JPS63126153A - Organic electrolyte cell - Google Patents

Organic electrolyte cell

Info

Publication number
JPS63126153A
JPS63126153A JP61273246A JP27324686A JPS63126153A JP S63126153 A JPS63126153 A JP S63126153A JP 61273246 A JP61273246 A JP 61273246A JP 27324686 A JP27324686 A JP 27324686A JP S63126153 A JPS63126153 A JP S63126153A
Authority
JP
Japan
Prior art keywords
chalcopyrite
copper oxide
conductive material
graphite
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61273246A
Other languages
Japanese (ja)
Inventor
Teruyoshi Morita
守田 彰克
Nobuo Eda
江田 信夫
Hide Koshina
秀 越名
Takafumi Fujii
隆文 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61273246A priority Critical patent/JPS63126153A/en
Publication of JPS63126153A publication Critical patent/JPS63126153A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the carbon powder amount of a conductive material necessary to give the electron conductivity to a positive electrode, to increase the filler active substance amount consequently, and to improve the utilization efficiency of the active substance, by using an active substance which is made by absorbing graphite over the surface of copper oxide and chalcopyrite. CONSTITUTION:An active substance is made by absorbing graphite powder to a copper oxide and chalcopyrite beforehand, and an organic electrolyte cell with a positive electrode 4 which consists of a conductive material of carbon powder and a binder, and a negative electrode 2 which consists of lithium or an alloy mainly of lithium is composed. By absorbing the graphite powder at the surface of the copper oxide and the chalcopyrite, the specific gravity of the cell itself is not almost changed, but the good adhesive property of the graphite powder at the surface and the graphite powder or the carbon black of the conductive material makes a uniform mixing even with a small amount of conductive material. Therefore, the active substance can be increased at the amount of reducing the carbon powder, resulting in an increase of the electric capacity of the cell.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は正極活物質として酸化銅とカルコパイライトの
混合物を、負極活物質としてリチウムもしくはリチウム
を主体とする合金を用いた有機電解質電池の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improvement in an organic electrolyte battery using a mixture of copper oxide and chalcopyrite as a positive electrode active material and lithium or a lithium-based alloy as a negative electrode active material.

従来の技術 従来有機電解質電池としては、正極活物質にフッ化黒鉛
、二酸化マンガン、塩化チオニール、二酸化イオウなど
を用いる、いわゆる3v級リチウム電池が実用化されて
いる。
BACKGROUND OF THE INVENTION As conventional organic electrolyte batteries, so-called 3V class lithium batteries have been put into practical use, using graphite fluoride, manganese dioxide, thionyl chloride, sulfur dioxide, etc. as positive electrode active materials.

こ扛らに対し、最近では有機電解質電池のすぐれた貯蔵
性、耐漏液性に着目し、在来の乾電池、アルカリマンガ
ン電池、酸化銀電池などと直接互換性を有するいわゆる
1、5v級リチウム電池の開発が進められている。特に
電子ウォッチ、ポータプル電卓などの小形精密電子機器
に使用するボタン形電池の分野ではすでに一部は実用化
されている。この種電池としては、正極活物質に酸化銅
、二硫化鉄、酸化ビスマス、ビスマス酸鉛などを用いた
リチウム電池が知られている。なかでも酸化銅全正極活
物質とする酸化銅・リチウム電池は大容量で電圧平坦性
にすぐれ、かつ良好な貯蔵特性を有するなど最も有望な
電池系であると言える。
Recently, attention has been paid to the excellent storage properties and leakage resistance of organic electrolyte batteries, and so-called 1.5v class lithium batteries, which are directly compatible with conventional dry batteries, alkaline manganese batteries, silver oxide batteries, etc., have recently been developed. development is underway. Particularly in the field of button-shaped batteries used in small precision electronic devices such as electronic watches and portable calculators, some of them have already been put into practical use. As this type of battery, lithium batteries using copper oxide, iron disulfide, bismuth oxide, lead bismuth oxide, etc. as positive electrode active materials are known. Among these, copper oxide/lithium batteries that use copper oxide as an all-positive electrode active material can be said to be the most promising battery system, as they have large capacity, excellent voltage flatness, and good storage characteristics.

