WO2016157348A1 - Bulk-type all-solid-state lithium secondary battery - Google Patents

Bulk-type all-solid-state lithium secondary battery Download PDF

Info

Publication number
WO2016157348A1
WO2016157348A1 PCT/JP2015/059831 JP2015059831W WO2016157348A1 WO 2016157348 A1 WO2016157348 A1 WO 2016157348A1 JP 2015059831 W JP2015059831 W JP 2015059831W WO 2016157348 A1 WO2016157348 A1 WO 2016157348A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
positive electrode
mixture layer
lithium secondary
solid
Prior art date
Application number
PCT/JP2015/059831
Other languages
French (fr)
Japanese (ja)
Inventor
恵理奈 横山
純 川治
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/059831 priority Critical patent/WO2016157348A1/en
Publication of WO2016157348A1 publication Critical patent/WO2016157348A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a bulk type all solid lithium secondary battery.
  • All solid-state secondary batteries using non-flammable or flame-retardant solid electrolytes can have high heat resistance, can reduce module costs necessary for cooling, and can have high energy density.
  • All-solid-state batteries are roughly classified into two types: thin-film all-solid batteries obtained by thinning electrodes and solid electrolyte layers and laminating the thin films, and bulk-type all-solid batteries obtained by laminating fine particles. .
  • a bulk-type all-solid battery has a higher capacity.
  • Patent Document 1 discloses a bulk type all solid lithium secondary battery using borate glass as a filler and Patent Document 2 using a gel electrolyte as a filler.
  • Patent Document 3 describes an all-solid lithium secondary battery using a heat-resistant plastic crystal.
  • the treatment temperature of borate glass disclosed in Patent Document 1 is as high as 600 ° C. or higher, and may react with other electrode constituent members.
  • the gel electrolyte currently disclosed by patent document 2 consists of organic molecules, there exists a possibility of raise
  • a gel electrolyte is used as the filler, there is a problem that when the battery driving temperature becomes a high temperature of 100 ° C. or higher, the fluidity of the gel increases and the structural strength of the electrode decreases.
  • Patent Document 3 Since the plastic crystal disclosed in Patent Document 3 has a melting point of about 100 ° C., it is not suitable for use at a high temperature exceeding 100 ° C.
  • An object of the present invention is to provide a bulk type all solid state battery having high heat resistance and high capacity.
  • a bulk type all solid lithium secondary battery includes a positive electrode having a positive electrode mixture layer, a negative electrode having a negative electrode mixture layer, and a solid electrolyte disposed between the positive electrode and the negative electrode.
  • at least one of the positive electrode mixture layer and the negative electrode mixture layer includes a plastic crystal containing a pyrrolidinium cation represented by the formula (1) and a lithium salt, and the plastic crystal and the lithium salt The content of the lithium salt with respect to the total amount of is 0.1 to 20 mol%.
  • the present invention can provide a bulk type all solid state battery having high heat resistance and high capacity.
  • FIG. 1 is a schematic cross-sectional view of a positive electrode layer according to an embodiment of the present invention. It is a schematic cross section of the solid electrolyte layer concerning one embodiment of the present invention. 1 is a schematic cross-sectional view of a negative electrode layer according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of an all solid state secondary battery according to an embodiment of the present invention.
  • the all-solid-state secondary battery 100 includes a positive electrode current collector 10, a negative electrode current collector 20, a battery case 30, a positive electrode mixture layer 40, a solid electrolyte layer 50, and a negative electrode mixture layer 60.
  • the positive electrode 70 includes the positive electrode current collector 10 and the positive electrode mixture layer 40.
  • the negative electrode 80 includes a negative electrode current collector 20 and a negative electrode mixture layer 60.
  • the positive electrode current collector 10 is electrically connected to the positive electrode 40.
  • an aluminum foil having a thickness of 10 to 100 ⁇ m, an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0 to 10 mm, an expanded metal, a foam metal plate, or the like is used.
  • materials such as stainless steel, titanium, and carbon coated aluminum are also applicable.
  • any current collector can be used without being limited by the material, shape, manufacturing method and the like.
  • the negative electrode current collector 20 is electrically connected to the negative electrode 60.
  • a copper foil having a thickness of 10 to 100 ⁇ m, a copper perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0 to 10 mm, an expanded metal, a foam metal plate, or the like is used.
  • materials such as stainless steel, titanium, nickel, or carbon-coated aluminum are also applicable.
  • any current collector can be used without being limited by the material, shape, manufacturing method and the like.
  • the battery case 30 accommodates the positive electrode current collector 10, the negative electrode current collector 20, the positive electrode mixture layer 40, the solid electrolyte layer 50, and the negative electrode mixture layer 60.
  • the shape of the battery case 30 is a cylindrical shape, a flat oval shape, a flat oval shape, a square shape, or the like according to the shape of the electrode group composed of the positive electrode mixture layer 40, the solid electrolyte layer 50, and the negative electrode mixture layer 60. May be selected.
  • the material of the battery case 30 is selected from materials that are corrosion resistant to the battery material, such as aluminum, stainless steel, and nickel-plated steel.
  • the positive electrode mixture layer 40 includes a positive electrode active material 41, a solid electrolyte 42, a positive electrode conductive agent 43, and a binder 44.
  • a lithium ion conductive plastic crystal composed of a plastic crystal and a lithium salt is used as the solid electrolyte 42.
  • the plastic crystal is an intermediate phase between a solid state and a liquid state, and exhibits high ionic conductivity while maintaining the solid state. It is known that when an ionic salt such as a lithium salt is added to the plastic crystal, the ionic conductivity is further improved by several orders of magnitude (Non-Patent Document 1). Therefore, lithium ion conductivity can be improved by using a lithium ion conductive plastic crystal as a solid electrolyte in the electrode mixture layer.
  • the plastic crystal is composed of a pyrrolidinium cation and an anion that forms an ion pair with the pyrrolidinium cation.
  • the pyrrolidinium cation is preferably a cation represented by the formula (1).
  • R1 and R2 are linear or branched alkyl groups having 1 to 4 carbon atoms.
  • R1 and R2 are preferably any of a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group, which are easy to rotate the cation.
  • the upper limit of the battery driving temperature is as low as about 60 to 80 ° C. due to material deterioration at high temperature and a decrease in safety.
  • the upper limit of the battery driving temperature can be increased by using a plastic crystal having a melting point of 60 ° C. or higher instead of the electrolytic solution.
  • battery applications such as excavators that use batteries in high-temperature environments and car engine rooms are expanded.
  • anions such as hexafluorophosphate, tetrafluoroborate, thiocyanate, bisfluorosulfonylamide, bistrifluoromethanesulfonylamide and the like can be combined.
  • the smaller the volume the higher the melting point. Therefore, from the viewpoint of increasing the heat resistance of the battery, anions such as hexafluorophosphate, tetrafluoroborate, thiocyanate, and trifluoromethanesulfonylimide having a high melting point are more preferable.
  • the plastic crystal is at least one of the following formulas (2) to (4). This is because the plastic crystals of the formulas (2) to (4) have high ionic conductivity.
  • lithium salt added to the plastic crystal is represented by LiPF 6, LiBF 4, LiClO 4 , LiCF 3 SO 3, LiCF 3 CO 2, LiBOB, LiAsF 6, LiSbF 6, or lithium trifluoromethanesulfonyl imide
  • lithium imide salts examples include lithium imide salts. In the present invention, these salts can be used alone or in combination. If the present embodiment does not decompose on the positive electrode and the negative electrode, other lithium salts may be used.
  • the addition concentration of the lithium salt in the lithium ion conductive plastic crystal is 0.1 to 20 mol%. More preferably, it is 0.5 to 15 mol%, and further preferably 1 to 10 mol%.
  • the lithium salt concentration (mol%) is the amount (mol) of lithium salt relative to the total amount of the substance amount (mol) of the plastic crystal and the substance amount (mol) of the lithium salt added to the plastic crystal. is there.
  • the content of the lithium ion conductive plastic crystal in the positive electrode mixture is preferably 10 to 90% by weight.
  • the content of the lithium ion conductive plastic crystal is less than 10% by mass, the ion conduction path is reduced and the resistance is increased.
  • the content of the lithium ion conductive plastic crystal is larger than 90% by mass, the amount of the active material is decreased and the energy density of the battery is decreased. Further, an electron conduction path cannot be formed, and the resistance is increased.
  • the content of the thion ion conductive plastic crystal is more preferably 20 to 50% by weight, still more preferably 30 to 40% by weight.
  • a substance known as a solid electrolyte may be mixed.
  • the solid electrolyte is not particularly limited as long as it is a solid material that conducts lithium ions, but it is desirable to include a nonflammable inorganic solid electrolyte from the viewpoint of safety.
  • An oxide glass represented by 6 or the like, a perovskite oxide represented by Li 0.34 La 0.51 TiO 2.94 or a garnet oxide represented by LiLaZrO 2 can be used.
  • the oxide conductor may contain a lithium halide such as LiCl or LiI.
  • a sulfide-based inorganic solid electrolyte can also be suitably used.
  • One kind or two or more kinds of the above materials may be contained as the positive electrode active material.
  • the positive electrode active material lithium ions are desorbed in the charging process, and lithium ions desorbed from the negative electrode active material in the negative electrode mixture layer 60 are inserted in the discharging process.
  • the particle diameter of the positive electrode active material 41 is normally defined so as to be equal to or less than the thickness of the positive electrode mixture layer 40. Specifically, the particle size of the positive electrode active material is preferably 10 to 100 ⁇ m. When the positive electrode active material powder has coarse particles having a size larger than the thickness of the mixture layer, the coarse particles are removed in advance by sieving classification or wind classification to produce particles having a thickness of the mixture layer or less. Is preferred.
  • the positive electrode active material 41 is generally oxide-based and has high electric resistance, it is preferable to mix a positive electrode conductive agent 43 made of carbon powder for supplementing electric conductivity into the positive electrode mixture layer. Since both the positive electrode active material and the positive electrode conductive agent are usually powders, a binder can be mixed with the powders, and the powders can be bonded together and simultaneously bonded to the positive electrode current collector 10.
  • Examples of the positive electrode conductive agent include acetylene black, carbon black, and carbon materials such as graphite or amorphous carbon.
  • Examples of the positive electrode binder include styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), polyimide, and a mixture thereof. Imide binders are thermally stable and are particularly suitable for battery driving at high temperatures.
  • a binder having a reactive group that crosslinks by heating or ultraviolet irradiation is also preferably used.
  • As the reactive group a vinylene group, a hydroxyl group, an epoxy group, an allyl group, a carbonyl group, or a reactive group obtained by substituting a part of the reactive group with a different element is preferably used.
  • a positive electrode slurry in which a positive electrode active material, a solid electrolyte, a positive electrode conductive agent, a positive electrode binder, and a solvent are mixed is attached to the positive electrode current collector 10 by a doctor blade method, a dipping method, a spray method, screen printing, or the like.
  • the coating type positive electrode can be produced by drying and pressure forming with a roll press.
  • a plurality of positive electrode mixture layers 40 can be laminated on the positive electrode current collector 10 by performing a plurality of times from application to drying.
  • the positive electrode active material layer, the positive electrode conductive material, the plastic crystal, and the lithium salt are stirred by a known technique and formed into a pellet shape by pressurization to form a positive electrode mixture layer.
  • a configuration in which a binder is added according to the structural strength of the pellet is also possible.
  • a pellet may be produced using an active material combined with lithium ion conductive plastic crystal.
  • known techniques may be suitably used. Specifically, mortar mixing, mechanical milling, a method of adding an active material to a plastic crystal diluted with a solvent and drying, or sputtering to the active material surface Examples thereof include a method of coating a lithium ion conductive plastic crystal.
  • the porosity of the positive electrode mixture layer is preferably in the range of 0.01 to 20%. This is because if the porosity exceeds 20%, the lithium ion conductivity is remarkably inhibited and a high capacity cannot be obtained.
  • the lower the porosity of the positive electrode mixture layer the lower the resistance. However, 0.01% is practically sufficient. From the viewpoint of lithium ion diffusion, the porosity is more preferably 0.01 to 10%, and particularly preferably 0.01 to 1%.
  • FIG. 3 shows a schematic cross-sectional view of a solid electrolyte layer according to an embodiment of the present invention.
  • the solid electrolyte layer 50 includes solid electrolytes 51 and 52 and a binder 53.
  • the solid electrolyte 51 is not particularly limited as long as it is a solid material that conducts lithium ions, but it is preferable that the solid electrolyte 51 includes a nonflammable inorganic solid electrolyte from the viewpoint of safety.
  • An oxide glass represented by 6 or the like, a perovskite oxide represented by Li 0.34 La 0.51 TiO 2.94 or a garnet oxide represented by LiLaZrO 2 can be used.
  • the oxide conductor may contain a lithium halide such as LiCl or LiI.
  • a sulfide-based inorganic solid electrolyte can also be suitably used.
  • lithium ion conductive plastic crystal 52 may be used.
  • the same lithium ion conductive plastic crystal as that used for the positive electrode mixture layer can be used.
  • the solid electrolyte layer may be formed of the lithium ion conductive plastic crystal 52 alone without using the other solid electrolyte 51.
  • what added the binder 53 to the lithium ion conductive plastic crystal 52 is good also as a solid electrolyte layer.
  • the binder known ones can be used. Specifically, styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), polyimide, a mixture thereof, and the like can be used.
