JPH046072B2 - - Google Patents

Info

Publication number
JPH046072B2
JPH046072B2 JP57093437A JP9343782A JPH046072B2 JP H046072 B2 JPH046072 B2 JP H046072B2 JP 57093437 A JP57093437 A JP 57093437A JP 9343782 A JP9343782 A JP 9343782A JP H046072 B2 JPH046072 B2 JP H046072B2
Authority
JP
Japan
Prior art keywords
insoluble
electrolyte battery
organic electrolyte
electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57093437A
Other languages
Japanese (ja)
Other versions
JPS58209864A (en
Inventor
Takashi Ito
Shizukuni Yada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP57093437A priority Critical patent/JPS58209864A/en
Publication of JPS58209864A publication Critical patent/JPS58209864A/en
Publication of JPH046072B2 publication Critical patent/JPH046072B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気伝導性有機高分子系材料に電子供
与性物質又は電子受容性物質をドーピングしたも
のを電極活物質とする新規な有機電解質電池に関
する。 近年、電子機器の小型化、薄形化或は軽量化は
目覚ましく、それに伴い電源となる電池の小型
化、薄形化、軽量化の要望が大きい。小型で性能
のよい電池として現在は酸化銀電池が多用されて
おり、又、薄形化された乾電池や小型、軽量な高
性能電池としてリチウム電池が開発され実用され
ている。しかし、これらの電池は一次電池である
ため充放電を繰返して長期間使用することは出来
ない。一方、高性能な二次電池としてニツケル・
カドミウム電池が実用されているが小型化、薄形
化、軽量化という点で前記電池より劣つている。 又、大容量の二次電池として従来より鉛蓄電池
が種々の産業分野で用いられるが、この電池の最
大の欠点は重いことである。これは電極活物質と
して比重の大きい過酸化鉛及び鉛を用いるため宿
命的なものである。近年、電気自動車用電池とし
て該電池の軽量比及び性能改善が試みられらが実
用するに至らなかつた。しかし蓄電用として大容
量で且つ軽量な二次電池開発に対する要望は強い
ものがある。 以上のように現在実用されている電池は夫々一
長一短があり、それぞれ用途に応じて使い分けさ
れているが電池の小型化、薄形化或は軽量化に対
するニーズは大きい。このようなニーズに答える
電池として近時有機半導体である薄膜状ポリアセ
チレンに電子供与性物質又は電子受容性物質をド
ーピングしたものを電極活物質として用いる電池
が研究され、提案されている。該電池は二次電池
として高性能で且つ薄形化、軽量化の可能性は有
しているが大きな欠点がある。それは有機半導体
であるポリアセチレンが極めて不安定な物質であ
り、空気中の酸素により容易に酸化を受け又熱に
より変質することである。従つて、電池製造は不
活性ガス雰囲気で行なわなければならず又、ポリ
アセチレンを電極に適した形状に製造することも
制約を受ける。通常、電池に要求される条件は負
荷電圧、電流が大きいこと、寿命が長いこと、温
度による特性変化が小さいこと、電池重量及び容
量が小さいこと、メンテナンスフリーであるこ
と、安価であること等々である。 本発明者らは現在実用化或は提案されている電
池の欠点がなく、電池に要求される条件を満足し
