JPS60195877A - Positive electrode for cell - Google Patents
Positive electrode for cellInfo
- Publication number
- JPS60195877A JPS60195877A JP5040484A JP5040484A JPS60195877A JP S60195877 A JPS60195877 A JP S60195877A JP 5040484 A JP5040484 A JP 5040484A JP 5040484 A JP5040484 A JP 5040484A JP S60195877 A JPS60195877 A JP S60195877A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- polymer compound
- mixture
- added
- acetone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
- H01M6/181—Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/06—Electrodes for primary cells
- H01M4/08—Processes of manufacture
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Primary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
不発明は電池用正極体に関し、とくに高分子の本来具有
する易加工性卦よび結着性などの優れた機械的性質と高
いイオン導電性を併有するイオン241r性固形体組成
物を含有する電池用正極体に関する。[Detailed description of the invention] (Technical field) The invention relates to a positive electrode body for batteries, and in particular, it combines excellent mechanical properties such as ease of processing and binding properties inherent in polymers and high ionic conductivity. The present invention relates to a battery positive electrode body containing an ionic 241r solid composition.
(従来技術)
一般に、を池用正極体(以下、正極体と称す)は、正極
活物質、導電剤、結層剤およびイオン導電性材料からな
る。従来、イオン導電性材料としては、いわゆる湿式電
池と称される電池では、電解質を水または有機溶媒に浴
解しfc’a解質溶液が。(Prior Art) In general, a positive electrode body for a pond (hereinafter referred to as a positive electrode body) consists of a positive electrode active material, a conductive agent, a binding agent, and an ion conductive material. Conventionally, as an ion conductive material, in a so-called wet battery, an electrolyte is dissolved in water or an organic solvent to form an fc'a electrolyte solution.
また固体電池と称される電池では固体電解質が用いられ
ている。Furthermore, a solid electrolyte is used in a battery called a solid battery.
上述の電解質溶液は高いイオン4を性を有するところか
ら檀々の電池に使用されているが、材料に水まfcは有
機溶媒などの液体音用いているために、電池外部への漏
液という問題が常に存在し。The above-mentioned electrolyte solution is used in many batteries because it has a high ion 4 content, but since water and FC use liquids such as organic solvents as materials, there is a risk of liquid leakage to the outside of the battery. There are always problems.
この漏液により電池の性能劣化や周辺部品の損湯を引き
起す場合がある。したがって、この電解質溶液を含む正
極体を用いた電池は高い偏傾性に欠けるという欠点があ
った。This leakage may cause deterioration of battery performance and loss of hot water in peripheral parts. Therefore, a battery using a positive electrode body containing this electrolyte solution has a drawback of lacking high eccentricity.
一万、固体電解質は、固体であるために本質的に高1B
頼性の長寿命な電池に適用でき、かつ部品の小形化およ
び薄形化に適したイオン導電性材料である。これらの固
体電解質としては、ベータ・アルミナ(β−AJ、 0
. )、ヨウ化リチウム・アルミす(L I I −A
lI Us )+ ヨウ化銀ルビジウム(R,b−Ag
41sLi&化リチウム(Li3N)、ヨウ化リチウム
Bi■)など種々の材料が開発されている。しかし、境
状では室温におけるイオン導電率が低かったフ、女足性
が悪いなどの特性面での欠点のうえに、材料が高価であ
ったシ1機械的な加工性が悪いなどの種々の欠点を有す
る。したがって、このような固体電解質を用いた電池は
特殊な用途にしか用いられておらず、広く実用化される
までには至っていない、筐た。同様の理由で固体電解質
を含有する正極体もtlとんど実用化されていない。10,000, since solid electrolytes are solids, they inherently have a high 1B
It is an ion conductive material that can be applied to reliable and long-life batteries, and is suitable for making parts smaller and thinner. These solid electrolytes include beta alumina (β-AJ, 0
.. ), lithium aluminum iodide (L I I -A
lI Us ) + silver rubidium iodide (R,b-Ag
Various materials have been developed, such as 41sLi&lithium oxide (Li3N) and lithium iodide (Bi). However, in addition to the disadvantages in terms of characteristics such as low ionic conductivity at room temperature and poor dexterity, the material was expensive and had various disadvantages such as poor mechanical workability. has. Therefore, batteries using such solid electrolytes are used only for special purposes, and have not yet been put into widespread practical use. For the same reason, cathode bodies containing solid electrolytes are also hardly put into practical use.
