductive polymer material 16 b of the negative electrode active material layer 16 .

<負極側固体電解質分散高分子層>
本実施形態では、負極活物質層16と酸化物固体電解質層11との間にリチウムイオン導電性高分子材料15b中に酸化物固体電解質粒子15aが分散されて成る固体電解質分散高分子層としての負極側固体電解質分散高分子層15が介在している。負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料15bとしては、リチウムイオン導電性高分子材料11bに用いることができる材料を挙げることができる。
<Negative electrode side solid electrolyte dispersed polymer layer>
In this embodiment, a solid electrolyte dispersed polymer layer in which oxide solid electrolyte particles 15a are dispersed in a lithium ion conductive polymer material 15b between the negative electrode active material layer 16 and the oxide solid electrolyte layer 11 A negative electrode-side solid electrolyte-dispersed polymer layer 15 is interposed. As the lithium ion conductive polymer material 15b forming the negative electrode-side solid electrolyte dispersed polymer layer 15, materials that can be used for the lithium ion conductive polymer material 11b can be mentioned.

また、負極側固体電解質分散高分子層15の酸化物固体電解質粒子15aを構成する酸化物固体電解質としては、酸化物固体電解質層11の酸化物固体電解質粒子11aに用いることができる酸化物固体電解質と同様の酸化物固体電解質を挙げることができる。なお、負極側固体電解質分散高分子層15の酸化物固体電解質粒子15aと酸化物固体電解質層11の酸化物固体電解質粒子11aとが、同じ酸化物固体電解質から成ることが接触抵抗低減の観点から好ましい。また、負極側固体電解質分散高分子層15の酸化物固体電解質粒子15aと酸化物固体電解質層11の酸化物固体電解質粒子11aとが、互いに異なる酸化物固体電解質から成ることとしてもよい。この場合、例えば、酸化物固体電解質層11の酸化物固体電解質粒子11aを構成する酸化物固体電解質には、LATPが用いられ、負極側固体電解質分散高分子層15の酸化物固体電解質粒子15aを構成する酸化物固体電解質には、LAGP、LLZOが用いられる。このような組み合わせであれば、負極での還元耐性を向上することができる。 As the oxide solid electrolyte constituting the oxide solid electrolyte particles 15a of the negative electrode-side solid electrolyte-dispersed polymer layer 15, an oxide solid electrolyte that can be used for the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 can include oxide solid electrolytes similar to . From the viewpoint of reducing contact resistance, the oxide solid electrolyte particles 15a of the negative electrode-side solid electrolyte-dispersed polymer layer 15 and the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 are made of the same oxide solid electrolyte. preferable. Further, the oxide solid electrolyte particles 15a of the negative electrode-side solid electrolyte-dispersed polymer layer 15 and the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 may be made of different oxide solid electrolytes. In this case, for example, LATP is used for the oxide solid electrolyte constituting the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11, and the oxide solid electrolyte particles 15a of the negative electrode-side solid electrolyte-dispersed polymer layer 15 are LAGP and LLZO are used for the constituent oxide solid electrolyte. With such a combination, reduction resistance at the negative electrode can be improved.

また、負極側固体電解質分散高分子層15の酸化物固体電解質粒子15aの粒径が、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒径と同じでもよい。ただし、負極側固体電解質分散高分子層15の酸化物固体電解質粒子15aの粒径が、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒径と異なってもよい。例えば、負極側固体電解質分散高分子層15の酸化物固体電解質粒子15aの粒径が、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒径よりも小さければ、負極側固体電解質分散高分子層15を薄くでき、全固体リチウム二次電池1の低抵抗化に貢献できるため好ましい。また、後述のように負極側固体電解質分散高分子層15を塗布で形成する際に、酸化物固体電解質層11の酸化物固体電解質粒子11a間に、酸化物固体電解質粒子15aをリチウムイオン導電性高分子材料15bと共に入り込ませ得る。但し、負極側固体電解質分散高分子層15の酸化物固体電解質粒子15aの粒径が、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒径よりも大きくてもよい。 Further, the particle size of the oxide solid electrolyte particles 15 a of the negative electrode-side solid electrolyte dispersed polymer layer 15 may be the same as the particle size of the oxide solid electrolyte particles 11 a of the oxide solid electrolyte layer 11 . However, the particle size of oxide solid electrolyte particles 15 a in negative electrode-side solid electrolyte-dispersed polymer layer 15 may differ from the particle size of oxide solid electrolyte particles 11 a in oxide solid electrolyte layer 11 . For example, if the particle size of the oxide solid electrolyte particles 15a of the negative electrode-side solid electrolyte dispersed polymer layer 15 is smaller than the particle size of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11, the negative electrode-side solid electrolyte dispersion height This is preferable because the molecular layer 15 can be made thinner and the resistance of the all-solid lithium secondary battery 1 can be reduced. Further, when forming the negative electrode-side solid electrolyte-dispersed polymer layer 15 by coating as described later, the oxide solid electrolyte particles 15a are placed between the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 to provide lithium ion conductivity. It can be embedded with polymeric material 15b. However, the particle size of oxide solid electrolyte particles 15 a in negative electrode-side solid electrolyte-dispersed polymer layer 15 may be larger than the particle size of oxide solid electrolyte particles 11 a in oxide solid electrolyte layer 11 .

なお、負極側固体電解質分散高分子層15の平均の厚みが酸化物固体電解質粒子15aの粒径よりも小さくてもよい。この場合、負極側固体電解質分散高分子層15は、酸化物固体電解質粒子15aが位置する部位で厚くなり、酸化物固体電解質粒子15aが位置しない部位で薄くなる。このため、酸化物固体電解質粒子15aが酸化物固体電解質層11の酸化物固体電解質粒子11aや正極活物質13aに接触し易くなる。 The average thickness of the negative electrode-side solid electrolyte-dispersed polymer layer 15 may be smaller than the particle size of the oxide solid electrolyte particles 15a. In this case, the negative electrode-side solid electrolyte-dispersed polymer layer 15 is thicker at portions where the oxide solid electrolyte particles 15a are located, and is thinner at portions where the oxide solid electrolyte particles 15a are not located. Therefore, the oxide solid electrolyte particles 15a easily come into contact with the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 and the positive electrode active material 13a.

また、負極側固体電解質分散高分子層15では、酸化物固体電解質粒子15aの体積比がリチウムイオン導電性高分子材料15bの体積比よりも大きいことが好ましい。このようにすることで、負極側固体電解質分散高分子層15の抵抗をより小さくすることができる。 Moreover, in the negative electrode-side solid electrolyte-dispersed polymer layer 15, the volume ratio of the oxide solid electrolyte particles 15a is preferably larger than the volume ratio of the lithium ion conductive polymer material 15b. By doing so, the resistance of the anode-side solid electrolyte-dispersed polymer layer 15 can be further reduced.

本実施形態では、酸化物固体電解質層11と負極側固体電解質分散高分子層15とが一体とされ、負極活物質層16と負極側固体電解質分散高分子層15とが一体とされることで、酸化物固体電解質層11と負極活物質層16とが負極側固体電解質分散高分子層15を介して一体とされている。従って、酸化物固体電解質層11と負極活物質層16とを剥離する場合、破壊が生じる。 In this embodiment, the oxide solid electrolyte layer 11 and the anode-side solid electrolyte-dispersed polymer layer 15 are integrated, and the anode active material layer 16 and the anode-side solid electrolyte-dispersed polymer layer 15 are integrated. , the oxide solid electrolyte layer 11 and the negative electrode active material layer 16 are integrated with the negative electrode side solid electrolyte dispersed polymer layer 15 interposed therebetween. Therefore, when the oxide solid electrolyte layer 11 and the negative electrode active material layer 16 are separated, breakage occurs.

