JPS5887758A - Positive electrode for battery and its manufacture - Google Patents

Positive electrode for battery and its manufacture

Info

Publication number
JPS5887758A
JPS5887758A JP18406481A JP18406481A JPS5887758A JP S5887758 A JPS5887758 A JP S5887758A JP 18406481 A JP18406481 A JP 18406481A JP 18406481 A JP18406481 A JP 18406481A JP S5887758 A JPS5887758 A JP S5887758A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
solid
electrode body
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18406481A
Other languages
Japanese (ja)
Inventor
Masashi Oi
大井 正史
Katsuhiro Mizoguchi
勝大 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP18406481A priority Critical patent/JPS5887758A/en
Publication of JPS5887758A publication Critical patent/JPS5887758A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a solid state battery having high ionic conductivity, easily workable positive electrode, and no electrolyte leakage by making contain ion conductive solid containing an electrolyte comprising either metallic ion of groupsIand II of the periodic table, an organic high polymer compound, and an organic solbent. CONSTITUTION:A solid electrolyte or an ion conductive solid is used as a separator, a metal of groupsIor II of the periodic table is used as a negative electrode. This constitution makes a battery solid or solid state, and provides the battery having no electrolyte leakage and high reliability same as a solid state battery. Ion conductive solid used for this battery is superior to a solid electrolyte in terms of ionic conductivity, mechanical workability, and cost. E, F, G of the figure show each of discharge performance of a battery having of 60, 52, 45 volume percent of an organic solvent respectively. As the ratio of an organic solvent in an ion conductive solid is increased, the discharge performance of a battery is improved.

Description

【発明の詳細な説明】 本発明はイオン導電性の高い組成物を含む電池用正極体
−およびその製造方法に関しとくに、高分子の本来具有
する易加工性および結着性などの優れた機械的性質が付
与され、さらにイオン導電性が非常vc高い固形体組成
物を含む電池用正極体、およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a positive electrode body for a battery containing a composition with high ionic conductivity and a method for producing the same. The present invention relates to a positive electrode body for a battery, which includes a solid body composition which is imparted with properties and has extremely high ionic conductivity, and a method for producing the same.

近年、携膏用電子機器の需要の増大と共に、高性能、小
型・軽量の機器が要求されている。これに伴い、機器の
電源となる電池についても、高エネルギー密度にして小
型、薄型かものが要求され、さらに部品としての高い信
頼性が必要とされている。
In recent years, with the increase in demand for electronic devices for mobile phone use, there has been a demand for high performance, compact, and lightweight devices. Along with this, batteries that serve as power sources for devices are required to have high energy density, small size, and thinness, and also need to be highly reliable as components.

一般に、電池の正極体は、正接活物質、導電剤。Generally, the positive electrode body of a battery consists of a tangential active material and a conductive agent.

結着剤およびイオン導電性材料からなる。従来、イオン
導電性材料としては、いわゆる湿式電池と称される電池
ではt電解質溶液が、また固体電池と称される電池では
固体電解質が用いられている。
Consists of a binder and an ionically conductive material. Conventionally, as the ion conductive material, a t-electrolyte solution has been used in batteries called wet batteries, and a solid electrolyte has been used in batteries called solid batteries.

湿式電池における正極体にば1解質溶液が含まれている
九め、使用中に液漏れが発生する危険性を有し、信頼性
に乏しい。ま念、湿式電池に用いる正極体は種々の形状
に加工する九めに主に電気絶縁性でかつ電解質溶液に溶
解しない結着剤全使用する。加工性の向上の九めに結着
剤をよシ多く含有させ念場合、結着剤の組成比が大きく
なるに従って、正極活物質の組成比が小さくな)、電気
密度が低くなシ、さらに正極活物質が結着剤で被覆され
るため電池としての使用効率(以下放電効率と称す)が
低下してしまう。したがって、正極体は結着剤を多量に
含むことができず、加工性が悪いという欠点全盲する。
Since the positive electrode body of a wet battery contains a solute solution, there is a risk of leakage during use, resulting in poor reliability. To be sure, the positive electrode bodies used in wet batteries are processed into various shapes and mainly use binders that are electrically insulating and insoluble in electrolyte solutions. In order to improve processability, if a large amount of binder is added, the composition ratio of the positive electrode active material decreases as the composition ratio of the binder increases), and the electric density becomes low. Since the positive electrode active material is coated with the binder, the efficiency of use as a battery (hereinafter referred to as discharge efficiency) decreases. Therefore, the positive electrode body cannot contain a large amount of binder, which completely eliminates the disadvantage of poor processability.