  • a short circuit prevention layer can be provided inside the solid electrolyte layer. Even when the battery is heated above the melting point of the plastic crystal, the presence of the short-circuit blocking layer can suppress the direct contact between the positive and negative electrodes, thereby ensuring the safety of the battery.
  • a material for the short-circuit prevention layer a polyolefin polymer sheet made of polyethylene, polypropylene, etc. having a thickness of 20 to 100 ⁇ m, a two-layer structure in which a polyolefin polymer and a fluorine polymer sheet typified by tetrafluoropolyethylene are welded. Polyamide fiber sheets, glass fiber sheets and the like can be used.
  • a mixture of ceramics and a binder may be formed in a thin layer on the surface of the short-circuit prevention layer so that the short-circuit prevention layer does not shrink when the battery temperature increases.
  • the short-circuit prevention layer can be freely selected according to the kind of the plastic crystal in order to facilitate the penetration of the plastic crystal into the short-circuit prevention layer.
  • FIG. 4 shows a schematic cross-sectional view of a negative electrode according to an embodiment of the present invention.
  • the negative electrode mixture layer 60 includes a negative electrode active material 61, a solid electrolyte 62, a negative electrode conductive agent 63, and a binder 64.
  • a lithium ion conductive plastic crystal composed of a plastic crystal and a lithium salt is used.
  • the same lithium ion conductive plastic crystal as that used for the positive electrode mixture layer can be used.
  • the content of the lithium ion conductive plastic crystal in the negative electrode mixture is preferably 10 to 90% by weight, and more preferably 20 to 50% by weight, like the positive electrode mixture.
  • the negative electrode active material 61 a carbon material capable of reversibly inserting and desorbing lithium ions, silicon-based materials Si, SiO, tin-based materials, lithium titanate with or without a substitution element, lithium vanadium composite oxide, lithium And a negative electrode active material 61 made of an alloy of, for example, tin, aluminum, antimony and the like.
  • a carbon material natural graphite, composite carbonaceous material in which a film is formed on natural graphite by a dry CVD method or a wet spray method, a resin material such as epoxy or phenol, or a pitch material obtained from petroleum or coal is used as a raw material. Examples thereof include artificial graphite and non-graphitizable carbon material produced by firing.
  • the negative electrode active material 61 may contain one or more of the above materials.
  • the particle diameter of the negative electrode active material 61 is normally defined so as to be equal to or less than the thickness of the negative electrode mixture layer 60. Specifically, the particle size is preferably 10 to 100 ⁇ m. If the negative electrode active material 61 powder has coarse particles having a size equal to or greater than the thickness of the mixture layer, the coarse particles are removed in advance by sieving or airflow classification, and particles having a thickness of the negative electrode mixture layer 60 or less are removed. It is preferable to produce it.
  • the negative electrode mixture layer 60 includes the negative electrode conductive agent 63 and the negative electrode binder 64
  • examples of the negative electrode conductive agent include acetylene black, carbon black, and carbon materials such as graphite or amorphous carbon.
  • examples of the negative electrode binder include styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), polyimide, and a mixture thereof.
  • the imide-based binder is thermally stable and is a particularly suitable binder when driving a battery at a high temperature.
  • a binder having a reactive group that crosslinks by heating or ultraviolet irradiation is also preferably used.
  • a vinylene group, a hydroxyl group, an epoxy group, an allyl group, a carbonyl group, or a reactive group obtained by substituting a part of the reactive group with a different element is preferably used.
  • the method for producing the negative electrode is not particularly limited, but the negative electrode slurry obtained by mixing the negative electrode active material 61, the lithium ion conductive plastic crystal 62, the negative electrode conductive agent 63, the negative electrode binder 64, and an arbitrary solvent is mixed with a doctor blade method or a dipping method. Or after being attached to the negative electrode current collector 20 by a spray method, a screen printing method or the like, the solvent is dried, and pressure forming is performed by a roll press to produce a coated negative electrode, a negative electrode active material, a positive electrode conductive material, A method in which a lithium conductive plastic crystal and a lithium salt are stirred by a known technique and formed into a pellet shape by pressurization is used as a negative electrode mixture layer. In the pellet electrode, a configuration in which a binder is added according to the structural strength of the pellet is also possible.
  • a pellet may be produced using an active material combined with lithium ion conductive plastic crystal.
  • known techniques may be suitably used. Specifically, mortar mixing, mechanical milling, a method of adding an active material to a plastic crystal diluted with a solvent and drying, or sputtering to the active material surface Examples thereof include a method of coating a lithium ion conductive plastic crystal.
  • the porosity of the negative electrode mixture layer is preferably 0.01 to 20%.
  • the form of the positive electrode mixture layer and the negative electrode mixture layer attached to the current collector foil can be appropriately selected depending on the use and shape of the battery.
  • a mixture material layer may be present so as to cover the entire surface of the current collector foil, or portions (hereinafter referred to as blanks) where the material mixture layer does not exist may be left at the four corners of the current collector foil.
  • pelletized or sheeted lithium conductive plastic crystals are laminated on the current collector foil.
  • a method of applying a lithium conductive plastic crystal mixed with a solvent onto an electrode mixture and distilling off the solvent can be suitably used.
  • a method such as heating, vacuum evacuation, or pressurization may be applied.
  • the shape of the electrode there are a rolled (pellet type) electrode and a coated electrode, but a coated electrode is preferable.
  • the rolled electrode is obtained by rolling an electrode mixture to form a sheet-like mixture layer and sticking the sheet-like mixture layer on a current collector foil.
  • a coated electrode is an electrode obtained by coating an electrode mixture on a current collector foil.
  • the all-solid-state battery may be a bipolar type in which a plurality of single cells each having a positive electrode mixture layer, a solid electrolyte layer, and a negative electrode mixture layer are stacked. Specifically, the area of the solid electrolyte layer containing the lithium ion conductive plastic crystal in contact with the electrode mixture layer is smaller than the blank area of the current collector foil and larger than that of the electrode mixture layer. A liquid short circuit between cells can be suppressed, and a battery configuration with higher energy density can be achieved. In order to suppress a liquid short circuit accompanying deformation of the solid electrolyte layer due to heating or pressure, a sealing structure can be applied to the blank portion.
  • the sealing structure and material are not particularly limited, but known sealing materials such as adhesive seals and packings using high heat resistant materials such as silicone rubber, fluoro rubber, polyether ether ketone, polytetrafluoroethylene, etc. can be applied.
  • a method for forming a single cell on an insulating substrate is not particularly limited, and a known technique can be applied.
  • a method for forming a conductive network in addition to screen printing and a method in which a solution in which an electronic conductive material is dispersed in a solvent is applied and then dried, a method of connecting single cells with a conductive metal foil or an electronic conductive tape Can be applied.
  • a heating step may be included at the time of cell production.
  • a heating mechanism can be provided outside the battery, and the plastic crystal can be deformed by heating to improve the bondability between the electrode and the solid electrolyte layer.
  • a known technique can be applied as the heating mechanism, and specific examples include a method of coating the outside of the battery with a linear / planar heating element.
  • a pressurizing mechanism can be introduced into the all solid state battery.
  • the pressing method an optimum method can be selected depending on the battery shape.
  • a fixing plate can be installed so as to sandwich the laminate pack in the electrode stacking direction, and the fixing plate can be fixed with screws or the like, or a pressurizing instrument such as a spring can be used.
  • LiTFSI lithium bis (fluorosulfonyl) imide
  • Lithium cobaltate LiCoO 2 (hereinafter referred to as LCO), lithium conductive plastic crystal (hereinafter referred to as IPC), and acetylene black (hereinafter referred to as AB) are weighed at a ratio of 30:50:20 (wt%). And mixed uniformly using an agate mortar. 0.3 g of the mixture was weighed, and a positive electrode pellet of 15 mm ⁇ was prepared using a die. All the above operations were carried out in an argon atmosphere glove box.
  • LCO lithium cobaltate LiCoO 2
  • IPC lithium conductive plastic crystal
  • AB acetylene black
  • Lithium titanate LiTi 4 O 12 (hereinafter referred to as LTO), lithium conductive plastic crystal, and AB were weighed at a ratio of 30:50:20 (wt%) and mixed uniformly using an agate mortar. . 0.1 g of the mixture was weighed and pressed using a die to prepare a negative electrode pellet of 15 mm ⁇ . All the above operations were carried out in an argon atmosphere glove box.
  • the cell was installed in a thermostat set at 60 ° C., and charge / discharge was performed in the voltage range of 4.2 to 2.5 V at a charge / discharge rate of 0.01 C, and the initial discharge capacity was measured.
  • the charge / discharge current was set to 0.01 C with respect to the LCO design capacity.
  • Example 2 An evaluation cell was produced in the same manner as in Example 1 except that the plastic crystal was changed to the formula (3) and the lithium salt was changed to LiPF 6 .
  • the electrochemical characteristics were also tested in the same manner as in Example 1 except that the set temperature of the thermostatic bath was set to 200 ° C.
  • An evaluation cell was prepared in the same manner as in Example 2 except that the plastic crystal was changed to the formula (4) and the lithium salt was changed to LiBF 6, and the electrochemical characteristics were measured.
  • Example 2 The experiment was performed in the same manner as in Example 1 except that the addition concentration of the lithium salt was 0.1 mol%.
  • Example 2 The experiment was performed in the same manner as in Example 1 except that the addition concentration of lithium salt was 20 mol%.
  • LCO, lithium conductive plastic crystal, AB, and PVDF are in a ratio of 40: 40: 4: 6 (wt%)
  • LTO lithium conductive plastic crystal, AB
  • the experiment was performed in the same manner as in Example 1 except that PVDF was used at a ratio of 40: 40: 4: 6 (wt%) and a coated electrode was used.
  • the coated electrode was obtained by applying a slurry of LCO or LTO, lithium conductive plastic crystal, AB, PVDF, and N-methylpyrrolidone on a copper foil and distilling off NMP in a constant temperature layer at 80 ° C. . Thereafter, uniaxial pressing was performed.
  • the porosity of the positive electrode mixture layer and the porosity of the negative electrode mixture layer of Example 8 were measured, they were 11% and 12%, respectively.
  • LCO, lithium conductive plastic crystal, AB, and PVDF are in a ratio of 40: 40: 4: 6 (wt%)
  • LTO lithium conductive plastic crystal, AB
  • the experiment was performed in the same manner as in Example 1 except that PVDF was used at a ratio of 40: 40: 4: 6 (wt%) and a coated electrode was used.
  • the coated electrode was obtained by applying a slurry of LCO or LTO, lithium conductive plastic crystal, AB, PVDF, and N-methylpyrrolidone on a copper foil and distilling off NMP in a constant temperature layer at 80 ° C. .
  • the porosity of the positive electrode mixture layer of Example 9 and the porosity of the negative electrode mixture layer were measured, they were 5% and 3%, respectively.
  • Comparative Example 1 The experiment was performed in the same manner as in Example 1 except that the addition concentration of the lithium salt was 0.05 mol%. Also in Comparative Example 1, the discharge capacity was measured in the same manner as in Example 1. However, in the evaluation cell according to Comparative Example 1, the resistance was high and charging / discharging was impossible.
  • Example 1 From Examples 1, 4, 5 and Comparative Example 1, it was found that when the additive concentration of the lithium salt was less than 0.1%, the resistance was increased and charge / discharge could not be performed. Moreover, when Examples 1, 4, and 5 were compared, the discharge capacity was maximum in Example 1 in which the concentration of the lithium salt added was 5%. In Example 4 in which the added salt concentration of the lithium salt was 0.1%, the ionic conductivity of the plastic crystal itself was lower and the resistance was higher than in Example 1, so that the discharge capacity was considered to be low. . In Example 5 in which the added salt concentration of the lithium salt was 20%, the ion conductivity was sufficient, but the melting point was 50 ° C. or lower, and the heat resistance was lowered.
  • Example 1 When comparing Examples 1, 6, and 7, the discharge capacity of Example 1 was maximized. In Example 6, since the content of the plastic crystal in the electrode mixture layer was small, the ion conduction path was decreased and the resistance was increased. As a result, the discharge capacity was considered to be decreased. In Example 7, since the content of the plastic crystal in the electrode mixture layer was large, it was considered that the discharge capacity was reduced as a result of insufficient electron conduction path and increased resistance.
  • Example 9 From comparisons of Examples 1, 8, and 9, it was found that the discharge capacity was improved by using a coated electrode rather than a pellet type electrode. It is considered that by using the coated electrode, an ion conduction path and an electron conduction path are formed in the entire electrode, and the resistance is reduced. Further, in Example 9 in which the electrode was pressed, the discharge capacity was increased as a result of the decrease in the gap as compared with Example 8 in which the electrode was not pressed. This is considered to be because the resistance was lowered as a result of filling the voids with plastic crystals or conductive aid by pressing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The purpose of the present invention is to provide a bulk-type all-solid-state battery having high heat resistance and high capacity. In order to solve the above-described problem, a bulk-type all-solid-state lithium secondary battery according to the present invention is characterized by being provided with a positive electrode having a positive electrode mixture layer, a negative electrode having a negative electrode mixture layer, and a solid electrolyte layer arranged between the positive electrode and the negative electrode, and is also characterized in that: at least one of the positive electrode mixture layer and the negative electrode mixture layer contains a lithium salt and a soft viscous crystal containing a pyrrolidinium cation represented by formula (1); and the content of the lithium salt relative to the total amount of the soft viscous crystal and the lithium salt is 0.1-20 mol%.