これに対して1発明者は特願昭58−093563号明
a香にてイオン導電性円形体組成物が正極体のイオン導
電性材料として適していることを見出した。このポリ弗
化ビニリデン、ガンマ−ブチロラクトン、および過塩素
酸リチウムからなるイオン導電性円形体組成物は、固形
体(使用条件下で見掛は上面体状態である物質)として
高いイオン導電率を有し、かつポリ弗化ビニリデンの良
好な結着性や易加工性を併有Tるものである・これを従
来のイオン4を性材料の代りとして用いることにより、
固形体の電池に好適な正極体が得られた。In contrast, one inventor discovered in Japanese Patent Application No. 58-093563 that an ionically conductive circular body composition is suitable as an ionically conductive material for a positive electrode body. This ionically conductive circular body composition consisting of polyvinylidene fluoride, gamma-butyrolactone, and lithium perchlorate has high ionic conductivity as a solid body (substance that is apparently in a top surface state under usage conditions). It also has the good binding properties and easy processability of polyvinylidene fluoride. By using this as a substitute for the conventional ion 4 material,
A positive electrode body suitable for solid-state batteries was obtained.
しかし、この正極体はガンマ−ブチロラクトンの沸点が
さほど高くないこともあり、高温使用や高温中放置など
の条件下において正極体中からガンマ−ブチロラクトン
が徐々に気化し、こ九に伴ってイオン導電性が劣化して
しまうという欠点があった。このことは、電池特性の経
時劣化全顕著にし、特に長寿命、長期侶頼性に特徴を肩
する固体電池において會よ大きな問題となる。However, because the boiling point of gamma-butyrolactone in this cathode body is not very high, gamma-butyrolactone gradually vaporizes from the cathode body under conditions such as high temperature use or storage at high temperatures, resulting in ionic conductivity. The disadvantage was that the properties deteriorated. This causes a significant deterioration of battery characteristics over time, and is a particularly serious problem for solid-state batteries, which are characterized by long life and long-term reliability.
(発明の目的)
不発明の目的はかかる従来欠点を改善した電池用正極体
を提供することにある。(Object of the invention) The object of the invention is to provide a positive electrode body for a battery that improves the conventional drawbacks.
(発明の構成)
不発明によれば、イオン導電性円形体組成物を含有する
電池用正極体において、上記イオン4Tlt性固形体組
成物が電解質、有機高分子化合物、およびシロキサンを
主鎖あるいは主成分とする高分子化合物からなることを
特徴とする電池用正極体が得られる。(Structure of the Invention) According to the invention, in a positive electrode body for a battery containing an ionic conductive circular body composition, the ionic 4Tlt solid body composition has an electrolyte, an organic polymer compound, and a siloxane in its main chain or main chain. A positive electrode body for a battery is obtained, which is characterized by being composed of a polymer compound as a component.
本発明のもっとも特徴とするところは、従来のするh分
子化合物を用いたことにある。ここで。The most distinctive feature of the present invention lies in the use of conventional h-molecule compounds. here.
1(および1モ′は、アルキル基、アルコキン基、また
はペルジル基やフェニル基などの芳香族誘導体などであ
る。1 (and 1 mo') is an alkyl group, an alkokene group, or an aromatic derivative such as a perzyl group or a phenyl group.
この高分子化合物の代表的なものにシリコーンオイルや
シリコーンワニスなどのシリコーン化合物があるが、こ
れらは耐熱性、耐薬品性、絶縁性などに優れるものとし
て知られている。これらの高分子化合物は一般的に蒸気
圧がほとんどなく、有様溶媒のように答易に気化するこ
とがない、したがって、これを正極体に適用することに
より耐熱性があり高・1g頼性の正極体が得られる。Typical examples of such polymeric compounds include silicone compounds such as silicone oil and silicone varnish, which are known to have excellent heat resistance, chemical resistance, insulation properties, and the like. These polymer compounds generally have almost no vapor pressure and do not easily vaporize like conventional solvents. Therefore, by applying them to the positive electrode, they have high heat resistance and high 1g reliability. A positive electrode body is obtained.