次に、固体電池における正極体は、イオン導電性材料と
して固体電解質全含有している。固体電解質としては、
ベータアルミナ、ヨー化ルビジウム銀、窒化リチウム、
ヨウ化リチウムアルミナ等が知られているが、これらの
材料は室温での安定性、イオン導電性2制格などに欠点
を有し、さらに、正極体に混合した場合−均一混合が困
難であり、また混合物は機械的加工性に劣る九め任意に
成型することが非常に困難であるなどの欠点を有してい
る。さらに、正極活物質と固体電解質の接触は固体同士
であるために、界面抵抗が大きく、電池の内部抵抗を大
きくしてしまう。また、接触面積も少いために放電効率
が悪いなど、多くの欠点を有している。
Next, the positive electrode body in a solid-state battery entirely contains a solid electrolyte as an ion-conductive material. As a solid electrolyte,
Beta alumina, rubidium silver iodide, lithium nitride,
Lithium iodide alumina, etc. are known, but these materials have drawbacks such as stability at room temperature and ion conductivity 2 standards, and furthermore, when mixed in the positive electrode body - it is difficult to mix uniformly. In addition, the mixture has disadvantages such as poor mechanical workability and is extremely difficult to mold into any desired shape. Furthermore, since the positive electrode active material and the solid electrolyte are in solid contact with each other, the interfacial resistance is large, increasing the internal resistance of the battery. In addition, it has many drawbacks, such as poor discharge efficiency due to the small contact area.

本発明の目的は、上記欠点に対処した電池用の正極体を
提供することにある。
An object of the present invention is to provide a positive electrode body for a battery that addresses the above-mentioned drawbacks.

す力わち、本発明は周期律表の■族または「族の少くと
もいずれか一方に属する金属のイオンからなる電解質、
有機高分子化合物、および上記電解質と有機高分子化合
物とを溶解する有機溶媒を含むイオン導電性固形法組成
物を含有することを特徴とする電池用正極体およびその
製造方法km供することにある。
Specifically, the present invention provides an electrolyte comprising ions of metals belonging to at least one of group 1 or group 1 of the periodic table;
An object of the present invention is to provide a positive electrode body for a battery, which is characterized by containing an ion conductive solid method composition containing an organic polymer compound and an organic solvent that dissolves the electrolyte and the organic polymer compound, and a method for producing the same.

本発明による固形体とは、それを用いた電池の使用条件
下で見掛は上置形状態を呈し、液体のように流れる物体
の状態ではない物体をいう。
The solid body according to the present invention refers to a body that appears to be in a top-down state under the conditions of use of a battery using the solid body, and is not in the state of a flowing body like a liquid.

本発明の正極体は、上記のようなイオン導電性固形法組
成物によフて高いイオン導電性を得ると共に、有機高分
子化合物を用いることによって1それの本来具有する優
れた機械的加工性を正極体に付与したことを特徴として
−る。
The positive electrode body of the present invention obtains high ionic conductivity by using the above-mentioned ion conductive solid composition, and by using an organic polymer compound, 1. is applied to the positive electrode body.

本発明において用いられるイオン導電性固形法組成物は
、特願和56−029091号明細書によるものであり
、表にその組成物の組み合せを示し念。
The ion conductive solid composition used in the present invention is based on Japanese Patent Application No. 56-029091, and the combinations of the compositions are shown in the table.

一般に、電池としての放電効率や放電電流から考えられ
る電池の内部抵抗を考えると、正極体を構成するイオン
導電性固形法組成物のイオン導電率σiは高いほど有効
である。σ1はイオン導電性固形法組成物を構成する有
機高分子化合物および有機溶媒の各々の比鰐電率εに著
しく依存することが判明しており、εが4以上の有機高
分子化合物と6が10以上の有機溶媒の組み合せた場合
には、両物質のεによる効果が相乗的に顕著に発現して
、最高1O5−Cm−1の非常に高込σ1が得られてい
る。
In general, when considering the internal resistance of a battery that can be considered from the discharge efficiency and discharge current of the battery, the higher the ionic conductivity σi of the ion conductive solid composition that constitutes the positive electrode body, the more effective it is. It has been found that σ1 is significantly dependent on the specific electrical conductivity ε of each of the organic polymer compound and organic solvent constituting the ionically conductive solid method composition. When 10 or more organic solvents are combined, the effects of ε of both substances are synergistically significant, and a very high σ1 of a maximum of 1O5-Cm-1 is obtained.

表に示されたようなイオン導電性固形法組成物を用いて
正極体を構成し、電池さしての放電特性全検討し念とこ
ろ、放電特性はイオン導電性固形法組成物のσ1に著し
く依存していた。し九がっ(つ づ き) て、εが4以上の有機高分子化合物と6が10以上の有
機溶媒の組み合せのイオン導電性固形体組成物金用する
ことがより実用的な電池を得るのに有効であるという本
発明の結論に達し念。
The positive electrode body was constructed using the ionically conductive solid composition shown in the table, and the discharge characteristics of the battery were fully investigated. was. In this way, a more practical battery can be obtained by using an ion conductive solid composition of a combination of an organic polymer compound with ε of 4 or more and an organic solvent with 6 of 10 or more. We have come to the conclusion that the present invention is effective for.

