JPH0324024B2 - - Google Patents

Info

Publication number
JPH0324024B2
JPH0324024B2 JP59024165A JP2416584A JPH0324024B2 JP H0324024 B2 JPH0324024 B2 JP H0324024B2 JP 59024165 A JP59024165 A JP 59024165A JP 2416584 A JP2416584 A JP 2416584A JP H0324024 B2 JPH0324024 B2 JP H0324024B2
Authority
JP
Japan
Prior art keywords
battery
insoluble
electrolyte battery
substrate
organic electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59024165A
Other languages
Japanese (ja)
Other versions
JPS60170163A (en
Inventor
Shizukuni Yada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP59024165A priority Critical patent/JPS60170163A/en
Priority to US06/690,799 priority patent/US4615960A/en
Priority to DE8585100517T priority patent/DE3586207T2/en
Priority to EP85100517A priority patent/EP0149497B1/en
Publication of JPS60170163A publication Critical patent/JPS60170163A/en
Publication of JPH0324024B2 publication Critical patent/JPH0324024B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気伝導性有機高分子系材料に電子供
与性物質又は電子受溶性物質をドーピングしたも
のを電極活物質とする有機電解質電池に関する。 近年、電子機器の小型化,薄形化或は軽量化は
目覚ましく、それに伴い電源となる電池の小型
化,薄形化、軽量化の要望が大きい。小型で性能
のよい電池として現在酸化銀電池が多用されてお
り、又薄形化された乾電池や、小型軽量の高性能
電池としてリチウム電池が開発され実用化されて
いる。しかし、これらの電池は1次電池であるた
め充放電を繰り返して長時間使用することはでき
ない。一方、高性能な2次電池としてニツケル・
カドミウム電池が実用されているが、小型化,薄
形化,軽量化という点で未だ不満足である。 又、大容量の2次電池として従来より鉛蓄電池
が種々の産業分野で用いられているが、この電池
の最大の欠点は重いことである。これは電極とし
て過酸化鉛及び鉛を用いているため宿命的なもの
である。近年、電気自動車用電池として該電池の
軽量化及び性能改善が試みられたが、実用化する
迄には至らなかつた。しかし蓄電池として大容量
で且つ軽量な2次電池に対する要望は強いものが
ある。 上記の通り、現在実用されている電池は夫々一
長一短があり、それぞれ用途に応じて使い分けさ
れているが、何れにしても電池の小型化,薄形化
或は軽量化に対するニーズは大きいものがある。
このようなニーズに即応する電池として、近時、
有機半導体である薄膜状ポリアセチレンに電子供
与性物質又は電子受容性物質をドーピングしたも
のを電極活物質として用いた電池が開発されてい
る。この電池は2次電池として高性能で且つ薄形
化,軽量化の可能性を有しているが、次に述べる
様な大きな欠点がある。即ち、有機半導体である
ポリアセチレンが極めて不安定な物質であり、空
気中の酸素により容易に酸化を受け、又熱により
変質することである。従つて電池製造は不活性ガ
ス雰囲気で行わなければならず、又ポリアセチレ
ンを電極に適した形状に加工する際にも制約を受
ける。 通常、2次電池に要求される条件は、起電圧が
高いこと、充放電の電荷効率及びエネルギー効率
が高いこと、重量当りのエネルギー密度及パワー
密度が大きいこと、寿命が長いこと、メンテナン
スフリーであること、安価であること等々であ
る。本発明の目的は高性能を有する2次電池を提
供するにある。他の目的は起電圧が高く、充放電
の電荷効率及びエネルギー効率が高く、且つ重量
当りのエネルギー密度及びパワー密度が高い2次
電池を提供するにある。他の目的は寿命が長く、
メンテナンスフリーである2次電池を提供するに
ある。他の目的は小型化或は薄形化が容易は2次
電池を提供するにある。更に他の目的は製造が容
易で安価な2次電池を提供するにある。 上述の目的は炭素,水素および酸素からなる芳
香族系縮合ポリマーの熱処理物であつて、水素原
子/炭素原子の原子比が0.05〜0.5であり、且つ
BET法による比表面積値が600m2/g以上である
ポリアセン系骨格構造を有する不溶不融性基体を
正極及び/又は負極とし、電解により該電極にド
ーピング可能なイオンを生成し得る化合物の非プ
ロトン性有機溶媒溶液を電解液とすることを特徴
とする有機電解質電池によつて達成される。 本発明において使用されるポリアセン系骨格構
造を有する不溶不融性基体は炭素,水素および酸
素からなる芳香族系縮合ポリマーを非酸化性雰囲
気中で水素原子/炭素原子の原子比が0.05〜0.5
であり、BET法による比表面積値が600m2/g以
上になるように420〜800℃の温度まで加熱,熱処
理することにより製造することができる。 炭素,水素および酸素から成る芳香族系縮合ポ
リマーとしては、フエノール性水酸基を有する芳
香族炭化水素化合物とアルデヒドとの縮合物が好
適であり、かかる芳香族化合物の具体例として、
例えばフエノール,クレゾール,キシレノール等
のフエノール類が挙げられ、これらの他例えばメ
チレンビスフエノール類,ヒドロキシビフエニー
ル類やヒドロキシナフタレン類も適用可能であ
る。そしてこれらの化合物中、実用的にはフエノ
ール類、殊にフエノールが好適である。 また、本発明に使用するアルデヒドとしてはア
セトアルデヒド、その他のアルデヒドも使用可能
であるが就中ホルムアルデヒドが好適である。 更に、芳香族系縮合ポリマーとしてはフルフラ
ーム又はフルフリールアルコールから得られるフ
ラン樹脂,前記フエノール性水酸基を有する芳香
族炭化水素化合物とアルデヒドとの縮合共重合
物、或はこれらの混合物が挙げられる。 本発明に係る水素原子/炭素原子の原子比が
0.05〜0.5で、且つBET法による比表面積値が600
m2/g以上のポリアセン系骨格構造を含有する不
溶不融性基体の製造方法の一例を示すと以下の通
りである。 先ず、前記した芳香族系縮合ポリマーに塩化亜
鉛,リン酸ナトリウム,水酸化カリウムあるいは
硫化カリウム等の無機物を混入する。混入方法と
しては芳香族系縮合ポリマーをメタノール,アセ
トン或は水等の溶媒に溶解させた後、上記した無
機物を添加し、充分に混合すればよい。又、芳香
族系縮合ポリマーがノボラツクのように溶融性の
ものであれば、加熱状態下で混合してもよい。芳
香族系縮合ポリマーと前記した無機物の混合比は
混合するポリマーと無機物の種類によつて異なる
が、芳香族系縮合ポリマー/無機物=100/5〜
100/300の範囲が好ましい。 次に該混合物をフイルム状,板状,繊維状,布
状又はそれらの複合体に硬化成形するが、成形方
法は当然のことながら目的物の形態により異なり
例えば繊維状体であれば紡糸することにより、又
フイルム状体ではアプリケーターにより、又板状
体であれば金型によりプレス成形すればよい。又
成形物の硬化方法としては50〜180℃の温度で2
〜60分加熱するか、あるいは硬化剤と触媒の存在
下、50〜150℃の温度で2〜90分加熱することに
より、硬化が可能である。 引き続いて上記成形体を非酸化性雰囲気中で
420〜800℃温度まで加熱すると、水素原子/炭素
原子の原子比が0.05〜0.5好ましくは0.1〜0.35の
本発明のポリアセン系骨格構造を有した不溶不融
性基体を得ることができる。熱処理の昇温条件は
使用する芳香族系縮合ポリマーの種類,硬化処理
の程度あるいはその形状によつて多少相違する
が、一般には室温から300℃程度の温度までは比
較的大きな昇温速度例えば100℃/時間で、また
300℃以上の温度となると、該芳香族系縮合ポリ
マーが熱分解を開始し、水蒸気(H2O),水素,
メタン,一酸化炭素の如きガスが発生し始めるた
め、充分に遅い速度で昇温せしめるのが有利であ
る。例えば非多孔質の成形体では該成形体の厚み
をh(mm)とすると80/h2℃/時間以下の昇温速
度とすることにより、生成する不溶不融性基体の
水素原子/炭素原子の比を制御することが容易と
なり、また電気伝導度,比表面積値あるいはその
他の機械的性質等を安定化せしめることも容易と
なる。 このようにして熱処理したポリアセン系骨格構
造を有した基体を50〜100℃の温水にて充分に洗
浄し、該基体中に残存している塩化亜鉛、リン酸
ナトリウム等の無機物を除去し、乾燥する。 上記した方法によつて得られた水素原子/炭素
原子の原子比が0.05〜0.5のポリアセン系骨格構
造を有した不溶不融性基体はBET法による比表
面積値が600m2/g以上であり、後に示すように
電気化学的方法により、電解質イオンをスムーズ
に出し入れできる構造を有しているものである。
又該基体はX線回折(CuKα線)においてメイン
ピークの位置が(水素原子/炭素原子の比が0.05
〜0.5のすべての領域において)、2θの値で22゜以
下に観測される。この事実は、本発明の基体を構
成する平面状ポリアセン系分子の平均面間隔が非
常に広いことを表わしている。このためにBET
法による比表面積値が600m2/g以上という大き
な値となつていると考える。 電極として使用する本発明の不溶不融性基体の
形状は目的とする電池の性能,大きさ,形状等に
より任意に選択することができるが、通常フイル
ム状,紙状,繊維状,不繊布状,布状,板状或は
多孔板状が好適である。目的に応じて電極に用い
る不溶不融性基体の形状を任意に選択できるとは
本発明のひとつの特長であり、従来公知の電気伝
導性有機高分子材料、例えばポリアセチレンやポ
リ−P−フエニレンでは得られないものである。
又、該ポリアセン系骨格構造を含有する不溶不融
性基体の水素原子/炭素原子の原子比は0.05〜
0.5、好ましくは0.1〜0.35の範囲であるが、原子
比が0.05未満の場合には不溶不融性基体を使用し
て2次電池を構成した時、充放電の電荷効率に若
干問題が生じ、エネルギー密度が低下し、一方原
子比が0.5を越えると、充放電時の電荷効率が悪
くなる。 又、該ポリアセン系骨格構造を有する不溶不融
性基体のBET法による比表面積値は600m2/g以
上が好ましい。600m2/g未満の場合には例えば
該基体を電極として使用した2次電池の充電時に
おける、充電電圧を高くする必要が生じるため、
エネルギー効率等が低下し、又電解液等の劣化を
誘う。 電極として使用する本発明の水素原子/炭素原
子の原子比が0.05〜0.5であり、かつBET法によ
る比表面積値が600m2/g以上のポリアセン系骨
格構造を有する不溶不融性基体(以下不溶不融性
基体と略記する)の電気伝導度は、上記原子比の
値によつて大きく異つているが例えばH/C=
0.05の場合には約10-1Ω-1cm-1であり、又H/C
=0.5の場合には約10-10Ω-1cm-1以下であり、電
解質によるイオンが少量ドーピングされると大巾
に増大するため電極として問題は生じない。 又、上記不溶不融性基体はBET法による比表
面積値が600m2/g以上と大きな値を有するため、
酸素ガス等が侵入し、劣化し易いと考えられる
が、現実には空気中に長時間放置しても、電気伝
導度等の物性に変化はなく、酸化安定性に優れて
いるものである。 電解液に用いられ、電極にドピーング可能なイ
オンを生成し得る化合物としてはアルカリ金属又
はテトラアルキルアンモニウムのハロゲン化物,
過塩素酸塩,6フツ化燐酸塩,6フツ化砒酸塩,
4弗化朋素酸塩等が挙げられ、具体的にはLiI,
NaI,NH4I,LiClO4,LiAsF6,LiBF4,KPF6
NaPF6,(n−C4H94NClO4,(n−
C4H94NAsF6,(n−C4H94NPF6及びLiHF2
がある。 前記化合物を溶解する非プロトン性有機溶媒と
しては、エチレンカーボネート,プロピレンカー
ボネート,γ−ブチロラクトン,ジメチルホルム
アミド,ジメチルアセトアミド,ジメチルスルホ
キシド,アセトニトリル,ジメトキシエタン,テ
トラヒドロフラン,塩化メチレン及びこれらの混
合物が挙げられるが、電解質として用いる前記化
合物の溶解性,電池性能等を考慮して選択するこ
とが重要である。 電解液中の前記化合物の濃度は電解液による内
部抵抗を小さくするため少なくとも0.1モル/
以上であることが最も好ましく、通常0.2〜1.5モ
ル/の範囲とすると好ましい結果が得られる。 本発明の電池はポリアセン系骨格構造を有する
不溶不融性基体を正極又は/及び負極とし、ドー
ピングを非プロトン性有機溶媒に溶解したものを
電解質とするものであるが、その電池作用は電極
として用いる不溶不融性基体へのドーピング剤の
電気化学的ドーピングと電気化学的アンドーピン
グを利用するものである。即ち、エネルギーが不
溶不融性基体へのドーピング剤の電気化学的ドー
ピングにより蓄えられるか、或は外部に放出され
電気化学的アンドーピングにより電気エネルギー
として外部に取出されるか、或は内部に蓄えられ
る。 本発明に係る電池は2つのタイプに分けられ
る。第1のタイプは正極及び負極の両極に不溶不
融性基体を用いる電池であり、第2のタイプは正
極に不溶不融性基体を用い、負極にアルカリ金属
又はその合金からなる電極を用いる電池である。
そして適用するアルカリ金属の具体例としては例
えばセシウム,ルビジウム,カリウム,ナトリウ
ム,リチウム等が挙げられ、これらのうちリチウ
ムが最も好ましい。 電池内に配置される不溶不融性基体からなる電
極の形状,大きさは、目的とする電池により、適
宜に選択すればよいが電池反応は電極表面上の電
気化学的反応であるため電極は可能な限り、表面
積を大きくするのが有利である。又、該不溶不融
性基体から電池外部に電流を取出するための集電
体としては、該不溶不融性基体或はドーピング剤
でドーピングした不溶不融性基体を用いてもよい
が、ドーピング剤及び電解液に対し耐食性のある
他の導電性物質,例えば炭素,白金,ニツケル,
ステンレス等を用いることもできる。 次に図面により本発明の実施態様の1例を説明
する。第1図は本発明に係る電池の説明図であ
る。同図に於いて、1は正極、2は負極、3は集
電体、4は電解液、5はセパレーター、6は電池
ケース,7は外部端子を表わす。 まず、本発明に係る電池の第1のタイプ、即ち
正極及び負極の両極に不溶不融性基体を用いる電
池について説明する。正極1はフイルム状,布
状,或は板状の形状を有する不溶不融性基体であ
り、ドーピング剤がドーピングされていても、未
ドーピングもよい。負極2はフイルム状,布状,
或は板状の形状を有する不溶不融性基体であり、
ドーピング剤がドーピングされていても、未ドー
ピングでもよい。電池を組み立てた後、外部電源
より電圧を印加して、ドーピング剤をドーピング
する。例えば両極共に未ドーピング不溶不融性基
体を用いた場合、電池の組み立て後の電池の起電
圧は0Vであり、外部電源により電圧を印加して、
両極にドーピング剤をドーピングすることにより
電池は起電力を有するようになる。集電体3は各
電極から外部に電流を取り出したり、電気化学的
ドーピング、即ち充電するために電流を供給する
ものであり、前述した方法により各電極及び外部
端子7に電圧降下を生じないように接続されてい
る。電解液4は、非プロトン性有機溶媒に正負両
極にドーピング可能なイオンを生成し得る化合物
が溶解されている。電解液は通常液状であるが、
漏液を防止するためゲル状又は固体状にして用い
ることもできる。セパレーター5は、正負両極の
接触を阻止すること及び電解液を保持することを
目的として配置され電解液,ドーピング剤,アル
カリ金属等の電極活物質に対し耐久性のある連続
気孔を有する電子伝導性のない多孔体が好適であ
り、通常ガラス繊維,ポリエチレン,ポリプロピ
レン等からなる布,不繊布,多孔体等が用いられ
る。セパレーターの厚さは電池の内部抵抗を小さ
くするため薄い方が好ましいが、電解液の保持
量,流通性,強度等を勘案して決定される。正負
両極及びセパレーターは、電池ケース6内に実用
上問題が生じない様に固定される。電極の形状,
大きさ等は、目的とする電池の形状,性能により
適宜決定すればよい。例えば薄形電池を製造する
には電極はフイルム状又は布状が好適であり、大
容量電池を製造するにはフイルム状,布状,板状
等の電極を多数正負両極を交互に積層することに
より達成できる。 次に、本発明に係る電池の第2のタイプ、即ち
正極1に不溶不融性基体を用い、負極2にアルカ
リ金属又はその合金を用いる場合について説明す
る。第1図は正極1は不溶不融性基体、負極2は
アルカリ金属あるいはその合金である。そしてこ
の第2のタイプの場合、ドーピング機構、即ち電
池の作動機構は更に次の2つに大別される。その
1は、不溶不融性基体に電子受容性ドーピング剤
がドーピングされるのが充電に対応し、アンドー
ピングされるのが放電に対応する機構を備えた電
池である。例えば電極として未ドーピング不溶不
融性基体及びリチウムを電解液としてLiClO41モ
ル/プロピレンカーボネート溶液を用いた場
合、電池組み立て後の起動力は2.5〜3.0Vである。
次に外部電源により電圧を印加してClO4 -イオン
を該不溶不融性基体にドーピングすると、起電力
は3.5〜4.5Vとなる。その2は、不溶不融性基体
に電子供与性ドーピング剤をドーピングするのが
放電に対応し、アンドーピングするのが充電に対
応する機構の電池である。例えば上記した電池構
成では電池組み立て後の起電圧は2.5〜3.0Vであ
り、外部に電流を放出することにより、不溶不融
性基体にリチウムイオンをドーピングすると起動
力は1.0〜2.5Vとなるが、外部電源により電圧を
印加し、リチウムイオンをアンドーピングすると
再び起電力は2.5〜3.0Vとなる。 ドーピング又はアンドーピングは一定電流下で
も一定電圧下でも、また電流及び電圧の変化する
条件下のいずれで行つてもよいが、不溶不融性基
体はドーピングされるドーピング剤の量は、不溶
不融性基体の炭素原子1個に対するドーピングさ
れるイオン数を百分率で換算して0.5〜20%が好
ましい。 本発明の不溶不融性基体を電極として用いる電
池は充放電を繰返し動作することのできる2次電
池であり、その起電圧は電池の構成によつて異な
るが前記第1のタイプでは1.0〜3.5V、第2のタ
イプでその1の機構を利用する場合には3.5〜
4.5Vであり、又第2のタイプでその2の機構を
利用する場合には2.5〜3.0Vである。又本発明の
電池は特に重量当りのエネルギー密度が大きく、
適量のドーピングを行えば100〜350WH/Kgの値
をを有している。又パワー密度については、電池
の構成により差はあるが、鉛蓄電池よりはるかに
大きなパワー密度を備えている。更に本発明の不
溶不融性基体は極めて安定な物質であるため、本
発明の電池は繰返し充放電ができ、長時間にわた
つて電池性能の低下しない電池である。 本発明に係る電池は、従来公知の有機半導体よ
り耐酸化性,耐熱性及び成形性に優れたポリアセ
ン系骨格構造を有する不溶不融性基体を電極と
し、該電極に電子供与性又は電子受容性物質をド
ーピングしたものを電極活物質とし、電解により
電極にドーピング可能なイオンを生成する化合物
を非プロトン性有機溶媒に溶解したものを電解液
とする電池であり、小型化,薄形化,軽量化が可
能で且つ高容量,高出力で長寿命の高性能電池で