なお、負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料15bと酸化物固体電解質粒子11a間に入り込むリチウムイオン導電性高分子材料11bとが、互いに同じ材料であることが、負極側固体電解質分散高分子層15と酸化物固体電解質層11との一体化強度を高めることができる観点から好ましい。また、この場合、負極側固体電解質分散高分子層15と酸化物固体電解質粒子11a間に入り込むリチウムイオン導電性高分子材料11bとを塗布により同時に形成できる観点からも好ましい。但し、負極側固体電解質分散高分子層15のリチウムイオン導電性高分子材料15bと酸化物固体電解質粒子11a間に入り込んでいるリチウムイオン導電性高分子材料11bとが、互いに同じ材料であっても、リチウムイオン導電性高分子材料11bが酸化物固体電解質粒子11a間に入り込んだ状態の酸化物固体電解質層11の負極側の面に、負極側固体電解質分散高分子層15を設けてもよい。また、負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料と酸化物固体電解質粒子11a間に入り込むリチウムイオン導電性高分子材料11bとが、互いに異なる材料であってもよい。この場合、例えば、負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料として、PVDF、SBR、アクリレート等を適宜用いることができ、酸化物固体電解質粒子11a間に入るリチウムイオン導電性高分子材料11bとしてPEOが用いられることが好ましい。 It should be noted that the lithium ion conductive polymer material 15b constituting the negative electrode-side solid electrolyte dispersed polymer layer 15 and the lithium ion conductive polymer material 11b entering between the oxide solid electrolyte particles 11a are made of the same material. , is preferable from the viewpoint that the integration strength between the negative electrode-side solid electrolyte-dispersed polymer layer 15 and the oxide solid electrolyte layer 11 can be increased. In this case, it is also preferable from the viewpoint that the negative electrode-side solid electrolyte-dispersed polymer layer 15 and the lithium ion conductive polymer material 11b entering between the oxide solid electrolyte particles 11a can be simultaneously formed by coating. However, even if the lithium ion conductive polymer material 15b of the negative electrode-side solid electrolyte dispersed polymer layer 15 and the lithium ion conductive polymer material 11b interposed between the oxide solid electrolyte particles 11a are the same material. A negative electrode-side solid electrolyte-dispersed polymer layer 15 may be provided on the negative electrode-side surface of the oxide solid electrolyte layer 11 in which the lithium ion conductive polymer material 11b is inserted between the oxide solid electrolyte particles 11a. Further, the lithium ion conductive polymer material constituting the negative electrode-side solid electrolyte dispersed polymer layer 15 and the lithium ion conductive polymer material 11b entering between the oxide solid electrolyte particles 11a may be different materials. . In this case, for example, PVDF, SBR, acrylate, or the like can be appropriately used as the lithium ion conductive polymer material constituting the anode-side solid electrolyte-dispersed polymer layer 15. PEO is preferably used as the conductive polymer material 11b.

また、負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料と負極活物質16a間に入り込むリチウムイオン導電性高分子材料16bとが、互いに同じ材料であることが、負極側固体電解質分散高分子層15と負極活物質層16との一体化強度を高めることができる観点から好ましい。また、負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料と負極活物質16a間に入り込むリチウムイオン導電性高分子材料16bとが、互いに異なる材料であってもよい。この場合、例えば、負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料として、PVDFが用いられ、負極活物質16a間に入り込むリチウムイオン導電性高分子材料13bとして、PEOとPVDFの混合物が用いられることが好ましい。このような組み合わせであれば、負極側固体電解質分散高分子層15と負極活物質層16との密着度を向上させ得る。 Further, the lithium ion conductive polymer material forming the negative electrode side solid electrolyte dispersed polymer layer 15 and the lithium ion conductive polymer material 16b inserted between the negative electrode active materials 16a are made of the same material. This is preferable from the viewpoint that the integration strength between the solid electrolyte-dispersed polymer layer 15 and the negative electrode active material layer 16 can be increased. Also, the lithium ion conductive polymer material forming the negative electrode-side solid electrolyte dispersed polymer layer 15 and the lithium ion conductive polymer material 16b inserted between the negative electrode active materials 16a may be different materials. In this case, for example, PVDF is used as the lithium ion conductive polymer material constituting the negative electrode side solid electrolyte dispersed polymer layer 15, and PEO and PEO are used as the lithium ion conductive polymer material 13b that enters between the negative electrode active materials 16a. Preferably a mixture of PVDF is used. With such a combination, the degree of adhesion between the negative electrode-side solid electrolyte-dispersed polymer layer 15 and the negative electrode active material layer 16 can be improved.

<負極集電体層>
負極集電体層17は、負極活物質層16の酸化物固体電解質層11側と反対側の面側に配置され、負極活物質層16と一体にされている。負極集電体層17の材料としては、例えば、正極集電体層14と同様の材料を挙げることができる。
<Negative electrode current collector layer>
The negative electrode collector layer 17 is arranged on the side of the negative electrode active material layer 16 opposite to the oxide solid electrolyte layer 11 side, and is integrated with the negative electrode active material layer 16 . Examples of the material of the negative electrode current collector layer 17 include the same materials as those of the positive electrode current collector layer 14 .

<包材>
包材10は、正極集電体層14、正極活物質層13、正極側固体電解質分散高分子層12、酸化物固体電解質層11、負極側固体電解質分散高分子層15、負極活物質層16、及び負極集電体層17を収容して、封止する部材である。なお、正極集電体層14、負極集電体層17の一部は、電極として包材10の外部に導出される。
<Packaging material>
The packaging material 10 includes a positive electrode current collector layer 14, a positive electrode active material layer 13, a positive electrode side solid electrolyte dispersed polymer layer 12, an oxide solid electrolyte layer 11, a negative electrode side solid electrolyte dispersed polymer layer 15, and a negative electrode active material layer 16. , and the negative electrode current collector layer 17 are accommodated and sealed. Part of the positive electrode current collector layer 14 and the negative electrode current collector layer 17 are led out of the packaging material 10 as electrodes.

包材10の構成は、外部の酸素や水分等が包材10で包囲された領域内に侵入することが抑制され、当該領域と導通しなければ、特に限定されないが、例えば、アルミニウム等の金属箔が樹脂層でラミネートされたものを用いることができる。 The structure of the packaging material 10 is not particularly limited as long as it suppresses the intrusion of external oxygen, moisture, etc. into the area surrounded by the packaging material 10 and does not conduct with the area. A foil laminated with a resin layer can be used.

以上、本実施形態の全固体リチウム二次電池1は、酸化物固体電解質が用いられ、酸化物は硫化物と異なり水と反応しても硫化水素のような取り扱いに注意を要するガス発生しづらいため、取り扱いが容易である。また、本実施形態の全固体リチウム二次電池1では、正極活物質層13と、負極活物質層16と、正極側固体電解質分散高分子層12と、負極側固体電解質分散高分子層15と、酸化物固体電解質層11とが剥離できないくらい一体化されている。このように一体化されたそれぞれの層と層との間における抵抗は、一体化されておらず単に隣接して配置された上記層と層との間における抵抗よりも低減される。 As described above, the all-solid-state lithium secondary battery 1 of the present embodiment uses an oxide solid electrolyte, and unlike sulfides, even if oxides react with water, it is difficult to generate gases such as hydrogen sulfide that require careful handling. Therefore, it is easy to handle. Further, in the all-solid lithium secondary battery 1 of the present embodiment, the positive electrode active material layer 13, the negative electrode active material layer 16, the positive electrode side solid electrolyte dispersed polymer layer 12, and the negative electrode side solid electrolyte dispersed polymer layer 15 , and the oxide solid electrolyte layer 11 are so integrated that they cannot be separated from each other. The resistance between each layer that is integrated in this way is lower than the resistance between the layers that are not integrated and are simply placed adjacent to each other.