本発明による正極体は全て固体もしくは固形体より成る
几めに一隔膜として固体電解質やイオン導電性円形体組
成物を用い、負極に周期律表工属オヨヒ、または■族に
属する金属を用いることにより翫電池の構成物金全て固
体もしくは固形体にすることが可能である。これにより
、固体電池同様に漏液の危□険性のなく高い信頼性を有
する電池を得ることができる。また、この電池に用いら
れるイオン導電性円形体組成物は固体電解質よりもイオ
ン導電率1磯械的加工性2価格などの点で優れており、
従来の固体電池よシ実用性の高い電池を得ることができ
る。
The positive electrode body according to the present invention is entirely solid or made of a solid body, using a solid electrolyte or an ion-conductive circular body composition as a diaphragm, and using a metal belonging to the periodic table genus Oyohi or group Ⅰ for the negative electrode. Therefore, it is possible to make all of the metal components of the cell battery solid or solid. As a result, it is possible to obtain a highly reliable battery without the risk of liquid leakage, like a solid-state battery. In addition, the ionic conductive circular body composition used in this battery is superior to solid electrolytes in terms of ionic conductivity, mechanical workability, cost, etc.
It is possible to obtain a battery that is more practical than conventional solid-state batteries.

正極体中に含まれるイオン導電性円形体組成物の組成比
(体積%)はその値が上シ大きいほど正極体のイオン導
電率が上がり、電池としての使用効率も上がり、かつ加
工性が向上するが、それに反して正極活物質の組成比が
低下し、電気密度が低くなってしまA1高エネルギー密
度の電池が得られなくなってしまう。し九がって、イオ
ン導電性円形体組成物の組成比は、実用的な正極体を得
るうえでの最大限界値を有しておシ、その値は各々の組
成物の組み合せによって異なるが、およそ60〜90体
積チであり、この最大限界値以下の組成比であれば実用
に供しうる。
The higher the composition ratio (volume %) of the ion conductive circular body composition contained in the positive electrode body, the higher the ionic conductivity of the positive electrode body, the higher the efficiency of use as a battery, and the better the processability. However, on the contrary, the composition ratio of the positive electrode active material decreases, and the electric density decreases, making it impossible to obtain a battery with A1 high energy density. Therefore, the composition ratio of the ionically conductive circular body composition has a maximum limit value for obtaining a practical positive electrode body, and this value varies depending on the combination of each composition. , approximately 60 to 90 volumes, and a composition ratio below this maximum limit value can be put to practical use.

次に、本発明による電池用正極体の製造方法について説
明する。本製造方法は、正極体の構成物である正極活物
質、導電剤およびイオン導電性固  1形体組成物を液
状に近い状態で混合することによ)、各構成物を均一に
混合すると共に、有機高分子化合物や電解質全正極活物
質の表面にむらなく付着させることができる。この混合
物から有機溶媒を除去していき、有機溶媒がある組成比
以下になると、正極体中にイオン導電性固形体が析出し
てきて、混合物は固体状態を呈するようになる。
Next, a method for manufacturing a positive electrode body for a battery according to the present invention will be explained. This manufacturing method involves mixing the positive electrode active material, the conductive agent, and the ionic conductive solid composition, which are the components of the positive electrode body, in a nearly liquid state), uniformly mixing each component, and It can be evenly adhered to the surface of the organic polymer compound or electrolyte of all positive electrode active materials. When the organic solvent is removed from this mixture and the composition ratio of the organic solvent falls below a certain level, an ionically conductive solid is precipitated in the positive electrode body, and the mixture assumes a solid state.

この工程は、正極体の電気密度を上げまた電池の内部抵
抗を下げ、さらに活物の使用効率を上げるのに有効であ
る。なぜなら、ペースト状態で正極体を成型してから固
形化した場合は、正極体中の有機溶媒が気化することで
正極体中に空孔ができ、正極体の密度が低くなり、電気
密度が低下する。
This process is effective in increasing the electrical density of the positive electrode body, lowering the internal resistance of the battery, and increasing the efficiency of use of living materials. This is because if the positive electrode body is molded in a paste state and then solidified, the organic solvent in the positive electrode body evaporates, creating pores in the positive electrode body, lowering the density of the positive electrode body, and reducing the electrical density. do.

また1さらに空孔のため、正極体の粒子間の凄触が疎と
なシー電池の内部抵抗が増加し、正は活物質の放電効率
が低下するからである。し九がって一正極体Kl型する
前に有機溶媒の一部全除去する工程がより実用的な正極
体を得るのに有効である。
Furthermore, due to the pores, the internal resistance of the battery increases due to the sparse contact between the particles of the positive electrode body, and the discharge efficiency of the active material decreases. Therefore, a step of partially and completely removing the organic solvent before converting the positive electrode into the Kl type is effective in obtaining a more practical positive electrode.

以下、本発明を実施例で説明する。The present invention will be explained below with reference to Examples.

