JPH0522348B2 - - Google Patents

Info

Publication number
JPH0522348B2
JPH0522348B2 JP57200671A JP20067182A JPH0522348B2 JP H0522348 B2 JPH0522348 B2 JP H0522348B2 JP 57200671 A JP57200671 A JP 57200671A JP 20067182 A JP20067182 A JP 20067182A JP H0522348 B2 JPH0522348 B2 JP H0522348B2
Authority
JP
Japan
Prior art keywords
lithium
battery
negative electrode
solid
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57200671A
Other languages
Japanese (ja)
Other versions
JPS5990360A (en
Inventor
Satoshi Sekido
Tadashi Tonomura
Yoshito Ninomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57200671A priority Critical patent/JPS5990360A/en
Publication of JPS5990360A publication Critical patent/JPS5990360A/en
Publication of JPH0522348B2 publication Critical patent/JPH0522348B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属リチウムを主体とする負極を有す
る固体状の二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a solid secondary battery having a negative electrode mainly composed of metallic lithium.

従来例の構成とその問題点 固体電解質を用いることによつて特徴づけられ
る固体状の電池で、現在もつぱら提唱され、また
実際に実用化されている電池は、ほとんどが一次
電池である。固体電解質材料としては、リチウム
イオン導電性の物質あるいは銀イオン導電性の物
質を用いることが提唱されている。この中でもリ
チウムイオン導電性の固体電解質は、イオン導電
率が銀イオン導電性の固体電解質に較べると数桁
小さく電池とした際大電流が取り出せない欠点は
有しているものの、分解電圧は銀イオン導電性固
体電解質の0.6V程度に較べると1.8〜3.4Vと数倍
高く、電池電圧の高い、すなわち高エネルギー密
度の電池が得られることから、近年、電子機器の
低消費電流化が進むにつれて、高エネルギー密度
である特徴が増々注目され、もつぱらリチウムイ
オン導電性固体電解質が選ばれ、これを用いたリ
チウム固体電池が一次電池として実用化されるに
至つている。
Structures of conventional examples and their problems Most of the solid-state batteries that are characterized by the use of solid electrolytes and that are currently being proposed and actually put into practical use are primary batteries. It has been proposed to use a lithium ion conductive substance or a silver ion conductive substance as the solid electrolyte material. Among these, the lithium ion conductive solid electrolyte has an ionic conductivity several orders of magnitude smaller than that of the silver ion conductive solid electrolyte, and although it has the disadvantage of not being able to draw a large current when used as a battery, the decomposition voltage of the silver ion Compared to the 0.6V of conductive solid electrolytes, it is several times higher at 1.8 to 3.4V, and can provide batteries with high battery voltage, that is, high energy density.In recent years, as electronic devices have become lower in current consumption, Lithium ion conductive solid electrolytes have attracted increasing attention due to their high energy density, and lithium solid-state batteries using them have been put into practical use as primary batteries.

一方、このようなリチウム固体電池の電子機器
への使われ方は、半導体メモリ素子の発達により
主電源が切れた場合においてもメモリ保持を損な
わないように、補助電源として、いわゆるメモリ
バツクアツプ用の電源として使われ方が主流とな
つてきている。補助電源として用いられるのに好
ましい電池特性としては、放電容量,放電電流が
いかに小さくても、小型で、すなわち半導体メモ
リ素子と同一プリント基板上に組み込め、さらに
は、半導体メモリ素子と一緒に樹脂モールドパツ
ケージされるくらいの小型さで、かつ、容量が尽
きた場合においても電池交換が不必要であるこ
と、すなわち、充電による再生が可能であること
が挙げられる。
On the other hand, due to the development of semiconductor memory elements, lithium solid-state batteries are being used in electronic devices as auxiliary power supplies, so-called memory backup batteries, so that memory retention will not be impaired even if the main power supply is cut off. Its use as a power source is becoming mainstream. Preferred battery characteristics for use as an auxiliary power source are that no matter how small the discharge capacity and discharge current are, it is small, that it can be incorporated on the same printed circuit board as the semiconductor memory element, and that it can be molded in resin together with the semiconductor memory element. It is small enough to be packaged, and even if the battery runs out, there is no need to replace the battery, that is, it can be regenerated by charging.

このような必要性に対して現在は、有機電解液
を用いるリチウム二次電池が提唱されているが、
液体を用いているため、電池構成物を液密に保持
しておく容器が必要であり、このため先に述べた
小型化をはかるのは至難であつた。
To meet this need, lithium secondary batteries using organic electrolytes are currently being proposed.
Since a liquid is used, a container is required to hold the battery components in a liquid-tight manner, which makes it extremely difficult to achieve the above-mentioned miniaturization.