また、本実施形態の全固体リチウム二次電池1では、正極集電体層14と酸化物固体電解質層11との間に介在する正極側固体電解質分散高分子層12が、リチウムイオン導電性高分子材料12b中に酸化物固体電解質粒子12aが分散されて成る。また、本実施形態の全固体リチウム二次電池1では、負極活物質層16と酸化物固体電解質層11との間に介在する負極側固体電解質分散高分子層15が、リチウムイオン導電性高分子材料15b中に酸化物固体電解質粒子15aが分散されて成る。一般に酸化物固体電解質粒子はリチウムイオン導電性高分子材料よりもリチウムイオン伝導度が高いため、正極側固体電解質分散高分子層12、負極側固体電解質分散高分子層15のイオン伝導度は、リチウムイオン導電性高分子材料のみから成る層よりも高い。従って、本実施形態の正極側固体電解質分散高分子層12、負極側固体電解質分散高分子層15は、正極活物質層13と酸化物固体電解質層11との間、及び、負極活物質層16と酸化物固体電解質層11との間にリチウムイオン導電性高分子材料のみから成る層が配置される場合よりも厚く形成され得る。このため、正極活物質層13及び負極活物質層16と酸化物固体電解質層11との間の隙間を埋めることができなくなることで内部抵抗が高くなることを抑制することができる。 Further, in the all-solid lithium secondary battery 1 of the present embodiment, the positive electrode-side solid electrolyte-dispersed polymer layer 12 interposed between the positive electrode current collector layer 14 and the oxide solid electrolyte layer 11 has high lithium ion conductivity. The oxide solid electrolyte particles 12a are dispersed in the molecular material 12b. Further, in the all-solid lithium secondary battery 1 of the present embodiment, the negative electrode-side solid electrolyte-dispersed polymer layer 15 interposed between the negative electrode active material layer 16 and the oxide solid electrolyte layer 11 is a lithium ion conductive polymer. The oxide solid electrolyte particles 15a are dispersed in the material 15b. In general, oxide solid electrolyte particles have higher lithium ion conductivity than lithium ion conductive polymer materials. It is higher than a layer consisting only of ion-conducting polymer material. Therefore, the positive electrode-side solid electrolyte-dispersed polymer layer 12 and the negative electrode-side solid electrolyte-dispersed polymer layer 15 of this embodiment are located between the positive electrode active material layer 13 and the oxide solid electrolyte layer 11 and between the negative electrode active material layer 16 and the oxide solid electrolyte layer 11 can be formed thicker than in the case where a layer composed only of a lithium ion conductive polymer material is arranged. Therefore, it is possible to prevent the internal resistance from increasing due to the inability to fill the gaps between the positive electrode active material layer 13 and the negative electrode active material layer 16 and the oxide solid electrolyte layer 11 .

以上のように、本実施形態の全固体リチウム二次電池1によれば、内部抵抗が低減され、大電流化を達成することができる。 As described above, according to the all-solid-state lithium secondary battery 1 of the present embodiment, the internal resistance is reduced and a large current can be achieved.

次に本実施形態の全固体リチウム二次電池1の製造方法について説明する。 Next, a method for manufacturing the all-solid lithium secondary battery 1 of this embodiment will be described.

図4は、実施形態に係る全固体リチウム二次電池1の製造方法のフローチャートである。図4に示すように、本実施形態の全固体リチウム二次電池1の製造方法は、準備工程P1と、配置工程P2と、一体化工程P3と、封止工程P4と、を備える。 FIG. 4 is a flow chart of a method for manufacturing the all-solid lithium secondary battery 1 according to the embodiment. As shown in FIG. 4, the manufacturing method of the all-solid lithium secondary battery 1 of this embodiment includes a preparation process P1, an arrangement process P2, an integration process P3, and a sealing process P4.

<準備工程P1>
本工程は、酸化物固体電解質層11と、正極活物質層13と、正極集電体層14と、負極活物質層16と、負極集電体層17と、を主に準備する工程である。図5は、準備工程の様子を示す図である。
<Preparation process P1>
This step is a step of mainly preparing the oxide solid electrolyte layer 11, the positive electrode active material layer 13, the positive electrode current collector layer 14, the negative electrode active material layer 16, and the negative electrode current collector layer 17. . FIG. 5 is a diagram showing the state of the preparation process.

(酸化物固体電解質層の準備)
酸化物固体電解質層11の準備では、まず、酸化物固体電解質粒子11aがバインダー中に分散されているグリーンシートを準備し、その後、焼成することで、酸化物固体電解質粒子11a同士が一体化された酸化物固体電解質層11となるポーラス状のシート状部材が得られる。或いは、酸化物固体電解質粒子11aが型に入れられてシート状に成型さえた状態で所定の圧力が加えられ焼成されて、酸化物固体電解質層11となるポーラス状のシート状部材を得てもよい。また或いは、酸化物固体電解質粒子11aがバインダー中に分散された後、シート状に成型されて当該バインダーが固められてもよい。なお、当該バインダーがリチウムイオン導電性高分子材料11bから成ってもよい。或いは、当該バインダーがリチウムイオン導電性高分子材料11bから成らなくてもよいが、本実施形態では、酸化物固体電解質粒子11a間にリチウムイオン導電性高分子材料11bが入り込んだ構成であるため、この場合、バインダーの量は酸化物固体電解質粒子11a間に空隙ができる程度とされる。こうして、酸化物固体電解質粒子11aを含むシート状部材が得られる。
(Preparation of oxide solid electrolyte layer)
In preparing the oxide solid electrolyte layer 11, first, a green sheet in which the oxide solid electrolyte particles 11a are dispersed in a binder is prepared, and then fired to integrate the oxide solid electrolyte particles 11a. A porous sheet-like member that becomes the oxide solid electrolyte layer 11 is obtained. Alternatively, the oxide solid electrolyte particles 11a may be placed in a mold, molded into a sheet, and then baked under a predetermined pressure to obtain a porous sheet-like member that becomes the oxide solid electrolyte layer 11. good. Alternatively, after the oxide solid electrolyte particles 11a are dispersed in a binder, they may be molded into a sheet shape and the binder may be hardened. In addition, the binder may be made of the lithium ion conductive polymer material 11b. Alternatively, the binder may not be made of the lithium ion conductive polymer material 11b, but in the present embodiment, the lithium ion conductive polymer material 11b enters between the oxide solid electrolyte particles 11a. In this case, the amount of the binder is such that voids are formed between the oxide solid electrolyte particles 11a. Thus, a sheet-like member containing oxide solid electrolyte particles 11a is obtained.

次に、酸化物固体電解質粒子11aを含むシート状部材の両面にリチウムイオン導電性高分子材料中に酸化物固体電解質粒子が分散された分散液を塗布して固化させる。このとき酸化物固体電解質粒子11a間に塗布したリチウムイオン導電性高分子材料が入り込み、酸化物固体電解質粒子11a間に配置されたリチウムイオン導電性高分子材料11bとなる。こうして、図5に示す酸化物固体電解質粒子11a間にリチウムイオン導電性高分子材料11bが入り込んだ酸化物固体電解質層11が得られる。なお、この際、分散液中の酸化物固体電解質粒子が酸化物固体電解質粒子11a間に入り込むことが低抵抗化の観点からより好ましい。この場合、分散液中の酸化物固体電解質粒子の粒径がシート状部材の酸化物固体電解質粒子11aの粒径よりも小さければ、分散液中の酸化物固体電解質粒子が酸化物固体電解質粒子11a間に入り込みやすいため好ましい。なお、上記のように酸化物固体電解質粒子11aがリチウムイオン導電性高分子材料11bから成るバインダー中に分散された後、シート状に成型されて当該バインダーが固められることで、上記のシート状部材とされる場合には、上記塗布前に酸化物固体電解質粒子11a間にリチウムイオン導電性高分子材料11bが入り込んでいるため、当該塗布により酸化物固体電解質粒子11a間に塗布したリチウムイオン導電性高分子材料が入り込まなくてもよい。 Next, a dispersion liquid in which oxide solid electrolyte particles are dispersed in a lithium ion conductive polymer material is applied to both surfaces of the sheet member containing the oxide solid electrolyte particles 11a and solidified. At this time, the applied lithium ion conductive polymer material enters between the oxide solid electrolyte particles 11a to form the lithium ion conductive polymer material 11b arranged between the oxide solid electrolyte particles 11a. In this way, the oxide solid electrolyte layer 11 in which the lithium ion conductive polymer material 11b enters between the oxide solid electrolyte particles 11a shown in FIG. 5 is obtained. At this time, it is more preferable that the oxide solid electrolyte particles in the dispersion enter between the oxide solid electrolyte particles 11a from the viewpoint of reducing the resistance. In this case, if the particle size of the oxide solid electrolyte particles in the dispersion is smaller than the particle size of the oxide solid electrolyte particles 11a of the sheet-shaped member, the oxide solid electrolyte particles in the dispersion will be the oxide solid electrolyte particles 11a. It is preferable because it is easy to get in between. After the oxide solid electrolyte particles 11a are dispersed in the binder made of the lithium ion conductive polymer material 11b as described above, the sheet-shaped member is molded into a sheet shape and the binder is hardened. In the case of , the lithium ion conductive polymer material 11b is embedded between the oxide solid electrolyte particles 11a before the coating, so that the lithium ion conductive polymer material 11b applied between the oxide solid electrolyte particles 11a by the coating is Polymeric material may not enter.