0実施例1〕 イオン導電性円形体組成物は表の組み合せで各々用いた
。有機溶媒に電解質を溶解した電解質溶液に有機高分子
化合物を混合し、十分に攪拌しながら加熱溶解し念。こ
れに正極活物質である二酸化マンガン(以下Mn0zと
称す)と導電剤であるアセチレンブラックを混合し、十
分に練シ合ゎせて液状に近いペーストtiた。このペー
ストラ、各々使用した有機溶媒によって異なるが、温度
間〜160’Oで加熱し、有機溶媒を除々に気化させて
ペーストが固形化するまで放置し九。次に、この同形化
した混合物をすシ潰し、粉末状態にし九。
Example 1] Ion-conductive circular body compositions were used in the combinations shown in the table. Mix an organic polymer compound with an electrolyte solution in which an electrolyte is dissolved in an organic solvent, and thoroughly stir and heat to dissolve. Manganese dioxide (hereinafter referred to as Mn0z), which is a positive electrode active material, and acetylene black, which is a conductive agent, were mixed with this and thoroughly kneaded to form a nearly liquid paste. This pastera is heated at a temperature between 160'O and 160'O, depending on the organic solvent used, and left until the organic solvent is gradually vaporized and the paste is solidified.9. Next, this isomorphic mixture is crushed to form a powder.9.

次にこの粉末を成型金型に入れ、2000kg/am2
の圧力で加圧し、直径2Qmm、厚みQ、 5 mmの
タブレットに成型し、コイル屋電池の正極体を得た。
Next, put this powder into a mold and press it at 2000 kg/am2.
The mixture was pressurized at a pressure of 2 Q mm in diameter, Q in thickness, and formed into a tablet with a thickness of 5 mm to obtain a positive electrode body for a coil-shaped battery.

次に、電池用の隔膜は、特願昭56−029091号明
細書に記載の実施例1によシ正極体の構成物と同様の組
み合せのイオン導電性円形体組成物の膜を作製し、それ
を直径21mmで切シ抜いて準備し九。
Next, as a diaphragm for a battery, a membrane of an ion conductive circular body composition having the same combination as the composition of the positive electrode body was prepared according to Example 1 described in Japanese Patent Application No. 56-029091. Cut it out to a diameter of 21mm and prepare.

また、負極体は各々の電解質の金属イオンと同じ金属を
圧延し厚さQ、3mmにしたものを直径18mmの円板
状に打ち抜いて準備され友。これらの3つの材料を正極
体、隔膜、負極体の順に積層し、電池全構成した。
The negative electrode body was prepared by rolling the same metal as the metal ions of each electrolyte to a thickness Q of 3 mm and punching it into a disk shape with a diameter of 18 mm. These three materials were laminated in the order of positive electrode body, diaphragm, and negative electrode body to form the entire battery.

本実施例で得られ几正極体は厚みがQ、5mmと薄いに
もかかわらず機械的な強度に優れてお)、成型性の良い
ものであった。し九がって、この正極体はさらに薄くす
ることも可能であシ、小屋。
Although the positive electrode body obtained in this example was as thin as 5 mm, it had excellent mechanical strength) and good moldability. In fact, it is possible to make this positive electrode body even thinner.

薄型の電池を得るのに適している。また、表の本特許請
求の範囲第1項を満たすどの組み合せのイオン導電性円
形体組成物を用すた場合も、各々の電池は初期の内部抵
抗が20OKΩ以下であり1良好な特性を示した。さら
に、各々の電池は液漏れφ(全<女<、信頼性の高いも
のであった。
Suitable for obtaining thin batteries. Furthermore, no matter which combination of ion conductive circular body compositions that satisfy claim 1 of the table are used, each battery exhibits good characteristics with an initial internal resistance of 20 OKΩ or less. Ta. Furthermore, each battery leaked liquid φ (all<female<) and was highly reliable.

この電池に放電負荷抵抗100にΩを接続し、その抵抗
の両端電圧を電池の起電力として電池の放電特性を測定
し念。その結果を第1図に示す。第1図中のA、B、C
,Dはイオン導電性円形体組成物の組み合せが各々番号
2,3,12,19のものである。有機高分子化合物の
比誘電率eが4以上と有機溶媒の1が10以上の組み合
せの試料CおよびDと、有機高分子化合物のeが4未満
の試料Aおよび有機溶媒のeが10未満の試料Be比較
すると、前者の方が電池の内部抵抗が低く、起電力の平
担性が良好であ)、かつ放電効率においても優れている
。し九がって、より実用性の高い電池の正極体を得る九
めには、イオン導電性円形体組成物の構成物としてeが
4以上の有機高分子化合物と6が10以上の有機溶媒の
組み合せのものを用いると一層効果的だという本発明の
特徴が認められた。
Connect a discharge load resistor of 100 Ω to this battery, and measure the discharge characteristics of the battery using the voltage across the resistor as the battery's electromotive force. The results are shown in FIG. A, B, C in Figure 1
, D are combinations of ionically conductive circular body compositions numbered 2, 3, 12, and 19, respectively. Samples C and D in which the organic polymer compound has a dielectric constant e of 4 or more and the organic solvent has a dielectric constant e of 10 or more; sample A in which the organic polymer compound has an e of less than 4; and the organic solvent has an e of less than 10. When comparing Sample Be, the former has a lower internal resistance of the battery, better flatness of the electromotive force), and is also superior in discharge efficiency. Therefore, in order to obtain a more practical positive electrode body for a battery, an organic polymer compound in which e is 4 or more and an organic solvent in which 6 is 10 or more are used as constituents of the ionically conductive circular body composition. It has been recognized that the present invention is characterized in that it is more effective when a combination of these is used.