そこで、このような小型化に対して、有機電解
液を用いる電池に対して決定的な優位さを持つ固
体電解質を用いた固体状二次電池の実用化が期待
される。すなわち固体状二次電池は、後に本発明
の実施様態で詳しく説明するが、電池構成物を特
に別途定められた形状の容器に納める必要はなく
樹脂等により発電要素を被覆するだけで良く、小
型化が容易にはかられるし、さらには、電池の構
成にあたつては、半導体プロセスで通常用いられ
ている真空蒸着法,スパツタリング法などの薄膜
化技術を用いての小型化も容易に可能であるとい
う優位さを持つている。
Therefore, for such miniaturization, it is expected that solid secondary batteries using solid electrolytes, which have a decisive advantage over batteries using organic electrolytes, will be put to practical use. In other words, solid-state secondary batteries, which will be explained in detail later in the embodiments of the present invention, do not require the battery components to be housed in a container with a specially determined shape; it is sufficient to simply cover the power generating element with resin, etc., and the battery is small and compact. In addition, the battery structure can be easily miniaturized using thin film techniques such as vacuum evaporation and sputtering, which are commonly used in semiconductor processes. It has the advantage of being

しかし、以上のような決定的とも言われる優位
さにもかかわらず、固体二次電池の実用化がいま
だなされていないのは、ひとつには電池の充放電
に際してリチウムイオンを可逆的に出し入れが可
能な適当な正極活物質がいまだ見い出されていな
いこと、またひとつには、充電に際してリチウム
負極側に、金属リチウムが霧状あるいは樹枝状に
析出するため、充放電がくり返し行われると、つ
いには正極と負極とが金属リチウムでつながれ内
部短絡を生じるという問題があるためであつた。
However, despite the so-called decisive advantages mentioned above, solid-state secondary batteries have not yet been put into practical use. One reason is that lithium ions can be reversibly put in and taken out when charging and discharging the battery. Another reason is that a suitable cathode active material has not yet been found. Another reason is that during charging, metallic lithium is deposited in the form of mist or dendrites on the lithium negative electrode side, so when charging and discharging are repeated, the positive electrode will eventually disappear. This was due to the problem that the negative electrode and the negative electrode were connected by metallic lithium, causing an internal short circuit.

発明の目的 本発明は、充・放電くり返し特性の優れ固体状
のリチウム二次電池を提供することを目的とす
る。
OBJECTS OF THE INVENTION An object of the present invention is to provide a solid-state lithium secondary battery with excellent repeated charge/discharge characteristics.

発明の構成 本発明の電池は、正極活物質として二酸化チタ
ンを用い、金属リチウムを主体とする可逆性のリ
チウム負極、好適にはリチウム−アルミニウム合
金を主体とする負極、リチウムイオン導電性固体
電解質より構成され、電池構成要素がすべて固体
の二次電池である。
Structure of the Invention The battery of the present invention uses titanium dioxide as a positive electrode active material, a reversible lithium negative electrode mainly composed of metallic lithium, preferably a negative electrode mainly composed of a lithium-aluminum alloy, and a lithium ion conductive solid electrolyte. It is a secondary battery with all battery components being solid.

本発明に正極活物質として用いる二酸化チタン
は酸化の程度によりその結晶構造は層状構造を有
し、互いにフアンデルワールス力で結合した反復
層から成り立つている。そして個々の層は、酸素
原子のシート間にサンドイツチされたチタン原子
を含む少なくとも1つのシートから成つている。
反復層間でリチウムイオンの出し入れが容易に起
こるため、すなわち、各層を結合するフアンデル
ワールス力の弱さのため急速なリチウムイオンの
拡散を容易にするので、電池の充・放電が可能と
なつている。また、負極は、可逆性のリチウム負
極,好適にはリチウム−アルミニウム合金負極で
あるので、充電反応による霧状あるいは樹枝状の
リチウム負極の成長が生じ難く充・放電をくり返
し行つても内部短絡が生じることはない。
Titanium dioxide used as a positive electrode active material in the present invention has a layered crystal structure depending on the degree of oxidation, and is composed of repeated layers bonded to each other by van der Waals forces. Each layer then consists of at least one sheet containing sandwiched titanium atoms between sheets of oxygen atoms.
Because lithium ions can easily move in and out between repeated layers, the weak van der Waals force that binds each layer facilitates rapid lithium ion diffusion, making it possible to charge and discharge the battery. There is. In addition, since the negative electrode is a reversible lithium negative electrode, preferably a lithium-aluminum alloy negative electrode, the growth of a mist-like or dendritic lithium negative electrode due to the charging reaction is difficult, and internal short circuits do not occur even after repeated charging and discharging. It never happens.