ある。 以下実施例を挙げて本発明を具体的に説明す
る。 実施例 1 レゾール型フエノール樹脂(約65%濃度の水溶
液)/水/塩化亜鉛を重量比で10/2/5の割合
で混合した溶液をガラス板上に流し、アプリケー
ターを用いて引き伸ばした。その後、約30分間風
乾した後、ガラス板に付着させたまま約100℃の
温度で20分間硬化反応を行つた。その後、上記樹
脂フイルムをガラス板より取りはずし、約200μ
m厚のフイルムを得た。この樹脂フイルムをシリ
コニツト電気炉中に入れ、窒素気流中で第1表に
示す所定温度まで約40℃/時間の昇温速度して熱
処理した。このフイルム状の熱処理物を、100℃
の温水にて、約5時間洗浄し、フイルム中に残存
している塩化亜鉛を除去した。洗浄後、60℃の温
度で3時間減圧乾燥して、不溶不融性のフイルム
状基体を得た。 得られたフイルム状基体をケイ光X線分析にか
けたところ、Znは0.01重量%(対基体)以下であ
り、又Clは0.5重量%以下であり、塩化亜鉛は基
体中にほとんど残存していない事が判明した。 又該基体をX線回折したところ2θで20〜22゜の
所にメインピークが存在し、又41〜46゜の範囲に
小さなピークが認められ、該基体がポリアセン系
骨格構造を有していることが確認された。次に該
基体の元素分析,電気伝導度及びBET法による
比表面積値の測定を行つた。これらの結果をまと
めて第1表に示す。 次に充分に脱水したプロピレンカーボネートに
LiClO4を溶解させて、約1.0モル/の溶液を調
製した。そしてリチウム金属を負極とし、上記し
た溶液を電解液とし、フイルム状基体を正極とし
第1図に示す様な電池を作成した。集電体として
は白金メツシユを用い、セパレーターとしてはガ
ラス繊維からなるフエルトを用いた。 本実施例は前記本発明における第2タイプのそ
の1の機構を利用する電池である。即ち、電子受
容性ドーピング剤であるClO4 -イオンを不溶不融
性基体にドーピングするのが充電に相当し、アン
ドーピングするのが放電に相当する。又、ドーピ
ング量は基体中の炭素原子1個当りのドーピング
されるイオンの数で表わすこととしたが、本発明
ではドーピングされるイオンの数はドーピング時
に回路に流れた電流値より求めたものである。 そして、上記構成の電池の組み終つた直後の電
圧を第1表に示す。次に該電池に外部より電圧を
印加して、1時間当りのドーピング量が1%とな
る様に一定電流でClO4 -を不溶不融性基体に3.5時
間ドーピングした。ドーピング終了後の開路電圧
を第1表に示す。次に1時間当りのアンドーピン
グ量が1%となる様に、一定電流を回路に流し、
ClO4 -イオンのアンドーピングを行い、開路電圧
が電池組み立て直後の電圧になるまで継続した。
この試験におけるドーピング量に対するアンドー
ピングの量を電荷効率として併せて第1表に示
す。
The present invention relates to an organic electrolyte battery in which an electrode active material is an electrically conductive organic polymer material doped with an electron-donating substance or an electron-accepting substance. BACKGROUND ART In recent years, electronic devices have become smaller, thinner, and lighter in weight, and as a result, there is a strong demand for smaller, thinner, and lighter batteries that serve as power sources. Currently, silver oxide batteries are widely used as small, high-performance batteries, and thinner dry batteries and lithium batteries have been developed and put into practical use as small, lightweight, high-performance batteries. However, since these batteries are primary batteries, they cannot be used for long periods of time by being repeatedly charged and discharged. On the other hand, as a high-performance secondary battery, nickel
Although cadmium batteries are in practical use, they are still unsatisfactory in terms of miniaturization, thinness, and weight. Furthermore, lead-acid batteries have been conventionally used as high-capacity secondary batteries in various industrial fields, but the biggest drawback of these batteries is that they are heavy. This is fateful since lead peroxide and lead are used as electrodes. In recent years, attempts have been made to reduce the weight and improve the performance of batteries for electric vehicles, but they have not been put to practical use. However, there is a strong demand for a large capacity and lightweight secondary battery as a storage battery. As mentioned above, each of the batteries currently in use has advantages and disadvantages, and each is used differently depending on its purpose, but in any case, there is a great need for smaller, thinner, and lighter batteries. .
Recently, as a battery that can immediately respond to such needs,
BACKGROUND ART A battery has been developed in which a thin film of polyacetylene, which is an organic semiconductor, is doped with an electron-donating substance or an electron-accepting substance as an electrode active material. Although this battery has high performance as a secondary battery and has the potential to be made thinner and lighter, it has major drawbacks as described below. That is, polyacetylene, which is an organic semiconductor, is an extremely unstable substance, easily oxidized by oxygen in the air, and deteriorated by heat. Therefore, battery manufacturing must be carried out in an inert gas atmosphere, and there are also restrictions when processing polyacetylene into a shape suitable for electrodes. Normally, the conditions required for a secondary battery are high electromotive voltage, high charging and discharging charge efficiency and energy efficiency, high energy density and power density per weight, long life, and maintenance-free. There are many reasons for this, such as being available and being cheap. An object of the present invention is to provide a secondary battery with high performance. Another object of the present invention is to provide a secondary battery that has a high electromotive voltage, high charging and discharging charge efficiency and energy efficiency, and high energy density and power density per weight. Other purposes are longevity;
To provide a maintenance-free secondary battery. Another purpose is to provide a secondary battery that can be easily made smaller or thinner. Still another object is to provide a secondary battery that is easy to manufacture and inexpensive. The above object is a heat-treated aromatic condensation polymer consisting of carbon, hydrogen and oxygen, in which the atomic ratio of hydrogen atoms/carbon atoms is 0.05 to 0.5, and
An insoluble and infusible substrate having a polyacene skeleton structure with a specific surface area value of 600 m 2 /g or more by the BET method is used as a positive electrode and/or a negative electrode, and an aproton of a compound that can generate ions that can be doped into the electrode by electrolysis. This is achieved by an organic electrolyte battery characterized by using a liquid organic solvent solution as an electrolyte. The insoluble and infusible substrate having a polyacene skeleton structure used in the present invention is an aromatic condensation polymer consisting of carbon, hydrogen and oxygen in a non-oxidizing atmosphere with an atomic ratio of hydrogen atoms/carbon atoms of 0.05 to 0.5.
It can be produced by heating and heat treating to a temperature of 420 to 800°C so that the specific surface area value by the BET method becomes 600 m 2 /g or more. As the aromatic condensation polymer consisting of carbon, hydrogen and oxygen, a condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde is suitable, and specific examples of such aromatic compounds include:
Examples include phenols such as phenol, cresol, and xylenol, and in addition to these, methylene bisphenols, hydroxybiphenyls, and hydroxynaphthalenes are also applicable. Among these compounds, phenols, particularly phenol, are preferred from a practical standpoint. Further, as the aldehyde used in the present invention, acetaldehyde and other aldehydes can also be used, but formaldehyde is particularly preferred. Furthermore, examples of aromatic condensation polymers include furan resins obtained from furfuram or furfuryl alcohol, condensation copolymers of aromatic hydrocarbon compounds having phenolic hydroxyl groups and aldehydes, and mixtures thereof. The atomic ratio of hydrogen atoms/carbon atoms according to the present invention is
0.05 to 0.5, and the specific surface area value by BET method is 600
An example of a method for producing an insoluble and infusible substrate containing a polyacene skeleton structure of m 2 /g or more is as follows. First, an inorganic substance such as zinc chloride, sodium phosphate, potassium hydroxide or potassium sulfide is mixed into the aromatic condensation polymer described above. As for the method of mixing, the aromatic condensation polymer may be dissolved in a solvent such as methanol, acetone, or water, and then the above-mentioned inorganic substance may be added and thoroughly mixed. Further, if the aromatic condensation polymer is meltable such as novolak, it may be mixed under heating. The mixing ratio of the aromatic condensation polymer and the above-mentioned inorganic substance varies depending on the type of polymer and inorganic substance to be mixed, but aromatic condensation polymer/inorganic substance = 100/5 ~
A range of 100/300 is preferred. Next, the mixture is cured and molded into a film, plate, fiber, cloth, or a composite thereof, but the molding method naturally varies depending on the form of the object, for example, if it is a fibrous material, it may be spun. Alternatively, a film-like material may be press-molded using an applicator, and a plate-like material may be press-molded using a mold. In addition, as a method of curing the molded product, 2.
Curing can be done by heating for ~60 minutes, or alternatively by heating in the presence of a curing agent and catalyst at a temperature of 50-150°C for 2-90 minutes. Subsequently, the above molded body was placed in a non-oxidizing atmosphere.
When heated to a temperature of 420 to 800° C., an insoluble and infusible substrate having a polyacene skeleton structure of the present invention having an atomic ratio of hydrogen atoms to carbon atoms of 0.05 to 0.5, preferably 0.1 to 0.35 can be obtained. The heating conditions for heat treatment vary somewhat depending on the type of aromatic condensation polymer used, the degree of curing treatment, and its shape, but in general, from room temperature to about 300°C, a relatively high heating rate is used, for example 100°C. in °C/hour, and