〔実施例2〕 次に、リチウラ電池を例にとシ、正極体中のイオン導電
性円形体組成物の組成比を変え九場合について記述する
[Example 2] Next, nine cases in which the composition ratio of the ion conductive circular body composition in the positive electrode body is changed will be described using a Lithium ion battery as an example.

正極活物質には実施例1と同様MnQ2f:用い、隔1
1iKU表の番号19の組み合せのもの全実施例1と同
様の方法で作製したものを用いた。
As the positive electrode active material, MnQ2f was used as in Example 1, and the spacing was 1.
All of the combinations numbered 19 in the 1iKU table were prepared in the same manner as in Example 1.

あらかじめ準備されfco、2mol/lの濃度の過塩
素酸リチウム(Liclo4)/エチレンカーボネイト
溶液に有機高分子化合物ポIJアク1ノロニド1】ルを
重量比10:1の割合で混入し、温度120 ’0に加
熱しながら攪拌して溶解した。次に、アセチレンブラ、
りを5重量%混入したMnO2とこの溶液を重量の混合
比で1:2,2:3,1:1に各々混合し、各々を十分
に練シ合わせてペースト状態ニt、7’h。次に、これ
らのペーストを真空加熱乾燥i内に入れて、温、Fi1
30’O,圧力39mmHgの条件下で各々の減圧・加
熱時間を制御することによシ、ペースト中に形成される
イオン導電性円形体組成物の各成分の組成比が等しくな
るようにし友、有機溶媒の一部が気化して固化し九各々
のペーストラ乳鉢中で十分にす夛潰し粉末状態にし友。
An organic polymer compound PolyJac1Noronide1 was mixed in a weight ratio of 10:1 into a previously prepared lithium perchlorate (Liclo4)/ethylene carbonate solution with a concentration of 2 mol/l, and the mixture was heated at a temperature of 120'. The mixture was stirred and dissolved while heating to 0.0°C. Next, acetylene brane,
This solution was mixed with MnO2 containing 5% by weight of silica at a weight mixing ratio of 1:2, 2:3, and 1:1, respectively, and each was thoroughly kneaded to form a paste for 7'h. Next, these pastes were placed in a vacuum heating dryer i, heated to
By controlling each depressurization and heating time under the conditions of 30'O and a pressure of 39 mmHg, the composition ratio of each component of the ion conductive circular body composition formed in the paste is made equal; A portion of the organic solvent evaporates and solidifies, and the paste is thoroughly crushed in each mortar to form a powder.

次に、これらの粉末から重量400mgづつを取り出し
、実施例1と同様の方法にて各々直径20mm0タブレ
ツト全得念、各々の厚みは0.46゜0.43.0.4
0mmであつ友、全てのタブレットは非常に薄いにもか
かわらず、機械的な強度が強く、取り扱いの容易なもの
であった。
Next, 400 mg of each powder was taken out and made into tablets each having a diameter of 20 mm and a thickness of 0.46°, 0.43°, and 0.4° in the same manner as in Example 1.
Even though all the tablets were very thin, they had strong mechanical strength and were easy to handle.

負極体は実施例1と同様に準備されたものを用い、正極
体、隔膜、負極体の順に積層して電池を構成し九。
The negative electrode body was prepared in the same manner as in Example 1, and the positive electrode body, the diaphragm, and the negative electrode body were laminated in this order to form a battery.

これらの電池の放電特性を実施例1と同様に測定した。The discharge characteristics of these batteries were measured in the same manner as in Example 1.

その結果を第2図に示す。第2図中のE。The results are shown in FIG. E in Figure 2.

F、Gは混合比が各々1:2,2:3. 1:tに対応
するものであシ、正極体中のイオン導電性円形体組成物
の組成比が各々60,52.45体積チのものであった
The mixing ratios of F and G are 1:2 and 2:3, respectively. The composition ratio of the ion conductive circular body composition in the positive electrode body was 60 and 52.45 volume, respectively, corresponding to 1:t.

正極体中のイオン導電性向形体組成物の組成比が大きく
な右はど、よシ放電特性における電圧の平担性、放電効
率は向上し念が、相対的に正極活物質の組成は小さくな
ハエネルギー密度が低下してしまった。本実施例の場合
、イオン導電性向形体組成物の組成比が75体積tsk
超えると、正極体の放電電気量が低下し始め次。電池の
実用性から考えた場合のイオン導電性向形体組成物の組
成比の最大限界値は85体@−程度であった。
When the composition ratio of the ionically conductive material composition in the cathode body is large, the voltage uniformity and discharge efficiency in the discharge characteristics are improved, but the composition of the cathode active material is relatively small. The energy density has decreased. In the case of this example, the composition ratio of the ionic conductive body composition was 75 volume tsk
If it exceeds the limit, the amount of electricity discharged from the positive electrode begins to decrease. Considering the practicality of the battery, the maximum limit value of the composition ratio of the ionic conductive shape-oriented composition was approximately 85 bodies.