また、リチウムイオン導電性固体電解質として
は、nLiI・C5H5N・C4H9I,Li3N,mLiI・
nLi2S・P2O5など各種のものを用いることがで
きる。
In addition, as lithium ion conductive solid electrolytes, nLiI・C 5 H 5 N・C 4 H 9 I, Li 3 N, mLiI・
Various materials such as nLi 2 S.P 2 O 5 can be used.

実施例の説明 実施例 1 第1図は固体電解質二次電池の構成例を示す。Description of examples Example 1 FIG. 1 shows an example of the structure of a solid electrolyte secondary battery.

1は正極合剤で、活物質の二酸化チタン
(TiO2)の90〜70重量部とリチウムイオン導電性
固体電解質の10〜30重量部との混合物からなり、
TiO2が約3ミリモルとなるように前記の混合物
を秤量し、300MPaの圧力で直径18mm、厚さ0.4mm
程度の円板状に成形したものである。なな、正極
合剤中に特に導電材の混合は必要としないが、大
電流放電用途の場合、カーボンなどの導電材を加
えてもよい。
1 is a positive electrode mixture consisting of a mixture of 90 to 70 parts by weight of titanium dioxide (TiO 2 ) as an active material and 10 to 30 parts by weight of a lithium ion conductive solid electrolyte;
The above mixture was weighed so that TiO 2 was about 3 mmol, and heated to a pressure of 300 MPa to a diameter of 18 mm and a thickness of 0.4 mm.
It is molded into a disk shape of about 100 yen. Although it is not necessary to specifically mix a conductive material in the positive electrode mixture, a conductive material such as carbon may be added in the case of a large current discharge application.

2はリチウムイオン導電性固体電解質層であ
る。この例では電解質として、nLiI・C5H5N・
C4H9Iで表されるものを用いた。ここにn値と
しては4〜6が好適に選ばれる。電解質層2は、
上記の電解質粉末を300MPaの圧力で直径18mm,
厚さ0.4mm程度の円板状に成形したものである。
2 is a lithium ion conductive solid electrolyte layer. In this example, the electrolyte is nLiI・C 5 H 5 N・
A compound represented by C 4 H 9 I was used. Here, a value of 4 to 6 is suitably selected as the n value. The electrolyte layer 2 is
The above electrolyte powder was heated to a diameter of 18 mm at a pressure of 300 MPa.
It is molded into a disc shape with a thickness of about 0.4 mm.

3は可逆性リチウム負極で、LixAlで表される
リチウム−アルミニウム合金板よりなる直径18
mm,厚さ0.5mmの円板状のものである。xの値と
しては0.08〜0.9まで目的に応じて変えられるが、
本実施例ではx=0.8のものを用いている。4は
正極集電体であり、Cr含量が30重量%以上のFe
−Crフエライト系ステンレス鋼よりなる厚さ0.1
mmの円板である。もちろん、正極集電体材料とし
て、炭素,Au,Pd,Pt等を用いても良い。5は
負極集電体である。隣接するセルの負極集電体5
と正極集電体4は、グラフアイト導電ペイントに
より電気的に結合されて3セルが直列に接続され
ている。6,7は電極端子リードである。8は樹
脂被膜であり、エポキシ系の熱硬化性樹脂を被覆
して得たものである。もちろん光硬化性の樹脂等
を用いても良い。
3 is a reversible lithium negative electrode, made of a lithium-aluminum alloy plate represented by Li x Al, with a diameter of 18
It is disc-shaped with a thickness of 0.5 mm. The value of x can be changed from 0.08 to 0.9 depending on the purpose,
In this embodiment, x=0.8 is used. 4 is a positive electrode current collector, which is Fe with a Cr content of 30% by weight or more.
-Made of Cr ferrite stainless steel, thickness 0.1
It is a disk of mm. Of course, carbon, Au, Pd, Pt, etc. may be used as the positive electrode current collector material. 5 is a negative electrode current collector. Negative electrode current collector 5 of adjacent cells
and the positive electrode current collector 4 are electrically coupled by graphite conductive paint, and three cells are connected in series. 6 and 7 are electrode terminal leads. 8 is a resin coating, which is obtained by coating with an epoxy thermosetting resin. Of course, a photocurable resin or the like may also be used.