When the temperature reaches 300℃ or higher, the aromatic condensation polymer starts to thermally decompose, producing water vapor (H 2 O), hydrogen,
It is advantageous to raise the temperature at a sufficiently slow rate since gases such as methane and carbon monoxide begin to evolve. For example, in the case of a non-porous molded body, if the thickness of the molded body is h (mm), by setting the heating rate to 80/h 2 °C/hour or less, the hydrogen atoms/carbon atoms of the insoluble and infusible substrate to be formed can be reduced. It becomes easy to control the ratio of , and it also becomes easy to stabilize the electrical conductivity, specific surface area value, or other mechanical properties. The heat-treated substrate having a polyacene skeleton structure is thoroughly washed with hot water at 50 to 100°C to remove inorganic substances such as zinc chloride and sodium phosphate remaining in the substrate, and then dried. do. The insoluble and infusible substrate having a polyacene skeleton structure with a hydrogen atom/carbon atom atomic ratio of 0.05 to 0.5 obtained by the above method has a specific surface area value of 600 m 2 /g or more by the BET method, As will be shown later, it has a structure that allows electrolyte ions to be smoothly taken in and out using an electrochemical method.
In addition, the main peak position of this substrate in X-ray diffraction (CuKα ray) is (hydrogen atom/carbon atom ratio is 0.05).
~0.5), the 2θ value is observed below 22°. This fact indicates that the average interplanar spacing of the planar polyacene molecules constituting the substrate of the present invention is very wide. BET for this
It is considered that the specific surface area value determined by the method is a large value of 600 m 2 /g or more. The shape of the insoluble and infusible substrate of the present invention used as an electrode can be arbitrarily selected depending on the performance, size, shape, etc. of the intended battery, but it is usually film-like, paper-like, fibrous, or nonwoven. , cloth, plate, or perforated plate are suitable. One of the features of the present invention is that the shape of the insoluble and infusible substrate used for the electrode can be arbitrarily selected depending on the purpose. It is something that cannot be obtained.
Further, the atomic ratio of hydrogen atoms/carbon atoms of the insoluble and infusible substrate containing the polyacene skeleton structure is 0.05 to
0.5, preferably in the range of 0.1 to 0.35, but if the atomic ratio is less than 0.05, when a secondary battery is constructed using an insoluble and infusible substrate, there will be some problems in charging and discharging charge efficiency, The energy density decreases, and if the atomic ratio exceeds 0.5, the charge efficiency during charging and discharging deteriorates. Further, the specific surface area value of the insoluble and infusible substrate having the polyacene skeleton structure by the BET method is preferably 600 m 2 /g or more. If it is less than 600 m 2 /g, for example, it will be necessary to increase the charging voltage when charging a secondary battery using the substrate as an electrode.
Energy efficiency etc. decreases and the electrolyte etc. deteriorates. The insoluble infusible substrate (hereinafter referred to as insoluble The electrical conductivity of the infusible substrate (abbreviated as infusible substrate) varies greatly depending on the value of the above atomic ratio, but for example, H/C=
In the case of 0.05, it is approximately 10 -1 Ω -1 cm -1 and H/C
= 0.5, it is about 10 -10 Ω -1 cm -1 or less, and if a small amount of ions are doped with the electrolyte, it increases greatly, so there is no problem as an electrode. In addition, since the above-mentioned insoluble and infusible substrate has a large specific surface area value of 600 m 2 /g or more by the BET method,
Although it is thought that oxygen gas and the like enter and deteriorate easily, in reality, even if it is left in the air for a long time, there is no change in physical properties such as electrical conductivity, and it has excellent oxidation stability. Compounds that can be used in the electrolytic solution and can generate ions that can be doped into the electrode include alkali metal or tetraalkylammonium halides,
perchlorate, hexafluorophosphate, hexafluoroarsenate,
Examples include tetrafluoromate, specifically LiI,
NaI, NH 4 I, LiClO 4 , LiAsF 6 , LiBF 4 , KPF 6 ,
NaPF 6 , (n-C 4 H 9 ) 4 NClO 4 , (n-
Examples include C 4 H 9 ) 4 NAsF 6 , (n-C 4 H 9 ) 4 NPF 6 and LiHF 2 . Examples of the aprotic organic solvent that dissolves the compound include ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, methylene chloride, and mixtures thereof. It is important to consider the solubility, battery performance, etc. of the compound used as the electrolyte when selecting it. The concentration of the above compound in the electrolyte is at least 0.1 mol/mol to reduce the internal resistance caused by the electrolyte.
It is most preferable that the amount is above, and preferable results are usually obtained when the amount is in the range of 0.2 to 1.5 mol/. In the battery of the present invention, an insoluble and infusible substrate having a polyacene skeleton structure is used as a positive electrode and/or a negative electrode, and a doping solution dissolved in an aprotic organic solvent is used as an electrolyte, but the battery functions as an electrode. It utilizes electrochemical doping and electrochemical undoping of a doping agent to the insoluble and infusible substrate used. That is, energy is stored by electrochemical doping of a doping agent into an insoluble and infusible substrate, or it is released to the outside and taken out as electrical energy by electrochemical undoping, or it is stored internally. It will be done. Batteries according to the invention are divided into two types. The first type is a battery that uses an insoluble and infusible substrate for both the positive and negative electrodes, and the second type is a battery that uses an insoluble and infusible substrate for the positive electrode and an electrode made of an alkali metal or its alloy for the negative electrode. It is.
Specific examples of the alkali metal to be applied include cesium, rubidium, potassium, sodium, lithium, etc. Among these, lithium is the most preferred. The shape and size of the electrode made of an insoluble and infusible substrate placed in the battery can be selected as appropriate depending on the intended battery, but since the battery reaction is an electrochemical reaction on the electrode surface, the electrode It is advantageous to increase the surface area as much as possible. Further, as a current collector for extracting current from the insoluble infusible substrate to the outside of the battery, the insoluble infusible substrate or an insoluble infusible substrate doped with a doping agent may be used, but doping and other conductive materials that are resistant to corrosion by the electrolyte, such as carbon, platinum, nickel,
Stainless steel or the like may also be used. Next, one example of an embodiment of the present invention will be explained with reference to the drawings. FIG. 1 is an explanatory diagram of a battery according to the present invention. In the figure, 1 is a positive electrode, 2 is a negative electrode, 3 is a current collector, 4 is an electrolytic solution, 5 is a separator, 6 is a battery case, and 7 is an external terminal. First, a first type of battery according to the present invention, that is, a battery using insoluble and infusible substrates for both the positive and negative electrodes will be described. The positive electrode 1 is an insoluble and infusible substrate having a film, cloth, or plate shape, and may be doped with a doping agent or may be undoped. The negative electrode 2 is in the form of a film, cloth,
or an insoluble and infusible substrate having a plate-like shape;
It may be doped with a doping agent or may be undoped. After assembling the battery, a voltage is applied from an external power source to dope the battery with a doping agent. For example, when undoped, insoluble and infusible substrates are used for both electrodes, the electromotive force of the battery after assembly is 0V, and when voltage is applied from an external power source,