〔実施例3〕 イオン導電性向形体組成物のイオン導電率σ1はその構
成物の有機溶媒の組成比に大きく依存する。本実施例で
は正極活物質にMn0zi用い、隔膜には表の番号15
の組み合せのものを用い、正極体中のイオン導電性向形
体組成物の有機溶媒の組成比を種々変化させ九場合につ
いて記述する。
[Example 3] The ionic conductivity σ1 of the ionic conductive body composition largely depends on the composition ratio of the organic solvent in its composition. In this example, Mn0zi was used as the positive electrode active material, and number 15 in the table was used as the diaphragm.
Nine cases will be described in which the composition ratio of the organic solvent of the ionically conductive composition in the positive electrode body is varied using a combination of the following.

あらかじめ準備し九〇、2モル/lの濃度の過塩素酸リ
チウム(Liclo4)/プロピレンカータネイト溶液
20m1 にポリビニリデンフロライト重J12grを
混入し、温度130℃に加熱しながら攪拌して溶解し几
。これにMnO2重量1 sgrとアセチレンブラック
1置1 てペーストラ得た。このペース13等分Li、各々の加
熱時間を変えて組成比をコントロールした。これら3つ
のペースト金真空加熱乾燥器内に入れて.1温度13’
0”O,圧力的600mmHgのもとて各々9,10.
11時間放置し、有機溶媒の一部を気化させペース)l
固化させた。これを乳鉢中で十分にすシ潰し、粉末状態
にした。次にこの粉末から重量400mg’i取り出し
、実施例1と同様の方法にて直径29mm,厚み0.4
3mmのタブレ,トヲ得た。このタプレ,トも厚みが0
.43mmと薄いにもかかわらず、機械的な強度が強く
、取り扱いの容易なものであった。負極体は実施例1と
同様に準備されたものを用い、正極体,隔膜。
Mix polyvinylidene fluorite heavy J12gr into 20ml of a lithium perchlorate (Liclo4)/propylene cartanate solution prepared in advance and having a concentration of 2 mol/l, and stir and dissolve while heating to a temperature of 130°C. . This was mixed with 1 sgr of MnO2 and 1 part of acetylene black to obtain a paste. The composition ratio of Li was divided into 13 equal parts and the heating time for each was changed to control the composition ratio. Put these three gold pastes into a vacuum heating dryer. 1 temperature 13'
9 and 10, respectively, under 0"O and 600mmHg pressure.
Leave to stand for 11 hours to vaporize a portion of the organic solvent (paste)
Solidified. This was thoroughly crushed in a mortar to form a powder. Next, a weight of 400 mg'i was taken out from this powder, and a diameter of 29 mm and a thickness of 0.4 mm was obtained in the same manner as in Example 1.
I got a 3mm tablet. This tapere and top also have a thickness of 0.
.. Despite being as thin as 43 mm, it had strong mechanical strength and was easy to handle. The negative electrode body was prepared in the same manner as in Example 1, and the positive electrode body and diaphragm were also prepared in the same manner as in Example 1.

負極体の順に積層して電池を構成した。A battery was constructed by laminating the negative electrode bodies in this order.

これらの電池の放電特性を実施例1と同様に測定した.
その結果を第3図に示す。第3図中のHlI,Jは加熱
,乾燥時間が各々9,10.11時間のものであシ、正
極体中のイオン導電性固形体組成物中の有機溶媒の組成
比が各々70,62。
The discharge characteristics of these batteries were measured in the same manner as in Example 1.
The results are shown in FIG. HlI and J in FIG. 3 are for heating and drying times of 9 and 10.11 hours, respectively, and the composition ratios of organic solvents in the ion conductive solid composition in the positive electrode body are 70 and 62 hours, respectively. .

55重量%のものであった。It was 55% by weight.

イオン導電性固形体組成物中の有機溶媒の組成比が大き
いほど、電池の放電特性も良好になっておシ、イオン導
電性向形体組成物の特性と良く一致した。この有機溶媒
の組成比が大きいほど、放電特性は向上するが、組成比
がある値以上になると正極体中のイオン導電性向形体組
成物が固体状態をとどめることができなくなシ、液体の
ように流れる状態(流体)となり、本発明の特徴である
固形体状態の正極体を得られなくなってしまう。
The larger the composition ratio of the organic solvent in the ionically conductive solid body composition, the better the discharge characteristics of the battery, which closely matched the characteristics of the ionically conductive body composition. The higher the composition ratio of this organic solvent, the better the discharge characteristics will be, but if the composition ratio exceeds a certain value, the ionically conductive composition in the positive electrode body will not be able to remain in a solid state, and will become like a liquid. As a result, it becomes impossible to obtain a positive electrode body in a solid state, which is a feature of the present invention.

したがって、有機溶媒の組成比は最大限界値を有し、そ
の値はイ十ン導電性固形体組成物の組み合せによって異
なるが、およそ50〜90重量%であり九。
Therefore, the composition ratio of the organic solvent has a maximum limit value, which varies depending on the combination of conductive solid compositions, but is approximately 50 to 90% by weight.