また、本実施形態では、酸化物固体電解質粒子11aから成るシート状部材の両面にリチウムイオン導電性高分子材料を塗布する際に、シート状部材の両面のそれぞれの上にリチウムイオン導電性高分子材料が層となる程度リチウムイオン導電性高分子材料を塗布する。その結果、酸化物固体電解質層11の一方の面上のリチウムイオン導電性高分子材料が固化して図5に示す正極側固体電解質分散高分子層12となり、酸化物固体電解質層11の他方の面上のリチウムイオン導電性高分子材料が固化して図5に示す負極側固体電解質分散高分子層15となる。 Further, in this embodiment, when the lithium ion conductive polymer material is applied to both surfaces of the sheet-like member made of the oxide solid electrolyte particles 11a, the lithium ion conductive polymer is applied to both surfaces of the sheet-like member. Apply the lithium ion conductive polymeric material to the extent that the material forms a layer. As a result, the lithium ion conductive polymer material on one side of the oxide solid electrolyte layer 11 solidifies to form the positive electrode side solid electrolyte dispersed polymer layer 12 shown in FIG. The lithium ion conductive polymer material on the surface is solidified to form the anode-side solid electrolyte-dispersed polymer layer 15 shown in FIG.

(正極活物質層、正極集電体の準備)
正極活物質層、正極集電体の準備では、正極活物質13aと、必要に応じた導電助剤とを、リチウムイオン導電性高分子材料13b中に分散させて、正極集電体層14上に塗布して乾燥させる。こうして、正極活物質層13が正極集電体層14上に設けられた状態となる。
(Preparation of positive electrode active material layer and positive electrode current collector)
In the preparation of the positive electrode active material layer and the positive electrode current collector, the positive electrode active material 13a and, if necessary, a conductive aid are dispersed in the lithium ion conductive polymer material 13b, and the positive electrode current collector layer 14 is coated with the positive electrode active material 13a. Apply to and dry. Thus, the cathode active material layer 13 is provided on the cathode current collector layer 14 .

(負極活物質層、負極集電体の準備)
負極活物質層、負極集電体の準備では、負極活物質16aと、必要に応じた導電助剤とを、リチウムイオン導電性高分子材料16b中に分散させて、負極集電体層17上に塗布して乾燥させる。こうして、負極活物質層16が負極集電体層17上に設けられた状態となる。
(Preparation of negative electrode active material layer and negative electrode current collector)
In the preparation of the negative electrode active material layer and the negative electrode current collector, the negative electrode active material 16a and a conductive aid as necessary are dispersed in the lithium ion conductive polymer material 16b, and are dispersed on the negative electrode current collector layer 17. Apply to and dry. Thus, the negative electrode active material layer 16 is provided on the negative electrode current collector layer 17 .

<配置工程P2>
図6は、本工程の様子を示す図である。図6に示すように、準備工程P1の後、酸化物固体電解質層11の一方の面側に正極活物質層13及び正極集電体層14の積層体を正極活物質層13が酸化物固体電解質層11側を向くように配置する。ただし、上記のように酸化物固体電解質層11の一方の面上には正極側固体電解質分散高分子層12が位置するため、正極活物質層13は、正極側固体電解質分散高分子層12上に配置される。
<Placement process P2>
FIG. 6 is a diagram showing the state of this process. As shown in FIG. 6, after the preparation step P1, a laminate of the positive electrode active material layer 13 and the positive electrode current collector layer 14 is placed on one side of the oxide solid electrolyte layer 11 so that the positive electrode active material layer 13 is a solid oxide. It is arranged so as to face the electrolyte layer 11 side. However, since the positive electrode-side solid electrolyte-dispersed polymer layer 12 is positioned on one surface of the oxide solid electrolyte layer 11 as described above, the positive electrode active material layer 13 is formed on the positive electrode-side solid electrolyte-dispersed polymer layer 12. placed in

また、酸化物固体電解質層11の他方の面側に負極活物質層16及び負極集電体層17の積層体を負極活物質層16が酸化物固体電解質層11側を向くように配置する。ただし、上記のように酸化物固体電解質層11の他方の面上には負極側固体電解質分散高分子層15が位置するため、負極活物質層16は、負極側固体電解質分散高分子層15上に配置される。 Also, the laminate of the negative electrode active material layer 16 and the negative electrode current collector layer 17 is arranged on the other surface side of the oxide solid electrolyte layer 11 so that the negative electrode active material layer 16 faces the oxide solid electrolyte layer 11 side. However, since the negative electrode-side solid electrolyte-dispersed polymer layer 15 is positioned on the other surface of the oxide solid electrolyte layer 11 as described above, the negative electrode active material layer 16 is formed on the negative electrode-side solid electrolyte-dispersed polymer layer 15. placed in

こうして、図6に示すように、酸化物固体電解質層11、正極側固体電解質分散高分子層12、正極活物質層13、正極集電体層14、負極側固体電解質分散高分子層15、負極活物質層16、及び負極集電体層17が積層された電池素体1bを得る。 In this way, as shown in FIG. 6, an oxide solid electrolyte layer 11, a positive electrode-side solid electrolyte-dispersed polymer layer 12, a positive electrode active material layer 13, a positive electrode current collector layer 14, a negative electrode-side solid electrolyte-dispersed polymer layer 15, and a negative electrode are formed. A battery body 1b in which the active material layer 16 and the negative electrode current collector layer 17 are laminated is obtained.

<一体化工程P3>
配置工程P2の後、積層された酸化物固体電解質層11、正極側固体電解質分散高分子層12、正極活物質層13、正極集電体層14、負極側固体電解質分散高分子層15、負極活物質層16、及び負極集電体層17を一体化する。既に、酸化物固体電解質層11と正極側固体電解質分散高分子層12と負極側固体電解質分散高分子層15とが一体化しており、正極活物質層13と正極集電体層14とが一体化しており、負極活物質層16と負極集電体層17とが一体化している。従って、本工程では、正極側固体電解質分散高分子層12と正極活物質層13とを一体化し、負極側固体電解質分散高分子層15と負極活物質層16とを一体化する。
<Integration process P3>
After the placement step P2, the laminated oxide solid electrolyte layer 11, positive electrode-side solid electrolyte-dispersed polymer layer 12, positive electrode active material layer 13, positive electrode current collector layer 14, negative electrode-side solid electrolyte-dispersed polymer layer 15, and negative electrode The active material layer 16 and the negative electrode current collector layer 17 are integrated. The oxide solid electrolyte layer 11, the positive electrode-side solid electrolyte-dispersed polymer layer 12, and the negative electrode-side solid electrolyte-dispersed polymer layer 15 have already been integrated, and the positive electrode active material layer 13 and the positive electrode current collector layer 14 are integrated. The negative electrode active material layer 16 and the negative electrode current collector layer 17 are integrated. Therefore, in this step, the positive electrode side solid electrolyte dispersed polymer layer 12 and the positive electrode active material layer 13 are integrated, and the negative electrode side solid electrolyte dispersed polymer layer 15 and the negative electrode active material layer 16 are integrated.