By doping both electrodes with a doping agent, the battery has an electromotive force. The current collector 3 is used to extract current from each electrode to the outside or to supply current for electrochemical doping, that is, charging, and is used to prevent a voltage drop from occurring between each electrode and the external terminal 7 using the method described above. It is connected to the. In the electrolytic solution 4, a compound capable of producing ions that can be doped to both positive and negative electrodes is dissolved in an aprotic organic solvent. Electrolytes are usually liquid, but
It can also be used in a gel or solid form to prevent leakage. The separator 5 is arranged for the purpose of preventing contact between the positive and negative electrodes and retaining the electrolyte, and is an electronic conductor with continuous pores that is durable against the electrolyte, doping agent, and electrode active materials such as alkali metals. A porous body without any pores is suitable, and cloth, nonwoven fabric, porous body, etc. made of glass fiber, polyethylene, polypropylene, etc. are usually used. The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but it is determined by taking into account the amount of electrolyte retained, flowability, strength, etc. The positive and negative electrodes and the separator are fixed in the battery case 6 so as not to cause any practical problems. Electrode shape,
The size etc. may be appropriately determined depending on the shape and performance of the intended battery. For example, to manufacture thin batteries, film- or cloth-like electrodes are suitable; to manufacture large-capacity batteries, a large number of film-, cloth-, or plate-like electrodes are stacked alternately with positive and negative electrodes. This can be achieved by Next, a second type of battery according to the present invention, that is, a case where an insoluble and infusible substrate is used for the positive electrode 1 and an alkali metal or an alloy thereof is used for the negative electrode 2 will be described. In FIG. 1, the positive electrode 1 is an insoluble and infusible substrate, and the negative electrode 2 is an alkali metal or an alloy thereof. In the case of this second type, the doping mechanism, ie, the battery operating mechanism, can be further divided into the following two types. The first is a battery having a mechanism in which an insoluble and infusible substrate is doped with an electron-accepting doping agent for charging, and undoped for discharging. For example, when an undoped insoluble infusible substrate is used as an electrode and a LiClO 4 1 mol/propylene carbonate solution with lithium as an electrolyte is used, the starting force after battery assembly is 2.5 to 3.0V.
Next, when a voltage is applied from an external power source to dope the insoluble and infusible substrate with ClO 4 - ions, the electromotive force becomes 3.5 to 4.5V. The second type is a battery having a mechanism in which doping an insoluble and infusible substrate with an electron-donating doping agent corresponds to discharging, and undoping corresponds to charging. For example, in the above battery configuration, the electromotive voltage after battery assembly is 2.5 to 3.0V, and if the insoluble and infusible substrate is doped with lithium ions by releasing a current to the outside, the starting force will be 1.0 to 2.5V. When a voltage is applied from an external power source and the lithium ions are undoped, the electromotive force becomes 2.5 to 3.0V again. Although doping or undoping may be carried out under constant current, constant voltage, or under conditions of varying current and voltage, insoluble and infusible substrates are The number of ions to be doped per one carbon atom of the chemical substrate is preferably 0.5 to 20% in terms of percentage. A battery using the insoluble and infusible substrate of the present invention as an electrode is a secondary battery that can be repeatedly charged and discharged, and its electromotive voltage varies depending on the configuration of the battery, but in the first type, it is 1.0 to 3.5. V, 3.5 to 3.5 when using the first mechanism in the second type
The voltage is 4.5V, and in the case of the second type using the second mechanism, the voltage is 2.5 to 3.0V. In addition, the battery of the present invention has a particularly high energy density per weight,
If an appropriate amount of doping is performed, it has a value of 100 to 350 WH/Kg. In addition, although there are differences in power density depending on the structure of the battery, it has a much higher power density than a lead-acid battery. Further, since the insoluble and infusible substrate of the present invention is an extremely stable substance, the battery of the present invention can be repeatedly charged and discharged, and the battery performance does not deteriorate over a long period of time. The battery according to the present invention uses an insoluble and infusible substrate having a polyacene skeleton structure that has better oxidation resistance, heat resistance, and moldability than conventionally known organic semiconductors as an electrode, and has an electron-donating or electron-accepting property. This battery uses a doped substance as the electrode active material, and the electrolyte is a compound that generates ions that can be doped into the electrode by electrolysis, dissolved in an aprotic organic solvent, making it smaller, thinner, and lighter. It is a high-performance battery that can be used for various purposes, and has a high capacity, high output, and long life. The present invention will be specifically explained below with reference to Examples. Example 1 A solution containing a mixture of resol type phenolic resin (aqueous solution with a concentration of about 65%)/water/zinc chloride in a weight ratio of 10/2/5 was poured onto a glass plate and stretched using an applicator. Thereafter, after air-drying for about 30 minutes, a curing reaction was performed at a temperature of about 100° C. for 20 minutes while remaining attached to the glass plate. After that, remove the resin film from the glass plate and
A film with a thickness of m was obtained. This resin film was placed in a siliconite electric furnace and heat-treated in a nitrogen stream at a heating rate of about 40° C./hour to the predetermined temperature shown in Table 1. This film-like heat-treated product is heated to 100°C.
The film was washed with hot water for about 5 hours to remove zinc chloride remaining in the film. After washing, it was dried under reduced pressure at a temperature of 60° C. for 3 hours to obtain an insoluble and infusible film-like substrate. When the obtained film-like substrate was subjected to fluorescent X-ray analysis, Zn was 0.01% by weight or less (based on the substrate), Cl was 0.5% by weight or less, and almost no zinc chloride remained in the substrate. It turned out. Further, when the substrate was subjected to X-ray diffraction, a main peak was observed at 20 to 22 degrees in 2θ, and a small peak was observed in the range of 41 to 46 degrees, indicating that the substrate had a polyacene skeleton structure. This was confirmed. Next, the elemental analysis, electrical conductivity, and specific surface area value of the substrate were measured using the BET method. These results are summarized in Table 1. Next, thoroughly dehydrated propylene carbonate.
LiClO 4 was dissolved to prepare a solution of approximately 1.0 mol/mol. Then, a battery as shown in FIG. 1 was prepared using lithium metal as a negative electrode, the above solution as an electrolyte, and a film-like substrate as a positive electrode. A platinum mesh was used as the current collector, and a felt made of glass fiber was used as the separator. This embodiment is a battery that utilizes the first mechanism of the second type of the present invention. That is, doping an insoluble and infusible substrate with ClO 4 - ions, which are electron-accepting doping agents, corresponds to charging, and undoping corresponds to discharging. Furthermore, the amount of doping is expressed by the number of ions doped per carbon atom in the substrate, but in the present invention, the number of ions doped is determined from the value of the current flowing through the circuit during doping. be. Table 1 shows the voltages immediately after the batteries having the above configuration were assembled. Next, a voltage was externally applied to the battery, and the insoluble and infusible substrate was doped with ClO 4 - at a constant current for 3.5 hours so that the doping amount per hour was 1%. Table 1 shows the open circuit voltage after doping. Next, a constant current is applied to the circuit so that the amount of undoping per hour is 1%.
Undoping of ClO 4 -ions was performed until the open circuit voltage reached the voltage immediately after battery assembly.
The amount of undoping relative to the amount of doping in this test is also shown in Table 1 as charge efficiency.