Description

バルク型全固体リチウム二次電池Bulk type all solid lithium secondary battery
 本発明は、バルク型全固体リチウム二次電池に関する。 The present invention relates to a bulk type all solid lithium secondary battery.
 不燃性又は難燃性の固体電解質を用いた全固体二次電池は、高耐熱化が可能であり、冷却に必要なモジュールコストを低減できるとともに、高エネルギー密度化が可能である。全固体電池には、電極及び固体電解質層を薄膜化し、その薄膜を積層して得られる薄膜型全固体電池と、微粒子を積層して得られるバルク型全固体電池の2つに大別される。薄膜型全固体二次電池に比べ、バルク型全固体電池は高容量が得られる。 ¡All solid-state secondary batteries using non-flammable or flame-retardant solid electrolytes can have high heat resistance, can reduce module costs necessary for cooling, and can have high energy density. All-solid-state batteries are roughly classified into two types: thin-film all-solid batteries obtained by thinning electrodes and solid electrolyte layers and laminating the thin films, and bulk-type all-solid batteries obtained by laminating fine particles. . Compared with a thin-film all-solid secondary battery, a bulk-type all-solid battery has a higher capacity.
 しかし、バルク型全固体二次電池では、電解質あるいは電極活物質粒子間に空隙が存在するため、電解質―活物質界面の抵抗が高く、リチウムイオン伝導が阻害されることが課題となっている。 However, in bulk type all-solid-state secondary batteries, since voids exist between the electrolyte or electrode active material particles, the resistance at the electrolyte-active material interface is high, and lithium ion conduction is obstructed.
 そこで、電解質あるいは電極活物質粒子間の空隙部をリチウムイオン伝導性物質で充填する方法が提案されている。特許文献1には充填材としてホウ酸ガラスを、特許文献2には充填材としてゲル電解質を使用したバルク型全固体リチウム二次電池が開示されている。特許文献3には、耐熱性柔粘性結晶を用いた全固体リチウム二次電池が記載されている。 Therefore, a method of filling the voids between the electrolyte or electrode active material particles with a lithium ion conductive material has been proposed. Patent Document 1 discloses a bulk type all solid lithium secondary battery using borate glass as a filler and Patent Document 2 using a gel electrolyte as a filler. Patent Document 3 describes an all-solid lithium secondary battery using a heat-resistant plastic crystal.
WO2014/050500WO2014 / 050500 特開平11-7981JP-A-11-7981 WO08/081811WO08 / 081811
 特許文献1に開示されているホウ酸ガラスの処理温度は600℃以上と高温であり、他の電極構成部材と反応するおそれがある。また、特許文献2に開示されているゲル電解質は有機分子からなるため、高温で分解反応を起こすおそれがあり化学的安定性に課題がある。さらに、充填材にゲル電解質を用いた場合は、電池の駆動温度が100℃以上の高温になると、ゲルの流動性が増加し、電極の構造強度が低下する課題があった。 The treatment temperature of borate glass disclosed in Patent Document 1 is as high as 600 ° C. or higher, and may react with other electrode constituent members. Moreover, since the gel electrolyte currently disclosed by patent document 2 consists of organic molecules, there exists a possibility of raise | generating a decomposition reaction at high temperature, and there exists a subject in chemical stability. Further, when a gel electrolyte is used as the filler, there is a problem that when the battery driving temperature becomes a high temperature of 100 ° C. or higher, the fluidity of the gel increases and the structural strength of the electrode decreases.
 特許文献3に開示されている柔粘性結晶は融点が約100℃であるため、100℃を超える高温での使用には適さない。 Since the plastic crystal disclosed in Patent Document 3 has a melting point of about 100 ° C., it is not suitable for use at a high temperature exceeding 100 ° C.
 本発明では、高耐熱、かつ、高容量なバルク型全固体電池を提供することを目的とする。 An object of the present invention is to provide a bulk type all solid state battery having high heat resistance and high capacity.
 上記課題を解決するために本発明に係るバルク型全固体リチウム二次電池は、正極合剤層を有する正極と、負極合剤層を有する負極と、正極及び負極の間に配置された固体電解質層とを備え、正極合剤層及び負極合剤層の少なくともいずれかは、式(1)で表わされるピロリジウムカチオンを含む柔粘性結晶と、リチウム塩と、を含み、柔粘性結晶とリチウム塩の合計量に対するリチウム塩の含有量が0.1~20mol%であることを特徴とする。 In order to solve the above problems, a bulk type all solid lithium secondary battery according to the present invention includes a positive electrode having a positive electrode mixture layer, a negative electrode having a negative electrode mixture layer, and a solid electrolyte disposed between the positive electrode and the negative electrode. And at least one of the positive electrode mixture layer and the negative electrode mixture layer includes a plastic crystal containing a pyrrolidinium cation represented by the formula (1) and a lithium salt, and the plastic crystal and the lithium salt The content of the lithium salt with respect to the total amount of is 0.1 to 20 mol%.
 本発明により、高耐熱かつ高容量なバルク型全固体電池を提供できる。 The present invention can provide a bulk type all solid state battery having high heat resistance and high capacity.
本発明の一実施形態に係る全固体リチウム二次電池の断面図である。It is sectional drawing of the all-solid-state lithium secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る正極層の模式断面図である。1 is a schematic cross-sectional view of a positive electrode layer according to an embodiment of the present invention. 本発明の一実施形態に係る固体電解質層の模式断面図である。It is a schematic cross section of the solid electrolyte layer concerning one embodiment of the present invention. 本発明の一実施形態に係る負極層の模式断面図である。1 is a schematic cross-sectional view of a negative electrode layer according to an embodiment of the present invention.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 図1は、本発明の一実施形態に係る全固体二次電池の断面図である。全固体二次電池100は、正極集電体10、負極集電体20、電池ケース30、正極合剤層40、固体電解質層50、負極合剤層60を有する。正極70は、正極集電体10および正極合剤層40を有する。負極80は、負極集電体20および負極合剤層60を有する。 FIG. 1 is a cross-sectional view of an all solid state secondary battery according to an embodiment of the present invention. The all-solid-state secondary battery 100 includes a positive electrode current collector 10, a negative electrode current collector 20, a battery case 30, a positive electrode mixture layer 40, a solid electrolyte layer 50, and a negative electrode mixture layer 60. The positive electrode 70 includes the positive electrode current collector 10 and the positive electrode mixture layer 40. The negative electrode 80 includes a negative electrode current collector 20 and a negative electrode mixture layer 60.
 <正極集電体10>
 正極集電体10は、正極40に電気的に接続されている。正極集電体10には、厚さが10~100μmのアルミニウム箔、厚さが10~100μmで孔径が0。1~10mmのアルミニウム製穿孔箔、エキスパンドメタル、又は発泡金属板等が用いられる。アルミニウムの他に、ステンレスやチタン、カーボンコートアルミニウム等の材質も適用可能である。本発明では、材質、形状、製造方法等に制限されることなく、任意の集電体を使用することができる。
<Positive electrode current collector 10>
The positive electrode current collector 10 is electrically connected to the positive electrode 40. For the positive electrode current collector 10, an aluminum foil having a thickness of 10 to 100 μm, an aluminum perforated foil having a thickness of 10 to 100 μm and a pore diameter of 0 to 10 mm, an expanded metal, a foam metal plate, or the like is used. In addition to aluminum, materials such as stainless steel, titanium, and carbon coated aluminum are also applicable. In the present invention, any current collector can be used without being limited by the material, shape, manufacturing method and the like.
 <負極集電体20>
 負極集電体20は、負極60に電気的に接続されている。負極集電体20には、厚さが10~100μmの銅箔、厚さが10~100μmで孔径0。1~10mmの銅製穿孔箔、エキスパンドメタル、又は発泡金属板等が用いられる。銅の他に、ステンレス、チタン、ニッケル又はカーボンコートアルミニウム等の材質も適用可能である。本発明では、材質、形状、製造方法等に制限されることなく、任意の集電体を使用することができる。
<Negative electrode current collector 20>
The negative electrode current collector 20 is electrically connected to the negative electrode 60. For the negative electrode current collector 20, a copper foil having a thickness of 10 to 100 μm, a copper perforated foil having a thickness of 10 to 100 μm and a pore diameter of 0 to 10 mm, an expanded metal, a foam metal plate, or the like is used. In addition to copper, materials such as stainless steel, titanium, nickel, or carbon-coated aluminum are also applicable. In the present invention, any current collector can be used without being limited by the material, shape, manufacturing method and the like.
 <電池ケース30>
 電池ケース30は、正極集電体10、負極集電体20、正極合剤層40、固体電解質層50、および負極合剤層60を収容する。電池ケース30の形状は、正極合剤層40、固体電解質層50、負極合剤層60で構成される電極群の形状に合わせ、円筒形、偏平長円形状、扁平楕円形状、角形等の形状を選択してもよい。電池ケース30の材料として、アルミニウム、ステンレス鋼、ニッケルメッキ鋼製等、電池材料に対し耐食性のある材料から選択される。
<Battery case 30>
The battery case 30 accommodates the positive electrode current collector 10, the negative electrode current collector 20, the positive electrode mixture layer 40, the solid electrolyte layer 50, and the negative electrode mixture layer 60. The shape of the battery case 30 is a cylindrical shape, a flat oval shape, a flat oval shape, a square shape, or the like according to the shape of the electrode group composed of the positive electrode mixture layer 40, the solid electrolyte layer 50, and the negative electrode mixture layer 60. May be selected. The material of the battery case 30 is selected from materials that are corrosion resistant to the battery material, such as aluminum, stainless steel, and nickel-plated steel.
 <正極合剤層40>
 図2に、本発明の一実施形態に係る正極の模式断面図を示す。正極合剤層40は、正極活物質41、固体電解質42、正極導電剤43、バインダ44、を含む。
<Positive electrode mixture layer 40>
In FIG. 2, the schematic cross section of the positive electrode which concerns on one Embodiment of this invention is shown. The positive electrode mixture layer 40 includes a positive electrode active material 41, a solid electrolyte 42, a positive electrode conductive agent 43, and a binder 44.
 本発明において固体電解質42としては柔粘性結晶とリチウム塩からなるリチウムイオン伝導性柔粘性結晶を用いる。柔粘性結晶は、固体と液体状態の中間相であり、固体状態を維持したまま高イオン伝導性を示す。柔粘性結晶にリチウム塩などのイオン性塩を添加すると、さらにイオン伝導度が数桁向上することが知られている(非特許文献1)。したがって、電極合剤層中に固体電解質としてリチウムイオン伝導性柔粘性結晶を用いることにより、リチウムイオン伝導性を向上できる。 In the present invention, as the solid electrolyte 42, a lithium ion conductive plastic crystal composed of a plastic crystal and a lithium salt is used. The plastic crystal is an intermediate phase between a solid state and a liquid state, and exhibits high ionic conductivity while maintaining the solid state. It is known that when an ionic salt such as a lithium salt is added to the plastic crystal, the ionic conductivity is further improved by several orders of magnitude (Non-Patent Document 1). Therefore, lithium ion conductivity can be improved by using a lithium ion conductive plastic crystal as a solid electrolyte in the electrode mixture layer.
 柔粘性結晶は、ピロリジニウムカチオンと、ピロリジニウムカチオンとイオン対を形成するアニオンとからなる。ピロリジウムカチオンは式(1)で表わされるカチオンであることが好ましい。 The plastic crystal is composed of a pyrrolidinium cation and an anion that forms an ion pair with the pyrrolidinium cation. The pyrrolidinium cation is preferably a cation represented by the formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)において、R1、R2は炭素数1~4の直鎖または分枝のアルキル基である。R1及びR2は、カチオンの回転運動のしやすいメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基のいずれかであることが好ましい。 In the formula (1), R1 and R2 are linear or branched alkyl groups having 1 to 4 carbon atoms. R1 and R2 are preferably any of a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group, which are easy to rotate the cation.
 ピロリジニウムカチオンは融点が高いため、電池の高耐熱化が可能となる。従来の液系電池は、高温での材料劣化、安全性の低下により電池駆動温度の上限が約60~80℃と低かった。融点が60℃以上の柔粘性結晶を電解液の代わりとして用いることにより電池駆動温度の上限値を高くすることができる。その結果、電池を高温環境で使用する掘削機や車のエンジンルーム内へ設置する等、電池用途が拡大する。電池の駆動温度で高いイオン伝導性を示す柔粘性結晶状態であって、融点が60℃以上の柔粘性結晶を電池に適用することで、上記効果が発現する。 Since the pyrrolidinium cation has a high melting point, it is possible to increase the heat resistance of the battery. In the conventional liquid battery, the upper limit of the battery driving temperature is as low as about 60 to 80 ° C. due to material deterioration at high temperature and a decrease in safety. The upper limit of the battery driving temperature can be increased by using a plastic crystal having a melting point of 60 ° C. or higher instead of the electrolytic solution. As a result, battery applications such as excavators that use batteries in high-temperature environments and car engine rooms are expanded. By applying a plastic crystal having a melting point of 60 ° C. or higher in a plastic crystal state exhibiting high ionic conductivity at the battery driving temperature, the above-described effect is exhibited.
 アニオンとしては、ヘキサフルオロホスファート、テトラフルオロボーレート、チオシアネート、ビスフルオロスルホニルアミド、ビストリフルオロメタンスルホニルアミド等、公知のアニオンを組み合わせることができる。一般的に体積が小さいアニオンほど融点が高くなる傾向がある。したがって、電池の高耐熱化の観点から、融点の高いヘキサフルオロホスファート、テトラフルオロボーレート、チオシアネート、トリフルオロメタンスルホニルイミドなどのアニオンがより好ましい。 As the anion, known anions such as hexafluorophosphate, tetrafluoroborate, thiocyanate, bisfluorosulfonylamide, bistrifluoromethanesulfonylamide and the like can be combined. In general, the smaller the volume, the higher the melting point. Therefore, from the viewpoint of increasing the heat resistance of the battery, anions such as hexafluorophosphate, tetrafluoroborate, thiocyanate, and trifluoromethanesulfonylimide having a high melting point are more preferable.
 柔粘性結晶は、下記式(2)~式(4)の少なくともいずれかであることがより好ましい。式(2)~式(4)の柔粘性結晶はイオン伝導度が高いためである。 More preferably, the plastic crystal is at least one of the following formulas (2) to (4). This is because the plastic crystals of the formulas (2) to (4) have high ionic conductivity.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 柔粘性結晶に添加するリチウム塩の例としては、LiPF、LiBF、LiClO、LiCFSO、LiCFCO、LiBOB、LiAsF、LiSbF、又はリチウムトリフルオロメタンスルホニルイミドで代表されるリチウムのイミド塩等がある。本発明では、これらの塩を、単独または複数組み合わせて使用することができる。本実施形態に正極及び負極上で分解しなければ、これ以外のリチウム塩を用いてもよい。 As examples of the lithium salt added to the plastic crystal is represented by LiPF 6, LiBF 4, LiClO 4 , LiCF 3 SO 3, LiCF 3 CO 2, LiBOB, LiAsF 6, LiSbF 6, or lithium trifluoromethanesulfonyl imide Examples include lithium imide salts. In the present invention, these salts can be used alone or in combination. If the present embodiment does not decompose on the positive electrode and the negative electrode, other lithium salts may be used.