図7は、本工程を示す図である。図7に示すように本実施形態では、熱プレスにより一体化を行う。具体的には、加熱された一対の熱プレス型21,22で電池素体1bを挟み込む。そして、それぞれの熱プレス型21,22が加熱された状態でプレスする。このとき、熱プレス型21,22の温度は、正極側固体電解質分散高分子層12及び負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料が軟化する温度より高い温度であることが好ましい。例えば、このリチウムイオン導電性高分子材料がPEOであれば、軟化する温度は概ね100℃であるため、熱プレス型21,22の温度は、この温度より高い温度とされることが好ましい。また、例えば、上記のようにこのリチウムイオン導電性高分子材料がPEOである場合、温度を130℃以下とすることが、流動性が高くなることでリチウムイオン導電性高分子材料が流出することを抑制する観点から好ましい。また、例えば、上記のようにこのリチウムイオン導電性高分子材料がPEOである場合、熱プレス型21,22の温度110℃から120℃の間であることがより好ましい。また、電池素体1bを押圧する圧力は、例えば、1MPa以上50MPa以下であることが、それぞれの層を強固に一体化しつつ、リチウムイオン導電性高分子材料の流出を抑制できる観点から好ましい。 FIG. 7 is a diagram showing this process. As shown in FIG. 7, in this embodiment, integration is performed by hot pressing. Specifically, the battery body 1b is sandwiched between a pair of heated hot press dies 21 and 22 . Then, the hot press molds 21 and 22 are pressed while being heated. At this time, the temperature of the hot press dies 21 and 22 is higher than the temperature at which the lithium ion conductive polymer material constituting the positive electrode side solid electrolyte dispersed polymer layer 12 and the negative electrode side solid electrolyte dispersed polymer layer 15 softens. Preferably. For example, if the lithium ion conductive polymer material is PEO, the softening temperature is approximately 100° C., so the temperature of the hot press dies 21 and 22 is preferably higher than this temperature. Further, for example, when the lithium ion conductive polymer material is PEO as described above, setting the temperature to 130° C. or less increases the fluidity, so that the lithium ion conductive polymer material flows out. is preferable from the viewpoint of suppressing Further, for example, when the lithium ion conductive polymer material is PEO as described above, the temperature of the heat press molds 21 and 22 is more preferably between 110°C and 120°C. Further, the pressure for pressing the battery body 1b is preferably, for example, 1 MPa or more and 50 MPa or less, from the viewpoint of suppressing the outflow of the lithium ion conductive polymer material while firmly integrating each layer.

また、本工程において、正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料の一部が正極活物質層13中に入り込んでも良く、負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料の一部が負極活物質層16中に入り込んでもよい。 Further, in this step, a part of the lithium ion conductive polymer material constituting the positive electrode side solid electrolyte dispersed polymer layer 12 may enter into the positive electrode active material layer 13, and the negative electrode side solid electrolyte dispersed polymer layer 15 may be formed. Part of the constituent lithium ion conductive polymer material may enter into the negative electrode active material layer 16 .

こうして、正極側固体電解質分散高分子層12と正極活物質層13とが一体化され、負極側固体電解質分散高分子層15と負極活物質層16とが一体化され、図1に示す、包材10内の電池素体1bを得る。 In this way, the positive electrode-side solid electrolyte-dispersed polymer layer 12 and the positive electrode active material layer 13 are integrated, and the negative electrode-side solid electrolyte-dispersed polymer layer 15 and the negative electrode active material layer 16 are integrated. A battery body 1b in the material 10 is obtained.

<封止工程P4>
次に、一体化された電池素体1bを包材10内に配置し、包材10を封止する。封止には熱融着等が用いられることが好ましい。
<Sealing step P4>
Next, the integrated battery body 1b is arranged in the packaging material 10, and the packaging material 10 is sealed. It is preferable that heat sealing or the like be used for the sealing.

こうして、図1に示す全固体リチウム二次電池1を得る。 Thus, the all-solid lithium secondary battery 1 shown in FIG. 1 is obtained.

以上説明したように、本実施形態の全固体リチウム二次電池1の製造方法によれば、正極活物質層13及び負極活物質層16と酸化物固体電解質層11とが一体とされる。従って、取り扱いが容易な酸化物固体電解質が用いられ、正極活物質層13と酸化物固体電解質層11との間、及び、負極活物質層16と酸化物固体電解質層11との間における抵抗が低減され、大電流化を達成し得る全固体リチウム二次電池1を製造することができる。 As described above, according to the method for manufacturing the all-solid lithium secondary battery 1 of the present embodiment, the positive electrode active material layer 13, the negative electrode active material layer 16, and the oxide solid electrolyte layer 11 are integrated. Therefore, an easily handled oxide solid electrolyte is used, and the resistance between the positive electrode active material layer 13 and the oxide solid electrolyte layer 11 and between the negative electrode active material layer 16 and the oxide solid electrolyte layer 11 is It is possible to manufacture an all-solid-state lithium secondary battery 1 that is reduced and can achieve a large current.

また、本実施形態では、一体化工程P3が熱圧着により行われる。従って、例えば、超音波が用いられて、一体化工程P3が行われる場合よりも、容易に一体化工程P3を行うことができる。 Further, in the present embodiment, the integration step P3 is performed by thermocompression bonding. Therefore, for example, the integration process P3 can be performed more easily than when the integration process P3 is performed using ultrasonic waves.

以上、本発明について、実施形態を例に説明したが、本発明はこれらに限定されるものではない。 Although the present invention has been described above using the embodiments as examples, the present invention is not limited to these.

例えば、上記実施形態では、酸化物固体電解質層11において、酸化物固体電解質粒子11aの粒子間の少なくとも一部にリチウムイオン導電性高分子材料11bが入り込んだ構成とされた。しかし、本発明では、酸化物固体電解質層11がリチウムイオン導電性を有する限りにおいて、酸化物固体電解質層11はリチウムイオン導電性高分子材料11bを有していなくてもよい。ただし、酸化物固体電解質層11がリチウムイオン導電性を良好に保つ観点から、酸化物固体電解質粒子11aの粒子間の少なくとも一部にリチウムイオン導電性高分子材料11bが入り込むことが好ましい。 For example, in the above-described embodiment, in the oxide solid electrolyte layer 11, the lithium ion conductive polymer material 11b enters at least partly between the oxide solid electrolyte particles 11a. However, in the present invention, as long as the oxide solid electrolyte layer 11 has lithium ion conductivity, the oxide solid electrolyte layer 11 may not have the lithium ion conductive polymeric material 11b. However, from the viewpoint of maintaining good lithium ion conductivity of the oxide solid electrolyte layer 11, it is preferable that the lithium ion conductive polymer material 11b enter at least part of the spaces between the oxide solid electrolyte particles 11a.

また、正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料12bや負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料15bと酸化物固体電解質粒子11aの粒子間に入り込むリチウムイオン導電性高分子材料11bとが異なる材料であってもよい。この場合、準備工程P1において、酸化物固体電解質粒子11aの粒子間に入り込むリチウムイオン導電性高分子材料11bを塗布する際に、当該リチウムイオン導電性高分子材料11bが酸化物固体電解質粒子11aのシート部材上に層を形成しないように塗布して酸化物固体電解質層11を得る。そして、得られた酸化物固体電解質層11上に正極側固体電解質分散高分子層12や負極側固体電解質分散高分子層15となるリチウムイオン導電性高分子材料を塗布してもよい。 In addition, the lithium ion conductive polymer material 12b forming the positive electrode side solid electrolyte dispersed polymer layer 12, the lithium ion conductive polymer material 15b forming the negative electrode side solid electrolyte dispersed polymer layer 15, and the oxide solid electrolyte particles 11a. A material different from the lithium ion conductive polymer material 11b that enters between the particles of the . In this case, in the preparation step P1, when the lithium ion conductive polymer material 11b entering between the oxide solid electrolyte particles 11a is applied, the lithium ion conductive polymer material 11b is applied to the oxide solid electrolyte particles 11a. The oxide solid electrolyte layer 11 is obtained by coating the sheet member so as not to form a layer. Then, a lithium ion conductive polymer material that becomes the positive electrode side solid electrolyte dispersed polymer layer 12 and the negative electrode side solid electrolyte dispersed polymer layer 15 may be applied on the obtained oxide solid electrolyte layer 11 .

また、正極活物質層13の正極活物質13a間にリチウムイオン導電性高分子材料13bが入り込んでいなくてもよく、負極活物質層16の負極活物質16a間にリチウムイオン導電性高分子材料16bが入り込んでいなくてもよい。 In addition, the lithium ion conductive polymer material 13b may not enter between the positive electrode active materials 13a of the positive electrode active material layer 13, and the lithium ion conductive polymer material may not enter between the negative electrode active materials 16a of the negative electrode active material layer 16. 16b may not be included.