以下、本発明を実施例にて説明する。The present invention will be explained below with reference to Examples.
〔実施例1〕
本実施例では高分子化合物に末端基が水酸基で分子量が
約zoooであるポリジメチルシロキサンを真空加熱乾
燥機内で温度約190°0.真空度1O−2torr以
下で20時間脱水処理を施して用いた。[Example 1] In this example, a polymer compound including polydimethylsiloxane having a terminal group of hydroxyl group and a molecular weight of about zoooo was heated to a temperature of about 190°C in a vacuum heating dryer. It was used after being dehydrated for 20 hours at a vacuum degree of 1 O-2 torr or less.
アセトン100CCKm解質である過塩素[IJチウム
0.5grを入れ攪拌溶解させた後、これに有機高分子
化合物のポリ弗化ビニリデンs、ogr’を入れ。After adding 100 CCKm of acetone and 0.5 gr of perchlorine [IJ thium] and stirring to dissolve it, add the organic polymer compound polyvinylidene fluoride, ogr'.
温度40゛0で加熱しながら攪拌して溶解させた。The mixture was stirred and dissolved while heating at a temperature of 40°C.
この溶液に上記のポリジメチルシロキサン5.QCCを
添加し温度40°0で加熱しながら十分に混合した。こ
の溶液に正極活物質である二酸化マンガン25 gr
と4111剤のアセチレンブラ、り1.Ogr金入れ、
さらに温度40’Oで加熱しながらロータリーエバポレ
ータで攪拌混合をしつつアセトンを気化させ混合物を得
た。この混合物を真空加熱乾燥機内T真空度IQ to
rr以下、温度120°0で2時間乾燥させアセトンを
完全に除去した0次に、この混合物を粉砕し粉末状態に
した後、この混合物の粉末1.0grt成型金型に入れ
圧力2.000Kg/cm2で加圧成型し、厚さ1.3
mm、 ?!径18mmの円板状の正極体IA′lt傅
た。この正極体IAは結着性が強く取力扱い中での破損
が全くなかった。5. Add the above polydimethylsiloxane to this solution. QCC was added and thoroughly mixed while heating at a temperature of 40°. Add 25 gr of manganese dioxide, which is the positive electrode active material, to this solution.
and 4111 agent acetylene brane, ri1. Ogr money holder,
Further, while stirring and mixing with a rotary evaporator while heating at a temperature of 40'O, acetone was vaporized to obtain a mixture. This mixture was dried in a vacuum heating dryer at T vacuum degree IQ to
After drying at a temperature of 120° for 2 hours to completely remove acetone, the mixture was crushed to a powder state, and the powder of this mixture was placed in a 1.0grt molding die at a pressure of 2.000Kg/ Pressure molded in cm2, thickness 1.3
mm, ? ! A disk-shaped positive electrode body IA'lt with a diameter of 18 mm was used. This positive electrode body IA had strong binding properties and was not damaged at all during handling.
次に隔膜2は、ポリ弗化ビニリデン、ガンマーブチロラ
クトンおよび過塩素酸リチウムからなるイオン4It性
固形体組成物金用い、各々の組成比がJ1j1′比で2
0:4:1になるようにして直径20mm、厚さ0.1
mm(D#lI!’t”作製して準備した。Next, the diaphragm 2 is made of ionic 4It solid composition gold consisting of polyvinylidene fluoride, gamma butyrolactone, and lithium perchlorate, each having a composition ratio of 2 in the J1j1' ratio.
0:4:1, diameter 20mm, thickness 0.1
mm(D#lI!'t'' was prepared.
負極体3は厚さQ、5mmのリチウムシートを直径17
mmに打ち抜いて準備した。The negative electrode body 3 is a lithium sheet with a thickness of Q and a diameter of 17 mm.