第2図は、本実施例の電池を20℃で、電流
30μAで放電した際の放電容量と端子電圧の関係
を示している。第3図は、30μAで3Vまで放電
し、同じ電流で6Vまで充電する充放電のくり返
しに伴う放電容量の変化を示したものである。第
3図中Aは、負極をリチウム−アルミニウム合金
としたもの、Bはリチウム金属を用いた同様の構
成を有する電池についての充・放電特性を示して
いる。
Figure 2 shows the current of the battery of this example at 20°C.
It shows the relationship between discharge capacity and terminal voltage when discharging at 30μA. Figure 3 shows the change in discharge capacity due to repeated charging and discharging, in which the battery is discharged to 3V at 30μA and charged to 6V with the same current. In FIG. 3, A shows the charge/discharge characteristics of a battery using a lithium-aluminum alloy as the negative electrode, and B shows the charge/discharge characteristics of a battery having a similar structure using lithium metal.

第2図から明らかなように本発明に従う固体二
次電池の放電時の端子電圧はきわめて平坦で、従
来の固体一次電池の放電電圧に較べても遜色は全
くない。第3図から明らかなように、充放電特性
は、負極にリチウム−アルミニウム合金を用いた
ものは負極をリチウムとした電池に較べ、放電容
量が大きい。このことは、充電時におけるリチウ
ムの霧状あるいは樹枝状の析出による内部短絡に
よる自己放電が発生し難いことを示している。
As is clear from FIG. 2, the terminal voltage during discharge of the solid state secondary battery according to the present invention is extremely flat, and is not inferior at all to the discharge voltage of a conventional solid state primary battery. As is clear from FIG. 3, regarding the charge and discharge characteristics, the battery using a lithium-aluminum alloy for the negative electrode has a larger discharge capacity than the battery using lithium for the negative electrode. This indicates that self-discharge due to internal short circuit due to mist or dendrite precipitation of lithium during charging is unlikely to occur.

実施例 2 実施例1のリチウムイオン導電性固体電解質層
2の代わりに可逆性リチウム負極の表面に化学式
C5H5N・C4H9・Ia(a=5〜7)で表されるポリ
沃化ブチルピリジニウムを塗布し、乾燥雰囲気中
において60℃で24時間保持して形成したLiIを主
体とするリチウムイオン導電性固体電解質層を用
いた電池を構成した。
Example 2 In place of the lithium ion conductive solid electrolyte layer 2 of Example 1, a chemical formula was formed on the surface of the reversible lithium negative electrode.
Mainly LiI formed by coating polybutylpyridinium iodide represented by C 5 H 5 N・C 4 H 9・I a (a = 5 to 7) and holding it at 60°C for 24 hours in a dry atmosphere. A battery using a lithium ion conductive solid electrolyte layer was constructed.

第4図はこの電池Cの放電電流密度と端子電圧
の関係を示している。Aは、実施例1に示した電
池の特性を示している。ポリ沃化ブチルピリジニ
ウムを負極に塗布して電解質を構成した電池C
は、そうでない電池Aに較べ電池内部抵抗が小さ
くなり、より大きな電流を取り出すことができ
る。この理由については明らかでないが、負極表
面上で負極のリチウムと沃素との化学反応で固体
電解質層を形成することによつて、単に固体電解
質層と負極とが圧力により接合されている実施例
1の電池Aに較べ負極と固体電解質層との接合が
良好に得られるためであると本発明者らは考えて
いる。
FIG. 4 shows the relationship between the discharge current density and the terminal voltage of this battery C. A shows the characteristics of the battery shown in Example 1. Battery C in which the electrolyte was formed by coating the negative electrode with polybutylpyridinium iodide
Compared to battery A, which does not have this type of battery, the internal resistance of the battery is smaller, and a larger current can be extracted. Although the reason for this is not clear, Example 1 in which the solid electrolyte layer and the negative electrode are simply joined by pressure by forming a solid electrolyte layer on the surface of the negative electrode through a chemical reaction between lithium and iodine of the negative electrode. The present inventors believe that this is because the bonding between the negative electrode and the solid electrolyte layer is better than that in Battery A.

なお、ポリ沃化1−ブチルピリジニウムの他に
アルキル基の異なる他のポリ沃化1−アルキルピ
リジニウムを用いても同様な効果が得られること
は言うまでもない。
It goes without saying that similar effects can be obtained by using other 1-alkylpyridinium polyiodides having different alkyl groups in addition to 1-butylpyridinium polyiodide.