しかし、この電池系は電池の放電初期に電圧が一定の値
に落ち着くまでに、電圧が一時的に落ち込むという欠点
を有する。
However, this battery system has the drawback that the voltage temporarily drops before the voltage settles to a constant value at the beginning of battery discharge.

この欠点を解消する方策として、特開昭68−2060
56号公報で、より放電電圧の高いカルコパイライトに
正極活物質である酸化銅に混合して用いること全提案し
ている。
As a measure to eliminate this drawback, Japanese Patent Application Laid-Open No. 68-2060
No. 56 proposes the use of chalcopyrite, which has a higher discharge voltage, mixed with copper oxide, which is a positive electrode active material.

本発明はこの酸化銅とカルコバイトの混合物を正極の活
物質として用いる電池の改良に係るものであるが、一般
にこの種活物質は非導電性であり、適当な導電材、通常
は炭素粉末?混合して電極に導電性を持たすという方法
を採用する。導電材の炭素粉末としての条件はそれ自体
導電性の高いものでなければならず、通常黒鉛粉末もし
くはカーボンブランク粉末などが用いられている。
The present invention relates to an improvement in a battery using this mixture of copper oxide and chalcobite as the active material of the positive electrode. Generally, this kind of active material is non-conductive, and a suitable conductive material, usually carbon powder, is used. A method is adopted in which the electrodes are mixed to make the electrodes conductive. The carbon powder used as the conductive material must itself have high conductivity, and graphite powder or carbon blank powder is usually used.

発明が解決しようとする問題点 しかし、電池の内容積は一定であるので導電材として炭
素粉末金力口えるということは、とりもなおさず活物質
量が減少するということであり、電池の電気容量が低下
するということになる。従って、この炭素粉末はできる
だけ少量であることが望ましい。一方、電池の導電材と
してすぐ扛た炭素粉末である黒鉛粉末の比重は、その種
類により異るものの、はソ2.2程度であり、カーボン
ブラックははソ1.8程度であるのに対し、活物質とし
て用いる酸化銅の比重は6.3、カルコパイライトの比
重は4.2であり、この大きな比重差のため、電極に良
好な導電性を与えるためには、黒鉛粉末として10〜2
0%、カーボンブラックとして8〜16%も混合しなけ
ればならず、必然的に電池の電気容量が低下するという
問題が生じる。
Problems to be Solved by the Invention However, since the internal volume of a battery is constant, using carbon powder as a conductive material means that the amount of active material decreases, and the battery's electricity This means that the capacity will decrease. Therefore, it is desirable that the amount of this carbon powder be as small as possible. On the other hand, the specific gravity of graphite powder, which is a carbon powder used as a conductive material in batteries, is about 2.2 mm, although it varies depending on the type, whereas carbon black has a specific gravity of about 1.8 mm. , the specific gravity of copper oxide used as an active material is 6.3, and the specific gravity of chalcopyrite is 4.2. Because of this large difference in specific gravity, in order to give good conductivity to the electrode, it is necessary to use a graphite powder with a specific gravity of 10 to 2.
It is necessary to mix as much as 0% and 8 to 16% as carbon black, which inevitably causes a problem that the electric capacity of the battery decreases.

本発明はこの混合すべき炭素粉末をできるだけ低減きせ
、大きな電気容量の電池を得ることを目的とするもので
ある。
The object of the present invention is to reduce the amount of carbon powder to be mixed as much as possible, and to obtain a battery with a large electric capacity.

問題点を解決するための手段 この問題点を解決するために、本発明はあらかじめ黒鉛
粉末を吸着させた酸化銅とカルコパイライトl活物質と
し、導電材の炭素粉末と結着剤からなる正極と、リチウ
ムもしくはリチウム全主体とする合金からなる負極金有
する有機電解質電池を提供するものである。
Means for Solving the Problem In order to solve this problem, the present invention uses copper oxide and chalcopyrite l active materials on which graphite powder has been adsorbed in advance, and a positive electrode consisting of carbon powder as a conductive material and a binder. The present invention provides an organic electrolyte battery having a gold negative electrode made of lithium or an alloy consisting entirely of lithium.