【表】 上表から水素原子/炭素原子の原子比が0.5を
越える基体(No.1)の場合には、ドーピング量に
対するアンドーピングの量が少なく、電荷効率が
低いことがわかる。 実施例 2 フエノール系繊維よりなる平織クロス(日本カ
イノール社,商品名カイノール 目付200g/m2
を40重量%のレゾール型フエノール樹脂のメタノ
ール溶液に浸漬し、マングルにて搾液し、レゾー
ル型フエノール樹脂を付着せしめ、室温にて24時
間乾燥することにより、フエノール系繊維とレゾ
ール型フエノール樹脂の重量割合が1:1のプリ
プレグを作つた。このプリプレグ1枚を150℃に
加熱した積層板用加圧成形機により150Kg/cm2
圧力下で30分間硬化し、厚み250μmの板を得た。
この板を窒素雰囲気下で300℃までは700℃/時
間、更に300℃から600℃までは10℃/時間で昇温
し、熱処理を行つた。この未ドーピング板状体は
水素原子/炭素原子の原子比が0.31であり、又X
線回折によればメインピークが2θで22.5゜にあり、
又41〜46゜付近に他のピークが認められたポリア
セン系骨格構造を有していると判断された。又該
熱処理体を粉末にして、BET法によつて比表面
積値を測定したところ、450m2/gであつた。 上記熱処理物からなる厚み約200μmの板状体
(比較基体)と実施例1に示した水素原子/炭素
原子の原子比が0.28であるNo.3の基体(本発明基
体)とを用い、実施例1に示したのと同様の方法
にて充放電テストを行つた。 本発明基体である実施例1のNo.3の基体を正極
として用いた電池は組み立て直後2.8Vの電圧を
示した。電池に1時間当りドーピング量が1%と
なる様に外部電源により電圧を印加してClO4 -
オンを基体に約6時間ドーピングした。この時の
開路電圧は3.9Vであつた。又1時間当りのアン
ドーピング量が1%である様にしてclO4 -イオン
をアンドーピングし、充電したところ約5時間後
に開路電圧は2.8Vとなつたため、放電を中止し
た。この電池のエネルギー密度は約250WH/Kg
であつた。ここで、ドーピングされた不溶不融性
基体と消費されたリチウム金属の和を基準重量と
した。次に、本実施例で上記した方法にて作成し
450m2/gの比表面積値をもつ熱処理体(比較基
体)を正極として用いた電池は組み立て直後
2.8Vの電圧を示した。該電池に同様にして充電
を試みた。充電速度を1時間当りのドーピング量
が1%となるように一定電流充電を約6時間行
い、次にアンドーピングによる放電テストを行つ
た。放電電流を1時間当りのアンドーピング量が
1%となるようにすると、電圧降下が激しいた
め、1時間当り0.2%となるようにしてテストし
たが、やはり電圧降下が激しく、電荷効率を求め
ることは出来なかつた。 実施例 3 レゾール型フエノール樹脂(約65%濃度の水溶
液)/水/塩化亜鉛を重量比で10/2/7の割合
で混合した溶液を用いて、実施例1と同様にして
硬化樹脂フイルムを得、該樹脂フイルムを窒素気
流中で670℃まで熱処理し、不溶不融性基体を得
た。この不溶不融性基体の水素原子/炭素原子の
原子比は0.12あり、又BET法による比表面積値
は1050m2/gであつた。 不溶不融性基体からなるフイルム(約30mg)を
正極とし、LiClO4の1.0モル/プロピレンカー
ボネートの溶液を電解液とし、リチウム金属を負
極として電池を構成した。 電池に外部電源により、約4.5Vの電圧を印加
してClO4 -イオンを基体にドーピングすることに
よつて充電した。電圧を印加直後約50mAの電流
が観測されたが、時間が経過するに従つて電流値
は減少し約20分後には約2mAとなつた。この時
点で充電を中止して、電池に約0.03Wのモーター
を接続して放電した。モーターは高速で回転し始
め、約10分後に停止した。その間の電流値は、放
電開始直後20mAを越す電流が流れ数秒後に約
12mAとなり、そのまま約10分間流れ続けた。 モーターが停止した後、再び外部電源により
4.5Vの電圧を印加して20分間充電し、その後、
モーターを接続して、再び放電を行つた。充電時
の電流変化,放電時の電流変化,モーターの回転
状態及び回転時間は上記した値とほぼ同じであつ
た。この充放電テストを10回繰り返したが、ほと
んど充放電特性に変化はなく、モーターは同様に
回転した。 実施例 4 テトロヒドロフランに(n−C4H94NClO4
溶解させ、約0.3モル/の溶液を調製した。こ
の溶液を電解液として、また正極及び負極に実施
例1で用いた水素原子/炭素原子の原子比が0.22
であるNo.4の基体を用いて電池を構成し充放電テ
ストを行つた。 電池を組んだ直後の開路電圧は0Vであつた。
次に外部電源より電圧を印加して正極にClO4 -
オンを、負極に(n−C4H94N+イオンをドーピ
ングすることによつて充電した。充電速度は、1
時間当りのドーピング量が1%となる様にして約
2時間行つた。この時の開路電圧は約1.8Vであ
つた。次に充電時とほぼ同速度でclO4 -イオン及
び(n−C4H94N+イオンのアンドーピングを行
うことによつて放電した。約1.5時間後に開路電
圧は0ボルトとなつた。 実施例 5 充分に脱水したプロピレンカーボネートにLiI
を溶解させ、約0.1モル/の溶液とした。次に
正極及び負極に実施例1で用いた水素原子/炭素
原子の原子比が0.28であるNo.3の不溶不融性基体
を用い、また電解液として上記した溶液を用いて
電池を作成した。 電池を作成した直後の開路電圧は0Vであつた。
次に外部電源より電圧を印加して正極にヨウ素イ
オンを、負極にリチウムイオンをドーピングする
ことによつて充電した。充電速度は、1時間当り
のドーピング量が0.5%となる様にして約1.5時間
行つた。この時点での電池の開路電圧は1.1Vで
あつた。次にヨウ素イオン及びリチウムイオンを
アンドーピングする事により放電した。放電速度
は充電速度の約1/2で行つたところ、約2時間後、
開路電圧は0Vとなつた。 実施例 6 実施例1で使用した水素原子/炭素原子の原子
比が0.15であるNo.5の基体を用いて、不溶不融性
基体/LiclO41.0モル/プロピレンカーボネー
ト/リチウムの構成で電池を作成した。その直後
の開路電圧は3.0Vであつた。次に放電速度が1
時間当りのドーピング量が0.5%となる様にし、
回路に一定電流を流して、リチウムイオンを不溶
不融性基体にドーピングすることにより、放電し
た。約6時間後に開路電圧は1.9Vとなつた。次
に外部電源より電圧を印加して、充電速度が1時
間当り約1%となる様にリチウムイオンを不溶不
融性基体よりアンドーピングすることにより、充
電を行つた。約2.5時間後に開路電圧は2.8Vとな
つた。 実施例 7 (1) レゾール型フエノール樹脂(約65%濃度の水
溶液)/水/塩化亜鉛を重量比で下記第2表に
示す割合で混合したNo.1〜No.4の各溶液をそれ
ぞれガラス板状に流し、アプリケーターを用い
引き伸ばした。その後、約30分間風乾した後、
100℃の温度で20分間硬化した。
[Table] From the above table, it can be seen that in the case of the substrate (No. 1) in which the atomic ratio of hydrogen atoms/carbon atoms exceeds 0.5, the amount of undoping relative to the amount of doping is small, and the charge efficiency is low. Example 2 Plain weave cloth made of phenolic fiber (Japan Kynor Co., Ltd., trade name Kynor, weight 200g/m 2 )
The fibers are immersed in a methanol solution of 40% by weight resol type phenolic resin, the liquid is squeezed out using a mangle, the resol type phenolic resin is attached, and the mixture is dried at room temperature for 24 hours. A prepreg with a weight ratio of 1:1 was made. One sheet of this prepreg was cured for 30 minutes under a pressure of 150 kg/cm 2 using a pressure molding machine for laminates heated to 150° C. to obtain a plate with a thickness of 250 μm.
This plate was heat treated in a nitrogen atmosphere by increasing the temperature at 700°C/hour up to 300°C and then at a rate of 10°C/hour from 300°C to 600°C. This undoped plate-like body has an atomic ratio of hydrogen atoms/carbon atoms of 0.31, and
According to line diffraction, the main peak is at 22.5° in 2θ,
In addition, other peaks were observed around 41 to 46 degrees, and it was judged to have a polyacene skeleton structure. Further, when the heat-treated product was pulverized and the specific surface area was measured by the BET method, it was found to be 450 m 2 /g. The experiment was carried out using a plate-shaped body having a thickness of about 200 μm made of the above-mentioned heat-treated product (comparison base) and base No. 3 having an atomic ratio of hydrogen atoms/carbon atoms of 0.28 shown in Example 1 (substrate of the present invention). A charge/discharge test was conducted in the same manner as shown in Example 1. A battery using the substrate No. 3 of Example 1, which is the substrate of the present invention, as a positive electrode showed a voltage of 2.8 V immediately after assembly. A voltage was applied to the battery from an external power supply so that the doping amount was 1% per hour, and the substrate was doped with ClO 4 - ions for about 6 hours. The open circuit voltage at this time was 3.9V. Further, when the battery was undoped with clO 4 - ions at an undoping amount of 1% per hour and charged, the open circuit voltage reached 2.8V after about 5 hours, so discharging was discontinued. The energy density of this battery is approximately 250WH/Kg
It was hot. Here, the sum of the doped insoluble and infusible substrate and the consumed lithium metal was taken as the reference weight. Next, create it using the method described above in this example.
A battery using a heat-treated body (comparison base) with a specific surface area value of 450 m 2 /g as a positive electrode was immediately assembled.
It showed a voltage of 2.8V. An attempt was made to charge the battery in the same manner. Constant current charging was performed for about 6 hours at a charging rate such that the doping amount per hour was 1%, and then a discharge test by undoping was performed. If the discharge current was set to 1% undoping per hour, the voltage drop would be severe, so we tested it by setting it to 0.2% per hour, but the voltage drop was still large, so we had to find the charge efficiency. I couldn't do it. Example 3 A cured resin film was produced in the same manner as in Example 1 using a solution of resol type phenolic resin (aqueous solution with a concentration of about 65%)/water/zinc chloride mixed in a weight ratio of 10/2/7. The obtained resin film was heat-treated to 670° C. in a nitrogen stream to obtain an insoluble and infusible substrate. The atomic ratio of hydrogen atoms/carbon atoms of this insoluble and infusible substrate was 0.12, and the specific surface area value determined by the BET method was 1050 m 2 /g. A battery was constructed using a film (approximately 30 mg) made of an insoluble and infusible substrate as a positive electrode, a solution of 1.0 mol of LiClO 4 in propylene carbonate as an electrolyte, and lithium metal as a negative electrode. The battery was charged by an external power source by applying a voltage of about 4.5 V to dope the substrate with ClO 4 - ions. Immediately after applying the voltage, a current of about 50 mA was observed, but as time passed, the current value decreased and reached about 2 mA after about 20 minutes. At this point, charging was stopped and a 0.03W motor was connected to the battery to discharge it. The motor started spinning at high speed and stopped after about 10 minutes. The current value during this period is approximately 20mA immediately after the discharge starts, and after a few seconds the current exceeds 20mA.
It became 12mA and continued to flow for about 10 minutes. After the motor stops, it is turned on again by the external power supply.
Apply 4.5V voltage and charge for 20 minutes, then
I connected the motor and started discharging again. The current change during charging, the current change during discharging, the rotation state and rotation time of the motor were almost the same as the above values. This charging/discharging test was repeated 10 times, but there was almost no change in the charging/discharging characteristics, and the motor continued to rotate in the same way. Example 4 (n-C 4 H 9 ) 4 NClO 4 was dissolved in tetrahydrofuran to prepare a solution of about 0.3 mol/mol. This solution was used as an electrolyte, and the atomic ratio of hydrogen atoms/carbon atoms used in Example 1 for the positive and negative electrodes was 0.22.
A battery was constructed using substrate No. 4, and a charge/discharge test was conducted. The open circuit voltage immediately after the battery was assembled was 0V.
Next, a voltage was applied from an external power supply to charge the battery by doping the positive electrode with ClO 4 ions and the negative electrode with (n-C 4 H 9 ) 4 N + ions. The charging speed is 1
The doping amount was 1% per hour for about 2 hours. The open circuit voltage at this time was approximately 1.8V. Next, the battery was discharged by undoping with clO 4 - ions and (n-C 4 H 9 ) 4 N + ions at approximately the same rate as during charging. After about 1.5 hours the open circuit voltage was 0 volts. Example 5 LiI on sufficiently dehydrated propylene carbonate
was dissolved to give a solution of approximately 0.1 mol/mol. Next, a battery was prepared using the No. 3 insoluble and infusible substrate with an atomic ratio of hydrogen atoms/carbon atoms of 0.28 used in Example 1 for the positive electrode and negative electrode, and the above solution as the electrolyte. . The open circuit voltage immediately after the battery was created was 0V.
Next, a voltage was applied from an external power source to dope the positive electrode with iodine ions and the negative electrode with lithium ions, thereby charging the battery. The charging rate was approximately 1.5 hours with a doping amount of 0.5% per hour. The open circuit voltage of the battery at this point was 1.1V. Next, discharge was performed by undoping iodine ions and lithium ions. The discharging speed was about 1/2 of the charging speed, and after about 2 hours,
The open circuit voltage became 0V. Example 6 Using the No. 5 substrate used in Example 1 with an atomic ratio of hydrogen atoms/carbon atoms of 0.15, a battery was constructed with the composition of insoluble and infusible substrate/1.0 mol of LiclO 4 /propylene carbonate/lithium. Created. The open circuit voltage immediately after that was 3.0V. Next, the discharge rate is 1
The doping amount per hour is 0.5%,
A constant current was passed through the circuit to dope the insoluble and fusible substrate with lithium ions, thereby causing a discharge. After about 6 hours, the open circuit voltage became 1.9V. Next, charging was performed by applying a voltage from an external power source and undoping lithium ions from the insoluble and infusible substrate at a charging rate of about 1% per hour. After about 2.5 hours, the open circuit voltage became 2.8V. Example 7 (1) Each of the solutions No. 1 to No. 4 prepared by mixing resol type phenolic resin (aqueous solution with a concentration of about 65%)/water/zinc chloride in the weight ratio shown in Table 2 below was poured into a glass. It was poured into a plate and stretched using an applicator. Then, after air drying for about 30 minutes,
Cured for 20 minutes at a temperature of 100°C.