本実施例では、正極体中のイオン導電性向形体組成物に
含まれる有機溶媒の組成比を加熱乾燥時間で制御したが
、加熱乾燥時の圧力や温度を変えることによっても制御
できた。また、イオン導電性向形体組成物に含まれる有
機高分子化合物中電解質や有機溶媒の組成比は、正極活
物質や導電剤との混合の際に容易に制御することが可能
であり、正極体中の各組成比を制御するのはい九って容
易であった。
In this example, the composition ratio of the organic solvent contained in the ionically conductive shape-oriented composition in the positive electrode body was controlled by the heat drying time, but it could also be controlled by changing the pressure and temperature during heat drying. In addition, the composition ratio of the electrolyte and organic solvent in the organic polymer compound contained in the ionically conductive composition can be easily controlled when mixing with the positive electrode active material and conductive agent, and It was extremely easy to control each composition ratio.

なお、本実施例1.2においては、電池作製までの全て
の工程は、アルゴン不活性ガス雰囲気中でなされた。
In Example 1.2, all steps up to battery fabrication were performed in an argon inert gas atmosphere.

実施例においては、電池の隔膜にイオン導電性向形体組
成*i用いて固体状の電池全作製し説明し九が1本発明
の正極体はセパレータと電解質溶液を含む不織布金有す
る構成の場合でも、固体電解質を有する電池構成の場合
でも使用可能であることはいうまでもない。
In the examples, all solid batteries were prepared and explained using an ionically conductive shape-oriented composition *i for the battery diaphragm. Needless to say, it can also be used in a battery configuration having a solid electrolyte.

ま九、実施例においては、正極活物質iMno2にしt
場合につめて記述し九が、本発明の適用可能な範囲は正
極活物質がM n 0 2に限られるものではなく、醸
化チタン(TjOz)、酸化鋼(Cub)、酸化鉛(P
bOz)等の金属酸化物、硫化鉄(Fe28)、硫化チ
タン(TiSz)、硫化鋼(Cub)等の金属硫化物、
さらにテトラシアノキノジメタン、ペンゾキノン等の電
子供与性の大きい有機化合物等の物質を正極活物質とす
る電池を作製しても、実施例と同様な良好な電池特性が
得られた。
In the examples, the positive electrode active material iMno2 was used.
However, the applicable range of the present invention is not limited to M n 0 2 as the positive electrode active material, but also includes titanium oxide (TjOz), steel oxide (Cub), lead oxide (P
metal oxides such as iron sulfide (Fe28), titanium sulfide (TiSz), metal sulfides such as sulfide steel (Cub),
Furthermore, even when a battery was prepared using a material such as an organic compound with large electron donating properties such as tetracyanoquinodimethane or penzoquinone as a positive electrode active material, good battery characteristics similar to those of the example were obtained.

さらに、実施例においては、正極体、隔膜、負極体の3
層からなる簡単な積層型の電池構造のものにつめて記述
したが一本発明による正極体はその易加工性、結着性に
より薄騒シート状に成型することも容易であり、各々シ
ート状の正極体、隔膜、負極体を積層してシート状の電
池(シートまたはペーパーバッテリー)′@:形成した
り、またこの積層シートを折シ重ね九シ、あるいは巻き
重ねたシし友構造の電池も容易に作製できた。その結果
、シートの面積に比例した大きな電流を取シ出すことの
できる電池が得られた。
Furthermore, in the examples, three of the positive electrode body, the diaphragm, and the negative electrode body are
Although the description has focused on a simple stacked battery structure consisting of layers, the positive electrode body according to the present invention can be easily molded into a thin sheet shape due to its easy processability and binding properties. A sheet-like battery (sheet or paper battery) is formed by laminating the positive electrode body, diaphragm, and negative electrode body, or a battery with a shishitomo structure in which the laminated sheets are folded, stacked, or rolled. was also easily produced. As a result, a battery capable of drawing a large current proportional to the area of the sheet was obtained.

本発明によれば、イオン導電性が高く、易加工性の正極
体が得られ、漏液の危険性のない固形体の゛電池を容易
に得ることができる。
According to the present invention, a positive electrode body with high ionic conductivity and easy processing can be obtained, and a solid battery without the risk of leakage can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の正極体を用い次電池の放電特
性である。 第1図はイオン導電性円形体組成物の構成物の組み合せ
を種々変え几ものであり、第2図は正極体中のイオン導
電性円形体組成物の組成比が各々異なるものであシ、第
3図は正極体中のイオン導電性向形体組成物中の有機溶
媒の組成比茅各々異なるものである。 A・・・・・・有機高分子化合物の比誘電率εが4未満
のもの B・・・・・・有機溶媒のeが10未満のものCおよび
D・・・・・・有機高分子化合物のCが4以上と有機溶
媒のCが10以上の組合せ のもの E・・・・・・正極体中のイオン導電性円形体組成物の
組成比が60体積−のもの F・・・・・・  #52 G・・・・・・  #45
1 to 3 show the discharge characteristics of a next battery using the positive electrode body of the present invention. Fig. 1 shows cases in which the compositions of the ion-conductive circular body compositions are varied, and Fig. 2 shows cases in which the composition ratios of the ion-conductive circular body compositions in the positive electrode body are different. FIG. 3 shows the composition ratios of the organic solvents in the ionic conductive body compositions in the positive electrode body. A: An organic polymer compound with a dielectric constant ε of less than 4 B: An organic solvent with an e of less than 10 C and D: An organic polymer compound A combination in which C is 4 or more and C in an organic solvent is 10 or more E...A combination in which the composition ratio of the ion conductive circular body composition in the positive electrode body is 60 by volume F...・ #52 G・・・・・・ #45