作用 上記した如く、活物質である酸化銅の比重は6.3、カ
ルコパイライトの比重は4.2であるのに対し、導電材
である黒鉛粉末の比重は2.2、カーボンブランクの比
重は1.8であり、本質的にこれだけの比重差があるも
のを均一に混合するのは無理であると言える。本発明で
は酸化銅およびカルコパイライトの表面に黒鉛粉末全吸
着ざぜることにより、それ自体の比重は殆んど変らない
ものの、表面の黒鉛粉末と導電材の黒鉛粉末もしくはカ
ーボンブラックとの良好な密着性により、導電材が少量
でも均一に混合されるという効果を用いたものである。
Function As mentioned above, the specific gravity of copper oxide, which is an active material, is 6.3 and the specific gravity of chalcopyrite is 4.2, whereas the specific gravity of graphite powder, which is a conductive material, is 2.2, and the specific gravity of carbon blank is 6.3. 1.8, and it can be said that it is essentially impossible to uniformly mix materials with such a difference in specific gravity. In the present invention, by completely adsorbing graphite powder on the surface of copper oxide and chalcopyrite, the specific gravity of the graphite powder itself hardly changes, but good adhesion between the graphite powder on the surface and the graphite powder or carbon black of the conductive material is achieved. This method uses the effect that even a small amount of conductive material can be mixed uniformly due to its properties.

即ち酸化銅と黒鉛粉末、カルコパイライトと黒鉛粉末を
混合し、減圧下で振動を与えながら攪拌すると、黒鉛粉
末は容易に酸化銅もしくはカルコパイライトの表面に吸
着する。これは酸化銅とカルコパイライトの混合物に黒
鉛を混合し、減圧下で振動を与えながら攪拌した場合で
も同様にそれぞ扛の表面に黒鉛が吸着する。こnにより
、この酸化銅とカルコパイライトの混合物を正極活物質
として用いた場合、従来の酸化銅とカルコパイライトの
混合物を用いた場合、導電材の炭素粉末量は黒鉛では1
0〜20%、カーボンブランクでは8〜15%必要であ
ったものが、黒鉛で6〜10%、カーボンブラックで6
〜8%へと低減される。その結果として炭素粉末量が低
減さ扛た分は活物質を増加させることができ、電池の電
気容量が増大できることになる。また黒鉛が酸化銅もし
くはカルコパイライトの表面に吸着するためには、黒鉛
の比表面積は50〜100m/g のものが最適である
ことが判った。
That is, when copper oxide and graphite powder, or chalcopyrite and graphite powder are mixed and stirred under reduced pressure with vibration, the graphite powder easily adsorbs to the surface of the copper oxide or chalcopyrite. Even when a mixture of copper oxide and chalcopyrite is mixed with graphite and stirred under reduced pressure while being vibrated, the graphite is similarly adsorbed onto the surface of each comb. As a result, when this mixture of copper oxide and chalcopyrite is used as a positive electrode active material, when the conventional mixture of copper oxide and chalcopyrite is used, the amount of carbon powder in the conductive material is 1 for graphite.
0 to 20% and 8 to 15% for carbon blank, but 6 to 10% for graphite and 6 for carbon black.
reduced to ~8%. As a result, the amount of active material can be increased by the amount of carbon powder reduced, and the electric capacity of the battery can be increased. It has also been found that in order for graphite to adsorb onto the surface of copper oxide or chalcopyrite, the optimum specific surface area of graphite is 50 to 100 m/g.

実施例 以下実施例により本発明を説明する。Example The present invention will be explained below with reference to Examples.