【表】 得られた4種の樹脂フイルムをそれぞれガラス
板より取りはずし、約200μm厚のフイルムを得
た。この樹脂フイルムをそれぞれシリコニツト電
気炉に入れ、N2気流中で550℃まで40℃/hourの
昇温速度で熱処理した。このフイルム状の熱処理
物をそれぞれ100℃の温水にて5時間洗浄し、フ
イルム状の熱処理物中に残存している塩化亜鉛を
除去し、No.1〜No.4の不溶不融性のフイルム状基
体を得た。 (2) 得られたNo.1〜No.4の不溶不融性のフイルム
状基体について、実施例1におけると同様に元
素分析を行つて水素/炭素(原子比)、基体の
電気伝導度及びBET法による比表面積の測定
を行つた。これらの結果を下記第3表に示す。 実施例1におけると同様に、充分に脱水したプ
ロピレンカーボネートにLiClO4を溶解させて、
約1.0モル/の溶液を調製した。そして、リチ
ウム金属を負極とし、上記した溶液を電解液と
し、フイルム状基体を正極とし、集電体として白
金メツシユを用い、セパレーターとしてはガラス
繊維からなるフエルトを用いて、第1図に示す様
な電池を作成した。 次に、実施例1におけると同様に、上記構成の
電池の組み終つた直後の電圧を第3表に示す。次
に該電池に外部より電圧を印加して、1時間当り
のドーピング量が1%となる様に一定電流で
ClO4 -イオンを不溶不融性基体に3.5時間ドーピン
グした。ドーピング終了後の開路電圧を第3表に
示す。次に1時間当りのアンドーピング量が1%
となる様に、一定電流を回路に流し、ClO4 -イオ
ンにアンドーピングを行い、開路電圧が電池組み
立て直後の電圧になるまで継続した。この試験に
おけるドーピング量に対するアンドーピングの量
を電荷効率として併せて第3表に示す。
[Table] The four types of resin films obtained were each removed from the glass plate to obtain a film with a thickness of about 200 μm. Each of the resin films was placed in a silicone electric furnace and heat-treated in a N 2 stream to 550°C at a heating rate of 40°C/hour. The film-like heat-treated products were each washed with hot water at 100°C for 5 hours to remove the zinc chloride remaining in the film-like heat-treated products, and the insoluble and infusible films No. 1 to No. 4 were washed. A shaped substrate was obtained. (2) The obtained insoluble and infusible film substrates No. 1 to No. 4 were subjected to elemental analysis in the same manner as in Example 1 to determine the hydrogen/carbon (atomic ratio), electrical conductivity of the substrate, and The specific surface area was measured using the BET method. These results are shown in Table 3 below. As in Example 1, LiClO 4 was dissolved in sufficiently dehydrated propylene carbonate,
A solution of approximately 1.0 mol/ml was prepared. Then, lithium metal was used as the negative electrode, the above solution was used as the electrolyte, the film-like substrate was used as the positive electrode, a platinum mesh was used as the current collector, and a felt made of glass fiber was used as the separator, as shown in Figure 1. I created a battery. Next, as in Example 1, Table 3 shows the voltages immediately after the batteries having the above configuration were assembled. Next, a voltage is applied externally to the battery, and a constant current is applied so that the doping amount per hour is 1%.
ClO 4 -ions were doped into the insoluble and infusible substrate for 3.5 hours. Table 3 shows the open circuit voltage after doping. Next, the amount of undoping per hour is 1%.
A constant current was passed through the circuit to undope the ClO 4 - ions, and this was continued until the open circuit voltage reached the voltage immediately after the battery was assembled. The amount of undoping relative to the amount of doping in this test is also shown in Table 3 as charge efficiency.