Claims (2)

【特許請求の範囲】[Claims] (1)周期律表I族teは■族の少くともいずれか一方
に属する金属のイオンからなる電解質と1比誘電率4以
上の有機高分子化合物と、比誘電率10以上の有機溶媒
とを有するイオン導電性固形体組成物を含有することを
特徴とする電池用正極体。
(1) Group I of the periodic table te consists of an electrolyte consisting of ions of metals belonging to at least one of the groups II, an organic polymer compound with a dielectric constant of 4 or more, and an organic solvent with a dielectric constant of 10 or more. A positive electrode body for a battery, characterized in that it contains an ion conductive solid composition having the following properties.
(2)前記電解質と有機高分子化合物を溶解した前記有
機溶媒と正極活物質および導電剤を混合し友後、有機溶
媒の一部を除去して、前記イオン導電性固形体組成物を
形成したのち、加圧成型して正極体を得ることを特徴と
する電池用正極体の製造方法。
(2) The organic solvent in which the electrolyte and organic polymer compound were dissolved was mixed with the positive electrode active material and the conductive agent, and then a part of the organic solvent was removed to form the ionically conductive solid composition. A method for producing a positive electrode body for a battery, characterized in that the positive electrode body is then obtained by pressure molding.
JP18406481A 1981-11-17 1981-11-17 Positive electrode for battery and its manufacture Pending JPS5887758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18406481A JPS5887758A (en) 1981-11-17 1981-11-17 Positive electrode for battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18406481A JPS5887758A (en) 1981-11-17 1981-11-17 Positive electrode for battery and its manufacture

Publications (1)

Publication Number Publication Date
JPS5887758A true JPS5887758A (en) 1983-05-25

Family

ID=16146738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18406481A Pending JPS5887758A (en) 1981-11-17 1981-11-17 Positive electrode for battery and its manufacture

Country Status (1)

Country Link
JP (1) JPS5887758A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63245871A (en) * 1986-11-05 1988-10-12 Matsushita Electric Ind Co Ltd Solid electrochemical element and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544323A (en) * 1977-06-10 1979-01-13 Matsushita Electric Ind Co Ltd Method of producing positiveeactive material for solid electrolyte cell
JPS5553074A (en) * 1978-10-13 1980-04-18 Japan Storage Battery Co Ltd Solid electrolyte cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544323A (en) * 1977-06-10 1979-01-13 Matsushita Electric Ind Co Ltd Method of producing positiveeactive material for solid electrolyte cell
JPS5553074A (en) * 1978-10-13 1980-04-18 Japan Storage Battery Co Ltd Solid electrolyte cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63245871A (en) * 1986-11-05 1988-10-12 Matsushita Electric Ind Co Ltd Solid electrochemical element and manufacture thereof

Similar Documents

Publication Publication Date Title
KR101945968B1 (en) High Capacity Solid State Composite Cathode, Solid State Composite Separator, Solid-State Rechargeable Lithium Battery and Methods of Making Same
US20130273437A1 (en) All solid state battery
US20150056520A1 (en) Impregnated sintered solid state composite electrode, solid state battery, and methods of preparation
WO2011125481A1 (en) Lithium ion secondary battery and method for producing same
JP2943792B1 (en) Proton conductive polymer battery and method for producing the same
JP2007258148A (en) All-solid battery
JP2000311710A (en) Solid electrolyte battery and its manufacture
JP2002541633A (en) Porous electrode or partition used for non-aqueous battery and method for producing the same
JP2007123192A (en) Current collector and electrode for solid electrolyte secondary battery
JP2020514948A (en) ALL-SOLID LITHIUM-ION BATTERY AND MANUFACTURING METHOD THEREOF
KR20170120735A (en) Method for menufacturing a cathode of lithium primary battery
JPS60195877A (en) Positive electrode for cell
EP2951335B1 (en) Coated iron electrode and method of making same
JP3508455B2 (en) Negative electrode plate for lithium ion battery and method for producing the same
JPS5887758A (en) Positive electrode for battery and its manufacture
US20020177037A1 (en) Method for producing a separator/electrode assembly for electrochemical elements
JP2003109594A (en) Electrode material, manufacturing method of the same, electrode for battery using the same, and battery using the electrode
JPH01169873A (en) Cell
JP6721552B2 (en) Lithium air secondary battery
CN112713301A (en) Energy storage device
KR100588089B1 (en) Cathode for Ultra Thin Manganese Battery and Manufacturing Method Therefor
JPS5991674A (en) Manufacture of battery
JP5430930B2 (en) All solid state secondary battery
JPS5882468A (en) Positive pole substance for battey and manufacture thereof
JPS5885269A (en) Positive electrode for battery and its manufacture