実施例1 酸化銅(CuO)とカルコパイライト(CuFeS2)
の混合物、および表面に黒鉛を吸着させるという表面処
理をした酸化銅とカルコパイライトの混合物を活物質と
し、導電材の黒鉛粉末と結着剤の4フツ化エチレン・6
フツ化プロピレンの共重合体の水性ディスパージョンを
そnぞれ第1表に示す割合で混合して乾燥後、直径8.
581171.厚さ0.7肱の円盤状に加圧成型し、正
極とする。なお、酸化銅とカルコパイライトの混合には
重量比で6:4とした。こnらの正極の理論充填電気量
も同様に第1表に示す。
Example 1 Copper oxide (CuO) and chalcopyrite (CuFeS2)
The active material is a mixture of copper oxide and chalcopyrite, which has been surface-treated to adsorb graphite, and the conductive material graphite powder and the binder tetrafluoroethylene 6.
Aqueous dispersions of fluorinated propylene copolymers were mixed in the proportions shown in Table 1, and after drying, a diameter of 8.
581171. Pressure mold it into a disk shape with a thickness of 0.7 mm, and use it as a positive electrode. Note that the weight ratio of copper oxide and chalcopyrite was 6:4. The theoretical charging amount of electricity for these positive electrodes is also shown in Table 1.

第   1   表 これら正極を用いて第1図に示すボタン形電池全組み立
てた。そnぞれの電池−fA−Eとする。
Table 1 Using these positive electrodes, the button-shaped battery shown in FIG. 1 was completely assembled. Let the respective batteries be -fA-E.

第1図において、1はニッケルメッキしたステンレス鋼
よりなる封口板で、その内面には直径6.8M、厚さ0
.75Bのリチウムよりなる負極2を圧着している。負
極の理論充填電気量は56mAhである。3はポリプロ
ピレン製のセパレータで、プロピレンカーボネートと1
.2−ジメトキシエタンとを体積比で1:1の割合に混
合した溶媒に、過塩素酸リチウムを1モル/βの割合で
溶解させた電解液を含浸させている。4は上記円盤状の
正極で、ニッケルメッキしたステンレス鋼製電池ケース
S内で更に加圧成型している。6はポリプロピレン製の
ガスケントである。完成電池の寸法は直径9.5jLm
、高さ2.0にである。
In Figure 1, 1 is a sealing plate made of nickel-plated stainless steel, and its inner surface has a diameter of 6.8M and a thickness of 0.
.. A negative electrode 2 made of 75B lithium is pressure-bonded. The theoretical amount of electricity charged in the negative electrode is 56 mAh. 3 is a polypropylene separator, propylene carbonate and 1
.. A solvent mixed with 2-dimethoxyethane at a volume ratio of 1:1 is impregnated with an electrolytic solution in which lithium perchlorate is dissolved at a ratio of 1 mole/β. 4 is the disk-shaped positive electrode, which is further pressure-molded within a nickel-plated stainless steel battery case S. 6 is a gas Kent made of polypropylene. The dimensions of the completed battery are 9.5jLm in diameter.
, to a height of 2.0.

これら電池人〜Eを20′Cで、30にΩの負荷で放電
した時の特性を第2図に、6にΩの負荷で放電した時の
特性を第3図にそnぞれ示す。
FIG. 2 shows the characteristics of these batteries when discharged at 20'C under a load of 30 Ω, and FIG. 3 shows the characteristics when discharged under a load of 6 Ω.

第2図から明らかなように、表面処理をおこなわない酸
化銅とカルコパイライトの混合物を活物質とした場合、
比較的低負荷である20にΩの放電においても、導電材
の黒鉛粉末が6%の電池人では特性的に大きく劣ってい
るのが判る。一方、表面処理をおこなった酸化鋼とカル
コパイライトの混合物を活物質とした本発明の電池りは
、導電材の黒鉛粉末が6%であるにもかかわらず、無処
理の活物質に導電材を10チ、16%混合した電池B、
Cよりも特性的にすぐれているのが判る。
As is clear from Figure 2, when a mixture of copper oxide and chalcopyrite without surface treatment is used as an active material,
It can be seen that even at a discharge of 20Ω, which is a relatively low load, a battery containing 6% graphite powder as a conductive material has greatly inferior characteristics. On the other hand, in the battery cell of the present invention, which uses a mixture of surface-treated oxidized steel and chalcopyrite as an active material, although the graphite powder as a conductive material accounts for 6%, the conductive material is added to the untreated active material. 10chi, 16% mixed battery B,
It can be seen that it has better characteristics than C.