【表】 次に、第3表のNo.1において用いた不溶不融性
のフイルム状基体を室温、60℃、120℃の空気中
でそれぞれ250時間放置した後、水素/炭素(原
子比)、電気伝導度(Ω-1cm重量%)、重量及び電
池性能(電荷効率)を測定した。その結果を第4
表に示す。第4表において〇印は試験前と比べて
変化がなかつたことを示す。
[Table] Next, after leaving the insoluble and infusible film substrate used in No. 1 of Table 3 in air at room temperature, 60°C, and 120°C for 250 hours, hydrogen/carbon (atomic ratio) , electrical conductivity (Ω −1 cm weight %), weight, and battery performance (charge efficiency) were measured. The result is the fourth
Shown in the table. In Table 4, a circle mark indicates that there was no change compared to before the test.

【表】 第3表のBET法による比表面積値(m2/g)
に示されているようにNo.4の不溶不融のフイルム
状基体のBET法による比表面積値は520m2/gで
あつて、、本発明で特定する600m2/g以上の水準
に達しないので、参考例であり、第2表及び第3
表のNo.1〜No.3が本発明の実施例を示す。 第3表に示すとおり、本発明で用いるポリアセ
ン系骨格構造を有する不溶不融性基体の熱処理条
件がほぼ同等の場合、該基体のBET法による比
表面積が600m2/g以上となると電荷効率が顕著
に向上することが認められる。
[Table] Specific surface area values (m 2 /g) according to the BET method in Table 3
As shown in , the specific surface area value of the insoluble and infusible film-like substrate No. 4 by the BET method is 520 m 2 /g, which does not reach the level of 600 m 2 /g or more specified in the present invention. Therefore, this is a reference example, and Tables 2 and 3
No. 1 to No. 3 in the table show examples of the present invention. As shown in Table 3, when the heat treatment conditions of the insoluble and infusible substrate having a polyacene skeleton structure used in the present invention are approximately the same, the charge efficiency decreases when the specific surface area of the substrate by the BET method becomes 600 m 2 /g or more. A significant improvement was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電池の基本構成を示す説
明図であり、1は正極、2は負極、3,3′は集
電体、4は電解液、5はセパレーター、6は電池
ケース、7,7′は外部端子を表わす。
FIG. 1 is an explanatory diagram showing the basic structure of a battery according to the present invention, in which 1 is a positive electrode, 2 is a negative electrode, 3 and 3' are current collectors, 4 is an electrolytic solution, 5 is a separator, 6 is a battery case, 7 and 7' represent external terminals.