た電池を開発するべく鋭意研究した結果ポリアセ
ン系骨格構造を含有する不溶不融性基体を正極又
は/及び負極とし、電解により該電極にドーピン
グされ得るイオンを生成し得る化合物を非プロト
ン性有機溶媒に溶解したものを電解液として電池
を構成することにより前記要求を満足し得る電池
が得らることを見出し本発明を完成したものであ
る。 本発明の目的は高性能を有する軽量な二次電池
を提供するにある。他の目的は小型化或は薄形化
が容易な二次電池を提供するにある。更に他の目
的は製造が容易で安価な電池を提供するにある。 本発明の目的は炭素、水素および酸素からなる
芳香族系縮合ポリマーの熱処理物であつて水素原
子/炭素原子の原子比が0.33〜0.15で表わされる
ポリアセン系骨格構造を含有する不溶不融性基体
を正極又は/及び負極とし、電解により該電極に
ドーピングされ得るイオンを生成し得る化合物を
非プロトン性有機溶媒に溶解したものを電解液と
して電池を構成することにより達成される。 本発明において使用されるポリアセン系骨格構
造を含有する不溶不融性基体は炭素、水素および
酸素からなる芳香族系縮合ポリマーを非酸化性雰
囲気中で水素原子/炭素原子の原子比が0.33〜
0.15となるように600〜800℃の温度まで加熱、熱
処理することにより製造することができる。 本発明者らの研究によれば炭素、水素および酸
素から成る芳香族系縮合ポリマーの熱処理物であ
つて、水素原子/炭素原子の原子比が0.60〜0.15
特に好ましくは0.50〜0.20で表わされるポリアセ
ン系骨格構造を含有する不溶不融性基体は電子供
与性物質又は電子受容性物質でドーピングするこ
とができ、かようなドーピングによつて未ドーピ
ングの該基体よりも電気伝導性を極めて大きく増
大させることができることが分つた。又、非プロ
トン性有機溶媒中でイオン化した電子供与性物質
又は電子受容性物質を電気化学的方法により該基
体にドーピングすることができ、前記同様電気伝
導性を増大させることができることが分つた。更
にドーピングされた物質を電気化学的方法により
アンドーピングすることができることも分つた。 炭素、水素および酸素から成る芳香族系縮合ポ
リマーとしては、フエノール性水酸基を有する芳
香族単価水素化合物とアルデヒドとの縮合物が好
適である。かような芳香族化合物としては例えば
フエノール、クレゾール、キシレノール等の所謂
フエノール類が好適であるがこれらに限られな
い。例えばメチレンビスフエノール類、ヒドロキ
シビフエニール類やヒドロキシナフタレン類であ
つてもよい。これらの中実用的にはフエノール
類、殊にフエノールが好適である。 また、アルデヒドとしてはホルムアルデヒドの
みならずアセトアルデヒドその他のアルデヒドも
使用することができるがホルムアルデヒドが好適
である。 更に、芳香族系縮合ポリマーとしてはフルフラ
ール又はフルフリールアルコールから得られるフ
ラン樹脂及び該樹脂と前記したフエノール性水酸
基を有する芳香族炭化水素化合物とアルデヒドと
の縮合物の共重合物或は混合物も用いることが出
来る。 炭素、水素および酸素から成る芳香族系縮合ポ
リマーは予めフイルム、板、繊維、布又はそれら
の複合体等本発明の電池において使用するに適し
た形状に成形して熱処理するのが有利である。 芳香族系縮合ポリマーの成形は従来公知の方法
で製造できる。例えば粉末状ノボラツクと硬化剤
の混合物を加熱下金型にて加圧成型する方法、ノ
ボラツク樹脂のメタノール溶液をガラス板上に流
延後メタノールを蒸発させ次いで塩酸−ホルマリ
ン浴で硬化させる方法、硬化フエノール樹脂繊維
或は硬化フエノール樹脂粉末と液状レゾール樹脂
又はフラン樹脂よりプリプレグを作り、次いで加
熱下加圧成型する方法上が挙げられる。 ポリアセン系骨格構造を含有する不溶不融性基
体は芳香族系縮合ポリマーの成形体を非酸化性雰
囲気例えば窒素、水素、アルゴン、ヘリウム等の
雰囲気中又は真空中で400〜800℃、好ましくは
450〜750℃、特に好ましくは500〜750℃の温度ま
で加熱し、熱処理することにより製造することが
できる。熱処理時の好ましい昇温速度は使用する
芳香族系縮合ポリマーの種別或はその形状等によ