また電子ウォッチなどに使用する場合の強負荷パルス放
電を想定した5にΩ負荷の放電では、第3図にみられる
如く、放電電圧特性、活物質の利用率の面で、明らかに
本発明電池、D、Hのすぐnているのが判る。
In addition, when discharging with a load of 5Ω, which is assumed to be a strong load pulse discharge when used in an electronic watch, etc., as shown in Figure 3, it is clear that the battery of the present invention has poor discharge voltage characteristics and active material utilization. , D, and H are located right next to each other.

即ち、同じ酸化銅とカルコパイライト活物質を用い、同
じ電池構成をとっているにもかかわらず、大きな差が認
められるのは、酸化銅およびカルコパイライトの表面に
黒鉛を吸着させた効果が現れているものと言える。
In other words, even though the same copper oxide and chalcopyrite active materials are used and the battery configuration is the same, there is a large difference due to the effect of adsorbing graphite on the surface of the copper oxide and chalcopyrite. It can be said that there is.

実施例2 実施例1と同様の電池構成で、導電材をカーボンブラッ
クの1種である、アセチレンプラックに変えて検討をお
こなった。その正極構成を第2表して示す。
Example 2 A study was conducted with the same battery configuration as in Example 1, but with the conductive material changed to acetylene plaque, which is a type of carbon black. The positive electrode configuration is shown in Table 2.

第   2   表 これら電池をA′〜E′ とし、実施例1の場合と同様
に20°Cで30にΩの負荷をつないで放電した時の特
性を第4図に、6にΩの負荷で放電した時の特性を第6
図にそれぞn示す。
Table 2 The characteristics of these batteries A' to E' when discharged at 20°C with a load of 30 Ω connected to them as in Example 1 are shown in Figure 4. The characteristics when discharged are shown in the 6th
The figure shows n.

第4図から明らかなように、本発明電池D’、!’は在
来電池人’ 、 B’ 、 C’とくらべ、電圧特性お
よび放電利用率の面ですぐれている。更に第5図に示す
強負荷放電では、その差はより顕著である。
As is clear from FIG. 4, the battery D',! 'Batteries' are superior in terms of voltage characteristics and discharge utilization rate compared to conventional batteries ', B' and C'. Furthermore, in the case of heavy load discharge shown in FIG. 5, the difference is even more remarkable.

即ち、酸化銅およびカルコパイライト活物質の表面に黒
鉛粉末を吸着させることにより、導電材炭素粉末の種類
の如何にかかわらず、電池の放電電圧、放電電気量の面
で大きな改善が認めらnる。
In other words, by adsorbing graphite powder on the surface of copper oxide and chalcopyrite active materials, significant improvements in the discharge voltage and amount of electricity of the battery were observed, regardless of the type of conductive carbon powder. .

発明の効果 以上のことから明らかな如く、本発明によれば酸化銅と
カルコパイライトの表面に黒鉛全吸着させたものを活物
質とすることにより、正極に電子電導性を持たぜるため
必要な導電材の炭素粉末量全低減し、結果として充填活
物質量全増大させ、かつ活物質の利用率を向上させるこ
とにより、在来電池とくらべ、より電圧特性のすぐれた
、高容量密度の電池を提供できるという効果かえられる
Effects of the Invention As is clear from the above, according to the present invention, by using as an active material a material in which graphite is completely adsorbed on the surface of copper oxide and chalcopyrite, it is possible to obtain the necessary properties for imparting electronic conductivity to the positive electrode. By reducing the amount of carbon powder in the conductive material, increasing the amount of filled active material, and improving the utilization rate of the active material, we have created a battery with better voltage characteristics and higher capacity density than conventional batteries. This has the effect of being able to provide the following.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で用いたボタン形電池の断面図
、第2図、第3図は正極の導電材として黒鉛粉末を用い
たときの本発明電池と在来電池との特性比較図、第4図
、第5図は正極の導電材としてカーボンブランクを用い
たときの本発明電池と在来電池との特性比較図である。 1・・・・・・封口板、2・・・・・・負極、3・・・
・・・セパレータ、4・・・・・・正極、5・・・・・
・ケース、6・・・・・・ガスケット。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−封口板 Z−−−λ腫 3−−−セパバレー/ 4−正極 第 1 図          5− ブース乙 −刈
゛スズット 第2図 θ               5l)l)    
           7ρθO厳電吟関ぺ) 第3図 7)            、50        
   /θθ放電昨聞(幻 第4図 0              5θo       
       10ρ0放J叱埒間 ((ジ
Figure 1 is a cross-sectional view of a button-shaped battery used in an example of the present invention, and Figures 2 and 3 are comparisons of characteristics between the battery of the present invention and a conventional battery when graphite powder is used as the conductive material in the positive electrode. 4 and 5 are characteristic comparison diagrams between a battery of the present invention and a conventional battery when a carbon blank is used as the conductive material of the positive electrode. 1...Sealing plate, 2...Negative electrode, 3...
...Separator, 4...Positive electrode, 5...
・Case, 6...Gasket. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
--Sealing plate Z---λ tumor 3---Separator/4-Positive electrode No. 1 Figure 5-Booth B -Cut Suzut Figure 2 θ 5l)l)
7ρθO Genden Ginkanpe) Figure 3 7), 50
/θθ discharge last time (phantom figure 4 0 5θo
10ρ0 Hou J Sakuma ((Ji