It was prepared by punching it out in mm.
次に、正極体IA、隔膜2.負極体3を第1図のように
外装ケース4,5および絶縁リング6の中に積層したの
ち、かしめて密封しコイン型の電池を作製した。この電
池に100Krの負荷抵抗全接続して放電特性を測足し
た。第2図のAにその結果をボす。Next, the positive electrode body IA, the diaphragm 2. The negative electrode body 3 was laminated in the outer cases 4 and 5 and the insulating ring 6 as shown in FIG. 1, and then caulked and sealed to produce a coin-shaped battery. A load resistance of 100 Kr was fully connected to this battery, and the discharge characteristics were measured. The results are shown in A of Figure 2.
〔実施例2〕
不実施例では分子量が約L200で40重量部の実施例
Jに準じた材料と製造方法により同形状の正極体IBを
作製した・
この正極体IBと実施例1で作製した正極体lんおよび
従来手段によるガンマプチロラノトンを用いた正極体I
Cの3種類の正極体を温度80°0で20日間放置した
。放置前後の各正極体の重量変化を調べたところ、不発
明による高分子化合物を用いた正極体はほとんど重量減
少がなかったのに対し、従来手段による正極体はガンマ
−ブチロラクトンの気化によシ約380チの重量減少が
あった。[Example 2] In the non-example, a cathode body IB having the same shape was produced using materials and manufacturing methods similar to those in Example J, with a molecular weight of about L200 and 40 parts by weight. This cathode body IB and the cathode body IB produced in Example 1 Positive electrode body I and positive electrode body I using gamma petiloranoton by conventional means
Three types of positive electrode bodies of C were left at a temperature of 80° 0 for 20 days. When we examined the weight change of each cathode body before and after leaving it, we found that the cathode body using the uninvented polymer compound showed almost no weight loss, whereas the cathode body made by conventional means showed no weight loss due to the vaporization of gamma-butyrolactone. There was a weight reduction of approximately 380 inches.
次に、高温放置後の各正極体を用い実施例1に準じてコ
イン型電池を作製し、100KΩの負荷抵抗で放電特性
を測足した。その結果を第2図のB。Next, a coin type battery was produced according to Example 1 using each positive electrode body after being left at high temperature, and the discharge characteristics were measured with a load resistance of 100 KΩ. The results are shown in B of Figure 2.
C,Dに示す、第2図のH,CtIi本発明によるもの
であり、各々高分子化合物にポリジメチルシロキサン、
ジメチルシロキサンとエチレンオキサイドの共重合体を
用いたものである。第2図のCは従来手段によシ、有機
溶媒にガンマ−ブチロラクトンを用いたものである。H and CtIi in FIG. 2 shown in C and D are according to the present invention, and each contains polydimethylsiloxane,
It uses a copolymer of dimethylsiloxane and ethylene oxide. C in FIG. 2 is a conventional method using gamma-butyrolactone as an organic solvent.
本発明による正極体の方が従来手段によるものよルも放
電電気量にして40%以上も多く%また第2図のAとB
の特性を比較してもほとんど差がなく高温放置後の特性
劣化がほとんどなかった。The positive electrode body according to the present invention has a discharge quantity of electricity which is more than 40% higher than that produced by the conventional means, and A and B in FIG.
There was almost no difference when comparing the characteristics of the two, and there was almost no deterioration of the characteristics after being left at high temperatures.
本実施例1,2では%電池作製までの全ての工程はアル
ゴン不活性ガス算囲気中でなされた。In Examples 1 and 2, all the steps up to battery production were performed in an argon inert gas atmosphere.
(効果) 以上、不発明によれば次の効果がある。(effect) As described above, non-invention has the following effects.
(:)高温使用、高温中保存の可能な電池用正極体が得
られる。(:) A battery positive electrode body that can be used and stored at high temperatures is obtained.
叩 使用温度範囲が広く長寿命、長期1ざ頼性の固形体
電池が得られる。A solid battery with a wide operating temperature range, long life, and long-term reliability can be obtained.