 リチウムイオン伝導性柔粘性結晶におけるリチウム塩の添加濃度は0.1~20mol%である。より好ましくは0.5~15mol%、さらに好ましくは1~10mol%である。リチウム塩の含有量が0.1mol%以下ではリチウムイオン伝導性が低く、電池出力が低下する。リチウム塩の含有量が20mol%以上では、リチウム添加による融点の低下が著しく、電池の耐熱性が低下する。ここで、リチウム塩濃度(mol%)とは、柔粘性結晶の物質量(mol)と柔粘性結晶に添加したリチウム塩の物質量(mol)の合計値に対するリチウム塩の物質量(mol)である。 The addition concentration of the lithium salt in the lithium ion conductive plastic crystal is 0.1 to 20 mol%. More preferably, it is 0.5 to 15 mol%, and further preferably 1 to 10 mol%. When the content of the lithium salt is 0.1 mol% or less, the lithium ion conductivity is low, and the battery output decreases. When the content of the lithium salt is 20 mol% or more, the melting point is remarkably lowered by addition of lithium, and the heat resistance of the battery is lowered. Here, the lithium salt concentration (mol%) is the amount (mol) of lithium salt relative to the total amount of the substance amount (mol) of the plastic crystal and the substance amount (mol) of the lithium salt added to the plastic crystal. is there.
 正極合剤中のリチウムイオン伝導性柔粘性結晶の含有量は10~90重量%であることが好ましい。リチウムイオン伝導性柔粘性結晶の含有量が10質量%未満であると、イオン伝導パスが少なくなり高抵抗化する。一方、リチウムイオン伝導性柔粘性結晶の含有量が90質量%より大きいと、活物質量が少なくなり電池のエネルギー密度が小さくなる。また、電子伝導パスが形成できず、高抵抗化する。チウムイオン伝導性柔粘性結晶の含有量は、より好ましくは20~50重量%、さらに好ましくは30~40重量%である。 The content of the lithium ion conductive plastic crystal in the positive electrode mixture is preferably 10 to 90% by weight. When the content of the lithium ion conductive plastic crystal is less than 10% by mass, the ion conduction path is reduced and the resistance is increased. On the other hand, when the content of the lithium ion conductive plastic crystal is larger than 90% by mass, the amount of the active material is decreased and the energy density of the battery is decreased. Further, an electron conduction path cannot be formed, and the resistance is increased. The content of the thion ion conductive plastic crystal is more preferably 20 to 50% by weight, still more preferably 30 to 40% by weight.
 リチウムイオン伝導性柔粘性結晶のほかに、固体電解質として公知の物質を混合してもよい。固体電解質は、リチウムイオンを伝導する固体材料であれば特に限定はないが、安全性の観点から不燃性の無機固体電解質を含むことが望ましい。具体的には、Li1.4Al0.4Ti1.6(PO、LiAlGe(PO、Li3.40.6Si0.4、Liなどで代表される酸化物ガラス、Li0.34La0.51TiO2.94などで代表されるペロブスカイト型酸化物、LiLaZrO2に代表されるガーネット型酸化物などが使用できる。酸化物伝導体の中に、LiCl、LiIなどのハロゲン化リチウムが含まれていてもよい。また、硫化物系の無機固体電解質も好適に用いることができる。 In addition to the lithium ion conductive plastic crystal, a substance known as a solid electrolyte may be mixed. The solid electrolyte is not particularly limited as long as it is a solid material that conducts lithium ions, but it is desirable to include a nonflammable inorganic solid electrolyte from the viewpoint of safety. Specifically, Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 , LiAlGe (PO 4 ) 3 , Li 3.4 V 0.6 Si 0.4 O 4 , Li 2 P 2 O An oxide glass represented by 6 or the like, a perovskite oxide represented by Li 0.34 La 0.51 TiO 2.94 or a garnet oxide represented by LiLaZrO 2 can be used. The oxide conductor may contain a lithium halide such as LiCl or LiI. A sulfide-based inorganic solid electrolyte can also be suitably used.
 正極活物質41としては、LiCoO、LiNiO、LiMn、LiMnO、LiMn、LiMnO、LiMn12、LiMn2-xMxO(ただし、M=Co、Ni、Fe、Cr、Zn、Tiからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiMnMO(ただし、M=Fe、Co、Ni、Cu、Znからなる群から選ばれる少なくとも1種)、Li1-xMn(ただし、A=Mg、B、Al、Fe、Co、Ni、Cr、Zn、Caからなる群から選ばれる少なくとも1種、x=0.01~0.1)、LiNi1-x(ただし、M=Co、Fe、Gaからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiFeO、Fe(SO、LiCo1-x(ただし、M=Ni、Fe、Mnからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiNi1-x(ただし、M=Mn、Fe、Co、Al、Ga、Ca、Mgからなる群から選ばれる少なくとも1種、x=0.01~0.2)、Fe(MoO、FeF、LiFePO、及びLiMnPO等を用いることができる。正極活物質として上記の材料が一種単独または二種以上含まれていてもよい。正極活物質は、充電過程においてリチウムイオンが脱離し、放電過程において、負極合剤層60中の負極活物質から脱離したリチウムイオンが挿入される。 Examples of the positive electrode active material 41 include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 , LiMn 2−x MxO 2 (where M = Co, Ni , Fe, Cr, Zn, Ti, at least one selected from the group consisting of x = 0.01 to 0.2, Li 2 Mn 3 MO 8 (where M = Fe, Co, Ni, Cu, Zn Li 1-x A x Mn 2 O 4 (however, A = Mg, B, Al, Fe, Co, Ni, Cr, Zn, Ca, at least one selected from the group consisting of Species, x = 0.01 to 0.1), LiNi 1-x M x O 2 (where M = at least one selected from the group consisting of Co, Fe, and Ga, x = 0.01 to 0.2) ), LiFe O 2 , Fe 2 (SO 4 ) 3 , LiCo 1-x M x O 2 (where M = Ni, Fe, Mn, at least one selected from the group consisting of x = 0.01 to 0.2), LiNi 1-x M x O 2 (M = Mn, Fe, Co, Al, Ga, Ca, Mg, at least one selected from the group consisting of x = 0.01 to 0.2), Fe (MoO 4 ) 3 , FeF 3 , LiFePO 4 , LiMnPO 4 and the like can be used. One kind or two or more kinds of the above materials may be contained as the positive electrode active material. In the positive electrode active material, lithium ions are desorbed in the charging process, and lithium ions desorbed from the negative electrode active material in the negative electrode mixture layer 60 are inserted in the discharging process.
 正極活物質41の粒径は、正極合剤層40の厚さ以下になるように通常は規定される。具体的には、正極活物質の粒径は10~100μmが好ましい。正極活物質の粉末中に合剤層厚さ以上のサイズを有する粗粒がある場合、予めふるい分級や風流分級等により粗粒を除去し、合剤層の厚さ以下の粒子を作製することが好ましい。 The particle diameter of the positive electrode active material 41 is normally defined so as to be equal to or less than the thickness of the positive electrode mixture layer 40. Specifically, the particle size of the positive electrode active material is preferably 10 to 100 μm. When the positive electrode active material powder has coarse particles having a size larger than the thickness of the mixture layer, the coarse particles are removed in advance by sieving classification or wind classification to produce particles having a thickness of the mixture layer or less. Is preferred.
 また、正極活物質41は、一般に酸化物系であるために電気抵抗が高いので、電気伝導性を補うための炭素粉末からなる正極導電剤43を正極合剤層に混合することが好ましい。正極活物質及び正極導電剤はともに通常は粉末であるので、粉末にバインダを混合して、粉末同士を結合させると同時に正極集電体10へ接着させることができる。 Further, since the positive electrode active material 41 is generally oxide-based and has high electric resistance, it is preferable to mix a positive electrode conductive agent 43 made of carbon powder for supplementing electric conductivity into the positive electrode mixture layer. Since both the positive electrode active material and the positive electrode conductive agent are usually powders, a binder can be mixed with the powders, and the powders can be bonded together and simultaneously bonded to the positive electrode current collector 10.
 正極導電剤としては、例えばアセチレンブラック、カーボンブラック、及び黒鉛又は非晶質炭素等の炭素材料等が挙げられる。正極バインダとしては、例えばスチレン-ブタジエンゴム、カルボキシメチルセルロース及びポリフッ化ビニリデン(PVDF)、ポリイミド、これらの混合物等が挙げられる。イミド系バインダは、熱的に安定であり高温で電池駆動する際は特に適したバインダである。また、加熱や紫外線照射などにより架橋する反応基を有するバインダも好適に用いられる。反応基としては、ビニレン基、ヒドロキシル基、エポキシ基、アリル基、カルボニル基、または上記反応基の一部を異種元素で置換した反応基が好適に用いられる。 Examples of the positive electrode conductive agent include acetylene black, carbon black, and carbon materials such as graphite or amorphous carbon. Examples of the positive electrode binder include styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), polyimide, and a mixture thereof. Imide binders are thermally stable and are particularly suitable for battery driving at high temperatures. In addition, a binder having a reactive group that crosslinks by heating or ultraviolet irradiation is also preferably used. As the reactive group, a vinylene group, a hydroxyl group, an epoxy group, an allyl group, a carbonyl group, or a reactive group obtained by substituting a part of the reactive group with a different element is preferably used.
 正極活物質、固体電解質、正極導電剤、正極バインダ、及び溶媒を混合した正極スラリーを、ドクターブレード法、ディッピング法、又はスプレー法、スクリーン印刷等によって正極集電体10へ付着させた後、溶媒を乾燥させ、ロールプレスによって加圧成形することにより、塗布型正極を作製することができる。また、塗布から乾燥までを複数回行うことにより、複数の正極合剤層40を正極集電体10に積層化させることも可能である。あるいは、正極活物質、正極導電材、柔粘性結晶、リチウム塩を公知の技術で攪拌し、加圧によりペレット状に成型したものを正極合剤層とすることも可能である。ペレット電極では、ペレットの構造強度に応じてバインダを添加すること構成も可能である。 A positive electrode slurry in which a positive electrode active material, a solid electrolyte, a positive electrode conductive agent, a positive electrode binder, and a solvent are mixed is attached to the positive electrode current collector 10 by a doctor blade method, a dipping method, a spray method, screen printing, or the like. The coating type positive electrode can be produced by drying and pressure forming with a roll press. In addition, a plurality of positive electrode mixture layers 40 can be laminated on the positive electrode current collector 10 by performing a plurality of times from application to drying. Alternatively, the positive electrode active material layer, the positive electrode conductive material, the plastic crystal, and the lithium salt are stirred by a known technique and formed into a pellet shape by pressurization to form a positive electrode mixture layer. In the pellet electrode, a configuration in which a binder is added according to the structural strength of the pellet is also possible.
 正極活物質として、リチウムイオン伝導性柔粘性結晶と複合化された活物質を用いてペレットを作製しても良い。複合化方法としては、公知技術を好適に用いてよいが、具体的には、乳鉢混合、メカニカルミリング、溶媒で希釈した柔粘性結晶に活物質を添加し乾燥する方法、スパッタにより活物質表面にリチウムイオン伝導性柔粘性結晶を被覆する方法などが挙げられる。 As the positive electrode active material, a pellet may be produced using an active material combined with lithium ion conductive plastic crystal. As a composite method, known techniques may be suitably used. Specifically, mortar mixing, mechanical milling, a method of adding an active material to a plastic crystal diluted with a solvent and drying, or sputtering to the active material surface Examples thereof include a method of coating a lithium ion conductive plastic crystal.
 正極合剤層の空隙率は、0.01~20%の範囲が好ましい。空隙率が20%を超えると、リチウムイオン伝導性が著しく阻害され、高容量が得られないためである。正極合剤層の空隙率は、低ければ低いほど低抵抗化するが、0.01%であれば実用上十分である。リチウムイオン拡散の観点から、空隙率は0.01~10%がより好ましく、0.01~1%が特に好ましい。本発明に係るリチウムイオン伝導性柔粘性結晶を固体電解質として用いることにより、正極合剤層の空隙率を低減することができる。空隙率は、水銀ポロシメータによって測定することができる。 The porosity of the positive electrode mixture layer is preferably in the range of 0.01 to 20%. This is because if the porosity exceeds 20%, the lithium ion conductivity is remarkably inhibited and a high capacity cannot be obtained. The lower the porosity of the positive electrode mixture layer, the lower the resistance. However, 0.01% is practically sufficient. From the viewpoint of lithium ion diffusion, the porosity is more preferably 0.01 to 10%, and particularly preferably 0.01 to 1%. By using the lithium ion conductive plastic crystal according to the present invention as a solid electrolyte, the porosity of the positive electrode mixture layer can be reduced. The porosity can be measured with a mercury porosimeter.
 <固体電解質層50>
 図3に本発明の一実施形態に係る固体電解質層の断面模式図を示す。固体電解質層50は、固体電解質51、52、バインダ53、を含む。
<Solid electrolyte layer 50>
FIG. 3 shows a schematic cross-sectional view of a solid electrolyte layer according to an embodiment of the present invention. The solid electrolyte layer 50 includes solid electrolytes 51 and 52 and a binder 53.
 固体電解質51は、リチウムイオンを伝導する固体材料であれば特に限定はないが、安全性の観点から不燃性の無機固体電解質を含むことが望ましい。具体的には、Li1.4Al0.4Ti1.6(PO、LiAlGe(PO、Li3.40.6Si0.4、Liなどで代表される酸化物ガラス、Li0.34La0.51TiO2.94などで代表されるペロブスカイト型酸化物、LiLaZrO2に代表されるガーネット型酸化物などが使用できる。酸化物伝導体の中に、LiCl、LiIなどのハロゲン化リチウムが含まれていてもよい。また、硫化物系の無機固体電解質も好適に用いることができる。以上の固体電解質を単独あるいは2つ以上を組み合わせて使用することができる。 The solid electrolyte 51 is not particularly limited as long as it is a solid material that conducts lithium ions, but it is preferable that the solid electrolyte 51 includes a nonflammable inorganic solid electrolyte from the viewpoint of safety. Specifically, Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 , LiAlGe (PO 4 ) 3 , Li 3.4 V 0.6 Si 0.4 O 4 , Li 2 P 2 O An oxide glass represented by 6 or the like, a perovskite oxide represented by Li 0.34 La 0.51 TiO 2.94 or a garnet oxide represented by LiLaZrO 2 can be used. The oxide conductor may contain a lithium halide such as LiCl or LiI. A sulfide-based inorganic solid electrolyte can also be suitably used. These solid electrolytes can be used alone or in combination of two or more.
 固体電解質として、リチウムイオン伝導性柔粘性結晶52を用いてもよい。正極合剤層に用いたものと同様のリチウムイオン伝導性柔粘性結晶を用いることができる。十分な機械的強度が保たれるのであれば、他の固体電解質51を用いずに、リチウムイオン伝導性柔粘性結晶52単独で固体電解質層を形成してもよい。また、リチウムイオン伝導性柔粘性結晶52にバインダ53を加えたものを固体電解質層としてもよい。バインダは公知のものを使用することができるが、具体的には、スチレン-ブタジエンゴム、カルボキシメチルセルロース及びポリフッ化ビニリデン(PVDF)、ポリイミド、これらの混合物等を使用できる。 As the solid electrolyte, lithium ion conductive plastic crystal 52 may be used. The same lithium ion conductive plastic crystal as that used for the positive electrode mixture layer can be used. As long as sufficient mechanical strength is maintained, the solid electrolyte layer may be formed of the lithium ion conductive plastic crystal 52 alone without using the other solid electrolyte 51. Moreover, what added the binder 53 to the lithium ion conductive plastic crystal 52 is good also as a solid electrolyte layer. As the binder, known ones can be used. Specifically, styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), polyimide, a mixture thereof, and the like can be used.