また、上記実施形態では、一体化工程P3を熱圧着により行ったが、一体化工程P3は、超音波融着等の熱圧着以外の方法で行われてもよい。 In addition, in the above embodiment, the integration step P3 is performed by thermocompression bonding, but the integration step P3 may be performed by a method other than thermocompression bonding such as ultrasonic fusion bonding.

次に、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒子間に配置される高分子がリチウムイオン導電性を有する高分子であり、当該高分子にリチウム塩が分散される場合におけるリチウム塩の量について調べた。 Next, the polymer arranged between the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 is a polymer having lithium ion conductivity, and lithium salt is dispersed in the polymer. I checked the amount of salt.

(実施例1)
電池素体1bを作成するため、酸化物固体電解質層11の両面に固体電解質分散高分子層が設けられた積層体を準備した。この準備では、まず、酸化物固体電解質粒子11aが結合したポーラス状の酸化物固体電解質粒子結合層を作成した。この酸化物固体電解質粒子は、LLZOから成る。
(Example 1)
In order to produce the battery body 1b, a laminate was prepared in which solid electrolyte dispersed polymer layers were provided on both sides of the oxide solid electrolyte layer 11 . In this preparation, first, a porous oxide solid electrolyte particle bonding layer to which the oxide solid electrolyte particles 11a were bonded was prepared. The oxide solid electrolyte particles consist of LLZO.

次に、酸化物固体電解質粒子結合層の両面に、酸化物固体電解質粒子及びリチウム塩が分散されたリチウムイオン導電性高分子材料から成る塗布液を塗布した。リチウムイオン導電性高分子材料としてPEOを用い、リチウム塩としてLiFSIを用い、酸化物固体電解質粒子としてLLZOから成る粒子を用いた。また、PEOとLiFSIとの重量比を1:1とした。この塗布により、少なくともリチウムイオン導電性高分子材料及びリチウム塩を酸化物固体電解質粒子結合層における酸化物固体電解質粒子間に入り込ませることで、図2、図3に示す酸化物固体電解質層11を作製し、酸化物固体電解質層11の一方の面に形成された塗布液からなる層により正極側固体電解質分散高分子層12を作製し、酸化物固体電解質層11の他方の面に形成された塗布液からなる層により負極側固体電解質分散高分子層15を作製した。 Next, a coating liquid composed of a lithium ion conductive polymer material in which oxide solid electrolyte particles and a lithium salt are dispersed was applied to both surfaces of the oxide solid electrolyte particle bonding layer. PEO was used as the lithium ion conductive polymer material, LiFSI was used as the lithium salt, and LLZO particles were used as the oxide solid electrolyte particles. Also, the weight ratio of PEO and LiFSI was set to 1:1. This coating allows at least the lithium ion conductive polymer material and the lithium salt to enter between the oxide solid electrolyte particles in the oxide solid electrolyte particle bonding layer, thereby forming the oxide solid electrolyte layer 11 shown in FIGS. A positive electrode-side solid electrolyte-dispersed polymer layer 12 was prepared from a layer made of a coating solution formed on one surface of oxide solid electrolyte layer 11 , and formed on the other surface of oxide solid electrolyte layer 11 . A negative electrode-side solid electrolyte-dispersed polymer layer 15 was produced from a layer made of the coating liquid.

また、正極集電体層14の一方の面に正極活物質層13が設けられた積層体を準備した。具体的には、正極集電体層14として、アルミニウム箔を用い、この正極集電体層14の一方の面上にニッケル酸リチウム(NCA)、カーボンブラック、アクリレート、カルボキシメチルセルロース(CMC)が分散された溶液を塗布、乾燥させることで正極活物質層13を得て、上記積層体とした。 Also, a laminate was prepared in which the positive electrode active material layer 13 was provided on one surface of the positive electrode current collector layer 14 . Specifically, an aluminum foil is used as the positive electrode current collector layer 14, and lithium nickelate (NCA), carbon black, acrylate, and carboxymethyl cellulose (CMC) are dispersed on one surface of the positive electrode current collector layer 14. The resulting solution was applied and dried to obtain the positive electrode active material layer 13, thereby forming the laminate.

また、負極集電体層17の一方の面に負極活物質層16が設けられた積層体を準備した。具体的には、負極集電体層17として、銅箔を用い、この負極集電体層17の一方の面上に易黒鉛化カーボン、スチレンブタジエンブロック共重合体(SBR)、CMCが分散された溶液を塗布、乾燥させることで負極活物質層16を得て、上記積層体とした。 Also, a laminate was prepared in which the negative electrode active material layer 16 was provided on one surface of the negative electrode current collector layer 17 . Specifically, a copper foil is used as the negative electrode current collector layer 17, and graphitizable carbon, a styrene-butadiene block copolymer (SBR), and CMC are dispersed on one surface of the negative electrode current collector layer 17. By applying and drying the solution, the negative electrode active material layer 16 was obtained, and the laminate was obtained.

次に、上記の3つの積層体を重ね合わせて一体にした。具体的には、酸化物固体電解質層11の一方の面に設けられた正極側固体電解質分散高分子層12と、正極集電体層14の一方の面に設けられた正極活物質層13とを重ね合わせ、酸化物固体電解質層11の他方の面に設けられた負極側固体電解質分散高分子層15と、負極集電体層17の一方の面に設けられた負極活物質層16とを重ね合わせた。次に、重ね合わされた積層体を熱圧着により一体とした。 Next, the above three laminates were superimposed and integrated. Specifically, the positive electrode-side solid electrolyte-dispersed polymer layer 12 provided on one surface of the oxide solid electrolyte layer 11 and the positive electrode active material layer 13 provided on one surface of the positive electrode current collector layer 14 are superimposed to form the negative electrode-side solid electrolyte-dispersed polymer layer 15 provided on the other surface of the oxide solid electrolyte layer 11 and the negative electrode active material layer 16 provided on one surface of the negative electrode current collector layer 17. superimposed. Next, the superimposed laminate was integrated by thermocompression bonding.

こうして、電池素体1bを得た。 Thus, a battery body 1b was obtained.

次に、電池素体1bの正極集電体層14と負極集電体層17とに、周波数をスイープしながら交流電圧を印加して、インピーダンス測定を行った。この結果のコール・コール・プロットを図8に示す。図8において、横軸は抵抗成分を示し、縦軸はリアクタンス成分を示す。その結果、実施例1の電池素体の抵抗は概ね50Ωという結果を得た。 Next, an AC voltage was applied to the positive electrode current collector layer 14 and the negative electrode current collector layer 17 of the battery body 1b while sweeping the frequency, and impedance was measured. A Cole-Cole plot of the results is shown in FIG. In FIG. 8, the horizontal axis indicates the resistance component, and the vertical axis indicates the reactance component. As a result, the resistance of the battery body of Example 1 was approximately 50Ω.

(実施例2)
PEOとLiFSIとの重量比を4:1としたこと以外は、実施例1と同様にして、電池素体1bを作成した。本発明以外の一般的な全固体リチウム二次電池において、PEOとLiFSIが用いられる場合、その重量比は本例と同様の重量比である。この電池素体1bに対して、実施例1と同様にしてインピーダンス測定を行った。この結果のコール・コール・プロットを図8に示す。その結果、参考例の電池素体の抵抗は概ね2000Ωという結果を得た。
(Example 2)
A battery body 1b was produced in the same manner as in Example 1, except that the weight ratio of PEO and LiFSI was 4:1. When PEO and LiFSI are used in a general all-solid lithium secondary battery other than the present invention, the weight ratio is the same as in this example. Impedance measurement was performed in the same manner as in Example 1 for this battery body 1b. A Cole-Cole plot of the results is shown in FIG. As a result, the resistance of the battery body of the reference example was approximately 2000Ω.

実施例2の抵抗であっても十分に実用的な低抵抗であるが、実施例1の抵抗は、実施例2の抵抗の概ね40分の1という結果になった。従って、酸化物固体電解質層11の酸化物固体電解質粒子11a間に入り込むリチウムイオン導電性高分子材料11b、正極側固体電解質分散高分子層12、及びリチウムイオン導電性高分子材料13bのリチウムイオン高分子材料がPEOであり、当該リチウムイオン高分子材料にLiFSIが分散される場合、PEOに対するLiFSIの重量は1倍以上であることが好ましいことが分かった。 Although the resistance of Example 2 is sufficiently low for practical use, the resistance of Example 1 was approximately 1/40 of the resistance of Example 2. Therefore, the lithium ion concentration of the lithium ion conductive polymer material 11b entering between the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11, the positive electrode side solid electrolyte dispersed polymer layer 12, and the lithium ion conductive polymer material 13b It has been found that when the molecular material is PEO and LiFSI is dispersed in the lithium ion polymer material, the weight of LiFSI relative to PEO is preferably 1 or more times.