Claims (2)

【特許請求の範囲】[Claims] (1)酸化銅(CuO)とカルコパイライト(CuFe
S_2)の混合物を活物質とする正極と、リチウムもし
くはリチウムを主体とする合金を活物質とする負極と、
有機電解質とからなる電池において、前記正極は表面に
黒鉛粉末を吸着させた酸化銅とカルコパイライトおよび
導電材である炭素粉末と結着剤とからなることを特徴と
する有機電解質電池。
(1) Copper oxide (CuO) and chalcopyrite (CuFe)
A positive electrode using a mixture of S_2) as an active material, and a negative electrode using lithium or an alloy mainly composed of lithium as an active material.
An organic electrolyte battery characterized in that the positive electrode is made of copper oxide and chalcopyrite with graphite powder adsorbed on the surface, carbon powder as a conductive material, and a binder.
(2)導電材の炭素粉末が、黒鉛またはカーボンブラッ
クである特許請求の範囲第1項記載の有機電解質電池。
(2) The organic electrolyte battery according to claim 1, wherein the carbon powder of the conductive material is graphite or carbon black.
JP61273246A 1986-11-17 1986-11-17 Organic electrolyte cell Pending JPS63126153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61273246A JPS63126153A (en) 1986-11-17 1986-11-17 Organic electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61273246A JPS63126153A (en) 1986-11-17 1986-11-17 Organic electrolyte cell

Publications (1)

Publication Number Publication Date
JPS63126153A true JPS63126153A (en) 1988-05-30

Family

ID=17525159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61273246A Pending JPS63126153A (en) 1986-11-17 1986-11-17 Organic electrolyte cell

Country Status (1)

Country Link
JP (1) JPS63126153A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347691A (en) * 1992-01-10 1994-09-20 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Clip assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347691A (en) * 1992-01-10 1994-09-20 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Clip assembly

Similar Documents

Publication Publication Date Title
US5262255A (en) Negative electrode for non-aqueous electrolyte secondary battery
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JPS63126153A (en) Organic electrolyte cell
JPH0426075A (en) Organicelectrolyte battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JPS62290070A (en) Organic electrolyte secondary battery
JPS5912566A (en) Organic electrolyte battery
JPH02239572A (en) Polyaniline battery
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JPH0355770A (en) Lithium secondary battery
JP3087275B2 (en) Sealed lead-acid battery
JPS63150855A (en) Nonaqueous electrolyte secondary cell
JP3968248B2 (en) Aluminum battery
JPS63126154A (en) Organic electrolyte cell
JPS6142868A (en) Nonaqueous electrolyte battery
JPH04363862A (en) Lithium secondary battery
JPH01313861A (en) Organic electrolyte secondary cell
JPH0234433B2 (en)
JPS6174258A (en) Lithium organic secondary battery
JPH01320780A (en) Organic electrolytic accumulator
JPH01307163A (en) Organic electrolyte battery
JPS60246562A (en) Organic electrolyte cell
JP2002231226A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JPH06124706A (en) Sealed nickel-zinc storage battery