 正負極の短絡を防止するために、固体電解質層の内部に、短絡防止層を設けることもできる。仮に電池が柔粘性結晶の融点以上に加熱された場合にも、短絡遮断層が存在することで、正負極の直接接触を抑制でき、電池の安全性を確保できる。短絡防止層の材料としては、厚み20~100μmのポリエチレン、ポリプロピレン等からなるポリオレフィン系高分子シート、ポリオレフィン系高分子と4フッ化ポリエチレンを代表とするフッ素系高分子シートを溶着させた2層構造、ポリアミド系繊維シート、ガラス繊維シート等を使用することが可能である。電池温度が高くなったときに短絡防止層が収縮しないように、短絡防止層の表面にセラミックス及びバインダの混合物を薄層状に形成してもよい。前記短絡防止層は、短絡防止層の内部に柔粘性結晶を浸透させやすくするために柔粘性結晶の種類に応じて自由に選択することができる。 In order to prevent a short circuit between the positive and negative electrodes, a short circuit prevention layer can be provided inside the solid electrolyte layer. Even when the battery is heated above the melting point of the plastic crystal, the presence of the short-circuit blocking layer can suppress the direct contact between the positive and negative electrodes, thereby ensuring the safety of the battery. As a material for the short-circuit prevention layer, a polyolefin polymer sheet made of polyethylene, polypropylene, etc. having a thickness of 20 to 100 μm, a two-layer structure in which a polyolefin polymer and a fluorine polymer sheet typified by tetrafluoropolyethylene are welded. Polyamide fiber sheets, glass fiber sheets and the like can be used. A mixture of ceramics and a binder may be formed in a thin layer on the surface of the short-circuit prevention layer so that the short-circuit prevention layer does not shrink when the battery temperature increases. The short-circuit prevention layer can be freely selected according to the kind of the plastic crystal in order to facilitate the penetration of the plastic crystal into the short-circuit prevention layer.
 <負極合剤層60>
 図4に本発明の一実施形態に係る負極の断面模式図を示す。負極合剤層60は、負極活物質61、固体電解質62、負極導電剤63、バインダ64、を含む。
<Negative electrode mixture layer 60>
FIG. 4 shows a schematic cross-sectional view of a negative electrode according to an embodiment of the present invention. The negative electrode mixture layer 60 includes a negative electrode active material 61, a solid electrolyte 62, a negative electrode conductive agent 63, and a binder 64.
 本願発明において固体電解質62としては柔粘性結晶とリチウム塩とからなるリチウムイオン伝導性柔粘性結晶を用いる。 In the present invention, as the solid electrolyte 62, a lithium ion conductive plastic crystal composed of a plastic crystal and a lithium salt is used.
 リチウムイオン伝導性柔粘性結晶は、正極合剤層に用いたものと同様のものを用いることができる。 The same lithium ion conductive plastic crystal as that used for the positive electrode mixture layer can be used.
 負極合剤中のリチウムイオン伝導性柔粘性結晶の含有量は、正極合剤と同様に10~90重量%であることが好ましく、20~50重量%であることがより好ましい。 The content of the lithium ion conductive plastic crystal in the negative electrode mixture is preferably 10 to 90% by weight, and more preferably 20 to 50% by weight, like the positive electrode mixture.
 負極活物質61として、リチウムイオンを可逆的に挿入脱離可能な炭素材料、シリコン系材料Si、SiO、スズ系材料、置換元素有りまたは置換元素無しのチタン酸リチウム、リチウムバナジウム複合酸化物、リチウムと金属、例えば、スズ、アルミニウム、アンチモンなどとの合金からなる負極活物質61を含んでいる。炭素材料として、天然黒鉛や、天然黒鉛に乾式のCVD法もしくは湿式のスプレー法によって被膜を形成した複合炭素質材料、エポキシやフェノール等の樹脂材料もしくは石油や石炭から得られるピッチ系材料を原料として焼成により製造される人造黒鉛、難黒鉛化炭素材などが挙げられる。負極活物質61として上記の材料が一種単独または二種以上含まれていてもよい。 As the negative electrode active material 61, a carbon material capable of reversibly inserting and desorbing lithium ions, silicon-based materials Si, SiO, tin-based materials, lithium titanate with or without a substitution element, lithium vanadium composite oxide, lithium And a negative electrode active material 61 made of an alloy of, for example, tin, aluminum, antimony and the like. As a carbon material, natural graphite, composite carbonaceous material in which a film is formed on natural graphite by a dry CVD method or a wet spray method, a resin material such as epoxy or phenol, or a pitch material obtained from petroleum or coal is used as a raw material. Examples thereof include artificial graphite and non-graphitizable carbon material produced by firing. The negative electrode active material 61 may contain one or more of the above materials.
 負極活物質61の粒径は、負極合剤層60の厚さ以下になるように通常は規定される。具体的には、粒径は10~100μmであることが好ましい。負極活物質61の粉末中に合剤層厚さ以上のサイズを有する粗粒がある場合、予めふるい分級や風流分級等により粗粒を除去し、負極合剤層60の厚さ以下の粒子を作製することが好ましい。 The particle diameter of the negative electrode active material 61 is normally defined so as to be equal to or less than the thickness of the negative electrode mixture layer 60. Specifically, the particle size is preferably 10 to 100 μm. If the negative electrode active material 61 powder has coarse particles having a size equal to or greater than the thickness of the mixture layer, the coarse particles are removed in advance by sieving or airflow classification, and particles having a thickness of the negative electrode mixture layer 60 or less are removed. It is preferable to produce it.
 負極合剤層60に負極導電剤63や負極バインダ64が含まれる場合、負極導電剤として、アセチレンブラック、カーボンブラック、及び黒鉛又は非晶質炭素等の炭素材料等が挙げられる。負極バインダとして、スチレン-ブタジエンゴム、カルボキシメチルセルロース及びポリフッ化ビニリデン(PVDF)、ポリイミド、これらの混合物等が挙げられる。特にイミド系バインダは、熱的に安定であり高温で電池駆動する際は特に適したバインダである。また、加熱や紫外線照射などにより架橋する反応基を有するバインダも好適に用いられる。反応基としては、ビニレン基、ヒドロキシル基、エポキシ基、アリル基、カルボニル基、または上記反応基の一部を異種元素で置換した反応基が好適に用いられる。 When the negative electrode mixture layer 60 includes the negative electrode conductive agent 63 and the negative electrode binder 64, examples of the negative electrode conductive agent include acetylene black, carbon black, and carbon materials such as graphite or amorphous carbon. Examples of the negative electrode binder include styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF), polyimide, and a mixture thereof. In particular, the imide-based binder is thermally stable and is a particularly suitable binder when driving a battery at a high temperature. In addition, a binder having a reactive group that crosslinks by heating or ultraviolet irradiation is also preferably used. As the reactive group, a vinylene group, a hydroxyl group, an epoxy group, an allyl group, a carbonyl group, or a reactive group obtained by substituting a part of the reactive group with a different element is preferably used.
 負極の製造方法については特に制限されないが、負極活物質61、リチウムイオン伝導性柔粘性結晶62、負極導電剤63、負極バインダ64、任意の溶媒を混合した負極スラリーを、ドクターブレード法、ディッピング法、又はスプレー法、スクリーン印刷法等によって負極集電体20へ付着させた後、溶媒を乾燥させ、ロールプレスによって加圧成形し、塗布型負極を作製する方法、負極活物質、正極導電材、リチウム伝導性柔粘性結晶、リチウム塩を公知の技術で攪拌し、加圧によりペレット状に成型したものを負極合剤層とする方法などを好適に用いることができる。ペレット電極では、ペレットの構造強度に応じてバインダを添加すること構成も可能である。 The method for producing the negative electrode is not particularly limited, but the negative electrode slurry obtained by mixing the negative electrode active material 61, the lithium ion conductive plastic crystal 62, the negative electrode conductive agent 63, the negative electrode binder 64, and an arbitrary solvent is mixed with a doctor blade method or a dipping method. Or after being attached to the negative electrode current collector 20 by a spray method, a screen printing method or the like, the solvent is dried, and pressure forming is performed by a roll press to produce a coated negative electrode, a negative electrode active material, a positive electrode conductive material, A method in which a lithium conductive plastic crystal and a lithium salt are stirred by a known technique and formed into a pellet shape by pressurization is used as a negative electrode mixture layer. In the pellet electrode, a configuration in which a binder is added according to the structural strength of the pellet is also possible.
 負極活物質として、リチウムイオン伝導性柔粘性結晶と複合化された活物質を用いてペレットを作製しても良い。複合化方法としては、公知技術を好適に用いてよいが、具体的には、乳鉢混合、メカニカルミリング、溶媒で希釈した柔粘性結晶に活物質を添加し乾燥する方法、スパッタにより活物質表面にリチウムイオン伝導性柔粘性結晶を被覆する方法などが挙げられる。 As the negative electrode active material, a pellet may be produced using an active material combined with lithium ion conductive plastic crystal. As a composite method, known techniques may be suitably used. Specifically, mortar mixing, mechanical milling, a method of adding an active material to a plastic crystal diluted with a solvent and drying, or sputtering to the active material surface Examples thereof include a method of coating a lithium ion conductive plastic crystal.
 正極合剤層と同様に負極合剤層の空隙率は、0.01~20%であることが好ましい。 Similarly to the positive electrode mixture layer, the porosity of the negative electrode mixture layer is preferably 0.01 to 20%.
 <電極層>
 集電箔への正極合剤層ならびに負極合剤層の付着形態としては、電池の用途や形状により適宜選択可能である。集電箔の全面を被覆するように合剤材層が存在しても良いし、集電箔の四隅に合剤層が存在しない部位(以下、余白とする)を残しても良い。
<Electrode layer>
The form of the positive electrode mixture layer and the negative electrode mixture layer attached to the current collector foil can be appropriately selected depending on the use and shape of the battery. A mixture material layer may be present so as to cover the entire surface of the current collector foil, or portions (hereinafter referred to as blanks) where the material mixture layer does not exist may be left at the four corners of the current collector foil.
 集電箔に付着させた合剤層に、リチウム伝導性柔粘性結晶を含む固体電解質タ層を形成する方法としては、集電箔上にペレット化あるいはシート化したリチウム伝導性柔粘性結晶を積層する方法、溶媒と混合したリチウム伝導性柔粘性結晶を電極合剤上に塗布し溶媒を留去する方法などが好適に使用できる。電極内にリチウム伝導性柔粘性結晶を充填するため、加熱、真空脱法、加圧等の方法を適用してよい。 As a method of forming a solid electrolyte layer containing lithium conductive plastic crystals on the mixture layer adhered to the current collector foil, pelletized or sheeted lithium conductive plastic crystals are laminated on the current collector foil. And a method of applying a lithium conductive plastic crystal mixed with a solvent onto an electrode mixture and distilling off the solvent can be suitably used. In order to fill the electrode with the lithium conductive plastic crystal, a method such as heating, vacuum evacuation, or pressurization may be applied.
 電極の形状としては、圧延(ペレット型)電極や塗布電極があるが、塗布電極とすることが好ましい。圧延電極とは、電極合剤を圧延してシート状の合剤層を形成し、シート状の合剤層を集電箔上に張り付けたものである。一方、塗布電極とは、集電箔の上に、電極合剤を塗布した電極である。塗布電極にすることより、電極の大面積化が容易となる。その結果、車載用、産業用の大型蓄電池に適用可能となる。また、電極を薄膜化できるためエネルギー密度を向上できる。 As the shape of the electrode, there are a rolled (pellet type) electrode and a coated electrode, but a coated electrode is preferable. The rolled electrode is obtained by rolling an electrode mixture to form a sheet-like mixture layer and sticking the sheet-like mixture layer on a current collector foil. On the other hand, a coated electrode is an electrode obtained by coating an electrode mixture on a current collector foil. By using a coated electrode, it is easy to increase the area of the electrode. As a result, it can be applied to large-sized storage batteries for in-vehicle use and industrial use. In addition, since the electrode can be thinned, the energy density can be improved.
 <電池>
 全固体電池は、正極合剤層と、固体電解質層と、負極合剤層を積層した単セルを複数積層したバイポーラ型とすることもできる。具体的には、電極合剤層と接触するリチウムイオン伝導性柔粘性結晶を含む固体電解質層の面積を、集電箔の余白面積よりも小さく、電極合剤層よりも大きくすることで、単セル間の液短絡を抑制し、より高エネルギー密度な電池構成にできる。加熱や圧力などによる固体電解質層の変形に伴う液短絡を抑制するため、余白部分に封止構造を適用することもできる。封止構造や材料は特に制限されないが、シリコーンゴム、フッ素ゴム、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン等の高耐熱材料を用いた粘着シール、パッキンなど、公知のシール材が応用できる。
<Battery>
The all-solid-state battery may be a bipolar type in which a plurality of single cells each having a positive electrode mixture layer, a solid electrolyte layer, and a negative electrode mixture layer are stacked. Specifically, the area of the solid electrolyte layer containing the lithium ion conductive plastic crystal in contact with the electrode mixture layer is smaller than the blank area of the current collector foil and larger than that of the electrode mixture layer. A liquid short circuit between cells can be suppressed, and a battery configuration with higher energy density can be achieved. In order to suppress a liquid short circuit accompanying deformation of the solid electrolyte layer due to heating or pressure, a sealing structure can be applied to the blank portion. The sealing structure and material are not particularly limited, but known sealing materials such as adhesive seals and packings using high heat resistant materials such as silicone rubber, fluoro rubber, polyether ether ketone, polytetrafluoroethylene, etc. can be applied.
 絶縁性基板上に、複数の単セルを形成し、単セル間に導電ネットワークを形成し、平面型バイポーラセルを形成することもできる。絶縁基板上への単セル形成方法としては、特に制限はなく公知の技術を適用できる。導電ネットワークの形成方法としては、スクリーン印刷や溶媒に電子電導性材料を分散させた溶液を塗布後乾燥する方法の他に、導電性金属箔や電子伝導性テープなどで単セル間を接続する方法を適用できる。 It is also possible to form a planar bipolar cell by forming a plurality of single cells on an insulating substrate and forming a conductive network between the single cells. A method for forming a single cell on an insulating substrate is not particularly limited, and a known technique can be applied. As a method for forming a conductive network, in addition to screen printing and a method in which a solution in which an electronic conductive material is dispersed in a solvent is applied and then dried, a method of connecting single cells with a conductive metal foil or an electronic conductive tape Can be applied.
 電極と固体電解質層の剥離による抵抗増加を抑制するため、セル作製時に加熱工程を含んでいても良い。また電池外に加熱機構を設け、柔粘性結晶を加熱により変形させて電極と固体電解質層の接合性を向上させることもできる。加熱機構としては公知の技術を適用できるが、具体的には線状・面状発熱体で電池外部を被覆する方法などが挙げられる。上記加熱機構を設けることにより、黒鉛やシリコン系活物質など、充放電時に体積変化を伴う活物質を適用した際に、電極層/固体電解質層間の界面接合性が低下した場合でも、電池を解体することなく前記界面を修復できる。 In order to suppress an increase in resistance due to peeling between the electrode and the solid electrolyte layer, a heating step may be included at the time of cell production. Also, a heating mechanism can be provided outside the battery, and the plastic crystal can be deformed by heating to improve the bondability between the electrode and the solid electrolyte layer. A known technique can be applied as the heating mechanism, and specific examples include a method of coating the outside of the battery with a linear / planar heating element. By providing the above heating mechanism, even when the interfacial bondability between the electrode layer / solid electrolyte layer is reduced when an active material that changes in volume during charge / discharge, such as graphite or silicon-based active material, is applied, the battery is disassembled. The interface can be repaired without doing so.