なお、PEOに対するLiFSIの重量が2倍よりも大きい場合、強度に対する懸念が生じることから、PEOに対するLiFSIの重量は2倍以下であることが好ましい。 Note that if the weight of LiFSI relative to PEO is more than twice the weight, there is concern about strength, so the weight of LiFSI relative to PEO is preferably at most twice the weight.

以上説明したように、本発明によれば、取り扱いが容易で大電流化を達成し得る全固体リチウム二次電池及び全固体リチウム二次電池の製造方法が提供され、自動車用電池、産業機器用電池、民生機器用電池等の分野で利用することが期待される。

INDUSTRIAL APPLICABILITY As described above, according to the present invention, an all-solid lithium secondary battery that is easy to handle and can achieve a large current and a method for manufacturing an all-solid lithium secondary battery are provided, and are used for automobile batteries and industrial equipment. It is expected to be used in fields such as batteries and batteries for consumer electronics.

Claims (7)

リチウムイオン導電性を有する酸化物固体電解質粒子と前記酸化物固体電解質粒子間に入り込むリチウムイオン導電性を有するリチウムイオン導電性高分子材料とを含む酸化物固体電解質層と、
前記酸化物固体電解質層の一方の面側に配置される正極活物質層と、
前記酸化物固体電解質層の他方の面側に配置される負極活物質層と、
前記正極活物質層及び前記負極活物質層と前記酸化物固体電解質層との間に配置され、リチウムイオン導電性を有するリチウムイオン導電性高分子材料中に前記酸化物固体電解質粒子が分散される固体電解質分散高分子層と、
を備え、
前記正極活物質層と、前記負極活物質層と、前記固体電解質分散高分子層と、前記酸化物固体電解質層とが一体とされ
前記酸化物固体電解質層の前記酸化物固体電解質粒子間に入り込む前記リチウムイオン導電性高分子材料と、前記固体電解質分散高分子層の前記リチウムイオン導電性高分子材料とが同じ材料であり、
前記酸化物固体電解質層の前記リチウムイオン導電性高分子材料及び前記固体電解質分散高分子層の前記リチウムイオン導電性高分子材料には、それぞれリチウム塩が分散されており、
前記酸化物固体電解質層の前記リチウムイオン導電性高分子材料及び前記固体電解質分散高分子層の前記リチウムイオン導電性高分子材料は、ポリエチレンオキサイドであり、
前記リチウム塩は、リチウムビス(フルオロスルホニル)イミドであり、
前記リチウムイオン導電性高分子材料の重量に対する前記リチウム塩の重量は、1倍以上2倍以下である
ことを特徴とする全固体リチウム二次電池。
an oxide solid electrolyte layer containing oxide solid electrolyte particles having lithium ion conductivity and a lithium ion conductive polymer material having lithium ion conductivity entering between the oxide solid electrolyte particles;
a positive electrode active material layer disposed on one side of the oxide solid electrolyte layer;
a negative electrode active material layer disposed on the other surface side of the oxide solid electrolyte layer;
The oxide solid electrolyte particles are dispersed in a lithium ion conductive polymer material having lithium ion conductivity, which is disposed between the positive electrode active material layer and the negative electrode active material layer and the oxide solid electrolyte layer. a solid electrolyte dispersed polymer layer;
with
The positive electrode active material layer, the negative electrode active material layer, the solid electrolyte dispersed polymer layer, and the oxide solid electrolyte layer are integrated ,
the lithium ion conductive polymer material entering between the oxide solid electrolyte particles of the oxide solid electrolyte layer and the lithium ion conductive polymer material of the solid electrolyte dispersed polymer layer are the same material,
Lithium salt is dispersed in each of the lithium ion conductive polymer material of the oxide solid electrolyte layer and the lithium ion conductive polymer material of the solid electrolyte dispersed polymer layer,
The lithium ion conductive polymer material of the oxide solid electrolyte layer and the lithium ion conductive polymer material of the solid electrolyte dispersed polymer layer are polyethylene oxide,
The lithium salt is lithium bis(fluorosulfonyl)imide,
The weight of the lithium salt is 1 to 2 times the weight of the lithium ion conductive polymer material.
An all-solid lithium secondary battery characterized by:
リチウムイオン導電性を有する酸化物固体電解質粒子と前記酸化物固体電解質粒子間に入り込むリチウムイオン導電性を有するリチウムイオン導電性高分子材料とを含む酸化物固体電解質層と、
前記酸化物固体電解質層の一方の面側に配置される正極活物質層と、
前記酸化物固体電解質層の他方の面側に配置される負極活物質層と、
前記正極活物質層及び前記負極活物質層の少なくとも一方と前記酸化物固体電解質層との間に配置され、リチウムイオン導電性を有するリチウムイオン導電性高分子材料中に前記酸化物固体電解質粒子が分散される固体電解質分散高分子層と、
を備え、
前記正極活物質層と、前記負極活物質層と、前記固体電解質分散高分子層と、前記酸化物固体電解質層とが一体とされ
前記酸化物固体電解質層の前記酸化物固体電解質粒子間に入り込む前記リチウムイオン導電性高分子材料と、前記固体電解質分散高分子層の前記リチウムイオン導電性高分子材料とが異なる材料である
ことを特徴とする全固体リチウム二次電池。
an oxide solid electrolyte layer containing oxide solid electrolyte particles having lithium ion conductivity and a lithium ion conductive polymer material having lithium ion conductivity entering between the oxide solid electrolyte particles;
a positive electrode active material layer disposed on one side of the oxide solid electrolyte layer;
a negative electrode active material layer disposed on the other surface side of the oxide solid electrolyte layer;
The oxide solid electrolyte particles are disposed between at least one of the positive electrode active material layer and the negative electrode active material layer and the oxide solid electrolyte layer, and the lithium ion conductive polymer material having lithium ion conductivity contains the oxide solid electrolyte particles. a solid electrolyte-dispersed polymer layer to be dispersed;
with
The positive electrode active material layer, the negative electrode active material layer, the solid electrolyte dispersed polymer layer, and the oxide solid electrolyte layer are integrated ,
The lithium ion conductive polymer material that enters between the oxide solid electrolyte particles of the oxide solid electrolyte layer and the lithium ion conductive polymer material of the solid electrolyte dispersed polymer layer are different materials.
An all-solid lithium secondary battery characterized by:
前記固体電解質分散高分子層の前記酸化物固体電解質粒子の粒径は、前記酸化物固体電解質層の前記酸化物固体電解質粒子の粒径よりも小さい
ことを特徴とする請求項1または2に記載の全固体リチウム二次電池。
3. The method according to claim 1, wherein the particle size of the oxide solid electrolyte particles of the solid electrolyte-dispersed polymer layer is smaller than the particle size of the oxide solid electrolyte particles of the oxide solid electrolyte layer. All-solid-state lithium secondary battery.
リチウムイオン導電性を有する酸化物固体電解質粒子を含む酸化物固体電解質層と、
前記酸化物固体電解質層の一方の面側に配置される正極活物質層と、
前記酸化物固体電解質層の他方の面側に配置される負極活物質層と、
前記正極活物質層及び前記負極活物質層の少なくとも一方と前記酸化物固体電解質層との間に配置され、リチウムイオン導電性を有するリチウムイオン導電性高分子材料中に前記酸化物固体電解質粒子が分散される固体電解質分散高分子層と、
を備え、
前記正極活物質層と、前記負極活物質層と、前記固体電解質分散高分子層と、前記酸化物固体電解質層とが一体とされ
前記固体電解質分散高分子層の前記酸化物固体電解質粒子の粒径は、前記酸化物固体電解質層の前記酸化物固体電解質粒子の粒径よりも小さい
ことを特徴とする全固体リチウム二次電池。
an oxide solid electrolyte layer containing oxide solid electrolyte particles having lithium ion conductivity;
a positive electrode active material layer disposed on one side of the oxide solid electrolyte layer;
a negative electrode active material layer disposed on the other surface side of the oxide solid electrolyte layer;
The oxide solid electrolyte particles are disposed between at least one of the positive electrode active material layer and the negative electrode active material layer and the oxide solid electrolyte layer, and the lithium ion conductive polymer material having lithium ion conductivity contains the oxide solid electrolyte particles. a solid electrolyte-dispersed polymer layer to be dispersed;
with
The positive electrode active material layer, the negative electrode active material layer, the solid electrolyte dispersed polymer layer, and the oxide solid electrolyte layer are integrated ,
The particle size of the oxide solid electrolyte particles in the solid electrolyte dispersed polymer layer is smaller than the particle size of the oxide solid electrolyte particles in the oxide solid electrolyte layer.
An all-solid lithium secondary battery characterized by:
前記酸化物固体電解質層の前記酸化物固体電解質粒子間の少なくとも一部に前記固体電解質分散高分子層の前記リチウムイオン導電性高分子材料が入り込んでいる
ことを特徴とする請求項に記載の全固体リチウム二次電池。
5. The method according to claim 4 , wherein the lithium ion conductive polymer material of the solid electrolyte-dispersed polymer layer is intruded into at least a portion between the oxide solid electrolyte particles of the oxide solid electrolyte layer. All-solid lithium secondary battery.
前記酸化物固体電解質層は、前記酸化物固体電解質粒子間に入り込むリチウムイオン導電性高分子材料を更に有し、
前記酸化物固体電解質層の前記酸化物固体電解質粒子間に入り込む前記リチウムイオン導電性高分子材料と、前記固体電解質分散高分子層の前記リチウムイオン導電性高分子材料とが同じ材料である
ことを特徴とする請求項に記載の全固体リチウム二次電池。
The oxide solid electrolyte layer further has a lithium ion conductive polymer material that enters between the oxide solid electrolyte particles,
The lithium ion conductive polymer material entering between the oxide solid electrolyte particles of the oxide solid electrolyte layer and the lithium ion conductive polymer material of the solid electrolyte dispersed polymer layer are the same material. The all-solid lithium secondary battery according to claim 4 .
前記正極活物質層及び前記負極活物質層と前記酸化物固体電解質層との間に前記固体電解質分散高分子層が配置され、
前記酸化物固体電解質層の前記リチウムイオン導電性高分子材料及び前記固体電解質分散高分子層の前記リチウムイオン導電性高分子材料には、それぞれリチウム塩が分散されており、
前記酸化物固体電解質層の前記リチウムイオン導電性高分子材料及び前記固体電解質分散高分子層の前記リチウムイオン導電性高分子材料は、ポリエチレンオキサイドであり、
前記リチウム塩は、リチウムビス(フルオロスルホニル)イミドであり、
前記リチウムイオン導電性高分子材料の重量に対する前記リチウム塩の重量は、1倍以上2倍以下である
ことを特徴とする請求項に記載の全固体リチウム二次電池。
the solid electrolyte dispersed polymer layer is disposed between the positive electrode active material layer and the negative electrode active material layer and the oxide solid electrolyte layer;
Lithium salt is dispersed in each of the lithium ion conductive polymer material of the oxide solid electrolyte layer and the lithium ion conductive polymer material of the solid electrolyte dispersed polymer layer,
The lithium ion conductive polymer material of the oxide solid electrolyte layer and the lithium ion conductive polymer material of the solid electrolyte dispersed polymer layer are polyethylene oxide,
The lithium salt is lithium bis(fluorosulfonyl)imide,
7. The all-solid lithium secondary battery according to claim 6 , wherein the weight of the lithium salt is 1 to 2 times the weight of the lithium ion conductive polymer material.
JP2021552390A 2019-10-15 2020-10-13 All-solid lithium secondary battery and method for manufacturing all-solid lithium secondary battery Active JP7275300B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019188650 2019-10-15
JP2019188650 2019-10-15
PCT/JP2020/038603 WO2021075420A1 (en) 2019-10-15 2020-10-13 All-solid-state lithium secondary battery and production method for all-solid-state lithium secondary battery