つて多少相違するが一般に室温から300℃程度の
温度までは比較的大きな昇温速度とすることが可
能であるが通常成形体の厚さをh(mm)とすると
80/h2℃/時間以下の昇温速度とするのが好まし
い。かゝる昇温速度とすることにより生成する不
溶不融性基体の水素原子/炭素原子の原子比を
0.60〜0.15に制御することが容易となり、また電
気伝導度或はその他の機械的性質を安定化せしめ
ることも容易となる。 加熱、熱処理の温度を400℃より低い温度とす
るときには熱分解が不充分となり、一方800℃よ
り高い温度とするときには熱分解が激しくなりす
ぎ、いずれの場合にも水素原子/炭素原子の原子
比を0.60〜0.15にすることは極めて困難であるか
不可能である。 本発明の電池は上記のようにして得た水素原
子/炭素原子の原子比が0.33〜0.15のポリアセン
系骨格構造を含有する不溶不融性基体を正極又
は/及び負極とし、電解により該電極にドーピン
グされ得るイオンを生成し得る化合物を非プロト
ン性有機溶媒に溶解したものを電解液として構成
される。 電極として使用する不溶不融性基体の水素原
子/炭素原子の原子比及び形状は目的とする電池
の性能、大きさ、形状等により任意に選択するこ
とができるが電池は電極表面における電気化学的
反応を利用するものであるから高性能電池を得る
には電極は電気抵抗が小さく且つ表面積が大きく
なるようにすることが重要である。従つて水素原
子/水素原子の原子比は0.33〜0.15好ましくは
0.30〜0.20である。原子比が0.33より大きいと電
気抵抗が大きいため電気化学的ドーピングが困難
となり、又、ドーピング後の不溶不融基体の電気
伝導度が十分小さくならないため高性能の電池が
得られない。又、原子比が0.15より小さい場合は
熱分解によるポリアセン系骨格構造が十分に発達
し電気抵抗は小さくなるが電気化学的ドーピング
により十分にドーピング剤をドーピングできなく
なるため高性能の電池を得ることが出来ない。 電極形状は容積当りの表面積を大きくするため
通常フイルム状、紙状、布状或は多孔板が好適で
ある。 以上のように目的に応じ電極に用いる不溶不融
性基体の組成や形状を任意に選択できることが本
発明の大きな特長であり、従来公知の電気伝導有
機高分子材料例えばポリアセチレンやポリp−フ
エニレンでは得られないものである。 電解液に用いられ、電極にドーピングされ得る
イオンを生成し得る化合物としてはアルカリ金属
又はテトラアルキルアンモニウムのハロゲン化
物、過塩素酸塩、6フツ化リン酸塩、6フツ化ヒ
酸塩、4フツ化ホウ素酸塩等が挙げられ、具体的
にはLiI、NaI、NH4I、LiClO4、LiAsF6
LiBF4、KPF6、NaPF6、(n−C4H94NClO4
(n−C4H94NAsF6、(n−C4H94NPF6等が挙
げられる。 前記化合物を溶解する溶媒としては非プロトン
性有機溶媒が用いられ、エチレンカーボネート、
プロピレンカーボネート、γ−ブチロラクトン、
ジメチルホルムアミド、ジメチルアセトアミド、
ジメチルスルホキシド、アセトニトリル、ジメト
キシエタン、テトラヒドロフラン、塩化メチレン
又はこれらの混合物が挙げられるが電解質として
用いられる前記化合物の溶解性、電池性能等を考
慮して選択することが重要である。 電解液中の前記化合物の濃度は電解液による内
部抵抗を小さくするため少なくとも0.1モル/
以上であり通常0.5〜1.5モル/である。 本発明の電池は上記したようにポリアセン系骨
格構造を含有する不溶不融性基体を正極又は/及
び負極とし、電解による該電極にドーピングされ
得るイオンを生成し得る化合物を非プロトン性有
機溶媒に溶解したものを電解液として構成される
が、電池機能は正極又は負極に電子受容性物質又
は電子供与性物質をドーピングすることにより発
揮される。 本発明に用いるポリアセン系骨格構造を含有す
る不溶不融性基体に電子受容性物質又は電子供与
性物質をドーピングする方法としてはポリアセチ
レン或はポリp−フエニレン等伝導性有機高分子
材料について従来用いられているドーピング法と
本質的に同じ方法を使用することができる。強い
て本発明におけるドーピング法を従来知られたド