 電極合剤層と固体電解質層の剥離を抑制するために、全固体電池に加圧機構を導入することもできる。加圧方法は、電池形状により最適な方法が選択できる。例えばラミネートパック型の電池では、電極積層方向にラミネートパックを挟みこむように固定板を設置し、固定板をねじ等で固定する方法、またばね等の加圧器具を用いることができる。 In order to suppress peeling of the electrode mixture layer and the solid electrolyte layer, a pressurizing mechanism can be introduced into the all solid state battery. As the pressing method, an optimum method can be selected depending on the battery shape. For example, in a laminate pack type battery, a fixing plate can be installed so as to sandwich the laminate pack in the electrode stacking direction, and the fixing plate can be fixed with screws or the like, or a pressurizing instrument such as a spring can be used.
 以下、本発明を実施するための形態を具体的な実施例によって説明する。 Hereinafter, modes for carrying out the present invention will be described by way of specific examples.
 <リチウム伝導性柔粘性結晶の作製>
 式(2)で示す柔粘性結晶とリチウム塩であるリチウムビス(フルオロスルホニル)イミド(LiTFSI)を、アルゴン雰囲気のグローブボックス内で乳鉢を用いて混合し、耐熱容器に密閉し、融点以上で過熱した。液体状態で攪拌し、空冷した後、グローブボックス内で開封し、混合物を乳鉢で粉砕した。作製した混合物をリチウムイオン伝導性柔粘性結晶として用いた。リチウム塩濃度は5mol%とした。
<Preparation of lithium conductive plastic crystal>
The plastic crystal represented by formula (2) and lithium bis (fluorosulfonyl) imide (LiTFSI), which is a lithium salt, are mixed in a glove box in an argon atmosphere using a mortar, sealed in a heat-resistant container, and heated to a temperature higher than the melting point. did. The mixture was stirred in a liquid state and air-cooled, then opened in a glove box, and the mixture was pulverized in a mortar. The prepared mixture was used as a lithium ion conductive plastic crystal. The lithium salt concentration was 5 mol%.
 <正極の作製>
 コバルト酸リチウムLiCoO(以下、LCOという。)、リチウム伝導性柔粘性結晶(以下、IPCという。)、アセチレンブラック(以下、ABという。)を30:50:20(wt%)の割合で量り取り、めのう乳鉢を用いて均一になるよう混合した。混合物を0.3g秤量し、ダイスを用いて、15mmΦの正極ペレットを作製した。上記の作業はすべてアルゴン雰囲気のグローブボックス内でおこなった。
<Preparation of positive electrode>
Lithium cobaltate LiCoO 2 (hereinafter referred to as LCO), lithium conductive plastic crystal (hereinafter referred to as IPC), and acetylene black (hereinafter referred to as AB) are weighed at a ratio of 30:50:20 (wt%). And mixed uniformly using an agate mortar. 0.3 g of the mixture was weighed, and a positive electrode pellet of 15 mmΦ was prepared using a die. All the above operations were carried out in an argon atmosphere glove box.
 <固体電解質層の作製>
 リチウム伝導性柔粘性結晶を0.1g秤量し、ダイスを用いてプレスし、15mmΦのペレットを作製した。上記の作業はアルゴン雰囲気のグローブボックス内でおこなった。
<Preparation of solid electrolyte layer>
0.1 g of lithium conductive plastic crystal was weighed and pressed with a die to produce a 15 mmφ pellet. The above operation was performed in a glove box in an argon atmosphere.
 <負極層の作製>
 チタン酸リチウムLiTi12(以下、LTOという。)、リチウム伝導性柔粘性結晶、ABを30:50:20(wt%)の割合で量り取り、めのう乳鉢を用いて均一になるよう混合した。混合物を0.1g秤量し、ダイスを用いてプレスし、15mmΦの負極ペレットを作製した。上記の作業はすべてアルゴン雰囲気のグローブボックス内でおこなった。
<Preparation of negative electrode layer>
Lithium titanate LiTi 4 O 12 (hereinafter referred to as LTO), lithium conductive plastic crystal, and AB were weighed at a ratio of 30:50:20 (wt%) and mixed uniformly using an agate mortar. . 0.1 g of the mixture was weighed and pressed using a die to prepare a negative electrode pellet of 15 mmΦ. All the above operations were carried out in an argon atmosphere glove box.
 <評価セルの作製>
 アルゴン雰囲気のグローブボックス内で、正極ペレット、固体電解質層、負極ペレットを、ステンレス製の2極式セル内部に積層し、四隅を固定し密閉した。セルを恒温槽に設置し、融点より10℃低い温度で1時間加熱した。
<Production of evaluation cell>
In a glove box in an argon atmosphere, a positive electrode pellet, a solid electrolyte layer, and a negative electrode pellet were stacked inside a stainless steel bipolar cell, and the four corners were fixed and sealed. The cell was placed in a thermostatic bath and heated at a temperature 10 ° C. lower than the melting point for 1 hour.
 <電気化学特性の評価>
 60℃に設定した恒温槽にセルを設置し、充放電レート0.01Cで4.2~2.5Vの電圧範囲で充放電をおこない初回放電容量を測定した。なお充放電電流はLCOの設計容量に対して0.01Cになるよう設定した。
<Evaluation of electrochemical characteristics>
The cell was installed in a thermostat set at 60 ° C., and charge / discharge was performed in the voltage range of 4.2 to 2.5 V at a charge / discharge rate of 0.01 C, and the initial discharge capacity was measured. The charge / discharge current was set to 0.01 C with respect to the LCO design capacity.
 柔粘性結晶を式(3)、リチウム塩をLiPFとした以外は、実施例1と同様に評価セルを作製した。恒温槽の設定温度を200℃に設定した以外、電気化学特性も実施例1と同様に実験をおこなった。 An evaluation cell was produced in the same manner as in Example 1 except that the plastic crystal was changed to the formula (3) and the lithium salt was changed to LiPF 6 . The electrochemical characteristics were also tested in the same manner as in Example 1 except that the set temperature of the thermostatic bath was set to 200 ° C.
 柔粘性結晶を式(4)、リチウム塩をLiBFとした以外は、実施例2と同様に評価セルを作製し、電気化学特性を測定した。 An evaluation cell was prepared in the same manner as in Example 2 except that the plastic crystal was changed to the formula (4) and the lithium salt was changed to LiBF 6, and the electrochemical characteristics were measured.
 リチウム塩の添加濃度を0.1mol%にした以外は、実施例1と同様に実験をおこなった。 The experiment was performed in the same manner as in Example 1 except that the addition concentration of the lithium salt was 0.1 mol%.
 リチウム塩の添加濃度を20mol%にした以外は、実施例1と同様に実験をおこなった。 The experiment was performed in the same manner as in Example 1 except that the addition concentration of lithium salt was 20 mol%.
 正極合剤層について、LCO、リチウム伝導性柔粘性結晶、ABを50:5:45(wt%)の割合とし、負極合剤層についてLTO、リチウム伝導性柔粘性結晶、ABを50:5:45(wt%)の割合とした以外は、実施例1と同様に実験を行った。 For the positive electrode mixture layer, LCO, lithium conductive plastic crystal, and AB are in a ratio of 50: 5: 45 (wt%), and for the negative electrode mixture layer, LTO, lithium conductive plastic crystal, and AB are 50: 5: The experiment was performed in the same manner as in Example 1 except that the ratio was 45 (wt%).
 正極合剤層について、LCO、リチウム伝導性柔粘性結晶、ABを10:80:10(wt%)の割合とし、負極合剤層についてLTO、リチウム伝導性柔粘性結晶、ABを10:80:10(wt%)の割合とした以外は、実施例1と同様に実験を行った。 For the positive electrode mixture layer, LCO, lithium conductive plastic crystal, and AB are in a ratio of 10:80:10 (wt%), and for the negative electrode mixture layer, LTO, lithium conductive plastic crystal, and AB are 10:80: The experiment was performed in the same manner as in Example 1 except that the ratio was 10 (wt%).
 正極合剤層について、LCO、リチウム伝導性柔粘性結晶、AB、PVDFを40:40:4:6(wt%)の割合とし、負極合剤層についてLTO、リチウム伝導性柔粘性結晶、AB、PVDFを40:40:4:6(wt%)の割合とし、塗布電極とした以外は、実施例1と同様に実験を行った。塗布電極は、銅箔上に、LCOまたはLTOと、リチウム伝導性柔粘性結晶とABとPVDFとN-メチルピロリドンからなるスラリーを塗布し、80℃の恒温層でNMPを留去して得た。その後、1軸プレスした。実施例8の正極合剤層の空隙率、負極合剤層の空隙率を測定したところ、それぞれ11%、12%であった。 For the positive electrode mixture layer, LCO, lithium conductive plastic crystal, AB, and PVDF are in a ratio of 40: 40: 4: 6 (wt%), and for the negative electrode mixture layer, LTO, lithium conductive plastic crystal, AB, The experiment was performed in the same manner as in Example 1 except that PVDF was used at a ratio of 40: 40: 4: 6 (wt%) and a coated electrode was used. The coated electrode was obtained by applying a slurry of LCO or LTO, lithium conductive plastic crystal, AB, PVDF, and N-methylpyrrolidone on a copper foil and distilling off NMP in a constant temperature layer at 80 ° C. . Thereafter, uniaxial pressing was performed. When the porosity of the positive electrode mixture layer and the porosity of the negative electrode mixture layer of Example 8 were measured, they were 11% and 12%, respectively.
 正極合剤層について、LCO、リチウム伝導性柔粘性結晶、AB、PVDFを40:40:4:6(wt%)の割合とし、負極合剤層についてLTO、リチウム伝導性柔粘性結晶、AB、PVDFを40:40:4:6(wt%)の割合とし、塗布電極とした以外は、実施例1と同様に実験を行った。塗布電極は、銅箔上に、LCOまたはLTOと、リチウム伝導性柔粘性結晶とABとPVDFとN-メチルピロリドンからなるスラリーを塗布し、80℃の恒温層でNMPを留去して得た。実施例9の正極合剤層の空隙率、負極合剤層の空隙率を測定したところ、それぞれ5%、3%であった。 For the positive electrode mixture layer, LCO, lithium conductive plastic crystal, AB, and PVDF are in a ratio of 40: 40: 4: 6 (wt%), and for the negative electrode mixture layer, LTO, lithium conductive plastic crystal, AB, The experiment was performed in the same manner as in Example 1 except that PVDF was used at a ratio of 40: 40: 4: 6 (wt%) and a coated electrode was used. The coated electrode was obtained by applying a slurry of LCO or LTO, lithium conductive plastic crystal, AB, PVDF, and N-methylpyrrolidone on a copper foil and distilling off NMP in a constant temperature layer at 80 ° C. . When the porosity of the positive electrode mixture layer of Example 9 and the porosity of the negative electrode mixture layer were measured, they were 5% and 3%, respectively.
 (比較例1)
 リチウム塩の添加濃度を0.05mol%にした以外は、実施例1と同様に実験をおこなった。比較例1についても、実施例1と同様に放電容量を測定したが、比較例1に係る評価セルでは、抵抗が高く充放電が不可能であった。
(Comparative Example 1)
The experiment was performed in the same manner as in Example 1 except that the addition concentration of the lithium salt was 0.05 mol%. Also in Comparative Example 1, the discharge capacity was measured in the same manner as in Example 1. However, in the evaluation cell according to Comparative Example 1, the resistance was high and charging / discharging was impossible.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例1、4、5、比較例1より、リチウム塩の添加濃度が0.1%未満であると高抵抗化し、充放電ができないことが分かった。また、実施例1、4、5を比較すると、リチウム塩の添加塩濃度が5%とした実施例1で放電容量が最大となった。リチウム塩の添加塩濃度が0.1%とした実施例4では、実施例1に比較して柔粘性結晶自体のイオン伝導性が低く、抵抗が高くなったため、放電容量が低くなったと考えられる。リチウム塩の添加塩濃度が20%とした実施例5は、イオン伝導性は十分だが、融点が50℃以下となり耐熱性が低下した。 From Examples 1, 4, 5 and Comparative Example 1, it was found that when the additive concentration of the lithium salt was less than 0.1%, the resistance was increased and charge / discharge could not be performed. Moreover, when Examples 1, 4, and 5 were compared, the discharge capacity was maximum in Example 1 in which the concentration of the lithium salt added was 5%. In Example 4 in which the added salt concentration of the lithium salt was 0.1%, the ionic conductivity of the plastic crystal itself was lower and the resistance was higher than in Example 1, so that the discharge capacity was considered to be low. . In Example 5 in which the added salt concentration of the lithium salt was 20%, the ion conductivity was sufficient, but the melting point was 50 ° C. or lower, and the heat resistance was lowered.
 実施例1、6、7を比較すると、実施例1の放電容量が最大となった。実施例6は電極合剤層における柔粘性結晶の含有量が少なかったために、イオン伝導パスが減少し、抵抗が上昇した結果、放電容量が低下したと考えられる。実施例7は電極合剤層における柔粘性結晶の含有量が多かったために、電子伝導パスが不足し、抵抗が上昇した結果、放電容量が低下したと考えられる。 When comparing Examples 1, 6, and 7, the discharge capacity of Example 1 was maximized. In Example 6, since the content of the plastic crystal in the electrode mixture layer was small, the ion conduction path was decreased and the resistance was increased. As a result, the discharge capacity was considered to be decreased. In Example 7, since the content of the plastic crystal in the electrode mixture layer was large, it was considered that the discharge capacity was reduced as a result of insufficient electron conduction path and increased resistance.
 実施例1、8、9の比較より、ペレット型電極よりも塗布電極とすることにより放電容量が向上することが分かった。塗布電極とすることにより、電極全体にイオン伝導パスと電子伝導パスが形成され、低抵抗化したと考えられる。また、電極をプレスした実施例9は、プレスしていない実施例8と比較し空隙が減少した結果、放電容量が増加した。これは、プレスにより空隙部分が柔粘性結晶や導電助剤で充填された結果、低抵抗化されたためと考えられる。 From comparisons of Examples 1, 8, and 9, it was found that the discharge capacity was improved by using a coated electrode rather than a pellet type electrode. It is considered that by using the coated electrode, an ion conduction path and an electron conduction path are formed in the entire electrode, and the resistance is reduced. Further, in Example 9 in which the electrode was pressed, the discharge capacity was increased as a result of the decrease in the gap as compared with Example 8 in which the electrode was not pressed. This is considered to be because the resistance was lowered as a result of filling the voids with plastic crystals or conductive aid by pressing.
 10…正極集電体、20…負極集電体、30…電池ケース、40…正極合剤層、41…正極活物質、42…リチウムイオン伝導性柔粘性結晶、43…正極導電材、44…正極バインダ、50…固体電解質層、51…固体電解質粒子、52…リチウムイオン伝導性柔粘性結晶、53…電解質バインダ、60…負極合剤層、61…負極活物質、62…リチウムイオン伝導性柔粘性結晶、63…負極導電材、64…負極バインダ、70…正極、80…負極、100…全固体二次電池 DESCRIPTION OF SYMBOLS 10 ... Positive electrode collector, 20 ... Negative electrode collector, 30 ... Battery case, 40 ... Positive electrode mixture layer, 41 ... Positive electrode active material, 42 ... Lithium ion conductive plastic crystal, 43 ... Positive electrode conductive material, 44 ... Positive electrode binder, 50 ... solid electrolyte layer, 51 ... solid electrolyte particles, 52 ... lithium ion conductive plastic crystal, 53 ... electrolyte binder, 60 ... negative electrode mixture layer, 61 ... negative electrode active material, 62 ... lithium ion conductive soft material Viscous crystal 63 ... Negative electrode conductive material 64 ... Negative electrode binder 70 ... Positive electrode 80 ... Negative electrode 100 ... All solid state secondary battery