【図面の簡単な説明】
第1図は不実施例において作製したコイン型電池の断面
図、第2図は不発明および従来手段による正極体を用い
た電池の放電特性図。
s A# lB+ s C・・・・・・正極体、2・・
・・・・隔膜、3・・・・・・負極体、4および5・・
・・・・外装ケース、6・川・・絶縁リング、A・・・
・・・本発明による高分子化合物にポリジメチルシロキ
サンを用いたもの、B・・・・・・高分子化合物にポリ
ジメチルシロキサンを用い高温保存後のもの%C・・・
・・・高分子化合物にジメチルシロキサンとエチレンオ
キサイドの共重合体を用い高温保存後のもの、D・・・
・・・従来手段によるガンマ−ブチロラクトンを用い高
温保存後のもの。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a coin-type battery manufactured in a non-example, and FIG. 2 is a discharge characteristic diagram of a battery using a positive electrode body manufactured by the non-invention and conventional means. s A# lB+ s C...Positive electrode body, 2...
...Diaphragm, 3...Negative electrode body, 4 and 5...
...Exterior case, 6.Insulation ring, A...
...Those using polydimethylsiloxane as the polymer compound according to the present invention, B...Those using polydimethylsiloxane as the polymer compound and after high temperature storage %C...
... After high temperature storage using a copolymer of dimethylsiloxane and ethylene oxide as a polymer compound, D...
... after high temperature storage using gamma-butyrolactone by conventional means.
Claims (1)
いて、前記イオン導電性円形体組成物が電解質、有機高
分子化合物、およびシロキサンを主鎖あるいは主成分と
する高分子化合物からなることを特徴とする電池用正極
体。A positive electrode body for a battery containing an ionic 4i solid body composition, characterized in that the ionically conductive circular body composition consists of an electrolyte, an organic polymer compound, and a polymer compound having siloxane as a main chain or main component. Positive electrode body for batteries.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5040484A JPS60195877A (en) | 1984-03-16 | 1984-03-16 | Positive electrode for cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5040484A JPS60195877A (en) | 1984-03-16 | 1984-03-16 | Positive electrode for cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60195877A true JPS60195877A (en) | 1985-10-04 |
Family
ID=12857925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5040484A Pending JPS60195877A (en) | 1984-03-16 | 1984-03-16 | Positive electrode for cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60195877A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004066420A1 (en) * | 2003-01-23 | 2004-08-05 | Sony Corporation | Electrode and battery |
US6887619B2 (en) | 2002-04-22 | 2005-05-03 | Quallion Llc | Cross-linked polysiloxanes |
US7226702B2 (en) | 2002-03-22 | 2007-06-05 | Quallion Llc | Solid polymer electrolyte and method of preparation |
US7473491B1 (en) | 2003-09-15 | 2009-01-06 | Quallion Llc | Electrolyte for electrochemical cell |
US7498102B2 (en) | 2002-03-22 | 2009-03-03 | Bookeun Oh | Nonaqueous liquid electrolyte |
US7588859B1 (en) | 2004-02-11 | 2009-09-15 | Bookeun Oh | Electrolyte for use in electrochemical devices |
US7695860B2 (en) | 2002-03-22 | 2010-04-13 | Quallion Llc | Nonaqueous liquid electrolyte |
US7718321B2 (en) | 2004-02-04 | 2010-05-18 | Quallion Llc | Battery having electrolyte including organoborate salt |
US8076031B1 (en) | 2003-09-10 | 2011-12-13 | West Robert C | Electrochemical device having electrolyte including disiloxane |
US8076032B1 (en) | 2004-02-04 | 2011-12-13 | West Robert C | Electrolyte including silane for use in electrochemical devices |
US8153307B1 (en) | 2004-02-11 | 2012-04-10 | Quallion Llc | Battery including electrolyte with mixed solvent |
US8715863B2 (en) | 2004-05-20 | 2014-05-06 | Quallion Llc | Battery having electrolyte with mixed solvent |
US8765295B2 (en) | 2004-02-04 | 2014-07-01 | Robert C. West | Electrolyte including silane for use in electrochemical devices |