発明の効果 以上のように、本発明によれば、充放電のくり
返し特性に優れ、メモリーバツクアツプ用電源な
どとして好適な固体状二次電池を得ることができ
る。
Effects of the Invention As described above, according to the present invention, it is possible to obtain a solid-state secondary battery that has excellent repeated charging and discharging characteristics and is suitable as a power source for memory backup.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電池の構成例を示す縦断
面図、第2図は放電時の端子電圧と放電容量の関
係を示す図、第3図は充放電回数と放電容量の関
係を示す図、第4図は放電電流密度と端子電圧の
関係を示す。 1……正極、2……固体電解質、3……負極。
FIG. 1 is a longitudinal cross-sectional view showing an example of the configuration of a battery according to the present invention, FIG. 2 is a diagram showing the relationship between the terminal voltage during discharge and the discharge capacity, and FIG. 3 is a diagram showing the relationship between the number of charging and discharging times and the discharge capacity. , FIG. 4 shows the relationship between discharge current density and terminal voltage. 1...Positive electrode, 2...Solid electrolyte, 3...Negative electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 リチウム−アルミニウム合金よりなる負極
と、二酸化チタンを主体とする正極と、負極とポ
リ沃化1−アルキルピリジニウムとの接触により
形成される沃化リチウムを主体とするリチウムイ
オン導電性固体電解質より構成される固体状二次
電池。
1 Consists of a negative electrode made of a lithium-aluminum alloy, a positive electrode mainly made of titanium dioxide, and a lithium ion conductive solid electrolyte mainly made of lithium iodide formed by contacting the negative electrode with 1-alkylpyridinium polyiodide. solid state secondary battery.
JP57200671A 1982-11-15 1982-11-15 Solid secondary battery Granted JPS5990360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57200671A JPS5990360A (en) 1982-11-15 1982-11-15 Solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200671A JPS5990360A (en) 1982-11-15 1982-11-15 Solid secondary battery

Publications (2)

Publication Number Publication Date
JPS5990360A JPS5990360A (en) 1984-05-24
JPH0522348B2 true JPH0522348B2 (en) 1993-03-29

Family

ID=16428294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200671A Granted JPS5990360A (en) 1982-11-15 1982-11-15 Solid secondary battery

Country Status (1)

Country Link
JP (1) JPS5990360A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540742A (en) * 1989-05-01 1996-07-30 Brother Kogyo Kabushiki Kaisha Method of fabricating thin film cells and printed circuit boards containing thin film cells using a screen printing process
US5217828A (en) * 1989-05-01 1993-06-08 Brother Kogyo Kabushiki Kaisha Flexible thin film cell including packaging material
JP2014229502A (en) * 2013-05-23 2014-12-08 パナソニック株式会社 Manufacturing method of all-solid state lamination battery
JP6466065B2 (en) * 2014-02-03 2019-02-06 古河機械金属株式会社 Positive electrode material, positive electrode, and lithium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661771A (en) * 1979-10-23 1981-05-27 Nec Corp Battery
JPS5688265A (en) * 1979-12-19 1981-07-17 Citizen Watch Co Ltd Solid-electrolyte battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661771A (en) * 1979-10-23 1981-05-27 Nec Corp Battery
JPS5688265A (en) * 1979-12-19 1981-07-17 Citizen Watch Co Ltd Solid-electrolyte battery

Also Published As

Publication number Publication date
JPS5990360A (en) 1984-05-24

Similar Documents

Publication Publication Date Title
JP7154847B2 (en) Method for manufacturing all-solid-state battery
GB2026762A (en) Rechargeable chalcogenide cell
JPH10284130A (en) Semiconductor substrate mounting type secondary battery
JP2005063958A (en) Thin-film solid lithium secondary battery and its manufacturing method
CN110226255A (en) All-solid-state battery and its manufacturing method
JP4381176B2 (en) Thin film solid secondary battery
JPH0522348B2 (en)
US4140589A (en) Method for lead crystal storage cells and storage devices made therefrom
JPH0522349B2 (en)
JPH0519262B2 (en)
JPS6072168A (en) Solid electrolyte battery
JPH0522350B2 (en)
JPH0370343B2 (en)
JP2552352B2 (en) Sealed lead acid battery
JPS6259412B2 (en)
JPS6012677A (en) Solid electrolyte secondary battery
JPS6017867A (en) Solid electrolyte secondary battery
JPS6012665A (en) Reversible copper electrode
JP2552354B2 (en) Sealed lead acid battery
JPS6142868A (en) Nonaqueous electrolyte battery
JPS6012678A (en) Solid electrolyte secondary battery
JPH06124706A (en) Sealed nickel-zinc storage battery
JPH04104480A (en) Nonaqueous electrolyte secondary battery
JPS5998470A (en) Organic solvent cell
JPS6012676A (en) Solid electrolyte secondary battery