Claims (11)

  1.  正極合剤層を有する正極と、負極合剤層を有する負極と、前記正極及び前記負極の間に配置された固体電解質層とを備えるバルク型全固体リチウム二次電池であって、
     前記正極合剤層及び前記負極合剤層の少なくともいずれかは、式(1)で表わされるピロリジウムカチオンを含む柔粘性結晶と、リチウム塩と、を含み、
     前記柔粘性結晶と前記リチウム塩の合計量に対する前記リチウム塩の含有量が0.1~20mol%であることを特徴とするバルク型全固体リチウム二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、R1及びR2は、直鎖または分枝のアルキル基である。)
    A bulk type all solid lithium secondary battery comprising a positive electrode having a positive electrode mixture layer, a negative electrode having a negative electrode mixture layer, and a solid electrolyte layer disposed between the positive electrode and the negative electrode,
    At least one of the positive electrode mixture layer and the negative electrode mixture layer includes a plastic crystal containing a pyrrolidinium cation represented by the formula (1), and a lithium salt.
    A bulk type all-solid-state lithium secondary battery, wherein a content of the lithium salt with respect to a total amount of the plastic crystal and the lithium salt is 0.1 to 20 mol%.
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), R1 and R2 are linear or branched alkyl groups.)
  2.  請求項1に記載のバルク型全固体リチウム二次電池であって、
     前記R1及び前記R2はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基のいずれかであることを特徴とするバルク型全固体リチウム二次電池。
    The bulk type all solid lithium secondary battery according to claim 1,
    The bulk type all solid lithium secondary battery, wherein R1 and R2 are any one of a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group.
  3.  請求項1に記載のバルク型全固体リチウム二次電池であって、
     前記ピロリジニウムカチオンとイオン対を形成するアニオンとして、トリフルオロメタンスルホニルイミド、ヘキサフルオロホスファート、テトラフルオロボーレートの少なくともいずれかを含むことを特徴とするバルク型全固体リチウム二次電池。
    The bulk type all solid lithium secondary battery according to claim 1,
    A bulk type all-solid-state lithium secondary battery comprising at least one of trifluoromethanesulfonylimide, hexafluorophosphate, and tetrafluoroborate as an anion that forms an ion pair with the pyrrolidinium cation.
  4.  請求項1に記載のバルク型全固体リチウム二次電池であって、
     前記柔粘性結晶は、下記式(2)~式(4)の少なくともいずれかであることを特徴とするバルク型全固体リチウム二次電池。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    The bulk type all solid lithium secondary battery according to claim 1,
    The bulk type all solid lithium secondary battery, wherein the plastic crystal is at least one of the following formulas (2) to (4).
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  5.  請求項1乃至4のいずれかに記載のバルク型全固体リチウム二次電池であって、
     前記柔粘性結晶と前記リチウム塩は複合化していることを特徴とするバルク型全固体リチウム二次電池。
    A bulk type all solid lithium secondary battery according to any one of claims 1 to 4,
    A bulk type all solid lithium secondary battery, wherein the plastic crystal and the lithium salt are combined.
  6.  請求項1乃至4のいずれかに記載のバルク型全固体リチウム二次電池であって、
     前記正極合剤層における前記柔粘性結晶の含有量と前記リチウム塩の含有量の合計量は10~90重量%であることを特徴とするバルク型全固体電池。
    A bulk type all solid lithium secondary battery according to any one of claims 1 to 4,
    A bulk type all-solid-state battery, wherein a total amount of the plastic crystal content and the lithium salt content in the positive electrode mixture layer is 10 to 90% by weight.
  7.  請求項1乃至4のいずれかに記載のバルク型全固体リチウム二次電池であって、
     前記負極合剤層と前記正極合剤層の少なくともいずれかの空隙率が0.01~20%であることを特徴とするバルク型全固体リチウム二次電池。
    A bulk type all solid lithium secondary battery according to any one of claims 1 to 4,
    A bulk type all-solid-state lithium secondary battery, wherein a porosity of at least one of the negative electrode mixture layer and the positive electrode mixture layer is 0.01 to 20%.
  8.  請求項1乃至7のいずれかに記載のバルク型全固体リチウム二次電池であって、
     前記正極は、前記正極合剤層を集電体の表面に塗工して得た電極であり、
     前記負極は、前記負極合剤層を集電体の表面に塗工して得た電極であることを特徴とするバルク型全固体リチウム二次電池。
    A bulk type all solid lithium secondary battery according to any one of claims 1 to 7,
    The positive electrode is an electrode obtained by coating the positive electrode mixture layer on the surface of a current collector,
    A bulk type all-solid lithium secondary battery, wherein the negative electrode is an electrode obtained by coating the negative electrode mixture layer on the surface of a current collector.
  9.  請求項1乃至8のいずれかに記載のバルク型全固体リチウム二次電池であって、
     前記正極は正極集電箔を備え、前記正極集電箔の面積は前記正極合剤層の面積よりも大きく、
     前記負極は負極集電箔を備え、前記負極集電箔の面積は前記負極合剤層の面積よりも大きいことを特徴とするバルク型全固体リチウム二次電池。
    A bulk type all solid lithium secondary battery according to any one of claims 1 to 8,
    The positive electrode comprises a positive electrode current collector foil, the area of the positive electrode current collector foil is larger than the area of the positive electrode mixture layer,
    The bulk-type all solid lithium secondary battery, wherein the negative electrode includes a negative electrode current collector foil, and an area of the negative electrode current collector foil is larger than an area of the negative electrode mixture layer.
  10.  請求項1乃至9のいずれかに記載のバルク型全固体リチウム二次電池であって、
     前記正極合剤層は集電体の一方の面に電気的に接合され、
     前記負極合剤層は前記集電体の他方の面に電気的に接合していることを特徴とするバルク型全固体リチウム二次電池。
    A bulk type all solid lithium secondary battery according to any one of claims 1 to 9,
    The positive electrode mixture layer is electrically bonded to one surface of the current collector,
    The bulk type all-solid-state lithium secondary battery, wherein the negative electrode mixture layer is electrically joined to the other surface of the current collector.
  11.  請求項1乃至8のいずれかに記載のバルク型全固体リチウム二次電池と、温度制御装置と、を備える電池システム。 A battery system comprising: the bulk type all solid lithium secondary battery according to any one of claims 1 to 8; and a temperature control device.
PCT/JP2015/059831 2015-03-30 2015-03-30 Bulk-type all-solid-state lithium secondary battery WO2016157348A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059831 WO2016157348A1 (en) 2015-03-30 2015-03-30 Bulk-type all-solid-state lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059831 WO2016157348A1 (en) 2015-03-30 2015-03-30 Bulk-type all-solid-state lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2016157348A1 true WO2016157348A1 (en) 2016-10-06