US9786954B2 (en) | 2004-02-04 | 2017-10-10 | Robert C. West | Electrolyte including silane for use in electrochemical devices |
-
1984
- 1984-03-16 JP JP5040484A patent/JPS60195877A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7695860B2 (en) | 2002-03-22 | 2010-04-13 | Quallion Llc | Nonaqueous liquid electrolyte |
US7226702B2 (en) | 2002-03-22 | 2007-06-05 | Quallion Llc | Solid polymer electrolyte and method of preparation |
US7498102B2 (en) | 2002-03-22 | 2009-03-03 | Bookeun Oh | Nonaqueous liquid electrolyte |
US6887619B2 (en) | 2002-04-22 | 2005-05-03 | Quallion Llc | Cross-linked polysiloxanes |
WO2004066420A1 (en) * | 2003-01-23 | 2004-08-05 | Sony Corporation | Electrode and battery |
US8076031B1 (en) | 2003-09-10 | 2011-12-13 | West Robert C | Electrochemical device having electrolyte including disiloxane |
US7473491B1 (en) | 2003-09-15 | 2009-01-06 | Quallion Llc | Electrolyte for electrochemical cell |
US7718321B2 (en) | 2004-02-04 | 2010-05-18 | Quallion Llc | Battery having electrolyte including organoborate salt |
US8076032B1 (en) | 2004-02-04 | 2011-12-13 | West Robert C | Electrolyte including silane for use in electrochemical devices |
US8765295B2 (en) | 2004-02-04 | 2014-07-01 | Robert C. West | Electrolyte including silane for use in electrochemical devices |
US9786954B2 (en) | 2004-02-04 | 2017-10-10 | Robert C. West | Electrolyte including silane for use in electrochemical devices |
US7588859B1 (en) | 2004-02-11 | 2009-09-15 | Bookeun Oh | Electrolyte for use in electrochemical devices |
US8153307B1 (en) | 2004-02-11 | 2012-04-10 | Quallion Llc | Battery including electrolyte with mixed solvent |
US8715863B2 (en) | 2004-05-20 | 2014-05-06 | Quallion Llc | Battery having electrolyte with mixed solvent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60195877A (en) | Positive electrode for cell | |
JPH01294768A (en) | Liquid containing polymer network as a solid electrolyte | |
EP0525728A1 (en) | Lithium battery | |
JP2000040527A (en) | Stacked electrolyte and battery using it | |
JPS59224072A (en) | Nonaqueous electrolyte | |
JP3098248B2 (en) | Ion conductor or electrolyte for batteries | |
KR20170120735A (en) | Method for menufacturing a cathode of lithium primary battery | |
JPH0324024B2 (en) | ||
US6290733B1 (en) | Process for the production of an electric cell with a unitary structure | |
JPH01169873A (en) | Cell | |
JPS5875779A (en) | Solid electrolyte cell | |
KR100400215B1 (en) | Polymer matrix, polymer solid electrolyte containing the matrix, and lithium secondary battery employing the electrolyte | |
KR100385485B1 (en) | Thin film electrolyte and a method for preparing the same | |
JPS59230058A (en) | Ionic conductive solid composition | |
KR100325326B1 (en) | Method For Manufacturing Powder Mixture Of Conductive Polymer And Sulfur-Containing Organic Compound And Method For Manufacturing Cathode Utilizing The Same | |
JPS6123947B2 (en) | ||
CN114023960B (en) | Metal coordination polymer organic positive electrode material and preparation method thereof | |
JPS5991674A (en) | Manufacture of battery | |
JPS5887758A (en) | Positive electrode for battery and its manufacture | |
JPS6138584B2 (en) | ||
JP2001026661A (en) | Preparation of ion-conductive polymer composition and polymer cell | |
KR20160071115A (en) | Polymer electrolyte containing porous micro capsule and manufacturing method the same | |
JPS60216463A (en) | Cell | |
JP3036492B2 (en) | Polymer gel electrolyte, method for producing the same, and polymer battery | |
KR100297923B1 (en) | Polymeric Electrolyte of Polyacrylonitrile Ionomer And Process for Preparing the Same |