Claims (1)

【特許請求の範囲】 1 炭素,水素および酸素からなる芳香族系縮合
ポリマーの熱処理物であつて、水素原子/炭素原
子の原子比が0.05〜0.5であり、且つBET法によ
る比表面積値が600m2/g以上であるポリアセン
系骨格構造を有する不溶不融性基体を正極及び/
又は負極とし、電解により該電極にドーピング可
能なイオンを生成し得る化合物の非プロトン性有
機溶媒溶液を電解液とすることを特徴とする有機
電解質電池。 2 芳香族系縮合ポリマーがフエノールとホルム
アルデヒドとの縮合物である特許請求の範囲第1
項に記載の有機電解質電池。 3 水素原子/炭素原子の原子比が0.1〜0.35で
ある特許請求の範囲第1〜2項の何れかに記載の
有機電解質電池。 4 正極がポリアセン系骨格構造を有する不溶不
融性基体、負極がアルカリ金属又はアルカリ金属
の合金である特許請求の範囲第1〜3項の何れか
に記載の有機電解質電池。 5 アルカリ金属がリチウムである特許請求の範
囲第4項に記載の有機電解質電池。 6 ドーピング可能なイオンを生成し得る化合物
が、LiI,NaI,NH4I,LiclO4,LiAsF6
LiBF4,KPF6,NaPF6,(n−C4H94NclO4
(n−C4H94NAsF6,(n−C4H9)NPF6,又は
LiHF2である特許請求の範囲第1〜5項の何れか
に記載の有機電解質電池。 7 非プロトン性有機溶媒が、プロピレンカーボ
ネート,γ−ブチロラクトン,ジメチルホルムア
ミド,ジメチルアセトアミド,ジメチルスルホキ
シド,エチレンカーボネート,ジメトキシエタ
ン,テトラヒドロフラン又は塩化メチレンである
特許請求の範囲第1〜6項の何れかに記載の有機
電解質電池。 8 ポリアセン系骨格構造を含有する不溶不融性
基体がフイルム,板,多孔板,繊維,布,不繊布
又はこれらの複合体形態のものである特許請求の
範囲第1〜7項の何れかに記載の有機電解質電
池。
[Scope of Claims] 1. A heat-treated product of an aromatic condensation polymer consisting of carbon, hydrogen and oxygen, which has an atomic ratio of hydrogen atoms/carbon atoms of 0.05 to 0.5 and a specific surface area value of 600 m by the BET method. An insoluble and infusible substrate having a polyacene skeleton structure of 2 /g or more is used as a positive electrode and/or
Or an organic electrolyte battery, characterized in that the negative electrode is an aprotic organic solvent solution of a compound capable of producing ions that can be doped into the electrode by electrolysis. 2. Claim 1, wherein the aromatic condensation polymer is a condensate of phenol and formaldehyde.
The organic electrolyte battery described in section. 3. The organic electrolyte battery according to any one of claims 1 to 2, wherein the atomic ratio of hydrogen atoms/carbon atoms is 0.1 to 0.35. 4. The organic electrolyte battery according to any one of claims 1 to 3, wherein the positive electrode is an insoluble and infusible substrate having a polyacene skeleton structure, and the negative electrode is an alkali metal or an alkali metal alloy. 5. The organic electrolyte battery according to claim 4, wherein the alkali metal is lithium. 6 Compounds that can generate dopable ions include LiI, NaI, NH 4 I, LiclO 4 , LiAsF 6 ,
LiBF 4 , KPF 6 , NaPF 6 , (n-C 4 H 9 ) 4 NclO 4 ,
( n - C4H9 ) 4NAsF6 , ( n- C4H9 ) NPF6 , or
The organic electrolyte battery according to any one of claims 1 to 5, which is LiHF2 . 7. According to any one of claims 1 to 6, the aprotic organic solvent is propylene carbonate, γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene carbonate, dimethoxyethane, tetrahydrofuran, or methylene chloride. organic electrolyte battery. 8. Any one of claims 1 to 7, wherein the insoluble and infusible substrate containing a polyacene skeleton structure is in the form of a film, plate, perforated plate, fiber, cloth, nonwoven fabric, or a composite thereof. The organic electrolyte battery described.
JP59024165A 1984-01-19 1984-02-10 Organic electrolyte cell Granted JPS60170163A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59024165A JPS60170163A (en) 1984-02-10 1984-02-10 Organic electrolyte cell
US06/690,799 US4615960A (en) 1984-01-19 1985-01-11 Insoluble and infusible substrate with a polyacene-type skeletal structure, and its applications for electrical conductor or organic cell
DE8585100517T DE3586207T2 (en) 1984-01-19 1985-01-18 Insoluble and infusible substrate with a skeleton structure made of polyacene and its uses as an electrical conductor or organic cell.
EP85100517A EP0149497B1 (en) 1984-01-19 1985-01-18 Insoluble and infusible substrate with a polyacen-type skeletal structure, and its applications for electrical conductor or organic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024165A JPS60170163A (en) 1984-02-10 1984-02-10 Organic electrolyte cell

Publications (2)

Publication Number Publication Date
JPS60170163A JPS60170163A (en) 1985-09-03
JPH0324024B2 true JPH0324024B2 (en) 1991-04-02

Family

ID=12130730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024165A Granted JPS60170163A (en) 1984-01-19 1984-02-10 Organic electrolyte cell

Country Status (1)

Country Link
JP (1) JPS60170163A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031773A1 (en) 2003-09-30 2005-04-07 Fuji Jukogyo Kabushiki Kaisha Organic electrolytic capacitor
WO2007026492A1 (en) 2005-08-30 2007-03-08 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
WO2007072713A1 (en) 2005-12-22 2007-06-28 Fuji Jukogyo Kabushiki Kaisha Lithium metal foil for battery or capacitor
JP4743952B2 (en) * 2000-12-06 2011-08-10 大阪瓦斯株式会社 Active polycyclic aromatic hydrocarbon material and method for producing the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122066A (en) * 1985-04-30 1987-06-03 Mitsubishi Petrochem Co Ltd Nonaqueous solvent battery
JP2534490B2 (en) * 1987-03-06 1996-09-18 鐘紡株式会社 Organic electrolyte battery
JPS63298967A (en) * 1987-05-29 1988-12-06 Kanebo Ltd Organic electrolyte battery using polyaniline as positive electrode
JPS63298966A (en) * 1987-05-29 1988-12-06 Kanebo Ltd Organic electrolyte battery using polypyrrole as positive electrode
JP2588405B2 (en) * 1987-06-23 1997-03-05 鐘紡株式会社 Organic electrolyte battery using high concentration mixed solute
JP2749605B2 (en) * 1988-12-29 1998-05-13 鐘紡株式会社 Organic electrolyte battery
JP2954991B2 (en) * 1990-07-30 1999-09-27 鐘紡株式会社 Organic electrolyte battery
EP0721230B1 (en) * 1993-09-22 2000-07-19 Kanebo, Ltd. Organic electrolyte cell
WO1996030318A1 (en) 1995-03-30 1996-10-03 Nippon Sanso Corporation Porous carbonaceous material, process for producing the same, and use thereof
US8080335B2 (en) 2006-06-09 2011-12-20 Canon Kabushiki Kaisha Powder material, electrode structure using the powder material, and energy storage device having the electrode structure
JP2009164104A (en) 2007-09-06 2009-07-23 Canon Inc Electrode material for negative electrode, its manufacturing method, electrode structure using the same material, and electricity storage device
JP6035013B2 (en) 2011-08-30 2016-11-30 株式会社半導体エネルギー研究所 Electrode fabrication method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838465A (en) * 1981-09-01 1983-03-05 Showa Denko Kk Secondary cell
JPS58209864A (en) * 1982-05-31 1983-12-06 Kanebo Ltd Organic electrolyte battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838465A (en) * 1981-09-01 1983-03-05 Showa Denko Kk Secondary cell
JPS58209864A (en) * 1982-05-31 1983-12-06 Kanebo Ltd Organic electrolyte battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743952B2 (en) * 2000-12-06 2011-08-10 大阪瓦斯株式会社 Active polycyclic aromatic hydrocarbon material and method for producing the same
WO2005031773A1 (en) 2003-09-30 2005-04-07 Fuji Jukogyo Kabushiki Kaisha Organic electrolytic capacitor
WO2007026492A1 (en) 2005-08-30 2007-03-08 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
WO2007072713A1 (en) 2005-12-22 2007-06-28 Fuji Jukogyo Kabushiki Kaisha Lithium metal foil for battery or capacitor

Also Published As

Publication number Publication date
JPS60170163A (en) 1985-09-03

Similar Documents

Publication Publication Date Title
US4753717A (en) Porous article having open pores prepared from aromatic condensation polymer and use thereof
JPH0324024B2 (en)
JPH046072B2 (en)
EP0149497B1 (en) Insoluble and infusible substrate with a polyacen-type skeletal structure, and its applications for electrical conductor or organic cell
JPH0630260B2 (en) Organic electrolyte battery
JP2562601B2 (en) Organic electrolyte battery with activated carbon-aniline composite as positive electrode
JP2524184B2 (en) Organic electrolyte battery containing composite electrodes
JP2519180B2 (en) Organic electrolyte battery
JP2519454B2 (en) Organic electrolyte battery using nitrogen-containing substrate as electrode
JP2534490B2 (en) Organic electrolyte battery
JP2515547B2 (en) Organic electrolyte battery using aniline composite as positive electrode
JPS61225761A (en) Organic electrolyte battery
JPS6177275A (en) Organic electrolyte battery
JP2522662B2 (en) Organic electrolyte battery with polythiophene as positive electrode
JPH0658799B2 (en) Battery electrode manufacturing method
JPH0624160B2 (en) Organic electrolyte battery
JP2646461B2 (en) Organic electrolyte battery
JP2588404B2 (en) Organic electrolyte battery
JPS6231960A (en) Organic electrolyte battery
JPS6180774A (en) Organic electrolyte cell
JPS6180773A (en) Organic electrolyte cell
JPH0624157B2 (en) Organic electrolyte battery
JPS63218158A (en) Organic electrolyte battery
JPH0624158B2 (en) Organic electrolyte battery
JPS63298982A (en) Organic electrolyte battery using tetrahydrofuran

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term