Family

ID=57005860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059831 WO2016157348A1 (en) 2015-03-30 2015-03-30 Bulk-type all-solid-state lithium secondary battery

Country Status (1)

Country Link
WO (1) WO2016157348A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108963190A (en) * 2017-05-19 2018-12-07 中国电子科技集团公司第十八研究所 Method for preparing positive electrode for plastic crystal modified solid-state battery in situ
CN111864205A (en) * 2019-04-29 2020-10-30 宁德时代新能源科技股份有限公司 Positive pole piece of sulfide solid-state battery and sulfide solid-state battery
JP2020198270A (en) * 2019-06-05 2020-12-10 日産自動車株式会社 Solid-state electrolyte layer for all-solid-state lithium-ion secondary battery and all-solid-state lithium-ion secondary battery including the same
WO2020262566A1 (en) 2019-06-28 2020-12-30 帝人株式会社 Fibrous-carbon-containing active material layer for all-solid lithium secondary battery and all-solid lithium secondary battery
JP2021086720A (en) * 2019-11-27 2021-06-03 トヨタ自動車株式会社 All-solid battery
US20210184255A1 (en) * 2018-09-13 2021-06-17 Fundacion Centro De Investigacion Cooperativa De Energias Alternativas Cic Energigune Fundazioa Multilayer electrodes and solid electrolytes
JP2021131979A (en) * 2020-02-19 2021-09-09 トヨタ自動車株式会社 Negative electrode for lithium ion battery
CN113508446A (en) * 2019-03-29 2021-10-15 日本贵弥功株式会社 Solid electrolyte, electricity storage device, and method for producing solid electrolyte
CN114566614A (en) * 2022-03-04 2022-05-31 上海兰钧新能源科技有限公司 Lithium battery pole piece and preparation method thereof, lithium battery cell and preparation method thereof
WO2023019322A1 (en) * 2021-08-20 2023-02-23 Deakin University Ionic binders for solid state electrodes
WO2024096111A1 (en) * 2022-11-04 2024-05-10 住友化学株式会社 Composite electrolyte, electrolyte for battery, and battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118480A (en) * 1993-10-21 1995-05-09 Sony Corp Polymer solid electrolyte
JP2003281932A (en) * 2002-03-22 2003-10-03 Nippon Oil Corp Solid electrolyte
JP2004127774A (en) * 2002-10-03 2004-04-22 Nippon Shokubai Co Ltd Material for ion conductor
JP2004256711A (en) * 2003-02-27 2004-09-16 Kansai Paint Co Ltd Polymer particle dispersion, electrolyte, and cell
JP2005032551A (en) * 2003-07-11 2005-02-03 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2010092897A1 (en) * 2009-02-16 2010-08-19 コニカミノルタホールディングス株式会社 Electrolyte composition, and secondary battery
JP2014007117A (en) * 2012-06-27 2014-01-16 Yokohama National Univ Li BASED SECONDARY BATTERY

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118480A (en) * 1993-10-21 1995-05-09 Sony Corp Polymer solid electrolyte
JP2003281932A (en) * 2002-03-22 2003-10-03 Nippon Oil Corp Solid electrolyte
JP2004127774A (en) * 2002-10-03 2004-04-22 Nippon Shokubai Co Ltd Material for ion conductor
JP2004256711A (en) * 2003-02-27 2004-09-16 Kansai Paint Co Ltd Polymer particle dispersion, electrolyte, and cell
JP2005032551A (en) * 2003-07-11 2005-02-03 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2010092897A1 (en) * 2009-02-16 2010-08-19 コニカミノルタホールディングス株式会社 Electrolyte composition, and secondary battery
JP2014007117A (en) * 2012-06-27 2014-01-16 Yokohama National Univ Li BASED SECONDARY BATTERY

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108963190A (en) * 2017-05-19 2018-12-07 中国电子科技集团公司第十八研究所 Method for preparing positive electrode for plastic crystal modified solid-state battery in situ
US20210184255A1 (en) * 2018-09-13 2021-06-17 Fundacion Centro De Investigacion Cooperativa De Energias Alternativas Cic Energigune Fundazioa Multilayer electrodes and solid electrolytes
JP7533446B2 (en) 2019-03-29 2024-08-14 日本ケミコン株式会社 Solid electrolyte, power storage device, and method for producing solid electrolyte
CN113508446A (en) * 2019-03-29 2021-10-15 日本贵弥功株式会社 Solid electrolyte, electricity storage device, and method for producing solid electrolyte
CN113508446B (en) * 2019-03-29 2022-09-27 日本贵弥功株式会社 Solid electrolyte, electricity storage device, and method for producing solid electrolyte
CN111864205A (en) * 2019-04-29 2020-10-30 宁德时代新能源科技股份有限公司 Positive pole piece of sulfide solid-state battery and sulfide solid-state battery
CN111864205B (en) * 2019-04-29 2023-07-18 宁德时代新能源科技股份有限公司 Positive electrode plate of sulfide solid-state battery and sulfide solid-state battery
JP7304014B2 (en) 2019-06-05 2023-07-06 日産自動車株式会社 Solid electrolyte layer for all solid state lithium ion secondary battery and all solid state lithium ion secondary battery using the same
JP2020198270A (en) * 2019-06-05 2020-12-10 日産自動車株式会社 Solid-state electrolyte layer for all-solid-state lithium-ion secondary battery and all-solid-state lithium-ion secondary battery including the same
WO2020262566A1 (en) 2019-06-28 2020-12-30 帝人株式会社 Fibrous-carbon-containing active material layer for all-solid lithium secondary battery and all-solid lithium secondary battery
KR20220028025A (en) 2019-06-28 2022-03-08 데이진 가부시키가이샤 An active material layer for an all-solid lithium secondary battery comprising fibrous carbon, and an all-solid lithium secondary battery
JP2021086720A (en) * 2019-11-27 2021-06-03 トヨタ自動車株式会社 All-solid battery
JP7184023B2 (en) 2019-11-27 2022-12-06 トヨタ自動車株式会社 All-solid battery
JP7230849B2 (en) 2020-02-19 2023-03-01 トヨタ自動車株式会社 Anode for lithium-ion batteries
JP2021131979A (en) * 2020-02-19 2021-09-09 トヨタ自動車株式会社 Negative electrode for lithium ion battery
WO2023019322A1 (en) * 2021-08-20 2023-02-23 Deakin University Ionic binders for solid state electrodes
CN114566614A (en) * 2022-03-04 2022-05-31 上海兰钧新能源科技有限公司 Lithium battery pole piece and preparation method thereof, lithium battery cell and preparation method thereof
WO2024096111A1 (en) * 2022-11-04 2024-05-10 住友化学株式会社 Composite electrolyte, electrolyte for battery, and battery

Similar Documents

Publication Publication Date Title
WO2016157348A1 (en) Bulk-type all-solid-state lithium secondary battery
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
JP2016139461A (en) Solid electrolyte for electrochemical element and all-solid battery
US10361465B2 (en) Secondary battery
CN101276900B (en) Anode and lithium-ion secondary battery
JP7045575B2 (en) A method for producing a lithium metal-inorganic composite thin film and a method for prelithiumizing a negative electrode of a lithium secondary battery using the same.
WO2015151144A1 (en) All-solid-state lithium secondary battery
US20160204427A1 (en) Solid-State Batteries and Methods for Fabrication
JP2017004910A (en) Lithium ion secondary battery
WO2012169282A1 (en) Lithium ion secondary battery
JP5375975B2 (en) Battery electrode, battery including the battery electrode, and method for manufacturing the battery electrode
JP2016201310A (en) All-solid-state lithium secondary battery
JP6998335B2 (en) Negative electrode active material and power storage device
US20140011083A1 (en) Electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery including the same
JP2015204179A (en) Method for manufacturing electrode for all-solid battery, and method for manufacturing all-solid battery
US20160079634A1 (en) All-solid-state battery and method for producing the same, and method for restoring capacity of the same
JP4561041B2 (en) Lithium secondary battery
JP5793411B2 (en) Lithium secondary battery
WO2014007018A1 (en) Lithium ion secondary battery
CN109155435B (en) Solid electrolyte, all-solid-state battery
JP4845245B2 (en) Lithium battery
WO2016021443A1 (en) Method for manufacturing negative electrode of lithium-ion cell, and method for manufacturing lithium-ion cell
JP2020158835A (en) Metal halide foil, and all-solid battery and nonaqueous lithium ion battery including the same
JP2006338993A (en) Nonaqueous electrolyte secondary battery
JP2020158834A (en) Metal halide particle, and all-solid battery and nonaqueous lithium ion battery including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP