WO2021075420A1 - All-solid-state lithium secondary battery and production method for all-solid-state lithium secondary battery - Google Patents

All-solid-state lithium secondary battery and production method for all-solid-state lithium secondary battery Download PDF

Info

Publication number
WO2021075420A1
WO2021075420A1 PCT/JP2020/038603 JP2020038603W WO2021075420A1 WO 2021075420 A1 WO2021075420 A1 WO 2021075420A1 JP 2020038603 W JP2020038603 W JP 2020038603W WO 2021075420 A1 WO2021075420 A1 WO 2021075420A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
layer
oxide solid
lithium ion
electrode active
Prior art date
Application number
PCT/JP2020/038603
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 一
甲相 朴
博幸 上田
Original Assignee
Dareジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dareジャパン株式会社 filed Critical Dareジャパン株式会社
Priority to CN202080047305.1A priority Critical patent/CN114026727B/en
Priority to JP2021552390A priority patent/JP7275300B2/en
Publication of WO2021075420A1 publication Critical patent/WO2021075420A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all-solid-state lithium secondary battery and a method for manufacturing an all-solid-state lithium secondary battery.
  • Lithium-ion batteries using non-aqueous electrolytes are widely used.
  • lithium-ion batteries are limited in operating temperature because the electrolytic solution is flammable and there is a risk of ignition, and an organic solvent is used. Therefore, an all-solid-state lithium secondary battery using a polymer electrolyte has been developed.
  • the polymer electrolyte has low ionic conductivity at low temperature, and the operating temperature range is narrower than that of the lithium ion battery using the non-aqueous electrolyte solution. Therefore, an all-solid-state lithium secondary battery using a sulfide-based solid electrolyte has been developed.
  • the operating temperature range is limited because sulfides can react with water to generate hydrogen sulfide. Therefore, it is expected to develop an all-solid-state battery using an oxide-based solid electrolyte that can compensate for such drawbacks of polymer electrolytes and sulfide-based electrolytes.
  • Patent Document 1 a composite solid electrolyte layer having lithium ion conductive oxide particles and a lithium ion conductive amorphous portion inserted between the oxide particles is a positive electrode having a positive electrode active material.
  • An all-solid-state lithium secondary battery sandwiched between a negative electrode having a negative electrode active material and a negative electrode is described.
  • Patent Document 2 describes a solid electrolyte for an all-solid-state lithium-ion secondary battery using an oxide solid electrolyte.
  • an adhesive layer having lithium ion conductivity is provided on the surface of the solid electrolyte main body for the purpose of reducing the resistance at the interface between the solid electrolyte main body and the electrode.
  • An all-solid-state lithium secondary battery using an oxide solid electrolyte as described in Patent Document 1 is easy to handle because it does not easily generate hydrogen sulfide by reacting with water, but the sulfide electrolyte is used. Compared to the all-solid-state lithium secondary battery, the internal resistance is high and the conductivity is low.
  • the adhesive layer of the solid electrolyte described in Patent Document 2 is preferably as thin as possible because the ionic conductivity is an order of magnitude lower than that of the solid electrolyte body.
  • the adhesive layer is made thin, it may not be possible to fill the gap between the electrode and the solid electrolyte body, and there is a concern that the internal resistance will increase.
  • an object of the present invention is to provide a method for manufacturing an all-solid-state lithium secondary battery and an all-solid-state lithium secondary battery that are easy to handle and can achieve a large current.
  • the all-solid lithium secondary battery of the present invention has an oxide solid electrolyte layer containing oxide solid electrolyte particles having lithium ion conductivity and one surface side of the oxide solid electrolyte layer.
  • the positive electrode active material layer comprises a solid electrolyte-dispersed polymer layer in which the oxide solid electrolyte particles are dispersed in a lithium ion conductive polymer material which is arranged between the layers and has lithium ion conductivity.
  • the negative electrode active material layer, the solid electrolyte-dispersed polymer layer, and the oxide solid electrolyte layer are integrated.
  • oxides do not easily generate gases that require careful handling, such as hydrogen sulfide, even when they react with water. Therefore, the all-solid-state lithium secondary battery of the present invention using the oxide solid electrolyte is easy to handle.
  • the state in which the layers are integrated in the present specification means a state in which the layers cannot be peeled off and destruction occurs when the layers are forcibly peeled off. Therefore, in the all-solid-state lithium secondary battery of the present invention, the positive electrode active material layer, the negative electrode active material layer, the solid electrolyte-dispersed polymer layer, and the oxide solid electrolyte layer cannot be separated from each other.
  • the resistors between the positive electrode active material layer, the negative electrode active material layer, the solid electrolyte-dispersed polymer layer, and the oxide solid electrolyte layer integrated in this way are not integrated and are simply arranged adjacent to each other. The resistance between the positive electrode active material layer, the negative electrode active material layer, the solid electrolyte-dispersed polymer layer, and the oxide solid electrolyte layer is reduced.
  • the solid electrolyte-dispersed polymer layer comprises a lithium ion conductive polymer material having lithium ion conductivity and oxide solid electrolyte particles dispersed in the material.
  • the oxide solid electrolyte particles have higher lithium ion conductivity than the lithium ion conductive polymer material. Therefore, the ion conductivity of the solid electrolyte dispersed polymer layer is the lithium ion conductivity as in the adhesive layer of Patent Document 2. Higher than a layer consisting only of a conductive polymer material.
  • the solid electrolyte-dispersed polymer layer of the present invention can be formed thicker than the layer made of only the lithium ion conductive polymer material such as the adhesive layer of Patent Document 2. Therefore, unlike the adhesive layer of Patent Document 2, it is not possible to fill the gap between the electrode and the solid electrolyte main body, so that it is possible to suppress an increase in internal resistance. Therefore, according to the all-solid-state lithium secondary battery of the present invention, the internal resistance can be reduced and a large current can be achieved.
  • a positive electrode active material layer is located on one surface side of an oxide solid electrolyte layer containing oxide solid electrolyte particles and having lithium ion conductivity, and an oxide is formed.
  • the negative electrode active material layer is located on the other surface side of the solid electrolyte layer, and lithium having lithium ion conductivity between at least one of the positive electrode active material layer and the negative electrode active material layer and the oxide solid electrolyte layer.
  • the oxide solid electrolyte layer, the positive electrode active material layer, the negative electrode active material layer, and the negative electrode active material layer so that the solid electrolyte dispersed polymer layer in which the oxide solid electrolyte particles are dispersed is located in the ion conductive polymer material.
  • the step of arranging the solid electrolyte-dispersed polymer layer, the integration of the positive electrode active material layer, the negative electrode active material layer, the solid electrolyte-dispersed polymer layer, and the oxide solid electrolyte layer It is characterized by having a process.
  • an all-solid-state lithium secondary battery capable of achieving a large current with reduced internal resistance by using an oxide solid electrolyte that is easy to handle is manufactured. Can be done.
  • an all-solid-state lithium secondary battery and an all-solid-state lithium secondary battery that are easy to handle and can achieve a large current.
  • FIG. 1 is a cross-sectional view of an all-solid-state lithium secondary battery according to an embodiment of the present invention.
  • the all-solid-state lithium secondary battery 1 of the present embodiment has a battery body 1b arranged in a packaging material 10.
  • the battery element 1b includes an oxide solid electrolyte layer 11, a positive electrode side solid electrolyte dispersion polymer layer 12, a positive electrode active material layer 13, a positive electrode current collector layer 14, and a negative electrode side solid electrolyte dispersion polymer layer 15.
  • the negative electrode active material layer 16 and the negative electrode current collector layer 17 are mainly provided.
  • FIG. 2 is an enlarged view from the positive electrode active material layer 13 to the oxide solid electrolyte layer 11 in FIG.
  • the lithium ion conductive polymer material 11b has entered at least a part between the particles of the oxide solid electrolyte particles 11a, that is, the oxide solid electrolyte particles 11a.
  • the structure is such that the lithium ion conductive polymer material 11b is arranged at least a part between the particles.
  • the oxide solid electrolyte constituting the oxide solid electrolyte particles 11a is not particularly limited as long as it is an oxide solid electrolyte having lithium ion conductivity, and for example, lithium aluminum titanium phosphate (LATP), lithium lanthanum zirconium oxide. (LLZO), lithium lanthanum titanium oxide (LLTO), aluminum-substituted germanium lithium phosphate (LAGP), and the like can be mentioned.
  • LATP lithium aluminum titanium phosphate
  • LLZO lithium lanthanum zirconium oxide
  • LAGP aluminum-substituted germanium lithium phosphate
  • silicon (Si) or germanium (Ge) may be added to LATP.
  • the average particle size of the oxide solid electrolyte particles 11a is, for example, 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the particle size refers to, for example, the average particle size measured by a 1090L type laser diffraction type particle size distribution measuring device manufactured by CILAS.
  • the lithium ion conductive polymer material 11b that penetrates between the particles of the oxide solid electrolyte particles 11a has lithium ion conductivity.
  • a lithium ion conductive polymer material 11b include those in which the polymer material has lithium ion conductivity. Examples of such a polymer material include polyethylene oxide (PEO), polyethylene glycol (PEG), polyvinylidene fluoride (PVDF) and the like.
  • PEO polyethylene oxide
  • PEG polyethylene glycol
  • PVDF polyvinylidene fluoride
  • a polymer containing a lithium salt can be mentioned. That is, the polymer does not have lithium ion conductivity, and the polymer contains a lithium salt as a supporting salt, so that the polymer has lithium ion conductivity.
  • lithium salts examples include lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium bis (oxalate) borate (LiBOB), and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI). ), Lithium bis (fluorosulfonyl) imide (LiFSI) can be mentioned.
  • a polymer having lithium ion conductivity such as PEO, PEG, and PVDF may be configured to contain a lithium salt. Further, it is preferable that the lithium ion conductive polymer is mixed with the lithium ion conductive oxide solid electrolyte particles.
  • oxide solid electrolyte particles examples include particles similar to the oxide solid electrolyte particles that can be used for the oxide solid electrolyte particles 11a.
  • lithium ion conductive oxides such as LATP and LLZO tend to have high lithium ion conductive polymer ion conductivity, so that the lithium ion conductivity can be further increased by mixing them.
  • the oxide solid electrolyte layer 11 of the present embodiment has a structure in which the lithium ion conductive polymer material 11b is inserted between the oxide solid electrolyte particles 11a, so that the oxide solid electrolyte layer 11 is an oxide solid. It is composed of only the electrolyte particles 11a, and the resistance can be made lower than that in the case where the lithium ion conductive polymer material 11b does not enter between the oxide solid electrolyte particles 11a.
  • the oxide solid electrolyte layer 11 having such a structure may be referred to as a composite solid electrolyte layer.
  • the positive electrode active material layer 13 of the present embodiment has a structure in which the lithium ion conductive polymer material 13b is inserted between the positive electrode active materials 13a and has lithium ion conductivity.
  • the material constituting the positive electrode active material 13a is not particularly limited as long as it contains lithium and can take in and release lithium ions, but for example, lithium manganate (LMO), lithium cobalt oxide (LCO), and the like.
  • the ternary system referred to here refers to containing, for example, nickel, manganese, aluminum, or cobalt.
  • Examples of the lithium ion conductive polymer material 13b that penetrates between the positive electrode active materials 13a include materials similar to those that can be used for the lithium ion conductive polymer material 11b.
  • the lithium ion conductive polymer material 13b that penetrates between the positive electrode active materials 13a and the lithium ion conductive polymer material 11b that penetrates between the particles of the oxide solid electrolyte particles 11a are the same material. However, they may be made of different materials.
  • a conductive auxiliary agent such as acetylene black may be dispersed in the lithium ion conductive polymer material 13b of the positive electrode active material layer 13.
  • the solid electrolyte-dispersed polymer layer is formed by dispersing the oxide solid electrolyte particles 12a in the lithium ion conductive polymer material 12b between the positive electrode active material layer 13 and the oxide solid electrolyte layer 11.
  • the positive electrode side solid electrolyte-dispersed polymer layer 12 is interposed.
  • the lithium ion conductive polymer material 12b constituting the positive electrode side solid electrolyte dispersed polymer layer 12 include materials similar to the materials that can be used for the lithium ion conductive polymer material 11b of the oxide solid electrolyte layer 11. be able to.
  • the oxide solid electrolyte constituting the oxide solid electrolyte particles 12a of the positive electrode side solid electrolyte dispersion polymer layer 12 the oxide solid electrolyte that can be used for the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11
  • the same oxide solid electrolyte as above can be mentioned.
  • the oxide solid electrolyte particles 12a of the positive electrode side solid electrolyte dispersion polymer layer 12 and the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 are made of the same oxide solid electrolyte. preferable.
  • the oxide solid electrolyte particles 12a of the positive electrode side solid electrolyte dispersion polymer layer 12 and the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 may be made of different oxide solid electrolytes.
  • LAGP and LLZO are used as the oxide solid electrolyte constituting the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11, and the oxide solid electrolyte particles of the positive electrode side solid electrolyte dispersed polymer layer 12 are used.
  • LATP is used as the oxide solid electrolyte constituting 12a. With such a combination, the reduction resistance of the oxide solid electrolyte can be improved.
  • the particle size of the oxide solid electrolyte particles 12a of the positive electrode side solid electrolyte dispersion polymer layer 12 may be the same as the particle size of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11.
  • the average particle size of the oxide solid electrolyte particles 12a is, for example, 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the particle size of the oxide solid electrolyte particles 12a of the positive electrode side solid electrolyte-dispersed polymer layer 12 may be different from the particle size of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11.
  • the positive electrode side solid electrolyte dispersion height is high. It is preferable because the molecular layer 12 can be made thin and the resistance of the all-solid-state lithium secondary battery 1 can be reduced. Further, when the positive electrode side solid electrolyte-dispersed polymer layer 12 is formed by coating as described later, the oxide solid electrolyte particles 12a are formed between the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 with lithium ion conductivity.
  • the particle size of the oxide solid electrolyte particles 12a of the positive electrode side solid electrolyte dispersion polymer layer 12 may be larger than the particle size of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11.
  • the average thickness of the positive electrode side solid electrolyte-dispersed polymer layer 12 may be smaller than the particle size of the oxide solid electrolyte particles 12a.
  • the positive electrode side solid electrolyte-dispersed polymer layer 12 becomes thicker at the portion where the oxide solid electrolyte particles 12a are located, and becomes thinner at the portion where the oxide solid electrolyte particles 12a are not located. Therefore, the oxide solid electrolyte particles 12a are likely to come into contact with the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 and the positive electrode active material 13a.
  • the volume ratio of the oxide solid electrolyte particles 12a is larger than the volume ratio of the lithium ion conductive polymer material 12b. By doing so, the resistance of the positive electrode side solid electrolyte-dispersed polymer layer 12 can be further reduced.
  • the oxide solid electrolyte layer 11 and the positive electrode side solid electrolyte dispersed polymer layer 12 are integrated, and the positive electrode active material layer 13 and the positive electrode side solid electrolyte dispersed polymer layer 12 are integrated.
  • the oxide solid electrolyte layer 11 and the positive electrode active material layer 13 are integrated with each other via the positive electrode side solid electrolyte dispersed polymer layer 12. Therefore, when the oxide solid electrolyte layer 11 and the positive electrode active material layer 13 are peeled off, the cell structure is destroyed.
  • the lithium ion conductive polymer material 15b constituting the positive electrode side solid electrolyte dispersed polymer layer 12 and the lithium ion conductive polymer material 11b that penetrates between the oxide solid electrolyte particles 11a may be the same material.
  • the positive electrode side solid electrolyte dispersion polymer layer 12 and the oxide solid electrolyte layer 11 are preferable from the viewpoint of being able to increase the integrated strength. Further, in this case, it is also preferable from the viewpoint that the positive electrode side solid electrolyte-dispersed polymer layer 12 and the lithium ion conductive polymer material 11b that penetrates between the oxide solid electrolyte particles 11a can be formed at the same time by coating.
  • the positive electrode side solid electrolyte dispersion polymer layer 12 may be provided on the positive electrode side surface of the oxide solid electrolyte layer 11 in a state where the lithium ion conductive polymer material 11b is inserted between the oxide solid electrolyte particles 11a.
  • the lithium ion conductive polymer material constituting the positive electrode side solid electrolyte dispersed polymer layer 12 and the lithium ion conductive polymer material 11b that penetrates between the oxide solid electrolyte particles 11a may be different materials from each other. ..
  • PVDF is used as the lithium ion conductive polymer material constituting the positive electrode side solid electrolyte dispersed polymer layer 12, and the lithium ion conductive polymer material 11b that penetrates between the oxide solid electrolyte particles 11a is used.
  • PEO is preferably used. With such a combination, the cell voltage can be increased by using PVDF, which is less likely to be decomposed than PEO on the high potential side. Therefore, it is possible to contribute to high potential and high energy of the all-solid-state lithium secondary battery 1.
  • the positive electrode side is that the lithium ion conductive polymer material constituting the positive electrode side solid electrolyte-dispersed polymer layer 12 and the lithium ion conductive polymer material 13b that penetrates between the positive electrode active material 13a are the same material as each other. It is preferable from the viewpoint that the integrated strength between the solid electrolyte-dispersed polymer layer 12 and the positive electrode active material layer 13 can be increased. Further, the lithium ion conductive polymer material constituting the positive electrode side solid electrolyte-dispersed polymer layer 12 and the lithium ion conductive polymer material 13b that penetrates between the positive electrode active material 13a may be different materials from each other.
  • PEO is used as the lithium ion conductive polymer material 12b constituting the positive electrode side solid electrolyte-dispersed polymer layer 12
  • PVDF is used as the lithium ion conductive polymer material 13b that penetrates between the positive electrode active materials 13a. Is preferably used.
  • the cell voltage can be increased by using PVDF, which is less likely to be decomposed than PEO on the high potential side. Therefore, it is possible to contribute to high potential and high energy of the all-solid-state lithium secondary battery 1.
  • the positive electrode current collector layer 14 is arranged on the surface side of the positive electrode active material layer 13 opposite to the oxide solid electrolyte layer 11 side, and is integrated with the positive electrode active material layer 13.
  • the positive electrode current collector layer 14 is made of a conductive and non-ionic conductive material. Examples of such a material include a metal and a carbon sheet, and examples of such a metal include copper, aluminum, an iron-nickel alloy, and the like.
  • FIG. 3 is an enlarged view from the negative electrode active material layer 16 to the oxide solid electrolyte layer 11 in FIG.
  • the negative electrode active material layer 16 of the present embodiment has a structure in which the lithium ion conductive polymer material 16b is inserted between the negative electrode active materials 16a and has lithium ion conductivity.
  • the material constituting the negative electrode active material 16a is not particularly limited as long as it can take in and release lithium ions, and is, for example, easily graphitized carbon, non-graphitized carbon, LTO, LMO, Si, Li, and A mixture of these can be mentioned.
  • Examples of the lithium ion conductive polymer material 16b that penetrates between the negative electrode active materials 16a include materials that can be used for the lithium ion conductive polymer material 11b.
  • the lithium ion conductive polymer material 16b that penetrates between the negative electrode active materials 16a and the lithium ion conductive polymer material 11b that penetrates between the particles of the oxide solid electrolyte particles 11a are the same material. However, they may be made of different materials. Further, the lithium ion conductive polymer material 16b that enters between the negative electrode active materials 16a and the lithium ion conductive polymer material 13b that enters between the positive electrode active materials 13a may be the same material or different materials. ..
  • a conductive auxiliary agent such as acetylene black may be dispersed in the lithium ion conductive polymer material 16b of the negative electrode active material layer 16.
  • the solid electrolyte-dispersed polymer layer is formed by dispersing the oxide solid electrolyte particles 15a in the lithium ion conductive polymer material 15b between the negative electrode active material layer 16 and the oxide solid electrolyte layer 11.
  • the negative electrode side solid electrolyte dispersion polymer layer 15 is interposed.
  • Examples of the lithium ion conductive polymer material 15b constituting the negative electrode side solid electrolyte-dispersed polymer layer 15 include materials that can be used for the lithium ion conductive polymer material 11b.
  • the oxide solid electrolyte constituting the oxide solid electrolyte particles 15a of the negative electrode side solid electrolyte dispersion polymer layer 15 the oxide solid electrolyte that can be used for the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11
  • the same oxide solid electrolyte as above can be mentioned.
  • the oxide solid electrolyte particles 15a of the negative electrode side solid electrolyte dispersion polymer layer 15 and the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 are made of the same oxide solid electrolyte. preferable.
  • the oxide solid electrolyte particles 15a of the negative electrode side solid electrolyte dispersion polymer layer 15 and the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 may be made of different oxide solid electrolytes.
  • LATP is used as the oxide solid electrolyte constituting the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11
  • the oxide solid electrolyte particles 15a of the negative electrode side solid electrolyte dispersion polymer layer 15 are used.
  • LAGP and LLZO are used as the constituent oxide solid electrolytes. With such a combination, the reduction resistance at the negative electrode can be improved.
  • the particle size of the oxide solid electrolyte particles 15a of the negative electrode side solid electrolyte dispersion polymer layer 15 may be the same as the particle size of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11. However, the particle size of the oxide solid electrolyte particles 15a of the negative electrode side solid electrolyte dispersion polymer layer 15 may be different from the particle size of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11.
  • the negative electrode side solid electrolyte dispersion height is high. It is preferable because the molecular layer 15 can be made thin and the resistance of the all-solid-state lithium secondary battery 1 can be reduced. Further, when the negative electrode side solid electrolyte-dispersed polymer layer 15 is formed by coating as described later, the oxide solid electrolyte particles 15a are formed between the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 with lithium ion conductivity.
  • the particle size of the oxide solid electrolyte particles 15a of the negative electrode side solid electrolyte dispersion polymer layer 15 may be larger than the particle size of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11.
  • the average thickness of the negative electrode side solid electrolyte-dispersed polymer layer 15 may be smaller than the particle size of the oxide solid electrolyte particles 15a. In this case, the negative electrode side solid electrolyte-dispersed polymer layer 15 becomes thicker at the portion where the oxide solid electrolyte particles 15a are located, and becomes thinner at the portion where the oxide solid electrolyte particles 15a are not located. Therefore, the oxide solid electrolyte particles 15a are likely to come into contact with the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 and the positive electrode active material 13a.
  • the volume ratio of the oxide solid electrolyte particles 15a is larger than the volume ratio of the lithium ion conductive polymer material 15b. By doing so, the resistance of the negative electrode side solid electrolyte-dispersed polymer layer 15 can be further reduced.
  • the oxide solid electrolyte layer 11 and the negative electrode side solid electrolyte dispersed polymer layer 15 are integrated, and the negative electrode active material layer 16 and the negative electrode side solid electrolyte dispersed polymer layer 15 are integrated.
  • the oxide solid electrolyte layer 11 and the negative electrode active material layer 16 are integrated with each other via the negative electrode side solid electrolyte dispersed polymer layer 15. Therefore, when the oxide solid electrolyte layer 11 and the negative electrode active material layer 16 are peeled off, destruction occurs.
  • the lithium ion conductive polymer material 15b constituting the negative electrode side solid electrolyte dispersed polymer layer 15 and the lithium ion conductive polymer material 11b that penetrates between the oxide solid electrolyte particles 11a may be the same material.
  • the negative electrode side solid electrolyte dispersion polymer layer 15 and the oxide solid electrolyte layer 11 are preferable from the viewpoint of being able to increase the integrated strength. Further, in this case, it is also preferable from the viewpoint that the negative electrode side solid electrolyte-dispersed polymer layer 15 and the lithium ion conductive polymer material 11b that penetrates between the oxide solid electrolyte particles 11a can be formed at the same time by coating.
  • the negative electrode side solid electrolyte dispersion polymer layer 15 may be provided on the negative electrode side surface of the oxide solid electrolyte layer 11 in a state where the lithium ion conductive polymer material 11b is inserted between the oxide solid electrolyte particles 11a.
  • the lithium ion conductive polymer material constituting the negative electrode side solid electrolyte dispersed polymer layer 15 and the lithium ion conductive polymer material 11b that penetrates between the oxide solid electrolyte particles 11a may be different materials from each other. ..
  • PVDF, SBR, acrylate and the like can be appropriately used as the lithium ion conductive polymer material constituting the negative electrode side solid electrolyte dispersion polymer layer 15, and the lithium ions entering between the oxide solid electrolyte particles 11a.
  • PEO is used as the conductive polymer material 11b.
  • the negative electrode side is that the lithium ion conductive polymer material constituting the negative electrode side solid electrolyte-dispersed polymer layer 15 and the lithium ion conductive polymer material 16b that penetrates between the negative electrode active material 16a are the same material as each other. It is preferable from the viewpoint that the integrated strength between the solid electrolyte-dispersed polymer layer 15 and the negative electrode active material layer 16 can be increased. Further, the lithium ion conductive polymer material constituting the negative electrode side solid electrolyte-dispersed polymer layer 15 and the lithium ion conductive polymer material 16b that penetrates between the negative electrode active material 16a may be different materials from each other.
  • PVDF is used as the lithium ion conductive polymer material constituting the negative electrode side solid electrolyte-dispersed polymer layer 15
  • PEO and PEO are used as the lithium ion conductive polymer material 13b that penetrates between the negative electrode active materials 16a.
  • a mixture of PVDFs is preferably used. With such a combination, the degree of adhesion between the negative electrode side solid electrolyte dispersion polymer layer 15 and the negative electrode active material layer 16 can be improved.
  • the negative electrode current collector layer 17 is arranged on the surface side of the negative electrode active material layer 16 opposite to the oxide solid electrolyte layer 11 side, and is integrated with the negative electrode active material layer 16. Examples of the material of the negative electrode current collector layer 17 include the same materials as those of the positive electrode current collector layer 14.
  • the packaging material 10 includes a positive electrode current collector layer 14, a positive electrode active material layer 13, a positive electrode side solid electrolyte dispersed polymer layer 12, an oxide solid electrolyte layer 11, a negative electrode side solid electrolyte dispersed polymer layer 15, and a negative electrode active material layer 16. , And a member that accommodates and seals the negative electrode current collector layer 17. A part of the positive electrode current collector layer 14 and the negative electrode current collector layer 17 is led out as electrodes to the outside of the packaging material 10.
  • the structure of the packaging material 10 is not particularly limited as long as external oxygen, moisture and the like are suppressed from entering the region surrounded by the packaging material 10 and do not conduct with the region, but for example, a metal such as aluminum.
  • a foil laminated with a resin layer can be used.
  • the all-solid-state lithium secondary battery 1 of the present embodiment uses an oxide solid electrolyte, and unlike sulfide, it is difficult to generate a gas such as hydrogen sulfide that requires careful handling even if the oxide reacts with water. Therefore, it is easy to handle.
  • the positive electrode active material layer 13, the negative electrode active material layer 16, the positive electrode side solid electrolyte dispersed polymer layer 12, and the negative electrode side solid electrolyte dispersed polymer layer 15 is integrated so as not to be peeled off. The resistance between each of the layers thus integrated is less than the resistance between the layers that are not integrated and are simply arranged adjacent to each other.
  • the positive electrode-side solid electrolyte-dispersed polymer layer 12 interposed between the positive electrode current collector layer 14 and the oxide solid electrolyte layer 11 has high lithium ion conductivity.
  • the oxide solid electrolyte particles 12a are dispersed in the molecular material 12b.
  • the negative electrode side solid electrolyte-dispersed polymer layer 15 interposed between the negative electrode active material layer 16 and the oxide solid electrolyte layer 11 is a lithium ion conductive polymer.
  • the oxide solid electrolyte particles 15a are dispersed in the material 15b.
  • the oxide solid electrolyte particles have higher lithium ion conductivity than the lithium ion conductive polymer material, so that the ion conductivity of the positive electrode side solid electrolyte dispersed polymer layer 12 and the negative electrode side solid electrolyte dispersed polymer layer 15 is lithium. Higher than a layer consisting only of ionic conductive polymer material. Therefore, the positive electrode side solid electrolyte-dispersed polymer layer 12 and the negative electrode side solid electrolyte-dispersed polymer layer 15 of the present embodiment are between the positive electrode active material layer 13 and the oxide solid electrolyte layer 11 and the negative electrode active material layer 16.
  • the internal resistance can be reduced and a large current can be achieved.
  • FIG. 4 is a flowchart of a method for manufacturing the all-solid-state lithium secondary battery 1 according to the embodiment.
  • the method for manufacturing the all-solid-state lithium secondary battery 1 of the present embodiment includes a preparation step P1, an arrangement step P2, an integration step P3, and a sealing step P4.
  • This step is a step of mainly preparing the oxide solid electrolyte layer 11, the positive electrode active material layer 13, the positive electrode current collector layer 14, the negative electrode active material layer 16, and the negative electrode current collector layer 17. ..
  • FIG. 5 is a diagram showing a state of the preparation process.
  • oxide solid electrolyte layer In the preparation of the oxide solid electrolyte layer 11, first, a green sheet in which the oxide solid electrolyte particles 11a are dispersed in the binder is prepared, and then the oxide solid electrolyte particles 11a are integrated with each other by firing. A porous sheet-like member to be the oxide solid electrolyte layer 11 can be obtained. Alternatively, even if the oxide solid electrolyte particles 11a are placed in a mold and molded into a sheet shape, a predetermined pressure is applied and fired to obtain a porous sheet-like member to be the oxide solid electrolyte layer 11. Good.
  • the oxide solid electrolyte particles 11a may be dispersed in the binder and then molded into a sheet to harden the binder.
  • the binder may be made of the lithium ion conductive polymer material 11b.
  • the binder does not have to be made of the lithium ion conductive polymer material 11b, but in the present embodiment, the lithium ion conductive polymer material 11b is inserted between the oxide solid electrolyte particles 11a.
  • the amount of the binder is such that voids are formed between the oxide solid electrolyte particles 11a. In this way, a sheet-like member containing the oxide solid electrolyte particles 11a is obtained.
  • a dispersion liquid in which the oxide solid electrolyte particles are dispersed in the lithium ion conductive polymer material is applied to both surfaces of the sheet-like member containing the oxide solid electrolyte particles 11a and solidified.
  • the lithium ion conductive polymer material coated between the oxide solid electrolyte particles 11a enters, and becomes the lithium ion conductive polymer material 11b arranged between the oxide solid electrolyte particles 11a.
  • the oxide solid electrolyte layer 11 in which the lithium ion conductive polymer material 11b is inserted between the oxide solid electrolyte particles 11a shown in FIG. 5 is obtained.
  • the oxide solid electrolyte particles in the dispersion liquid enter between the oxide solid electrolyte particles 11a from the viewpoint of lowering the resistance.
  • the oxide solid electrolyte particles in the dispersion liquid are the oxide solid electrolyte particles 11a. It is preferable because it easily gets in between.
  • the oxide solid electrolyte particles 11a are dispersed in the binder made of the lithium ion conductive polymer material 11b, and then molded into a sheet to harden the binder, whereby the sheet-like member is described.
  • the lithium ion conductive polymer material 11b since the lithium ion conductive polymer material 11b has entered between the oxide solid electrolyte particles 11a before the coating, the lithium ion conductive polymer material 11b coated between the oxide solid electrolyte particles 11a by the coating. The polymer material does not have to enter.
  • the lithium ion conductive polymer material when the lithium ion conductive polymer material is applied to both sides of the sheet-like member made of the oxide solid electrolyte particles 11a, the lithium ion conductive polymer is applied on both sides of the sheet-like member. Apply a lithium-ion conductive polymer material to the extent that the material becomes a layer. As a result, the lithium ion conductive polymer material on one surface of the oxide solid electrolyte layer 11 solidifies to become the positive electrode side solid electrolyte dispersed polymer layer 12 shown in FIG. 5, and the other of the oxide solid electrolyte layer 11 The lithium ion conductive polymer material on the surface solidifies to form the negative electrode side solid electrolyte-dispersed polymer layer 15 shown in FIG.
  • the positive electrode active material 13a and, if necessary, the conductive auxiliary agent are dispersed in the lithium ion conductive polymer material 13b, and the positive electrode current collector layer 14 is topped. Apply to and dry. In this way, the positive electrode active material layer 13 is provided on the positive electrode current collector layer 14.
  • the negative electrode active material 16a and, if necessary, a conductive auxiliary agent are dispersed in the lithium ion conductive polymer material 16b, and the negative electrode current collector layer 17 is topped. Apply to and dry. In this way, the negative electrode active material layer 16 is provided on the negative electrode current collector layer 17.
  • FIG. 6 is a diagram showing a state of this process.
  • the positive electrode active material layer 13 and the positive electrode current collector layer 14 are laminated on one surface side of the oxide solid electrolyte layer 11, and the positive electrode active material layer 13 is an oxide solid.
  • the electrolyte layer 11 is arranged so as to face the side.
  • the positive electrode side solid electrolyte dispersion polymer layer 12 is located on one surface of the oxide solid electrolyte layer 11 as described above, the positive electrode active material layer 13 is on the positive electrode side solid electrolyte dispersion polymer layer 12. Is placed in.
  • a laminate of the negative electrode active material layer 16 and the negative electrode current collector layer 17 is arranged on the other surface side of the oxide solid electrolyte layer 11 so that the negative electrode active material layer 16 faces the oxide solid electrolyte layer 11 side.
  • the negative electrode side solid electrolyte dispersion polymer layer 15 is located on the other surface of the oxide solid electrolyte layer 11 as described above, the negative electrode active material layer 16 is on the negative electrode side solid electrolyte dispersion polymer layer 15. Is placed in.
  • the oxide solid electrolyte layer 11, the positive electrode side solid electrolyte dispersed polymer layer 12, the positive electrode active material layer 13, the positive electrode current collector layer 14, the negative electrode side solid electrolyte dispersed polymer layer 15, and the negative electrode A battery element 1b in which the active material layer 16 and the negative electrode current collector layer 17 are laminated is obtained.
  • FIG. 7 is a diagram showing this process.
  • integration is performed by a hot press.
  • the battery element 1b is sandwiched between a pair of heated heat press molds 21 and 22.
  • each of the heat press molds 21 and 22 is pressed in a heated state.
  • the temperature of the hot press molds 21 and 22 is higher than the temperature at which the lithium ion conductive polymer material constituting the positive electrode side solid electrolyte-dispersed polymer layer 12 and the negative electrode side solid electrolyte-dispersed polymer layer 15 softens. It is preferable to have.
  • the temperature at which it softens is approximately 100 ° C., so that the temperature of the heat press molds 21 and 22 is preferably higher than this temperature.
  • the temperature of the hot press molds 21 and 22 is more preferably between 110 ° C. and 120 ° C.
  • the pressure for pressing the battery element 1b is, for example, preferably 1 MPa or more and 50 MPa or less from the viewpoint of being able to suppress the outflow of the lithium ion conductive polymer material while firmly integrating the respective layers.
  • a part of the lithium ion conductive polymer material constituting the positive electrode side solid electrolyte dispersed polymer layer 12 may enter the positive electrode active material layer 13, and the negative electrode side solid electrolyte dispersed polymer layer 15 may be formed.
  • a part of the constituent lithium ion conductive polymer material may enter the negative electrode active material layer 16.
  • the positive electrode side solid electrolyte-dispersed polymer layer 12 and the positive electrode active material layer 13 are integrated, and the negative electrode side solid electrolyte-dispersed polymer layer 15 and the negative electrode active material layer 16 are integrated.
  • the battery element 1b in the material 10 is obtained.
  • ⁇ Seal step P4> Next, the integrated battery body 1b is placed in the packaging material 10 and the packaging material 10 is sealed. It is preferable that heat fusion or the like is used for sealing.
  • the positive electrode active material layer 13, the negative electrode active material layer 16, and the oxide solid electrolyte layer 11 are integrated. Therefore, an oxide solid electrolyte that is easy to handle is used, and resistance between the positive electrode active material layer 13 and the oxide solid electrolyte layer 11 and between the negative electrode active material layer 16 and the oxide solid electrolyte layer 11 is increased. It is possible to manufacture the all-solid-state lithium secondary battery 1 which can reduce the current and achieve a large current.
  • the integration step P3 is performed by thermocompression bonding. Therefore, for example, the integration step P3 can be performed more easily than when the integration step P3 is performed by using ultrasonic waves.
  • the oxide solid electrolyte layer 11 is configured such that the lithium ion conductive polymer material 11b is inserted into at least a part between the particles of the oxide solid electrolyte particles 11a.
  • the oxide solid electrolyte layer 11 does not have to have the lithium ion conductive polymer material 11b.
  • the lithium ion conductive polymer material 11b is inserted into at least a part between the particles of the oxide solid electrolyte particles 11a.
  • the lithium ion conductive polymer material 12b constituting the positive electrode side solid electrolyte dispersed polymer layer 12, the lithium ion conductive polymer material 15b constituting the negative electrode side solid electrolyte dispersed polymer layer 15, and the oxide solid electrolyte particles 11a.
  • the material may be different from the lithium ion conductive polymer material 11b that penetrates between the particles of. In this case, in the preparation step P1, when the lithium ion conductive polymer material 11b that penetrates between the particles of the oxide solid electrolyte particles 11a is applied, the lithium ion conductive polymer material 11b is the oxide solid electrolyte particles 11a.
  • the oxide solid electrolyte layer 11 is obtained by applying the coating so as not to form a layer on the sheet member. Then, a lithium ion conductive polymer material to be the positive electrode side solid electrolyte dispersion polymer layer 12 and the negative electrode side solid electrolyte dispersion polymer layer 15 may be coated on the obtained oxide solid electrolyte layer 11.
  • the lithium ion conductive polymer material 13b does not have to enter between the positive electrode active material 13a of the positive electrode active material layer 13, and the lithium ion conductive polymer material between the negative electrode active material 16a of the negative electrode active material layer 16. 16b does not have to enter.
  • the integration step P3 is performed by thermocompression bonding, but the integration step P3 may be performed by a method other than thermocompression bonding such as ultrasonic fusion.
  • the polymer arranged between the particles of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 is a polymer having lithium ion conductivity, and lithium in the case where the lithium salt is dispersed in the polymer.
  • the amount of salt was investigated.
  • Example 1 In order to prepare the battery body 1b, a laminate in which solid electrolyte dispersion polymer layers were provided on both sides of the oxide solid electrolyte layer 11 was prepared. In this preparation, first, a porous oxide solid electrolyte particle bonding layer to which the oxide solid electrolyte particles 11a were bonded was prepared.
  • the oxide solid electrolyte particles consist of LLZO.
  • a coating liquid made of a lithium ion conductive polymer material in which oxide solid electrolyte particles and lithium salts were dispersed was applied to both sides of the oxide solid electrolyte particle bonding layer.
  • PEO was used as the lithium ion conductive polymer material
  • LiFSI was used as the lithium salt
  • particles made of LLZO were used as the oxide solid electrolyte particles.
  • the weight ratio of PEO and LiFSI was set to 1: 1.
  • the positive electrode side solid electrolyte-dispersed polymer layer 12 was prepared from a layer made of a coating liquid formed on one surface of the oxide solid electrolyte layer 11 and formed on the other surface of the oxide solid electrolyte layer 11.
  • a negative electrode side solid electrolyte-dispersed polymer layer 15 was prepared from a layer made of a coating liquid.
  • a laminated body in which the positive electrode active material layer 13 is provided on one surface of the positive electrode current collector layer 14 was prepared. Specifically, an aluminum foil is used as the positive electrode current collector layer 14, and lithium nickelate (NCA), carbon black, acrylate, and carboxymethyl cellulose (CMC) are dispersed on one surface of the positive electrode current collector layer 14.
  • the positive electrode active material layer 13 was obtained by applying and drying the solution to obtain the above-mentioned laminate.
  • a laminated body in which the negative electrode active material layer 16 is provided on one surface of the negative electrode current collector layer 17 was prepared. Specifically, a copper foil is used as the negative electrode current collector layer 17, and graphitized carbon, styrene-butadiene block copolymer (SBR), and CMC are dispersed on one surface of the negative electrode current collector layer 17.
  • the negative electrode active material layer 16 was obtained by applying and drying the solution to obtain the above-mentioned laminate.
  • the above three laminated bodies were overlapped and integrated. Specifically, the positive electrode side solid electrolyte dispersion polymer layer 12 provided on one surface of the oxide solid electrolyte layer 11 and the positive electrode active material layer 13 provided on one surface of the positive electrode current collector layer 14. The negative electrode side solid electrolyte dispersion polymer layer 15 provided on the other surface of the oxide solid electrolyte layer 11 and the negative electrode active material layer 16 provided on one surface of the negative electrode current collector layer 17 are laminated. Overlaid. Next, the laminated bodies that were overlapped were integrated by thermocompression bonding.
  • Example 2 A battery element 1b was prepared in the same manner as in Example 1 except that the weight ratio of PEO and LiFSI was 4: 1. When PEO and LiFSI are used in a general all-solid-state lithium secondary battery other than the present invention, the weight ratio thereof is the same as that in this example. Impedance measurement was performed on the battery body 1b in the same manner as in Example 1. The resulting call-call plot is shown in FIG. As a result, the resistance of the battery element of the reference example was approximately 2000 ⁇ .
  • Example 2 Even the resistance of Example 2 is a sufficiently practical low resistance, but the resistance of Example 1 is about 1/40 of the resistance of Example 2. Therefore, the lithium ion height of the lithium ion conductive polymer material 11b that penetrates between the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11, the positive electrode side solid electrolyte dispersed polymer layer 12, and the lithium ion conductive polymer material 13b. It was found that when the molecular material is PEO and LiFSI is dispersed in the lithium ion polymer material, the weight of LiFSI with respect to PEO is preferably 1 times or more.
  • the weight of LiFSI with respect to PEO is more than twice, there is a concern about strength, so it is preferable that the weight of LiFSI with respect to PEO is twice or less.
  • an all-solid-state lithium secondary battery and an all-solid-state lithium secondary battery that are easy to handle and can achieve a large current, and are used for automobile batteries and industrial equipment. It is expected to be used in the fields of batteries, batteries for consumer devices, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

An all-solid-state lithium secondary battery (1) comprising: an oxide solid electrolyte layer (11) including oxide solid electrolyte particles (11a) having lithium ion conductivity; a positive electrode active material layer (13) arranged on one surface side of the oxide solid electrolyte layer (11); a negative electrode active material layer (16) arranged on the other surface side of the oxide solid electrolyte layer (11); and a solid electrolyte dispersion polymer layer arranged between the oxide solid electrolyte layer (11) and at least either the positive electrode active material layer (13) or the negative electrode active material layer (16) and having oxide solid electrolyte particles dispersed in a lithium ion conductive polymer material that has lithium ion conductivity. The positive electrode active material layer (13), the negative electrode active material layer (16), the solid electrolyte dispersion polymer layer, and the oxide solid electrolyte layer (11) are integrated.

Description

全固体リチウム二次電池及び全固体リチウム二次電池の製造方法Manufacturing method of all-solid-state lithium secondary battery and all-solid-state lithium secondary battery
 本発明は、全固体リチウム二次電池及び全固体リチウム二次電池の製造方法に関する。 The present invention relates to an all-solid-state lithium secondary battery and a method for manufacturing an all-solid-state lithium secondary battery.
 非水系電解液を用いたリチウムイオン電池が一般に普及している。しかし、リチウムイオン電池は、電解液が可燃性であり発火等の危惧があることや、有機溶媒が用いられているため、使用温度の制限がある。このため、ポリマー電解質を用いた全固体リチウム二次電池が開発されている。しかし、ポリマー電解質は低温におけるイオン導電率が低く、使用温度範囲が上記非水系電解液を用いたリチウムイオン電池より狭くなる。そこで、硫化物系固体電解質を用いた全固体リチウム二次電池が開発されている。しかし、硫化物は水と反応して硫化水素を発生する可能性があるため使用温度範囲が制限される。そのため、ポリマー電解質や硫化物系電解質のこのような欠点を補うことができる酸化物系固体電解質を用いた全固体電池の開発が期待されている。 Lithium-ion batteries using non-aqueous electrolytes are widely used. However, lithium-ion batteries are limited in operating temperature because the electrolytic solution is flammable and there is a risk of ignition, and an organic solvent is used. Therefore, an all-solid-state lithium secondary battery using a polymer electrolyte has been developed. However, the polymer electrolyte has low ionic conductivity at low temperature, and the operating temperature range is narrower than that of the lithium ion battery using the non-aqueous electrolyte solution. Therefore, an all-solid-state lithium secondary battery using a sulfide-based solid electrolyte has been developed. However, the operating temperature range is limited because sulfides can react with water to generate hydrogen sulfide. Therefore, it is expected to develop an all-solid-state battery using an oxide-based solid electrolyte that can compensate for such drawbacks of polymer electrolytes and sulfide-based electrolytes.
 例えば、下記特許文献1には、リチウムイオン導電性の酸化物粒子及び当該酸化物粒子間に入り込んだリチウムイオン導電性の非晶質部を有する複合固体電解質層が、正極活物質を有する正極と負極活物質を有する負極とに挟持された全固体リチウム二次電池が記載されている。 For example, in Patent Document 1 below, a composite solid electrolyte layer having lithium ion conductive oxide particles and a lithium ion conductive amorphous portion inserted between the oxide particles is a positive electrode having a positive electrode active material. An all-solid-state lithium secondary battery sandwiched between a negative electrode having a negative electrode active material and a negative electrode is described.
 また、下記特許文献2には、酸化物固体電解質を用いた全固体リチウムイオン二次電池用の固体電解質が記載されている。この固体電解質においては、固体電解質本体と電極との界面の抵抗を下げる目的で、リチウムイオン伝導性を有する接着層が当該固体電解質本体の表面に設けられている。 Further, Patent Document 2 below describes a solid electrolyte for an all-solid-state lithium-ion secondary battery using an oxide solid electrolyte. In this solid electrolyte, an adhesive layer having lithium ion conductivity is provided on the surface of the solid electrolyte main body for the purpose of reducing the resistance at the interface between the solid electrolyte main body and the electrode.
特開2015-138741号公報Japanese Unexamined Patent Publication No. 2015-138471 特開2017-069036号公報JP-A-2017-069036
 上記特許文献1に記載されるような酸化物固体電解質を用いた全固体リチウム二次電池は、水と反応して硫化水素を発生しにくく取り扱いが容易であるが、上記硫化物電解質を用いた全固体リチウム二次電池と比べて、内部抵抗が高く導電性が低い。 An all-solid-state lithium secondary battery using an oxide solid electrolyte as described in Patent Document 1 is easy to handle because it does not easily generate hydrogen sulfide by reacting with water, but the sulfide electrolyte is used. Compared to the all-solid-state lithium secondary battery, the internal resistance is high and the conductivity is low.
 また、上記特許文献2に記載される固体電解質の接着層は、固体電解質本体と比べてイオン伝導度が一桁低いためできるだけ薄いことが好ましい。しかし、接着層を薄くすると、電極と固体電解質本体との隙間を埋めることができなくなる可能性があり、却って内部抵抗が高くなるという懸念がある。 Further, the adhesive layer of the solid electrolyte described in Patent Document 2 is preferably as thin as possible because the ionic conductivity is an order of magnitude lower than that of the solid electrolyte body. However, if the adhesive layer is made thin, it may not be possible to fill the gap between the electrode and the solid electrolyte body, and there is a concern that the internal resistance will increase.
 このため、取り扱いが容易な酸化物固体電解質を用いた全固体リチウム二次電池において、内部抵抗が低減され、大電流化を達成することが望まれている。 Therefore, in an all-solid-state lithium secondary battery using an oxide solid electrolyte that is easy to handle, it is desired that the internal resistance is reduced and a large current is achieved.
 そこで、本発明は、取り扱いが容易で大電流化を達成し得る全固体リチウム二次電池及び全固体リチウム二次電池の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for manufacturing an all-solid-state lithium secondary battery and an all-solid-state lithium secondary battery that are easy to handle and can achieve a large current.
 上記課題を解決するため、本発明の全固体リチウム二次電池は、リチウムイオン導電性を有する酸化物固体電解質粒子を含む酸化物固体電解質層と、前記酸化物固体電解質層の一方の面側に配置される正極活物質層と、前記酸化物固体電解質層の他方の面側に配置される負極活物質層と、前記正極活物質層及び前記負極活物質層の少なくとも一方と前記酸化物固体電解質層との間に配置され、リチウムイオン導電性を有するリチウムイオン導電性高分子材料中に前記酸化物固体電解質粒子が分散される固体電解質分散高分子層と、を備え、前記正極活物質層と、前記負極活物質層と、前記固体電解質分散高分子層と、前記酸化物固体電解質層とが一体とされることを特徴とするものである。 In order to solve the above problems, the all-solid lithium secondary battery of the present invention has an oxide solid electrolyte layer containing oxide solid electrolyte particles having lithium ion conductivity and one surface side of the oxide solid electrolyte layer. The positive electrode active material layer to be arranged, the negative electrode active material layer arranged on the other surface side of the oxide solid electrolyte layer, at least one of the positive electrode active material layer and the negative electrode active material layer, and the oxide solid electrolyte. The positive electrode active material layer comprises a solid electrolyte-dispersed polymer layer in which the oxide solid electrolyte particles are dispersed in a lithium ion conductive polymer material which is arranged between the layers and has lithium ion conductivity. The negative electrode active material layer, the solid electrolyte-dispersed polymer layer, and the oxide solid electrolyte layer are integrated.
 酸化物は、上記の硫化物と異なり、水と反応しても硫化水素のような取り扱いに注意を要するガスを発生しづらい。従って、酸化物固体電解質を用いる本発明の全固体リチウム二次電池は、取り扱いが容易である。 Unlike the above sulfides, oxides do not easily generate gases that require careful handling, such as hydrogen sulfide, even when they react with water. Therefore, the all-solid-state lithium secondary battery of the present invention using the oxide solid electrolyte is easy to handle.
 また、本明細書における層と層とが一体とされる状態とは、剥離することができず、無理に剥離しようとする場合に破壊が生じる状態であることを意味する。従って、本発明の全固体リチウム二次電池では、正極活物質層と、負極活物質層と、固体電解質分散高分子層と、酸化物固体電解質層とが剥離できない状態とされている。このように一体化された正極活物質層と、負極活物質層と、固体電解質分散高分子層と、酸化物固体電解質層との間における抵抗は、一体化されておらず単に隣接して配置された正極活物質層と、負極活物質層と、固体電解質分散高分子層と、酸化物固体電解質層との間における抵抗よりも低減される。 Further, the state in which the layers are integrated in the present specification means a state in which the layers cannot be peeled off and destruction occurs when the layers are forcibly peeled off. Therefore, in the all-solid-state lithium secondary battery of the present invention, the positive electrode active material layer, the negative electrode active material layer, the solid electrolyte-dispersed polymer layer, and the oxide solid electrolyte layer cannot be separated from each other. The resistors between the positive electrode active material layer, the negative electrode active material layer, the solid electrolyte-dispersed polymer layer, and the oxide solid electrolyte layer integrated in this way are not integrated and are simply arranged adjacent to each other. The resistance between the positive electrode active material layer, the negative electrode active material layer, the solid electrolyte-dispersed polymer layer, and the oxide solid electrolyte layer is reduced.
 また、本発明の全固体リチウム二次電池では、固体電解質分散高分子層が、リチウムイオン導電性を有するリチウムイオン導電性高分子材料と、この材料中に分散される酸化物固体電解質粒子とを含む。一般に酸化物固体電解質粒子はリチウムイオン導電性高分子材料よりもリチウムイオン伝導度が高いため、上記固体電解質分散高分子層のイオン伝導度は、上記特許文献2の接着層のようなリチウムイオン導電性高分子材料のみから成る層よりも高い。従って、本発明の固体電解質分散高分子層は、上記特許文献2の接着層のようなリチウムイオン導電性高分子材料のみから成る層よりも厚く形成され得る。このため、上記特許文献2の接着層のように、電極と固体電解質本体との隙間を埋めることができなくなることで内部抵抗が高くなることを抑制することができる。従って、本発明の全固体リチウム二次電池によれば、内部抵抗が低減され、大電流化を達成することができる。 Further, in the all-solid-state lithium secondary battery of the present invention, the solid electrolyte-dispersed polymer layer comprises a lithium ion conductive polymer material having lithium ion conductivity and oxide solid electrolyte particles dispersed in the material. Including. In general, the oxide solid electrolyte particles have higher lithium ion conductivity than the lithium ion conductive polymer material. Therefore, the ion conductivity of the solid electrolyte dispersed polymer layer is the lithium ion conductivity as in the adhesive layer of Patent Document 2. Higher than a layer consisting only of a conductive polymer material. Therefore, the solid electrolyte-dispersed polymer layer of the present invention can be formed thicker than the layer made of only the lithium ion conductive polymer material such as the adhesive layer of Patent Document 2. Therefore, unlike the adhesive layer of Patent Document 2, it is not possible to fill the gap between the electrode and the solid electrolyte main body, so that it is possible to suppress an increase in internal resistance. Therefore, according to the all-solid-state lithium secondary battery of the present invention, the internal resistance can be reduced and a large current can be achieved.
 また、本発明の全固体リチウム二次電池の製造方法は、酸化物固体電解質粒子を含みリチウムイオン導電性を有する酸化物固体電解質層の一方の面側に正極活物質層が位置し、酸化物固体電解質層の他方の面側に負極活物質層が位置し、前記正極活物質層及び前記負極活物質層の少なくとも一方と前記酸化物固体電解質層との間に、リチウムイオン導電性を有するリチウムイオン導電性高分子材料中に前記酸化物固体電解質粒子が分散される固体電解質分散高分子層が位置するように、前記酸化物固体電解質層、前記正極活物質層、前記負極活物質層、及び前記固体電解質分散高分子層を配置する配置工程と、前記正極活物質層と、前記負極活物質層と、前記固体電解質分散高分子層と、前記酸化物固体電解質層とを一体化する一体化工程と、を備えることを特徴とするものである。 Further, in the method for producing an all-solid lithium secondary battery of the present invention, a positive electrode active material layer is located on one surface side of an oxide solid electrolyte layer containing oxide solid electrolyte particles and having lithium ion conductivity, and an oxide is formed. The negative electrode active material layer is located on the other surface side of the solid electrolyte layer, and lithium having lithium ion conductivity between at least one of the positive electrode active material layer and the negative electrode active material layer and the oxide solid electrolyte layer. The oxide solid electrolyte layer, the positive electrode active material layer, the negative electrode active material layer, and the negative electrode active material layer so that the solid electrolyte dispersed polymer layer in which the oxide solid electrolyte particles are dispersed is located in the ion conductive polymer material. The step of arranging the solid electrolyte-dispersed polymer layer, the integration of the positive electrode active material layer, the negative electrode active material layer, the solid electrolyte-dispersed polymer layer, and the oxide solid electrolyte layer. It is characterized by having a process.
 このような全固体リチウム二次電池の製造方法によれば、取り扱いが容易な酸化物固体電解質を用い、内部抵抗が低減され、大電流化を達成し得る全固体リチウム二次電池を製造することができる。 According to such a method for manufacturing an all-solid-state lithium secondary battery, an all-solid-state lithium secondary battery capable of achieving a large current with reduced internal resistance by using an oxide solid electrolyte that is easy to handle is manufactured. Can be done.
 以上のように、本発明によれば、取り扱いが容易で大電流化を達成し得る全固体リチウム二次電池及び全固体リチウム二次電池の製造方法が提供される。 As described above, according to the present invention, there is provided a method for manufacturing an all-solid-state lithium secondary battery and an all-solid-state lithium secondary battery that are easy to handle and can achieve a large current.
本発明の実施形態に係る全固体リチウム二次電池の断面図を示す図である。It is a figure which shows the sectional view of the all-solid-state lithium secondary battery which concerns on embodiment of this invention. 図1における正極活物質層から酸化物固体電解質層にかけての拡大図である。It is an enlarged view from the positive electrode active material layer to the oxide solid electrolyte layer in FIG. 図1における負極活物質層から酸化物固体電解質層にかけての拡大図である。It is an enlarged view from the negative electrode active material layer to the oxide solid electrolyte layer in FIG. 本発明の実施形態に係る全固体リチウム二次電池の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the all-solid-state lithium secondary battery which concerns on embodiment of this invention. 準備工程の様子を示す図である。It is a figure which shows the state of the preparation process. 配置工程の様子を示す図である。It is a figure which shows the state of the arrangement process. 一体化工程の様子を示す図である。It is a figure which shows the state of the integration process. 実施例の測定結果を示すコール・コール・プロットであるIt is a call call plot which shows the measurement result of an Example.
 以下、本発明に係る全固体リチウム二次電池及び全固体リチウム二次電池の製造方法の好適な実施形態について図面を参照しながら詳細に説明する。なお、以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができる。また、理解の容易のため、それぞれの図において一部が誇張して記載される場合等がある。 Hereinafter, preferred embodiments of the method for manufacturing the all-solid-state lithium secondary battery and the all-solid-state lithium secondary battery according to the present invention will be described in detail with reference to the drawings. It should be noted that the embodiments illustrated below are for facilitating the understanding of the present invention, and are not for limiting the interpretation of the present invention. The present invention can be modified and improved without departing from the spirit of the present invention. In addition, for ease of understanding, some parts may be exaggerated in each figure.
 図1は、本発明の実施形態に係る全固体リチウム二次電池の断面図を示す図である。図1に示すように、本実施形態の全固体リチウム二次電池1は、包材10内に電池素体1bが配置されたものである。電池素体1bは、酸化物固体電解質層11と、正極側固体電解質分散高分子層12と、正極活物質層13と、正極集電体層14と、負極側固体電解質分散高分子層15と、負極活物質層16と、負極集電体層17と、を主な構成として備える。 FIG. 1 is a cross-sectional view of an all-solid-state lithium secondary battery according to an embodiment of the present invention. As shown in FIG. 1, the all-solid-state lithium secondary battery 1 of the present embodiment has a battery body 1b arranged in a packaging material 10. The battery element 1b includes an oxide solid electrolyte layer 11, a positive electrode side solid electrolyte dispersion polymer layer 12, a positive electrode active material layer 13, a positive electrode current collector layer 14, and a negative electrode side solid electrolyte dispersion polymer layer 15. The negative electrode active material layer 16 and the negative electrode current collector layer 17 are mainly provided.
<酸化物固体電解質層>
 図2は、図1における正極活物質層13から酸化物固体電解質層11にかけての拡大図である。図2に示すように、酸化物固体電解質層11は、酸化物固体電解質粒子11aの粒子間の少なくとも一部にリチウムイオン導電性高分子材料11bが入り込んだ、すなわち、酸化物固体電解質粒子11aの粒子間の少なくとも一部にリチウムイオン導電性高分子材料11bが配置された構成とされる。
<Oxide solid electrolyte layer>
FIG. 2 is an enlarged view from the positive electrode active material layer 13 to the oxide solid electrolyte layer 11 in FIG. As shown in FIG. 2, in the oxide solid electrolyte layer 11, the lithium ion conductive polymer material 11b has entered at least a part between the particles of the oxide solid electrolyte particles 11a, that is, the oxide solid electrolyte particles 11a. The structure is such that the lithium ion conductive polymer material 11b is arranged at least a part between the particles.
 酸化物固体電解質粒子11aを構成する酸化物固体電解質としては、リチウムイオン導電性を有する酸化物固体電解質であれば特に限定されないが、例えば、リン酸リチウムアルミニウムチタン(LATP)、リチウムランタンジルコニウム酸化物(LLZO)、リチウムランタンチタン酸化物(LLTO)、アルミニウム置換リン酸ゲルマニウムリチウム(LAGP)等を挙げることができる。なお、LATPには、ケイ素(Si)やゲルマニウム(Ge)が添加されてもよい。 The oxide solid electrolyte constituting the oxide solid electrolyte particles 11a is not particularly limited as long as it is an oxide solid electrolyte having lithium ion conductivity, and for example, lithium aluminum titanium phosphate (LATP), lithium lanthanum zirconium oxide. (LLZO), lithium lanthanum titanium oxide (LLTO), aluminum-substituted germanium lithium phosphate (LAGP), and the like can be mentioned. In addition, silicon (Si) or germanium (Ge) may be added to LATP.
 酸化物固体電解質粒子11aの平均粒径は、例えば、0.1μm以上5μm以下とされる。なお、本明細書で粒径は、例えば、CILAS社製1090L型レーザー回折式粒子径分布測定装置で測定した平均粒径を指す。 The average particle size of the oxide solid electrolyte particles 11a is, for example, 0.1 μm or more and 5 μm or less. In the present specification, the particle size refers to, for example, the average particle size measured by a 1090L type laser diffraction type particle size distribution measuring device manufactured by CILAS.
 酸化物固体電解質粒子11aの粒子間に入り込むリチウムイオン導電性高分子材料11bは、リチウムイオン導電性を有する。このようなリチウムイオン導電性高分子材料11bとして、高分子材料がリチウムイオン導電性を有するものを挙げることができる。このような高分子材料としては、例えば、ポリエチレンオキサイド(PEO)、ポリエチレングリコール(PEG)、ポリフッ化ビニリデン(PVDF)等を挙げることができる。また、リチウムイオン導電性高分子材料11bとして、リチウム塩を含有する高分子を挙げることができる。つまり、高分子はリチウムイオン導電性を有さずに、支持塩であるリチウム塩がこの高分子に含有されることで、リチウムイオン導電性を有するのである。このようなリチウム塩としては、例えば、ヘキサフルオロリン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、リチウムビス(オキサラ-ト)ボレート(LiBOB)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(フルオロスルホニル)イミド(LiFSI)を挙げることができる。なお、PEO、PEG、PVDF等のリチウムイオン導電性を有する高分子がリチウム塩を含有する構成であってもよい。さらに、リチウムイオン導電性を有する高分子に、リチウムイオン導電性の酸化物固体電解質粒子が混合させることが好ましい。この場合の酸化物固体電解質粒子としては、酸化物固体電解質粒子11aに用いることができる酸化物固体電解質と同様の粒子を挙げることができる。特にLATPやLLZOのようなリチウムイオン導電性酸化物は、リチウムイオン導電性高分子イオン導電性が大きい傾向にあるので、混合することによりさらにリチウムイオン導電性を増加させることができる。 The lithium ion conductive polymer material 11b that penetrates between the particles of the oxide solid electrolyte particles 11a has lithium ion conductivity. Examples of such a lithium ion conductive polymer material 11b include those in which the polymer material has lithium ion conductivity. Examples of such a polymer material include polyethylene oxide (PEO), polyethylene glycol (PEG), polyvinylidene fluoride (PVDF) and the like. Further, as the lithium ion conductive polymer material 11b, a polymer containing a lithium salt can be mentioned. That is, the polymer does not have lithium ion conductivity, and the polymer contains a lithium salt as a supporting salt, so that the polymer has lithium ion conductivity. Examples of such lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium bis (oxalate) borate (LiBOB), and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI). ), Lithium bis (fluorosulfonyl) imide (LiFSI) can be mentioned. In addition, a polymer having lithium ion conductivity such as PEO, PEG, and PVDF may be configured to contain a lithium salt. Further, it is preferable that the lithium ion conductive polymer is mixed with the lithium ion conductive oxide solid electrolyte particles. Examples of the oxide solid electrolyte particles in this case include particles similar to the oxide solid electrolyte particles that can be used for the oxide solid electrolyte particles 11a. In particular, lithium ion conductive oxides such as LATP and LLZO tend to have high lithium ion conductive polymer ion conductivity, so that the lithium ion conductivity can be further increased by mixing them.
 このように本実施形態の酸化物固体電解質層11は、酸化物固体電解質粒子11a間にリチウムイオン導電性高分子材料11bが入り込んだ構成とされるため、酸化物固体電解質層11が酸化物固体電解質粒子11aのみから成り、酸化物固体電解質粒子11a間にリチウムイオン導電性高分子材料11bが入り込まない場合と比べて、低抵抗とすることができる。このような構成の酸化物固体電解質層11は、複合固体電解質層と呼ばれる場合がある。 As described above, the oxide solid electrolyte layer 11 of the present embodiment has a structure in which the lithium ion conductive polymer material 11b is inserted between the oxide solid electrolyte particles 11a, so that the oxide solid electrolyte layer 11 is an oxide solid. It is composed of only the electrolyte particles 11a, and the resistance can be made lower than that in the case where the lithium ion conductive polymer material 11b does not enter between the oxide solid electrolyte particles 11a. The oxide solid electrolyte layer 11 having such a structure may be referred to as a composite solid electrolyte layer.
<正極活物質層>
 本実施形態の正極活物質層13は、リチウムイオン導電性高分子材料13bが正極活物質13a間に入り込んだ構成とされ、リチウムイオン導電性を有する。
<Positive electrode active material layer>
The positive electrode active material layer 13 of the present embodiment has a structure in which the lithium ion conductive polymer material 13b is inserted between the positive electrode active materials 13a and has lithium ion conductivity.
 正極活物質13aを構成する材料としては、リチウムを含有し、リチウムイオンの取り込みと放出ができるものであれば、特に限定されないが、例えば、マンガン酸リチウム(LMO)、コバルト酸リチウム(LCO)、ニッケル酸リチウム(LNO)、三元系(NMCあるいはNCA)、リン酸鉄リチウム(LFP)、リン酸バナジウム系酸化物(LVP)、リン酸コバルトマンガン酸化物(LCMP)、及びこれらの混合物等を挙げることができる。なお、ここで言う三元系とは、例えば、ニッケル、マンガンもしくはアルミニウム、コバルトを含有することを指す。 The material constituting the positive electrode active material 13a is not particularly limited as long as it contains lithium and can take in and release lithium ions, but for example, lithium manganate (LMO), lithium cobalt oxide (LCO), and the like. Lithium nickel oxide (LNO), ternary (NMC or NCA), lithium iron phosphate (LFP), vanadium phosphate oxide (LVP), cobalt manganese phosphate oxide (LCMP), and mixtures thereof. Can be mentioned. The ternary system referred to here refers to containing, for example, nickel, manganese, aluminum, or cobalt.
 正極活物質13a間に入り込むリチウムイオン導電性高分子材料13bとしては、リチウムイオン導電性高分子材料11bに用いることができる材料と同様の材料を挙げることができる。なお、本実施形態において、正極活物質13a間に入り込むリチウムイオン導電性高分子材料13bと、酸化物固体電解質粒子11aの粒子間に入り込むリチウムイオン導電性高分子材料11bとが、同じ材料であっても、異なる材料であってもよい。 Examples of the lithium ion conductive polymer material 13b that penetrates between the positive electrode active materials 13a include materials similar to those that can be used for the lithium ion conductive polymer material 11b. In the present embodiment, the lithium ion conductive polymer material 13b that penetrates between the positive electrode active materials 13a and the lithium ion conductive polymer material 11b that penetrates between the particles of the oxide solid electrolyte particles 11a are the same material. However, they may be made of different materials.
 また、正極活物質層13のリチウムイオン導電性高分子材料13bには、アセチレンブラック等の導電助剤が分散されていてもよい。 Further, a conductive auxiliary agent such as acetylene black may be dispersed in the lithium ion conductive polymer material 13b of the positive electrode active material layer 13.
<正極側固体電解質分散高分子層>
 本実施形態では、正極活物質層13と酸化物固体電解質層11との間にリチウムイオン導電性高分子材料12b中に酸化物固体電解質粒子12aが分散されて成る固体電解質分散高分子層としての正極側固体電解質分散高分子層12が介在している。正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料12bとしては、酸化物固体電解質層11のリチウムイオン導電性高分子材料11bに用いることができる材料と同様の材料を挙げることができる。
<Solid electrolyte dispersion polymer layer on the positive electrode side>
In the present embodiment, the solid electrolyte-dispersed polymer layer is formed by dispersing the oxide solid electrolyte particles 12a in the lithium ion conductive polymer material 12b between the positive electrode active material layer 13 and the oxide solid electrolyte layer 11. The positive electrode side solid electrolyte-dispersed polymer layer 12 is interposed. Examples of the lithium ion conductive polymer material 12b constituting the positive electrode side solid electrolyte dispersed polymer layer 12 include materials similar to the materials that can be used for the lithium ion conductive polymer material 11b of the oxide solid electrolyte layer 11. be able to.
 また、正極側固体電解質分散高分子層12の酸化物固体電解質粒子12aを構成する酸化物固体電解質としては、酸化物固体電解質層11の酸化物固体電解質粒子11aに用いることができる酸化物固体電解質と同様の酸化物固体電解質を挙げることができる。なお、正極側固体電解質分散高分子層12の酸化物固体電解質粒子12aと酸化物固体電解質層11の酸化物固体電解質粒子11aとが、同じ酸化物固体電解質から成ることが接触抵抗低減の観点から好ましい。また、正極側固体電解質分散高分子層12の酸化物固体電解質粒子12aと酸化物固体電解質層11の酸化物固体電解質粒子11aとが、互いに異なる酸化物固体電解質から成ることとしてもよい。この場合、例えば、酸化物固体電解質層11の酸化物固体電解質粒子11aを構成する酸化物固体電解質には、LAGP、LLZOが用いられ、正極側固体電解質分散高分子層12の酸化物固体電解質粒子12aを構成する酸化物固体電解質には、LATPが用いられる。このような組み合わせであれば、酸化物固体電解質の還元耐性を向上することができる。 Further, as the oxide solid electrolyte constituting the oxide solid electrolyte particles 12a of the positive electrode side solid electrolyte dispersion polymer layer 12, the oxide solid electrolyte that can be used for the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 The same oxide solid electrolyte as above can be mentioned. From the viewpoint of reducing contact resistance, the oxide solid electrolyte particles 12a of the positive electrode side solid electrolyte dispersion polymer layer 12 and the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 are made of the same oxide solid electrolyte. preferable. Further, the oxide solid electrolyte particles 12a of the positive electrode side solid electrolyte dispersion polymer layer 12 and the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 may be made of different oxide solid electrolytes. In this case, for example, LAGP and LLZO are used as the oxide solid electrolyte constituting the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11, and the oxide solid electrolyte particles of the positive electrode side solid electrolyte dispersed polymer layer 12 are used. LATP is used as the oxide solid electrolyte constituting 12a. With such a combination, the reduction resistance of the oxide solid electrolyte can be improved.
 また、正極側固体電解質分散高分子層12の酸化物固体電解質粒子12aの粒径が、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒径と同じでもよい。この場合、酸化物固体電解質粒子12aの平均粒径は、例えば、0.1μm以上5μm以下とされる。ただし、正極側固体電解質分散高分子層12の酸化物固体電解質粒子12aの粒径が、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒径と異なってもよい。例えば、正極側固体電解質分散高分子層12の酸化物固体電解質粒子12aの粒径が、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒径よりも小さければ、正極側固体電解質分散高分子層12を薄くでき、全固体リチウム二次電池1の低抵抗化に貢献できるため好ましい。また、後述のように正極側固体電解質分散高分子層12を塗布で形成する際に、酸化物固体電解質層11の酸化物固体電解質粒子11a間に、酸化物固体電解質粒子12aをリチウムイオン導電性高分子材料12bと共に入り込ませ得る。但し、正極側固体電解質分散高分子層12の酸化物固体電解質粒子12aの粒径が、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒径よりも大きくてもよい。 Further, the particle size of the oxide solid electrolyte particles 12a of the positive electrode side solid electrolyte dispersion polymer layer 12 may be the same as the particle size of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11. In this case, the average particle size of the oxide solid electrolyte particles 12a is, for example, 0.1 μm or more and 5 μm or less. However, the particle size of the oxide solid electrolyte particles 12a of the positive electrode side solid electrolyte-dispersed polymer layer 12 may be different from the particle size of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11. For example, if the particle size of the oxide solid electrolyte particles 12a of the positive electrode side solid electrolyte dispersion polymer layer 12 is smaller than the particle size of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11, the positive electrode side solid electrolyte dispersion height is high. It is preferable because the molecular layer 12 can be made thin and the resistance of the all-solid-state lithium secondary battery 1 can be reduced. Further, when the positive electrode side solid electrolyte-dispersed polymer layer 12 is formed by coating as described later, the oxide solid electrolyte particles 12a are formed between the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 with lithium ion conductivity. It can be penetrated with the polymer material 12b. However, the particle size of the oxide solid electrolyte particles 12a of the positive electrode side solid electrolyte dispersion polymer layer 12 may be larger than the particle size of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11.
 なお、正極側固体電解質分散高分子層12の平均の厚みが酸化物固体電解質粒子12aの粒径よりも小さくてもよい。この場合、正極側固体電解質分散高分子層12は、酸化物固体電解質粒子12aが位置する部位で厚くなり、酸化物固体電解質粒子12aが位置しない部位で薄くなる。このため、酸化物固体電解質粒子12aが酸化物固体電解質層11の酸化物固体電解質粒子11aや正極活物質13aに接触し易くなる。 The average thickness of the positive electrode side solid electrolyte-dispersed polymer layer 12 may be smaller than the particle size of the oxide solid electrolyte particles 12a. In this case, the positive electrode side solid electrolyte-dispersed polymer layer 12 becomes thicker at the portion where the oxide solid electrolyte particles 12a are located, and becomes thinner at the portion where the oxide solid electrolyte particles 12a are not located. Therefore, the oxide solid electrolyte particles 12a are likely to come into contact with the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 and the positive electrode active material 13a.
 また、正極側固体電解質分散高分子層12では、酸化物固体電解質粒子12aの体積比がリチウムイオン導電性高分子材料12bの体積比よりも大きいことが好ましい。このようにすることで、正極側固体電解質分散高分子層12の抵抗をより小さくすることができる。 Further, in the positive electrode side solid electrolyte-dispersed polymer layer 12, it is preferable that the volume ratio of the oxide solid electrolyte particles 12a is larger than the volume ratio of the lithium ion conductive polymer material 12b. By doing so, the resistance of the positive electrode side solid electrolyte-dispersed polymer layer 12 can be further reduced.
 本実施形態では、酸化物固体電解質層11と正極側固体電解質分散高分子層12とが一体とされ、さらに正極活物質層13と正極側固体電解質分散高分子層12とが一体とされることで、酸化物固体電解質層11と正極活物質層13とが正極側固体電解質分散高分子層12を介して一体とされている。従って、酸化物固体電解質層11と正極活物質層13とを剥離する場合、セル構造の破壊が生じる。 In the present embodiment, the oxide solid electrolyte layer 11 and the positive electrode side solid electrolyte dispersed polymer layer 12 are integrated, and the positive electrode active material layer 13 and the positive electrode side solid electrolyte dispersed polymer layer 12 are integrated. The oxide solid electrolyte layer 11 and the positive electrode active material layer 13 are integrated with each other via the positive electrode side solid electrolyte dispersed polymer layer 12. Therefore, when the oxide solid electrolyte layer 11 and the positive electrode active material layer 13 are peeled off, the cell structure is destroyed.
 なお、正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料15bと酸化物固体電解質粒子11a間に入り込むリチウムイオン導電性高分子材料11bとが、互いに同じ材料であることが、正極側固体電解質分散高分子層12と酸化物固体電解質層11との一体化強度を高めることができる観点から好ましい。また、この場合、正極側固体電解質分散高分子層12と酸化物固体電解質粒子11a間に入り込むリチウムイオン導電性高分子材料11bとを塗布により同時に形成できる観点からも好ましい。但し、正極側固体電解質分散高分子層12のリチウムイオン導電性高分子材料12bと酸化物固体電解質粒子11a間に入り込んでいるリチウムイオン導電性高分子材料11bとが、互いに同じ材料であっても、リチウムイオン導電性高分子材料11bが酸化物固体電解質粒子11a間に入り込んだ状態の酸化物固体電解質層11の正極側の面に、正極側固体電解質分散高分子層12を設けてもよい。また、正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料と酸化物固体電解質粒子11a間に入り込むリチウムイオン導電性高分子材料11bとが、互いに異なる材料であってもよい。この場合、例えば、正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料として、PVDFが用いられ、酸化物固体電解質粒子11a間に入り込むリチウムイオン導電性高分子材料11bとして、PEOが用いられることが好ましい。このような組み合わせであれば、高電位側でPEOよりも分解されにくいPVDFが用いられることによりセル電圧を高電圧化することもできる。このため、全固体リチウム二次電池1の高電位化、高エネルギー化に貢献できる。 The lithium ion conductive polymer material 15b constituting the positive electrode side solid electrolyte dispersed polymer layer 12 and the lithium ion conductive polymer material 11b that penetrates between the oxide solid electrolyte particles 11a may be the same material. , The positive electrode side solid electrolyte dispersion polymer layer 12 and the oxide solid electrolyte layer 11 are preferable from the viewpoint of being able to increase the integrated strength. Further, in this case, it is also preferable from the viewpoint that the positive electrode side solid electrolyte-dispersed polymer layer 12 and the lithium ion conductive polymer material 11b that penetrates between the oxide solid electrolyte particles 11a can be formed at the same time by coating. However, even if the lithium ion conductive polymer material 12b of the positive electrode side solid electrolyte dispersed polymer layer 12 and the lithium ion conductive polymer material 11b that has entered between the oxide solid electrolyte particles 11a are the same material. , The positive electrode side solid electrolyte dispersion polymer layer 12 may be provided on the positive electrode side surface of the oxide solid electrolyte layer 11 in a state where the lithium ion conductive polymer material 11b is inserted between the oxide solid electrolyte particles 11a. Further, the lithium ion conductive polymer material constituting the positive electrode side solid electrolyte dispersed polymer layer 12 and the lithium ion conductive polymer material 11b that penetrates between the oxide solid electrolyte particles 11a may be different materials from each other. .. In this case, for example, PVDF is used as the lithium ion conductive polymer material constituting the positive electrode side solid electrolyte dispersed polymer layer 12, and the lithium ion conductive polymer material 11b that penetrates between the oxide solid electrolyte particles 11a is used. PEO is preferably used. With such a combination, the cell voltage can be increased by using PVDF, which is less likely to be decomposed than PEO on the high potential side. Therefore, it is possible to contribute to high potential and high energy of the all-solid-state lithium secondary battery 1.
 また、正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料と正極活物質13a間に入り込むリチウムイオン導電性高分子材料13bとが、互いに同じ材料であることが、正極側固体電解質分散高分子層12と正極活物質層13との一体化強度を高めることができる観点から好ましい。また、正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料と正極活物質13a間に入り込むリチウムイオン導電性高分子材料13bとが、互いに異なる材料であってもよい。この場合、例えば、正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料12bとして、PEOが用いられ、正極活物質13a間に入り込むリチウムイオン導電性高分子材料13bとして、PVDFが用いられることが好ましい。このような組み合わせであれば、高電位側でPEOよりも分解されにくいPVDFが用いることによりセル電圧を高電圧化することもできる。このため、全固体リチウム二次電池1の高電位化、高エネルギー化に貢献できる。 Further, the positive electrode side is that the lithium ion conductive polymer material constituting the positive electrode side solid electrolyte-dispersed polymer layer 12 and the lithium ion conductive polymer material 13b that penetrates between the positive electrode active material 13a are the same material as each other. It is preferable from the viewpoint that the integrated strength between the solid electrolyte-dispersed polymer layer 12 and the positive electrode active material layer 13 can be increased. Further, the lithium ion conductive polymer material constituting the positive electrode side solid electrolyte-dispersed polymer layer 12 and the lithium ion conductive polymer material 13b that penetrates between the positive electrode active material 13a may be different materials from each other. In this case, for example, PEO is used as the lithium ion conductive polymer material 12b constituting the positive electrode side solid electrolyte-dispersed polymer layer 12, and PVDF is used as the lithium ion conductive polymer material 13b that penetrates between the positive electrode active materials 13a. Is preferably used. With such a combination, the cell voltage can be increased by using PVDF, which is less likely to be decomposed than PEO on the high potential side. Therefore, it is possible to contribute to high potential and high energy of the all-solid-state lithium secondary battery 1.
<正極集電体層>
 正極集電体層14は、正極活物質層13の酸化物固体電解質層11側と反対側の面側に配置され、正極活物質層13と一体にされている。正極集電体層14は導電性かつ非イオン導電性の材料から成る。このような材料としては、金属やカーボンシートを挙げることができ、例えば、このような金属として、銅、アルミニウム、鉄ニッケル合金等を挙げることができる。
<Positive current collector layer>
The positive electrode current collector layer 14 is arranged on the surface side of the positive electrode active material layer 13 opposite to the oxide solid electrolyte layer 11 side, and is integrated with the positive electrode active material layer 13. The positive electrode current collector layer 14 is made of a conductive and non-ionic conductive material. Examples of such a material include a metal and a carbon sheet, and examples of such a metal include copper, aluminum, an iron-nickel alloy, and the like.
<負極活物質層>
 図3は、図1における負極活物質層16から酸化物固体電解質層11にかけての拡大図である。本実施形態の負極活物質層16は、リチウムイオン導電性高分子材料16bが負極活物質16a間に入り込んだ構成とされ、リチウムイオン導電性を有する。
<Negative electrode active material layer>
FIG. 3 is an enlarged view from the negative electrode active material layer 16 to the oxide solid electrolyte layer 11 in FIG. The negative electrode active material layer 16 of the present embodiment has a structure in which the lithium ion conductive polymer material 16b is inserted between the negative electrode active materials 16a and has lithium ion conductivity.
 負極活物質16aを構成する材料としては、リチウムイオンの取り込みと放出ができるものであれば、特に限定されないが、例えば、易黒鉛化カーボン、難黒鉛化カーボン、LTO、LMO、Si、Li、及びこれらの混合物等を挙げることができる。 The material constituting the negative electrode active material 16a is not particularly limited as long as it can take in and release lithium ions, and is, for example, easily graphitized carbon, non-graphitized carbon, LTO, LMO, Si, Li, and A mixture of these can be mentioned.
 負極活物質16a間に入り込むリチウムイオン導電性高分子材料16bとしては、リチウムイオン導電性高分子材料11bに用いることができる材料を挙げることができる。なお、本実施形態において、負極活物質16a間に入り込むリチウムイオン導電性高分子材料16bと、酸化物固体電解質粒子11aの粒子間に入り込むリチウムイオン導電性高分子材料11bとが、同じ材料であっても、異なる材料であってもよい。また、負極活物質16a間に入り込むリチウムイオン導電性高分子材料16bと、正極活物質13a間に入り込むリチウムイオン導電性高分子材料13bとが同じ材料であっても、異なる材料であってもよい。 Examples of the lithium ion conductive polymer material 16b that penetrates between the negative electrode active materials 16a include materials that can be used for the lithium ion conductive polymer material 11b. In the present embodiment, the lithium ion conductive polymer material 16b that penetrates between the negative electrode active materials 16a and the lithium ion conductive polymer material 11b that penetrates between the particles of the oxide solid electrolyte particles 11a are the same material. However, they may be made of different materials. Further, the lithium ion conductive polymer material 16b that enters between the negative electrode active materials 16a and the lithium ion conductive polymer material 13b that enters between the positive electrode active materials 13a may be the same material or different materials. ..
 また、負極活物質層16のリチウムイオン導電性高分子材料16bには、アセチレンブラック等の導電助剤が分散されていてもよい。 Further, a conductive auxiliary agent such as acetylene black may be dispersed in the lithium ion conductive polymer material 16b of the negative electrode active material layer 16.
<負極側固体電解質分散高分子層>
 本実施形態では、負極活物質層16と酸化物固体電解質層11との間にリチウムイオン導電性高分子材料15b中に酸化物固体電解質粒子15aが分散されて成る固体電解質分散高分子層としての負極側固体電解質分散高分子層15が介在している。負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料15bとしては、リチウムイオン導電性高分子材料11bに用いることができる材料を挙げることができる。
<Negative electrode side solid electrolyte dispersion polymer layer>
In the present embodiment, the solid electrolyte-dispersed polymer layer is formed by dispersing the oxide solid electrolyte particles 15a in the lithium ion conductive polymer material 15b between the negative electrode active material layer 16 and the oxide solid electrolyte layer 11. The negative electrode side solid electrolyte dispersion polymer layer 15 is interposed. Examples of the lithium ion conductive polymer material 15b constituting the negative electrode side solid electrolyte-dispersed polymer layer 15 include materials that can be used for the lithium ion conductive polymer material 11b.
 また、負極側固体電解質分散高分子層15の酸化物固体電解質粒子15aを構成する酸化物固体電解質としては、酸化物固体電解質層11の酸化物固体電解質粒子11aに用いることができる酸化物固体電解質と同様の酸化物固体電解質を挙げることができる。なお、負極側固体電解質分散高分子層15の酸化物固体電解質粒子15aと酸化物固体電解質層11の酸化物固体電解質粒子11aとが、同じ酸化物固体電解質から成ることが接触抵抗低減の観点から好ましい。また、負極側固体電解質分散高分子層15の酸化物固体電解質粒子15aと酸化物固体電解質層11の酸化物固体電解質粒子11aとが、互いに異なる酸化物固体電解質から成ることとしてもよい。この場合、例えば、酸化物固体電解質層11の酸化物固体電解質粒子11aを構成する酸化物固体電解質には、LATPが用いられ、負極側固体電解質分散高分子層15の酸化物固体電解質粒子15aを構成する酸化物固体電解質には、LAGP、LLZOが用いられる。このような組み合わせであれば、負極での還元耐性を向上することができる。 Further, as the oxide solid electrolyte constituting the oxide solid electrolyte particles 15a of the negative electrode side solid electrolyte dispersion polymer layer 15, the oxide solid electrolyte that can be used for the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 The same oxide solid electrolyte as above can be mentioned. From the viewpoint of reducing contact resistance, the oxide solid electrolyte particles 15a of the negative electrode side solid electrolyte dispersion polymer layer 15 and the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 are made of the same oxide solid electrolyte. preferable. Further, the oxide solid electrolyte particles 15a of the negative electrode side solid electrolyte dispersion polymer layer 15 and the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 may be made of different oxide solid electrolytes. In this case, for example, LATP is used as the oxide solid electrolyte constituting the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11, and the oxide solid electrolyte particles 15a of the negative electrode side solid electrolyte dispersion polymer layer 15 are used. LAGP and LLZO are used as the constituent oxide solid electrolytes. With such a combination, the reduction resistance at the negative electrode can be improved.
 また、負極側固体電解質分散高分子層15の酸化物固体電解質粒子15aの粒径が、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒径と同じでもよい。ただし、負極側固体電解質分散高分子層15の酸化物固体電解質粒子15aの粒径が、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒径と異なってもよい。例えば、負極側固体電解質分散高分子層15の酸化物固体電解質粒子15aの粒径が、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒径よりも小さければ、負極側固体電解質分散高分子層15を薄くでき、全固体リチウム二次電池1の低抵抗化に貢献できるため好ましい。また、後述のように負極側固体電解質分散高分子層15を塗布で形成する際に、酸化物固体電解質層11の酸化物固体電解質粒子11a間に、酸化物固体電解質粒子15aをリチウムイオン導電性高分子材料15bと共に入り込ませ得る。但し、負極側固体電解質分散高分子層15の酸化物固体電解質粒子15aの粒径が、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒径よりも大きくてもよい。 Further, the particle size of the oxide solid electrolyte particles 15a of the negative electrode side solid electrolyte dispersion polymer layer 15 may be the same as the particle size of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11. However, the particle size of the oxide solid electrolyte particles 15a of the negative electrode side solid electrolyte dispersion polymer layer 15 may be different from the particle size of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11. For example, if the particle size of the oxide solid electrolyte particles 15a of the negative electrode side solid electrolyte dispersion polymer layer 15 is smaller than the particle size of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11, the negative electrode side solid electrolyte dispersion height is high. It is preferable because the molecular layer 15 can be made thin and the resistance of the all-solid-state lithium secondary battery 1 can be reduced. Further, when the negative electrode side solid electrolyte-dispersed polymer layer 15 is formed by coating as described later, the oxide solid electrolyte particles 15a are formed between the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 with lithium ion conductivity. It can be incorporated with the polymer material 15b. However, the particle size of the oxide solid electrolyte particles 15a of the negative electrode side solid electrolyte dispersion polymer layer 15 may be larger than the particle size of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11.
 なお、負極側固体電解質分散高分子層15の平均の厚みが酸化物固体電解質粒子15aの粒径よりも小さくてもよい。この場合、負極側固体電解質分散高分子層15は、酸化物固体電解質粒子15aが位置する部位で厚くなり、酸化物固体電解質粒子15aが位置しない部位で薄くなる。このため、酸化物固体電解質粒子15aが酸化物固体電解質層11の酸化物固体電解質粒子11aや正極活物質13aに接触し易くなる。 The average thickness of the negative electrode side solid electrolyte-dispersed polymer layer 15 may be smaller than the particle size of the oxide solid electrolyte particles 15a. In this case, the negative electrode side solid electrolyte-dispersed polymer layer 15 becomes thicker at the portion where the oxide solid electrolyte particles 15a are located, and becomes thinner at the portion where the oxide solid electrolyte particles 15a are not located. Therefore, the oxide solid electrolyte particles 15a are likely to come into contact with the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 and the positive electrode active material 13a.
 また、負極側固体電解質分散高分子層15では、酸化物固体電解質粒子15aの体積比がリチウムイオン導電性高分子材料15bの体積比よりも大きいことが好ましい。このようにすることで、負極側固体電解質分散高分子層15の抵抗をより小さくすることができる。 Further, in the negative electrode side solid electrolyte-dispersed polymer layer 15, it is preferable that the volume ratio of the oxide solid electrolyte particles 15a is larger than the volume ratio of the lithium ion conductive polymer material 15b. By doing so, the resistance of the negative electrode side solid electrolyte-dispersed polymer layer 15 can be further reduced.
 本実施形態では、酸化物固体電解質層11と負極側固体電解質分散高分子層15とが一体とされ、負極活物質層16と負極側固体電解質分散高分子層15とが一体とされることで、酸化物固体電解質層11と負極活物質層16とが負極側固体電解質分散高分子層15を介して一体とされている。従って、酸化物固体電解質層11と負極活物質層16とを剥離する場合、破壊が生じる。 In the present embodiment, the oxide solid electrolyte layer 11 and the negative electrode side solid electrolyte dispersed polymer layer 15 are integrated, and the negative electrode active material layer 16 and the negative electrode side solid electrolyte dispersed polymer layer 15 are integrated. The oxide solid electrolyte layer 11 and the negative electrode active material layer 16 are integrated with each other via the negative electrode side solid electrolyte dispersed polymer layer 15. Therefore, when the oxide solid electrolyte layer 11 and the negative electrode active material layer 16 are peeled off, destruction occurs.
 なお、負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料15bと酸化物固体電解質粒子11a間に入り込むリチウムイオン導電性高分子材料11bとが、互いに同じ材料であることが、負極側固体電解質分散高分子層15と酸化物固体電解質層11との一体化強度を高めることができる観点から好ましい。また、この場合、負極側固体電解質分散高分子層15と酸化物固体電解質粒子11a間に入り込むリチウムイオン導電性高分子材料11bとを塗布により同時に形成できる観点からも好ましい。但し、負極側固体電解質分散高分子層15のリチウムイオン導電性高分子材料15bと酸化物固体電解質粒子11a間に入り込んでいるリチウムイオン導電性高分子材料11bとが、互いに同じ材料であっても、リチウムイオン導電性高分子材料11bが酸化物固体電解質粒子11a間に入り込んだ状態の酸化物固体電解質層11の負極側の面に、負極側固体電解質分散高分子層15を設けてもよい。また、負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料と酸化物固体電解質粒子11a間に入り込むリチウムイオン導電性高分子材料11bとが、互いに異なる材料であってもよい。この場合、例えば、負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料として、PVDF、SBR、アクリレート等を適宜用いることができ、酸化物固体電解質粒子11a間に入るリチウムイオン導電性高分子材料11bとしてPEOが用いられることが好ましい。 The lithium ion conductive polymer material 15b constituting the negative electrode side solid electrolyte dispersed polymer layer 15 and the lithium ion conductive polymer material 11b that penetrates between the oxide solid electrolyte particles 11a may be the same material. , The negative electrode side solid electrolyte dispersion polymer layer 15 and the oxide solid electrolyte layer 11 are preferable from the viewpoint of being able to increase the integrated strength. Further, in this case, it is also preferable from the viewpoint that the negative electrode side solid electrolyte-dispersed polymer layer 15 and the lithium ion conductive polymer material 11b that penetrates between the oxide solid electrolyte particles 11a can be formed at the same time by coating. However, even if the lithium ion conductive polymer material 15b of the negative electrode side solid electrolyte dispersed polymer layer 15 and the lithium ion conductive polymer material 11b that has entered between the oxide solid electrolyte particles 11a are the same material. , The negative electrode side solid electrolyte dispersion polymer layer 15 may be provided on the negative electrode side surface of the oxide solid electrolyte layer 11 in a state where the lithium ion conductive polymer material 11b is inserted between the oxide solid electrolyte particles 11a. Further, the lithium ion conductive polymer material constituting the negative electrode side solid electrolyte dispersed polymer layer 15 and the lithium ion conductive polymer material 11b that penetrates between the oxide solid electrolyte particles 11a may be different materials from each other. .. In this case, for example, PVDF, SBR, acrylate and the like can be appropriately used as the lithium ion conductive polymer material constituting the negative electrode side solid electrolyte dispersion polymer layer 15, and the lithium ions entering between the oxide solid electrolyte particles 11a. It is preferable that PEO is used as the conductive polymer material 11b.
 また、負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料と負極活物質16a間に入り込むリチウムイオン導電性高分子材料16bとが、互いに同じ材料であることが、負極側固体電解質分散高分子層15と負極活物質層16との一体化強度を高めることができる観点から好ましい。また、負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料と負極活物質16a間に入り込むリチウムイオン導電性高分子材料16bとが、互いに異なる材料であってもよい。この場合、例えば、負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料として、PVDFが用いられ、負極活物質16a間に入り込むリチウムイオン導電性高分子材料13bとして、PEOとPVDFの混合物が用いられることが好ましい。このような組み合わせであれば、負極側固体電解質分散高分子層15と負極活物質層16との密着度を向上させ得る。 Further, the negative electrode side is that the lithium ion conductive polymer material constituting the negative electrode side solid electrolyte-dispersed polymer layer 15 and the lithium ion conductive polymer material 16b that penetrates between the negative electrode active material 16a are the same material as each other. It is preferable from the viewpoint that the integrated strength between the solid electrolyte-dispersed polymer layer 15 and the negative electrode active material layer 16 can be increased. Further, the lithium ion conductive polymer material constituting the negative electrode side solid electrolyte-dispersed polymer layer 15 and the lithium ion conductive polymer material 16b that penetrates between the negative electrode active material 16a may be different materials from each other. In this case, for example, PVDF is used as the lithium ion conductive polymer material constituting the negative electrode side solid electrolyte-dispersed polymer layer 15, and PEO and PEO are used as the lithium ion conductive polymer material 13b that penetrates between the negative electrode active materials 16a. A mixture of PVDFs is preferably used. With such a combination, the degree of adhesion between the negative electrode side solid electrolyte dispersion polymer layer 15 and the negative electrode active material layer 16 can be improved.
<負極集電体層>
 負極集電体層17は、負極活物質層16の酸化物固体電解質層11側と反対側の面側に配置され、負極活物質層16と一体にされている。負極集電体層17の材料としては、例えば、正極集電体層14と同様の材料を挙げることができる。
<Negative electrode current collector layer>
The negative electrode current collector layer 17 is arranged on the surface side of the negative electrode active material layer 16 opposite to the oxide solid electrolyte layer 11 side, and is integrated with the negative electrode active material layer 16. Examples of the material of the negative electrode current collector layer 17 include the same materials as those of the positive electrode current collector layer 14.
<包材>
 包材10は、正極集電体層14、正極活物質層13、正極側固体電解質分散高分子層12、酸化物固体電解質層11、負極側固体電解質分散高分子層15、負極活物質層16、及び負極集電体層17を収容して、封止する部材である。なお、正極集電体層14、負極集電体層17の一部は、電極として包材10の外部に導出される。
<Packaging material>
The packaging material 10 includes a positive electrode current collector layer 14, a positive electrode active material layer 13, a positive electrode side solid electrolyte dispersed polymer layer 12, an oxide solid electrolyte layer 11, a negative electrode side solid electrolyte dispersed polymer layer 15, and a negative electrode active material layer 16. , And a member that accommodates and seals the negative electrode current collector layer 17. A part of the positive electrode current collector layer 14 and the negative electrode current collector layer 17 is led out as electrodes to the outside of the packaging material 10.
 包材10の構成は、外部の酸素や水分等が包材10で包囲された領域内に侵入することが抑制され、当該領域と導通しなければ、特に限定されないが、例えば、アルミニウム等の金属箔が樹脂層でラミネートされたものを用いることができる。 The structure of the packaging material 10 is not particularly limited as long as external oxygen, moisture and the like are suppressed from entering the region surrounded by the packaging material 10 and do not conduct with the region, but for example, a metal such as aluminum. A foil laminated with a resin layer can be used.
 以上、本実施形態の全固体リチウム二次電池1は、酸化物固体電解質が用いられ、酸化物は硫化物と異なり水と反応しても硫化水素のような取り扱いに注意を要するガス発生しづらいため、取り扱いが容易である。また、本実施形態の全固体リチウム二次電池1では、正極活物質層13と、負極活物質層16と、正極側固体電解質分散高分子層12と、負極側固体電解質分散高分子層15と、酸化物固体電解質層11とが剥離できないくらい一体化されている。このように一体化されたそれぞれの層と層との間における抵抗は、一体化されておらず単に隣接して配置された上記層と層との間における抵抗よりも低減される。 As described above, the all-solid-state lithium secondary battery 1 of the present embodiment uses an oxide solid electrolyte, and unlike sulfide, it is difficult to generate a gas such as hydrogen sulfide that requires careful handling even if the oxide reacts with water. Therefore, it is easy to handle. Further, in the all-solid-state lithium secondary battery 1 of the present embodiment, the positive electrode active material layer 13, the negative electrode active material layer 16, the positive electrode side solid electrolyte dispersed polymer layer 12, and the negative electrode side solid electrolyte dispersed polymer layer 15 , The oxide solid electrolyte layer 11 is integrated so as not to be peeled off. The resistance between each of the layers thus integrated is less than the resistance between the layers that are not integrated and are simply arranged adjacent to each other.
 また、本実施形態の全固体リチウム二次電池1では、正極集電体層14と酸化物固体電解質層11との間に介在する正極側固体電解質分散高分子層12が、リチウムイオン導電性高分子材料12b中に酸化物固体電解質粒子12aが分散されて成る。また、本実施形態の全固体リチウム二次電池1では、負極活物質層16と酸化物固体電解質層11との間に介在する負極側固体電解質分散高分子層15が、リチウムイオン導電性高分子材料15b中に酸化物固体電解質粒子15aが分散されて成る。一般に酸化物固体電解質粒子はリチウムイオン導電性高分子材料よりもリチウムイオン伝導度が高いため、正極側固体電解質分散高分子層12、負極側固体電解質分散高分子層15のイオン伝導度は、リチウムイオン導電性高分子材料のみから成る層よりも高い。従って、本実施形態の正極側固体電解質分散高分子層12、負極側固体電解質分散高分子層15は、正極活物質層13と酸化物固体電解質層11との間、及び、負極活物質層16と酸化物固体電解質層11との間にリチウムイオン導電性高分子材料のみから成る層が配置される場合よりも厚く形成され得る。このため、正極活物質層13及び負極活物質層16と酸化物固体電解質層11との間の隙間を埋めることができなくなることで内部抵抗が高くなることを抑制することができる。 Further, in the all-solid-state lithium secondary battery 1 of the present embodiment, the positive electrode-side solid electrolyte-dispersed polymer layer 12 interposed between the positive electrode current collector layer 14 and the oxide solid electrolyte layer 11 has high lithium ion conductivity. The oxide solid electrolyte particles 12a are dispersed in the molecular material 12b. Further, in the all-solid-state lithium secondary battery 1 of the present embodiment, the negative electrode side solid electrolyte-dispersed polymer layer 15 interposed between the negative electrode active material layer 16 and the oxide solid electrolyte layer 11 is a lithium ion conductive polymer. The oxide solid electrolyte particles 15a are dispersed in the material 15b. Generally, the oxide solid electrolyte particles have higher lithium ion conductivity than the lithium ion conductive polymer material, so that the ion conductivity of the positive electrode side solid electrolyte dispersed polymer layer 12 and the negative electrode side solid electrolyte dispersed polymer layer 15 is lithium. Higher than a layer consisting only of ionic conductive polymer material. Therefore, the positive electrode side solid electrolyte-dispersed polymer layer 12 and the negative electrode side solid electrolyte-dispersed polymer layer 15 of the present embodiment are between the positive electrode active material layer 13 and the oxide solid electrolyte layer 11 and the negative electrode active material layer 16. It can be formed thicker than the case where a layer made of only a lithium ion conductive polymer material is arranged between the oxide solid electrolyte layer 11 and the oxide solid electrolyte layer 11. Therefore, it is possible to suppress an increase in internal resistance due to the inability to fill the gap between the positive electrode active material layer 13 and the negative electrode active material layer 16 and the oxide solid electrolyte layer 11.
 以上のように、本実施形態の全固体リチウム二次電池1によれば、内部抵抗が低減され、大電流化を達成することができる。 As described above, according to the all-solid-state lithium secondary battery 1 of the present embodiment, the internal resistance can be reduced and a large current can be achieved.
 次に本実施形態の全固体リチウム二次電池1の製造方法について説明する。 Next, a method for manufacturing the all-solid-state lithium secondary battery 1 of the present embodiment will be described.
 図4は、実施形態に係る全固体リチウム二次電池1の製造方法のフローチャートである。図4に示すように、本実施形態の全固体リチウム二次電池1の製造方法は、準備工程P1と、配置工程P2と、一体化工程P3と、封止工程P4と、を備える。 FIG. 4 is a flowchart of a method for manufacturing the all-solid-state lithium secondary battery 1 according to the embodiment. As shown in FIG. 4, the method for manufacturing the all-solid-state lithium secondary battery 1 of the present embodiment includes a preparation step P1, an arrangement step P2, an integration step P3, and a sealing step P4.
<準備工程P1>
 本工程は、酸化物固体電解質層11と、正極活物質層13と、正極集電体層14と、負極活物質層16と、負極集電体層17と、を主に準備する工程である。図5は、準備工程の様子を示す図である。
<Preparation process P1>
This step is a step of mainly preparing the oxide solid electrolyte layer 11, the positive electrode active material layer 13, the positive electrode current collector layer 14, the negative electrode active material layer 16, and the negative electrode current collector layer 17. .. FIG. 5 is a diagram showing a state of the preparation process.
(酸化物固体電解質層の準備)
 酸化物固体電解質層11の準備では、まず、酸化物固体電解質粒子11aがバインダー中に分散されているグリーンシートを準備し、その後、焼成することで、酸化物固体電解質粒子11a同士が一体化された酸化物固体電解質層11となるポーラス状のシート状部材が得られる。或いは、酸化物固体電解質粒子11aが型に入れられてシート状に成型さえた状態で所定の圧力が加えられ焼成されて、酸化物固体電解質層11となるポーラス状のシート状部材を得てもよい。また或いは、酸化物固体電解質粒子11aがバインダー中に分散された後、シート状に成型されて当該バインダーが固められてもよい。なお、当該バインダーがリチウムイオン導電性高分子材料11bから成ってもよい。或いは、当該バインダーがリチウムイオン導電性高分子材料11bから成らなくてもよいが、本実施形態では、酸化物固体電解質粒子11a間にリチウムイオン導電性高分子材料11bが入り込んだ構成であるため、この場合、バインダーの量は酸化物固体電解質粒子11a間に空隙ができる程度とされる。こうして、酸化物固体電解質粒子11aを含むシート状部材が得られる。
(Preparation of oxide solid electrolyte layer)
In the preparation of the oxide solid electrolyte layer 11, first, a green sheet in which the oxide solid electrolyte particles 11a are dispersed in the binder is prepared, and then the oxide solid electrolyte particles 11a are integrated with each other by firing. A porous sheet-like member to be the oxide solid electrolyte layer 11 can be obtained. Alternatively, even if the oxide solid electrolyte particles 11a are placed in a mold and molded into a sheet shape, a predetermined pressure is applied and fired to obtain a porous sheet-like member to be the oxide solid electrolyte layer 11. Good. Alternatively, the oxide solid electrolyte particles 11a may be dispersed in the binder and then molded into a sheet to harden the binder. The binder may be made of the lithium ion conductive polymer material 11b. Alternatively, the binder does not have to be made of the lithium ion conductive polymer material 11b, but in the present embodiment, the lithium ion conductive polymer material 11b is inserted between the oxide solid electrolyte particles 11a. In this case, the amount of the binder is such that voids are formed between the oxide solid electrolyte particles 11a. In this way, a sheet-like member containing the oxide solid electrolyte particles 11a is obtained.
 次に、酸化物固体電解質粒子11aを含むシート状部材の両面にリチウムイオン導電性高分子材料中に酸化物固体電解質粒子が分散された分散液を塗布して固化させる。このとき酸化物固体電解質粒子11a間に塗布したリチウムイオン導電性高分子材料が入り込み、酸化物固体電解質粒子11a間に配置されたリチウムイオン導電性高分子材料11bとなる。こうして、図5に示す酸化物固体電解質粒子11a間にリチウムイオン導電性高分子材料11bが入り込んだ酸化物固体電解質層11が得られる。なお、この際、分散液中の酸化物固体電解質粒子が酸化物固体電解質粒子11a間に入り込むことが低抵抗化の観点からより好ましい。この場合、分散液中の酸化物固体電解質粒子の粒径がシート状部材の酸化物固体電解質粒子11aの粒径よりも小さければ、分散液中の酸化物固体電解質粒子が酸化物固体電解質粒子11a間に入り込みやすいため好ましい。なお、上記のように酸化物固体電解質粒子11aがリチウムイオン導電性高分子材料11bから成るバインダー中に分散された後、シート状に成型されて当該バインダーが固められることで、上記のシート状部材とされる場合には、上記塗布前に酸化物固体電解質粒子11a間にリチウムイオン導電性高分子材料11bが入り込んでいるため、当該塗布により酸化物固体電解質粒子11a間に塗布したリチウムイオン導電性高分子材料が入り込まなくてもよい。 Next, a dispersion liquid in which the oxide solid electrolyte particles are dispersed in the lithium ion conductive polymer material is applied to both surfaces of the sheet-like member containing the oxide solid electrolyte particles 11a and solidified. At this time, the lithium ion conductive polymer material coated between the oxide solid electrolyte particles 11a enters, and becomes the lithium ion conductive polymer material 11b arranged between the oxide solid electrolyte particles 11a. In this way, the oxide solid electrolyte layer 11 in which the lithium ion conductive polymer material 11b is inserted between the oxide solid electrolyte particles 11a shown in FIG. 5 is obtained. At this time, it is more preferable that the oxide solid electrolyte particles in the dispersion liquid enter between the oxide solid electrolyte particles 11a from the viewpoint of lowering the resistance. In this case, if the particle size of the oxide solid electrolyte particles in the dispersion liquid is smaller than the particle size of the oxide solid electrolyte particles 11a of the sheet-like member, the oxide solid electrolyte particles in the dispersion liquid are the oxide solid electrolyte particles 11a. It is preferable because it easily gets in between. As described above, the oxide solid electrolyte particles 11a are dispersed in the binder made of the lithium ion conductive polymer material 11b, and then molded into a sheet to harden the binder, whereby the sheet-like member is described. In this case, since the lithium ion conductive polymer material 11b has entered between the oxide solid electrolyte particles 11a before the coating, the lithium ion conductive polymer material 11b coated between the oxide solid electrolyte particles 11a by the coating. The polymer material does not have to enter.
 また、本実施形態では、酸化物固体電解質粒子11aから成るシート状部材の両面にリチウムイオン導電性高分子材料を塗布する際に、シート状部材の両面のそれぞれの上にリチウムイオン導電性高分子材料が層となる程度リチウムイオン導電性高分子材料を塗布する。その結果、酸化物固体電解質層11の一方の面上のリチウムイオン導電性高分子材料が固化して図5に示す正極側固体電解質分散高分子層12となり、酸化物固体電解質層11の他方の面上のリチウムイオン導電性高分子材料が固化して図5に示す負極側固体電解質分散高分子層15となる。 Further, in the present embodiment, when the lithium ion conductive polymer material is applied to both sides of the sheet-like member made of the oxide solid electrolyte particles 11a, the lithium ion conductive polymer is applied on both sides of the sheet-like member. Apply a lithium-ion conductive polymer material to the extent that the material becomes a layer. As a result, the lithium ion conductive polymer material on one surface of the oxide solid electrolyte layer 11 solidifies to become the positive electrode side solid electrolyte dispersed polymer layer 12 shown in FIG. 5, and the other of the oxide solid electrolyte layer 11 The lithium ion conductive polymer material on the surface solidifies to form the negative electrode side solid electrolyte-dispersed polymer layer 15 shown in FIG.
(正極活物質層、正極集電体の準備)
 正極活物質層、正極集電体の準備では、正極活物質13aと、必要に応じた導電助剤とを、リチウムイオン導電性高分子材料13b中に分散させて、正極集電体層14上に塗布して乾燥させる。こうして、正極活物質層13が正極集電体層14上に設けられた状態となる。
(Preparation of positive electrode active material layer and positive electrode current collector)
In the preparation of the positive electrode active material layer and the positive electrode current collector, the positive electrode active material 13a and, if necessary, the conductive auxiliary agent are dispersed in the lithium ion conductive polymer material 13b, and the positive electrode current collector layer 14 is topped. Apply to and dry. In this way, the positive electrode active material layer 13 is provided on the positive electrode current collector layer 14.
(負極活物質層、負極集電体の準備)
 負極活物質層、負極集電体の準備では、負極活物質16aと、必要に応じた導電助剤とを、リチウムイオン導電性高分子材料16b中に分散させて、負極集電体層17上に塗布して乾燥させる。こうして、負極活物質層16が負極集電体層17上に設けられた状態となる。
(Preparation of negative electrode active material layer and negative electrode current collector)
In the preparation of the negative electrode active material layer and the negative electrode current collector, the negative electrode active material 16a and, if necessary, a conductive auxiliary agent are dispersed in the lithium ion conductive polymer material 16b, and the negative electrode current collector layer 17 is topped. Apply to and dry. In this way, the negative electrode active material layer 16 is provided on the negative electrode current collector layer 17.
<配置工程P2>
 図6は、本工程の様子を示す図である。図6に示すように、準備工程P1の後、酸化物固体電解質層11の一方の面側に正極活物質層13及び正極集電体層14の積層体を正極活物質層13が酸化物固体電解質層11側を向くように配置する。ただし、上記のように酸化物固体電解質層11の一方の面上には正極側固体電解質分散高分子層12が位置するため、正極活物質層13は、正極側固体電解質分散高分子層12上に配置される。
<Placement process P2>
FIG. 6 is a diagram showing a state of this process. As shown in FIG. 6, after the preparation step P1, the positive electrode active material layer 13 and the positive electrode current collector layer 14 are laminated on one surface side of the oxide solid electrolyte layer 11, and the positive electrode active material layer 13 is an oxide solid. The electrolyte layer 11 is arranged so as to face the side. However, since the positive electrode side solid electrolyte dispersion polymer layer 12 is located on one surface of the oxide solid electrolyte layer 11 as described above, the positive electrode active material layer 13 is on the positive electrode side solid electrolyte dispersion polymer layer 12. Is placed in.
 また、酸化物固体電解質層11の他方の面側に負極活物質層16及び負極集電体層17の積層体を負極活物質層16が酸化物固体電解質層11側を向くように配置する。ただし、上記のように酸化物固体電解質層11の他方の面上には負極側固体電解質分散高分子層15が位置するため、負極活物質層16は、負極側固体電解質分散高分子層15上に配置される。 Further, a laminate of the negative electrode active material layer 16 and the negative electrode current collector layer 17 is arranged on the other surface side of the oxide solid electrolyte layer 11 so that the negative electrode active material layer 16 faces the oxide solid electrolyte layer 11 side. However, since the negative electrode side solid electrolyte dispersion polymer layer 15 is located on the other surface of the oxide solid electrolyte layer 11 as described above, the negative electrode active material layer 16 is on the negative electrode side solid electrolyte dispersion polymer layer 15. Is placed in.
 こうして、図6に示すように、酸化物固体電解質層11、正極側固体電解質分散高分子層12、正極活物質層13、正極集電体層14、負極側固体電解質分散高分子層15、負極活物質層16、及び負極集電体層17が積層された電池素体1bを得る。 Thus, as shown in FIG. 6, the oxide solid electrolyte layer 11, the positive electrode side solid electrolyte dispersed polymer layer 12, the positive electrode active material layer 13, the positive electrode current collector layer 14, the negative electrode side solid electrolyte dispersed polymer layer 15, and the negative electrode A battery element 1b in which the active material layer 16 and the negative electrode current collector layer 17 are laminated is obtained.
<一体化工程P3>
 配置工程P2の後、積層された酸化物固体電解質層11、正極側固体電解質分散高分子層12、正極活物質層13、正極集電体層14、負極側固体電解質分散高分子層15、負極活物質層16、及び負極集電体層17を一体化する。既に、酸化物固体電解質層11と正極側固体電解質分散高分子層12と負極側固体電解質分散高分子層15とが一体化しており、正極活物質層13と正極集電体層14とが一体化しており、負極活物質層16と負極集電体層17とが一体化している。従って、本工程では、正極側固体電解質分散高分子層12と正極活物質層13とを一体化し、負極側固体電解質分散高分子層15と負極活物質層16とを一体化する。
<Integration process P3>
After the arrangement step P2, the laminated oxide solid electrolyte layer 11, the positive electrode side solid electrolyte dispersed polymer layer 12, the positive electrode active material layer 13, the positive electrode current collector layer 14, the negative electrode side solid electrolyte dispersed polymer layer 15, and the negative electrode The active material layer 16 and the negative electrode current collector layer 17 are integrated. The oxide solid electrolyte layer 11, the positive electrode side solid electrolyte dispersion polymer layer 12, and the negative electrode side solid electrolyte dispersion polymer layer 15 are already integrated, and the positive electrode active material layer 13 and the positive electrode current collector layer 14 are integrated. The negative electrode active material layer 16 and the negative electrode current collector layer 17 are integrated. Therefore, in this step, the positive electrode side solid electrolyte-dispersed polymer layer 12 and the positive electrode active material layer 13 are integrated, and the negative electrode side solid electrolyte-dispersed polymer layer 15 and the negative electrode active material layer 16 are integrated.
 図7は、本工程を示す図である。図7に示すように本実施形態では、熱プレスにより一体化を行う。具体的には、加熱された一対の熱プレス型21,22で電池素体1bを挟み込む。そして、それぞれの熱プレス型21,22が加熱された状態でプレスする。このとき、熱プレス型21,22の温度は、正極側固体電解質分散高分子層12及び負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料が軟化する温度より高い温度であることが好ましい。例えば、このリチウムイオン導電性高分子材料がPEOであれば、軟化する温度は概ね100℃であるため、熱プレス型21,22の温度は、この温度より高い温度とされることが好ましい。また、例えば、上記のようにこのリチウムイオン導電性高分子材料がPEOである場合、温度を130℃以下とすることが、流動性が高くなることでリチウムイオン導電性高分子材料が流出することを抑制する観点から好ましい。また、例えば、上記のようにこのリチウムイオン導電性高分子材料がPEOである場合、熱プレス型21,22の温度110℃から120℃の間であることがより好ましい。また、電池素体1bを押圧する圧力は、例えば、1MPa以上50MPa以下であることが、それぞれの層を強固に一体化しつつ、リチウムイオン導電性高分子材料の流出を抑制できる観点から好ましい。 FIG. 7 is a diagram showing this process. As shown in FIG. 7, in the present embodiment, integration is performed by a hot press. Specifically, the battery element 1b is sandwiched between a pair of heated heat press molds 21 and 22. Then, each of the heat press molds 21 and 22 is pressed in a heated state. At this time, the temperature of the hot press molds 21 and 22 is higher than the temperature at which the lithium ion conductive polymer material constituting the positive electrode side solid electrolyte-dispersed polymer layer 12 and the negative electrode side solid electrolyte-dispersed polymer layer 15 softens. It is preferable to have. For example, if the lithium ion conductive polymer material is PEO, the temperature at which it softens is approximately 100 ° C., so that the temperature of the heat press molds 21 and 22 is preferably higher than this temperature. Further, for example, when the lithium ion conductive polymer material is PEO as described above, setting the temperature to 130 ° C. or lower causes the lithium ion conductive polymer material to flow out due to the high fluidity. It is preferable from the viewpoint of suppressing. Further, for example, when the lithium ion conductive polymer material is PEO as described above, the temperature of the hot press molds 21 and 22 is more preferably between 110 ° C. and 120 ° C. Further, the pressure for pressing the battery element 1b is, for example, preferably 1 MPa or more and 50 MPa or less from the viewpoint of being able to suppress the outflow of the lithium ion conductive polymer material while firmly integrating the respective layers.
 また、本工程において、正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料の一部が正極活物質層13中に入り込んでも良く、負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料の一部が負極活物質層16中に入り込んでもよい。 Further, in this step, a part of the lithium ion conductive polymer material constituting the positive electrode side solid electrolyte dispersed polymer layer 12 may enter the positive electrode active material layer 13, and the negative electrode side solid electrolyte dispersed polymer layer 15 may be formed. A part of the constituent lithium ion conductive polymer material may enter the negative electrode active material layer 16.
 こうして、正極側固体電解質分散高分子層12と正極活物質層13とが一体化され、負極側固体電解質分散高分子層15と負極活物質層16とが一体化され、図1に示す、包材10内の電池素体1bを得る。 In this way, the positive electrode side solid electrolyte-dispersed polymer layer 12 and the positive electrode active material layer 13 are integrated, and the negative electrode side solid electrolyte-dispersed polymer layer 15 and the negative electrode active material layer 16 are integrated. The battery element 1b in the material 10 is obtained.
<封止工程P4>
 次に、一体化された電池素体1bを包材10内に配置し、包材10を封止する。封止には熱融着等が用いられることが好ましい。
<Seal step P4>
Next, the integrated battery body 1b is placed in the packaging material 10 and the packaging material 10 is sealed. It is preferable that heat fusion or the like is used for sealing.
 こうして、図1に示す全固体リチウム二次電池1を得る。 In this way, the all-solid-state lithium secondary battery 1 shown in FIG. 1 is obtained.
 以上説明したように、本実施形態の全固体リチウム二次電池1の製造方法によれば、正極活物質層13及び負極活物質層16と酸化物固体電解質層11とが一体とされる。従って、取り扱いが容易な酸化物固体電解質が用いられ、正極活物質層13と酸化物固体電解質層11との間、及び、負極活物質層16と酸化物固体電解質層11との間における抵抗が低減され、大電流化を達成し得る全固体リチウム二次電池1を製造することができる。 As described above, according to the manufacturing method of the all-solid-state lithium secondary battery 1 of the present embodiment, the positive electrode active material layer 13, the negative electrode active material layer 16, and the oxide solid electrolyte layer 11 are integrated. Therefore, an oxide solid electrolyte that is easy to handle is used, and resistance between the positive electrode active material layer 13 and the oxide solid electrolyte layer 11 and between the negative electrode active material layer 16 and the oxide solid electrolyte layer 11 is increased. It is possible to manufacture the all-solid-state lithium secondary battery 1 which can reduce the current and achieve a large current.
 また、本実施形態では、一体化工程P3が熱圧着により行われる。従って、例えば、超音波が用いられて、一体化工程P3が行われる場合よりも、容易に一体化工程P3を行うことができる。 Further, in the present embodiment, the integration step P3 is performed by thermocompression bonding. Therefore, for example, the integration step P3 can be performed more easily than when the integration step P3 is performed by using ultrasonic waves.
 以上、本発明について、実施形態を例に説明したが、本発明はこれらに限定されるものではない。 Although the present invention has been described above by taking embodiments as examples, the present invention is not limited thereto.
 例えば、上記実施形態では、酸化物固体電解質層11において、酸化物固体電解質粒子11aの粒子間の少なくとも一部にリチウムイオン導電性高分子材料11bが入り込んだ構成とされた。しかし、本発明では、酸化物固体電解質層11がリチウムイオン導電性を有する限りにおいて、酸化物固体電解質層11はリチウムイオン導電性高分子材料11bを有していなくてもよい。ただし、酸化物固体電解質層11がリチウムイオン導電性を良好に保つ観点から、酸化物固体電解質粒子11aの粒子間の少なくとも一部にリチウムイオン導電性高分子材料11bが入り込むことが好ましい。 For example, in the above embodiment, the oxide solid electrolyte layer 11 is configured such that the lithium ion conductive polymer material 11b is inserted into at least a part between the particles of the oxide solid electrolyte particles 11a. However, in the present invention, as long as the oxide solid electrolyte layer 11 has lithium ion conductivity, the oxide solid electrolyte layer 11 does not have to have the lithium ion conductive polymer material 11b. However, from the viewpoint that the oxide solid electrolyte layer 11 maintains good lithium ion conductivity, it is preferable that the lithium ion conductive polymer material 11b is inserted into at least a part between the particles of the oxide solid electrolyte particles 11a.
 また、正極側固体電解質分散高分子層12を構成するリチウムイオン導電性高分子材料12bや負極側固体電解質分散高分子層15を構成するリチウムイオン導電性高分子材料15bと酸化物固体電解質粒子11aの粒子間に入り込むリチウムイオン導電性高分子材料11bとが異なる材料であってもよい。この場合、準備工程P1において、酸化物固体電解質粒子11aの粒子間に入り込むリチウムイオン導電性高分子材料11bを塗布する際に、当該リチウムイオン導電性高分子材料11bが酸化物固体電解質粒子11aのシート部材上に層を形成しないように塗布して酸化物固体電解質層11を得る。そして、得られた酸化物固体電解質層11上に正極側固体電解質分散高分子層12や負極側固体電解質分散高分子層15となるリチウムイオン導電性高分子材料を塗布してもよい。 Further, the lithium ion conductive polymer material 12b constituting the positive electrode side solid electrolyte dispersed polymer layer 12, the lithium ion conductive polymer material 15b constituting the negative electrode side solid electrolyte dispersed polymer layer 15, and the oxide solid electrolyte particles 11a. The material may be different from the lithium ion conductive polymer material 11b that penetrates between the particles of. In this case, in the preparation step P1, when the lithium ion conductive polymer material 11b that penetrates between the particles of the oxide solid electrolyte particles 11a is applied, the lithium ion conductive polymer material 11b is the oxide solid electrolyte particles 11a. The oxide solid electrolyte layer 11 is obtained by applying the coating so as not to form a layer on the sheet member. Then, a lithium ion conductive polymer material to be the positive electrode side solid electrolyte dispersion polymer layer 12 and the negative electrode side solid electrolyte dispersion polymer layer 15 may be coated on the obtained oxide solid electrolyte layer 11.
 また、正極活物質層13の正極活物質13a間にリチウムイオン導電性高分子材料13bが入り込んでいなくてもよく、負極活物質層16の負極活物質16a間にリチウムイオン導電性高分子材料16bが入り込んでいなくてもよい。 Further, the lithium ion conductive polymer material 13b does not have to enter between the positive electrode active material 13a of the positive electrode active material layer 13, and the lithium ion conductive polymer material between the negative electrode active material 16a of the negative electrode active material layer 16. 16b does not have to enter.
 また、上記実施形態では、一体化工程P3を熱圧着により行ったが、一体化工程P3は、超音波融着等の熱圧着以外の方法で行われてもよい。 Further, in the above embodiment, the integration step P3 is performed by thermocompression bonding, but the integration step P3 may be performed by a method other than thermocompression bonding such as ultrasonic fusion.
 次に、酸化物固体電解質層11の酸化物固体電解質粒子11aの粒子間に配置される高分子がリチウムイオン導電性を有する高分子であり、当該高分子にリチウム塩が分散される場合におけるリチウム塩の量について調べた。 Next, the polymer arranged between the particles of the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11 is a polymer having lithium ion conductivity, and lithium in the case where the lithium salt is dispersed in the polymer. The amount of salt was investigated.
(実施例1)
 電池素体1bを作成するため、酸化物固体電解質層11の両面に固体電解質分散高分子層が設けられた積層体を準備した。この準備では、まず、酸化物固体電解質粒子11aが結合したポーラス状の酸化物固体電解質粒子結合層を作成した。この酸化物固体電解質粒子は、LLZOから成る。
(Example 1)
In order to prepare the battery body 1b, a laminate in which solid electrolyte dispersion polymer layers were provided on both sides of the oxide solid electrolyte layer 11 was prepared. In this preparation, first, a porous oxide solid electrolyte particle bonding layer to which the oxide solid electrolyte particles 11a were bonded was prepared. The oxide solid electrolyte particles consist of LLZO.
 次に、酸化物固体電解質粒子結合層の両面に、酸化物固体電解質粒子及びリチウム塩が分散されたリチウムイオン導電性高分子材料から成る塗布液を塗布した。リチウムイオン導電性高分子材料としてPEOを用い、リチウム塩としてLiFSIを用い、酸化物固体電解質粒子としてLLZOから成る粒子を用いた。また、PEOとLiFSIとの重量比を1:1とした。この塗布により、少なくともリチウムイオン導電性高分子材料及びリチウム塩を酸化物固体電解質粒子結合層における酸化物固体電解質粒子間に入り込ませることで、図2、図3に示す酸化物固体電解質層11を作製し、酸化物固体電解質層11の一方の面に形成された塗布液からなる層により正極側固体電解質分散高分子層12を作製し、酸化物固体電解質層11の他方の面に形成された塗布液からなる層により負極側固体電解質分散高分子層15を作製した。 Next, a coating liquid made of a lithium ion conductive polymer material in which oxide solid electrolyte particles and lithium salts were dispersed was applied to both sides of the oxide solid electrolyte particle bonding layer. PEO was used as the lithium ion conductive polymer material, LiFSI was used as the lithium salt, and particles made of LLZO were used as the oxide solid electrolyte particles. The weight ratio of PEO and LiFSI was set to 1: 1. By this coating, at least the lithium ion conductive polymer material and the lithium salt are allowed to enter between the oxide solid electrolyte particles in the oxide solid electrolyte particle bonding layer, whereby the oxide solid electrolyte layer 11 shown in FIGS. 2 and 3 is formed. The positive electrode side solid electrolyte-dispersed polymer layer 12 was prepared from a layer made of a coating liquid formed on one surface of the oxide solid electrolyte layer 11 and formed on the other surface of the oxide solid electrolyte layer 11. A negative electrode side solid electrolyte-dispersed polymer layer 15 was prepared from a layer made of a coating liquid.
 また、正極集電体層14の一方の面に正極活物質層13が設けられた積層体を準備した。具体的には、正極集電体層14として、アルミニウム箔を用い、この正極集電体層14の一方の面上にニッケル酸リチウム(NCA)、カーボンブラック、アクリレート、カルボキシメチルセルロース(CMC)が分散された溶液を塗布、乾燥させることで正極活物質層13を得て、上記積層体とした。 Further, a laminated body in which the positive electrode active material layer 13 is provided on one surface of the positive electrode current collector layer 14 was prepared. Specifically, an aluminum foil is used as the positive electrode current collector layer 14, and lithium nickelate (NCA), carbon black, acrylate, and carboxymethyl cellulose (CMC) are dispersed on one surface of the positive electrode current collector layer 14. The positive electrode active material layer 13 was obtained by applying and drying the solution to obtain the above-mentioned laminate.
 また、負極集電体層17の一方の面に負極活物質層16が設けられた積層体を準備した。具体的には、負極集電体層17として、銅箔を用い、この負極集電体層17の一方の面上に易黒鉛化カーボン、スチレンブタジエンブロック共重合体(SBR)、CMCが分散された溶液を塗布、乾燥させることで負極活物質層16を得て、上記積層体とした。 Further, a laminated body in which the negative electrode active material layer 16 is provided on one surface of the negative electrode current collector layer 17 was prepared. Specifically, a copper foil is used as the negative electrode current collector layer 17, and graphitized carbon, styrene-butadiene block copolymer (SBR), and CMC are dispersed on one surface of the negative electrode current collector layer 17. The negative electrode active material layer 16 was obtained by applying and drying the solution to obtain the above-mentioned laminate.
 次に、上記の3つの積層体を重ね合わせて一体にした。具体的には、酸化物固体電解質層11の一方の面に設けられた正極側固体電解質分散高分子層12と、正極集電体層14の一方の面に設けられた正極活物質層13とを重ね合わせ、酸化物固体電解質層11の他方の面に設けられた負極側固体電解質分散高分子層15と、負極集電体層17の一方の面に設けられた負極活物質層16とを重ね合わせた。次に、重ね合わされた積層体を熱圧着により一体とした。 Next, the above three laminated bodies were overlapped and integrated. Specifically, the positive electrode side solid electrolyte dispersion polymer layer 12 provided on one surface of the oxide solid electrolyte layer 11 and the positive electrode active material layer 13 provided on one surface of the positive electrode current collector layer 14. The negative electrode side solid electrolyte dispersion polymer layer 15 provided on the other surface of the oxide solid electrolyte layer 11 and the negative electrode active material layer 16 provided on one surface of the negative electrode current collector layer 17 are laminated. Overlaid. Next, the laminated bodies that were overlapped were integrated by thermocompression bonding.
 こうして、電池素体1bを得た。 In this way, the battery body 1b was obtained.
 次に、電池素体1bの正極集電体層14と負極集電体層17とに、周波数をスイープしながら交流電圧を印加して、インピーダンス測定を行った。この結果のコール・コール・プロットを図8に示す。図8において、横軸は抵抗成分を示し、縦軸はリアクタンス成分を示す。その結果、実施例1の電池素体の抵抗は概ね50Ωという結果を得た。 Next, an AC voltage was applied to the positive electrode current collector layer 14 and the negative electrode current collector layer 17 of the battery body 1b while sweeping the frequency, and impedance measurement was performed. The resulting call-call plot is shown in FIG. In FIG. 8, the horizontal axis represents the resistance component and the vertical axis represents the reactance component. As a result, the resistance of the battery body of Example 1 was about 50Ω.
(実施例2)
 PEOとLiFSIとの重量比を4:1としたこと以外は、実施例1と同様にして、電池素体1bを作成した。本発明以外の一般的な全固体リチウム二次電池において、PEOとLiFSIが用いられる場合、その重量比は本例と同様の重量比である。この電池素体1bに対して、実施例1と同様にしてインピーダンス測定を行った。この結果のコール・コール・プロットを図8に示す。その結果、参考例の電池素体の抵抗は概ね2000Ωという結果を得た。
(Example 2)
A battery element 1b was prepared in the same manner as in Example 1 except that the weight ratio of PEO and LiFSI was 4: 1. When PEO and LiFSI are used in a general all-solid-state lithium secondary battery other than the present invention, the weight ratio thereof is the same as that in this example. Impedance measurement was performed on the battery body 1b in the same manner as in Example 1. The resulting call-call plot is shown in FIG. As a result, the resistance of the battery element of the reference example was approximately 2000Ω.
 実施例2の抵抗であっても十分に実用的な低抵抗であるが、実施例1の抵抗は、実施例2の抵抗の概ね40分の1という結果になった。従って、酸化物固体電解質層11の酸化物固体電解質粒子11a間に入り込むリチウムイオン導電性高分子材料11b、正極側固体電解質分散高分子層12、及びリチウムイオン導電性高分子材料13bのリチウムイオン高分子材料がPEOであり、当該リチウムイオン高分子材料にLiFSIが分散される場合、PEOに対するLiFSIの重量は1倍以上であることが好ましいことが分かった。 Even the resistance of Example 2 is a sufficiently practical low resistance, but the resistance of Example 1 is about 1/40 of the resistance of Example 2. Therefore, the lithium ion height of the lithium ion conductive polymer material 11b that penetrates between the oxide solid electrolyte particles 11a of the oxide solid electrolyte layer 11, the positive electrode side solid electrolyte dispersed polymer layer 12, and the lithium ion conductive polymer material 13b. It was found that when the molecular material is PEO and LiFSI is dispersed in the lithium ion polymer material, the weight of LiFSI with respect to PEO is preferably 1 times or more.
 なお、PEOに対するLiFSIの重量が2倍よりも大きい場合、強度に対する懸念が生じることから、PEOに対するLiFSIの重量は2倍以下であることが好ましい。 If the weight of LiFSI with respect to PEO is more than twice, there is a concern about strength, so it is preferable that the weight of LiFSI with respect to PEO is twice or less.
 以上説明したように、本発明によれば、取り扱いが容易で大電流化を達成し得る全固体リチウム二次電池及び全固体リチウム二次電池の製造方法が提供され、自動車用電池、産業機器用電池、民生機器用電池等の分野で利用することが期待される。

 
As described above, according to the present invention, there is provided a method for manufacturing an all-solid-state lithium secondary battery and an all-solid-state lithium secondary battery that are easy to handle and can achieve a large current, and are used for automobile batteries and industrial equipment. It is expected to be used in the fields of batteries, batteries for consumer devices, etc.

Claims (8)

  1.  リチウムイオン導電性を有する酸化物固体電解質粒子を含む酸化物固体電解質層と、
     前記酸化物固体電解質層の一方の面側に配置される正極活物質層と、
     前記酸化物固体電解質層の他方の面側に配置される負極活物質層と、
     前記正極活物質層及び前記負極活物質層の少なくとも一方と前記酸化物固体電解質層との間に配置され、リチウムイオン導電性を有するリチウムイオン導電性高分子材料中に前記酸化物固体電解質粒子が分散される固体電解質分散高分子層と、
    を備え、
     前記正極活物質層と、前記負極活物質層と、前記固体電解質分散高分子層と、前記酸化物固体電解質層とが一体とされる
    ことを特徴とする全固体リチウム二次電池。
    An oxide solid electrolyte layer containing oxide solid electrolyte particles having lithium ion conductivity and
    A positive electrode active material layer arranged on one surface side of the oxide solid electrolyte layer,
    A negative electrode active material layer arranged on the other surface side of the oxide solid electrolyte layer,
    The oxide solid electrolyte particles are arranged in at least one of the positive electrode active material layer and the negative electrode active material layer and the oxide solid electrolyte layer, and the oxide solid electrolyte particles are contained in a lithium ion conductive polymer material having lithium ion conductivity. The solid electrolyte dispersion polymer layer to be dispersed and
    With
    An all-solid-state lithium secondary battery characterized in that the positive electrode active material layer, the negative electrode active material layer, the solid electrolyte dispersed polymer layer, and the oxide solid electrolyte layer are integrated.
  2.  前記酸化物固体電解質層の前記酸化物固体電解質粒子間の少なくとも一部に前記固体電解質分散高分子層の前記リチウムイオン導電性高分子材料が入り込んでいる
    ことを特徴とする請求項1に記載の全固体リチウム二次電池。
    The first aspect of claim 1, wherein the lithium ion conductive polymer material of the solid electrolyte-dispersed polymer layer is contained in at least a part of the oxide solid electrolyte layer between the oxide solid electrolyte particles. All-solid-state lithium secondary battery.
  3.  前記酸化物固体電解質層は、前記酸化物固体電解質粒子間に入り込むリチウムイオン導電性高分子材料を更に有し、
     前記酸化物固体電解質層の前記酸化物固体電解質粒子間に入り込む前記リチウムイオン導電性高分子材料と、前記固体電解質分散高分子層の前記リチウムイオン導電性高分子材料とが同じ材料である
    ことを特徴とする請求項1に記載の全固体リチウム二次電池。
    The oxide solid electrolyte layer further comprises a lithium ion conductive polymer material that penetrates between the oxide solid electrolyte particles.
    The lithium ion conductive polymer material that penetrates between the oxide solid electrolyte particles of the oxide solid electrolyte layer and the lithium ion conductive polymer material of the solid electrolyte dispersed polymer layer are the same material. The all-solid-state lithium secondary battery according to claim 1.
  4.  前記正極活物質層及び前記負極活物質層と前記酸化物固体電解質層との間に前記固体電解質分散高分子層が配置され、
     前記酸化物固体電解質層の前記リチウムイオン導電性高分子材料及び前記固体電解質分散高分子層の前記リチウムイオン導電性高分子材料には、それぞれリチウム塩が分散されており、
     前記酸化物固体電解質層の前記リチウムイオン導電性高分子材料及び前記固体電解質分散高分子層の前記リチウムイオン導電性高分子材料は、ポリエチレンオキサイドであり、
     前記リチウム塩は、リチウムビス(フルオロスルホニル)イミドであり、
     前記リチウムイオン導電性高分子材料の重量に対する前記リチウム塩の重量は、1倍以上2倍以下である
    ことを特徴とする請求項3に記載の全固体リチウム二次電池。
    The solid electrolyte-dispersed polymer layer is arranged between the positive electrode active material layer and the negative electrode active material layer and the oxide solid electrolyte layer.
    Lithium salts are dispersed in the lithium ion conductive polymer material of the oxide solid electrolyte layer and the lithium ion conductive polymer material of the solid electrolyte dispersed polymer layer, respectively.
    The lithium ion conductive polymer material of the oxide solid electrolyte layer and the lithium ion conductive polymer material of the solid electrolyte dispersed polymer layer are polyethylene oxides.
    The lithium salt is a lithium bis (fluorosulfonyl) imide and is
    The all-solid-state lithium secondary battery according to claim 3, wherein the weight of the lithium salt with respect to the weight of the lithium ion conductive polymer material is 1 time or more and 2 times or less.
  5.  前記酸化物固体電解質層は、前記酸化物固体電解質粒子間に入り込むリチウムイオン導電性高分子材料を更に有し、
     前記酸化物固体電解質層の前記酸化物固体電解質粒子間に入り込む前記リチウムイオン導電性高分子材料と、前記固体電解質分散高分子層の前記リチウムイオン導電性高分子材料とが異なる材料である
    ことを特徴とする請求項1に記載の全固体リチウム二次電池。
    The oxide solid electrolyte layer further comprises a lithium ion conductive polymer material that penetrates between the oxide solid electrolyte particles.
    The lithium ion conductive polymer material that penetrates between the oxide solid electrolyte particles of the oxide solid electrolyte layer and the lithium ion conductive polymer material of the solid electrolyte dispersed polymer layer are different materials. The all-solid-state lithium secondary battery according to claim 1, wherein the all-solid-state lithium secondary battery is characterized.
  6.  前記固体電解質分散高分子層の前記酸化物固体電解質粒子の粒径は、前記酸化物固体電解質層の前記酸化物固体電解質粒子の粒径よりも小さい
    ことを特徴とする請求項1から5のいずれか1項に記載の全固体リチウム二次電池。
    Any of claims 1 to 5, wherein the particle size of the oxide solid electrolyte particles in the solid electrolyte-dispersed polymer layer is smaller than the particle size of the oxide solid electrolyte particles in the oxide solid electrolyte layer. The all-solid-state lithium secondary battery according to item 1.
  7.  酸化物固体電解質粒子を含みリチウムイオン導電性を有する酸化物固体電解質層の一方の面側に正極活物質層が位置し、酸化物固体電解質層の他方の面側に負極活物質層が位置し、前記正極活物質層及び前記負極活物質層の少なくとも一方と前記酸化物固体電解質層との間に、リチウムイオン導電性を有するリチウムイオン導電性高分子材料中に前記酸化物固体電解質粒子が分散される固体電解質分散高分子層が位置するように、前記酸化物固体電解質層、前記正極活物質層、前記負極活物質層、及び前記固体電解質分散高分子層を配置する配置工程と、
     前記正極活物質層と、前記負極活物質層と、前記固体電解質分散高分子層と、前記酸化物固体電解質層とを一体化する一体化工程と、
    を備える
    ことを特徴とする全固体リチウム二次電池の製造方法。
    The positive electrode active material layer is located on one surface side of the oxide solid electrolyte layer containing oxide solid electrolyte particles and having lithium ion conductivity, and the negative electrode active material layer is located on the other surface side of the oxide solid electrolyte layer. The oxide solid electrolyte particles are dispersed in a lithium ion conductive polymer material having lithium ion conductivity between at least one of the positive electrode active material layer and the negative electrode active material layer and the oxide solid electrolyte layer. The arrangement step of arranging the oxide solid electrolyte layer, the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte dispersed polymer layer so that the solid electrolyte dispersed polymer layer is located.
    An integration step of integrating the positive electrode active material layer, the negative electrode active material layer, the solid electrolyte-dispersed polymer layer, and the oxide solid electrolyte layer.
    A method for manufacturing an all-solid-state lithium secondary battery.
  8.  前記一体化工程は、熱圧着により行われる
    ことを特徴とする請求項7に記載の全固体リチウム二次電池の製造方法。

     
    The method for manufacturing an all-solid-state lithium secondary battery according to claim 7, wherein the integration step is performed by thermocompression bonding.

PCT/JP2020/038603 2019-10-15 2020-10-13 All-solid-state lithium secondary battery and production method for all-solid-state lithium secondary battery WO2021075420A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080047305.1A CN114026727B (en) 2019-10-15 2020-10-13 All-solid-state lithium secondary battery and method for manufacturing all-solid-state lithium secondary battery
JP2021552390A JP7275300B2 (en) 2019-10-15 2020-10-13 All-solid lithium secondary battery and method for manufacturing all-solid lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019188650 2019-10-15
JP2019-188650 2019-10-15

Publications (1)

Publication Number Publication Date
WO2021075420A1 true WO2021075420A1 (en) 2021-04-22

Family

ID=75538538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038603 WO2021075420A1 (en) 2019-10-15 2020-10-13 All-solid-state lithium secondary battery and production method for all-solid-state lithium secondary battery

Country Status (3)

Country Link
JP (1) JP7275300B2 (en)
CN (1) CN114026727B (en)
WO (1) WO2021075420A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066703A (en) * 2005-08-31 2007-03-15 Ohara Inc Lithium ion secondary battery and solid electrolyte
JP2009181872A (en) * 2008-01-31 2009-08-13 Ohara Inc Lithium ion secondary battery, and manufacturing method thereof
KR20170141498A (en) * 2016-06-15 2017-12-26 한국생산기술연구원 All solid lithium secondary battery and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785009A (en) * 2016-12-09 2017-05-31 北京科技大学 A kind of all solid state composite electrolyte of organic-inorganic and its methods for making and using same
PL3579307T3 (en) 2017-09-13 2024-05-06 Lg Energy Solution, Ltd. Electrode for all-solid-state battery including solid electrolyte
CN107732297B (en) * 2017-10-13 2020-07-14 中国科学院青岛生物能源与过程研究所 Multi-stage structure composite solid electrolyte applied to wide potential window of lithium battery
CN109768318A (en) * 2019-03-12 2019-05-17 浙江锋锂新能源科技有限公司 A kind of mixing solid-liquid electrolyte lithium battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066703A (en) * 2005-08-31 2007-03-15 Ohara Inc Lithium ion secondary battery and solid electrolyte
JP2009181872A (en) * 2008-01-31 2009-08-13 Ohara Inc Lithium ion secondary battery, and manufacturing method thereof
KR20170141498A (en) * 2016-06-15 2017-12-26 한국생산기술연구원 All solid lithium secondary battery and method for manufacturing the same

Also Published As

Publication number Publication date
CN114026727A (en) 2022-02-08
JP7275300B2 (en) 2023-05-17
JPWO2021075420A1 (en) 2021-04-22
CN114026727B (en) 2024-05-07

Similar Documents

Publication Publication Date Title
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
JP6676399B2 (en) Bipolar lithium-ion battery and method of manufacturing bipolar lithium-ion battery
US20180006322A1 (en) Electrode plate and secondary battery
US9680135B2 (en) Pouch-type flexible film battery
EP1041658B1 (en) Method for producing nonaqueous gel electrolyte battery
CN111712942A (en) Electrochemical cell including a permselective membrane, system, and method of making same
JP5850154B2 (en) Manufacturing method of all solid state battery
WO2016157348A1 (en) Bulk-type all-solid-state lithium secondary battery
JP5375975B2 (en) Battery electrode, battery including the battery electrode, and method for manufacturing the battery electrode
JP2017004910A (en) Lithium ion secondary battery
JP7160753B2 (en) Solid-state battery manufacturing method and solid-state battery
JP2015153663A (en) Method for manufacturing all-solid battery
JP7255079B2 (en) Bipolar battery unit and bipolar battery
JP7304578B2 (en) All-solid battery
CN114730884A (en) Lithium ion battery pack
JP4604306B2 (en) Solid electrolyte battery and manufacturing method thereof
CN110416630B (en) All-solid-state battery
WO2014007018A1 (en) Lithium ion secondary battery
WO2018088193A1 (en) Electrode for secondary batteries, secondary battery, method for producing electrode for secondary batteries, and method for producing secondary battery
JP2004319210A (en) Bipolar battery, manufacturing method of bipolar battery, battery pack, and vehicle
WO2021075420A1 (en) All-solid-state lithium secondary battery and production method for all-solid-state lithium secondary battery
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP2020158835A (en) Metal halide foil, and all-solid battery and nonaqueous lithium ion battery including the same
WO2015159331A1 (en) Solid-state battery, electrode for solid-state battery, and production processes therefor
JP2017111890A (en) Composite electrolyte for lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552390

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876759

Country of ref document: EP

Kind code of ref document: A1