Publications (2)

Publication Number Publication Date
JPWO2021075420A1 JPWO2021075420A1 (en) 2021-04-22
JP7275300B2 true JP7275300B2 (en) 2023-05-17

Family

ID=75538538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021552390A Active JP7275300B2 (en) 2019-10-15 2020-10-13 All-solid lithium secondary battery and method for manufacturing all-solid lithium secondary battery

Country Status (3)

Country Link
JP (1) JP7275300B2 (en)
CN (1) CN114026727A (en)
WO (1) WO2021075420A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066703A (en) 2005-08-31 2007-03-15 Ohara Inc Lithium ion secondary battery and solid electrolyte
JP2009181872A (en) 2008-01-31 2009-08-13 Ohara Inc Lithium ion secondary battery, and manufacturing method thereof
WO2019054729A1 (en) 2017-09-13 2019-03-21 주식회사 엘지화학 Electrode for all-solid-state battery, comprising solid electrolyte

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101865834B1 (en) * 2016-06-15 2018-06-08 한국생산기술연구원 All solid lithium secondary battery and method for manufacturing the same
CN106785009A (en) * 2016-12-09 2017-05-31 北京科技大学 A kind of all solid state composite electrolyte of organic-inorganic and its methods for making and using same
CN107732297B (en) * 2017-10-13 2020-07-14 中国科学院青岛生物能源与过程研究所 Multi-stage structure composite solid electrolyte applied to wide potential window of lithium battery
CN109768318A (en) * 2019-03-12 2019-05-17 浙江锋锂新能源科技有限公司 A kind of mixing solid-liquid electrolyte lithium battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066703A (en) 2005-08-31 2007-03-15 Ohara Inc Lithium ion secondary battery and solid electrolyte
JP2009181872A (en) 2008-01-31 2009-08-13 Ohara Inc Lithium ion secondary battery, and manufacturing method thereof
WO2019054729A1 (en) 2017-09-13 2019-03-21 주식회사 엘지화학 Electrode for all-solid-state battery, comprising solid electrolyte

Also Published As

Publication number Publication date
WO2021075420A1 (en) 2021-04-22
JPWO2021075420A1 (en) 2021-04-22
CN114026727A (en) 2022-02-08

Similar Documents

Publication Publication Date Title
EP1041658B1 (en) Method for producing nonaqueous gel electrolyte battery
JP5850154B2 (en) Manufacturing method of all solid state battery
JP6206237B2 (en) Manufacturing method of all solid state battery
JPWO2015068268A1 (en) All solid state battery, electrode for all solid state battery and method for producing the same
JP5413129B2 (en) Solid battery manufacturing method
JP5487719B2 (en) Manufacturing method of all-solid lithium secondary battery, and all-solid lithium secondary battery obtained by the manufacturing method
WO2016157348A1 (en) Bulk-type all-solid-state lithium secondary battery
JP7304578B2 (en) All-solid battery
JP4604306B2 (en) Solid electrolyte battery and manufacturing method thereof
CN110416630B (en) All-solid-state battery
JP4178926B2 (en) Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
JP5999433B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
CN111384451A (en) Laminated body
JP4218400B2 (en) Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
JP7255079B2 (en) Bipolar battery unit and bipolar battery
JP2020095852A (en) All-solid battery
WO2018088193A1 (en) Electrode for secondary batteries, secondary battery, method for producing electrode for secondary batteries, and method for producing secondary battery
CN114730884A (en) Lithium ion battery pack
JP7275300B2 (en) All-solid lithium secondary battery and method for manufacturing all-solid lithium secondary battery
JP4820059B2 (en) Secondary battery
JP2003157823A (en) Secondary battery and manufacturing method therefor
JP4800580B2 (en) Secondary battery
JP2019029183A (en) Separator-equipped secondary battery electrode, secondary battery, and their manufacturing methods
WO2022224568A1 (en) Secondary battery
WO2024053652A1 (en) All-solid-state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20220629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230502

R150 Certificate of patent or registration of utility model

Ref document number: 7275300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150