ーピング法と比較してその相違を記述すれば本発
明に用いる上記不溶不融性基体は酸素に対して非
常に安定であるのみならず他の種々の科学薬品に
対しても高い安定性を有しているため本発明にお
けるドーピング法は従来知られた方法よりも強い
条件例えば100〜200℃の温度下でドーピングを実
施できる点にある。それ故、本発明におけるドー
ピング法によれば、従来知られた方法よりも効率
よく有利にドーピングを行うことができる。 電子供与性物質がアルカリ金属の場合には溶融
したアルカリ金属或はアルカリ金属の蒸気と不溶
不融性基体とを接触せしめてドーピングすること
ができ、また例えばテトラヒドロフラン中で生成
せしめたアルカリ金属ナフタレン錯体と不溶不融
性基体とを接触せしめてドーピングすることもで
きる。 電子受容性物質がハロゲン、ハロゲン化合物で
ある場合にはこれらのガスを不溶不融性基体と接
触せしめることにより容易にドーピングを行うこ
とができる。 電子供与性物質或は電子受容性物質が前記した
非プロトン性有機溶媒中でイオンを生成し得る場
合には不溶不融性基体を負極或は正極として直流
電圧を印加し電気化学的にドーピングすることが
できる。例えば過塩素酸リチウムをテトラハイド
ロフランに溶解すればリチウムイオンと過塩素酸
イオンが生成する。該溶液中に不溶不融性基体を
浸漬し直流電圧を印加すると正極側には過塩素酸
イオンが、負極側にはリチウムイオンがドーピン
グされる。正極或は負極のみにドーピングする場
合には対極として白金、パラジウム、金、等不活
性金属を用いる。印加する電圧、ドーピング時間
等のドーピング条件は電極の大きさ、形状、電解
液の種別、ドーピング量等を考慮して任意に決め
ることが出来る。 不溶不融性基体にドーピング剤をドーピングす
る方法は如何なる方法でもよいが本発明において
は電気化学的方法が好適であり、さらに不溶不融
性基体、上述したようなドーピング剤及び溶媒を
用いて電池を組立てた後電池内において電気化学
的方法によりドーピングする方法が特に好適であ
る。 本発明の電池はポリアセン系骨格構造を含有す
る不溶不融性基体を正極又は/及び負極としドー
ピング剤を非プロトン性有機溶媒に溶解したもの
を電解質とするものであるが、その電池作用は電
極として用いる不溶不融性基体へのドーピング剤
の化学的或は電気化学的ドーピングと電気化学的
アンドーピングを利用するものである。即ち、エ
ネルギーが不溶不融性基体へのドーピング剤の化
学的或は電気化学的ドーピングにより蓄えられ、
電気化学的アンドーピングにより電気エネルギー
として外部に取出される。 本発明に係る電池は2つのタイプに分けられ
る。第1のタイプは正極及び負極の両極にポリア
セン系骨格構造を含有する不溶不融性基体を用い
る電池であり、第2のタイプは正極に不溶不融性
基体を用い負極にはアルカリ金属又はその合金か
らなる電極を用いる電池である。二次電池及び軽
量化には第1のタイプが好ましく、高出力を要求
される電池では第2のタイプ特に負極にリチウム
金属を用いる電池が好ましい。 電池内に配置される不溶不融性基体からなる電
極の形状、大きさは目的とする電池により任意に
選ぶことができるが電池反応は電極表面上の電気
化学的反応であるため電極は可能な限り表面積を
大きくすることが有利である。又、該基体より電
池外部に電流を取出すための集電体としては該基
体或はドーピング剤でドーピングされた基体を用
いてもよいがドーピング剤及び電解液に対して耐
食性のある他の導電性物質例えば炭素、白金、
金、銅、ニツケル等の金属又は合金を用いること
も出来る。不溶不融性基体が高電気抵抗の場合や
フイルム状、布状の場合は炭素が金属の集電体を
用いる方が性能上或は電池を組立てる上で好適で
ある。この場合電極と集電体の接続は電極内に集
電体の一部を埋設するか電極に集電体を圧接する
か電極の一部にメツキ、蒸着等により金属層を作
り該部分に集電体を接着させることにより行うこ
とができる。 次に図により本発明のの実施態様を説明する。 第1図は本発明に係る電池の基本構成図であ
り、1は正極フイルム状、布状或は多孔板等から
なるポリアセン系骨格構造を含有する不溶不融性
基体であり、電子受容性のドーピング剤がドーピ
ングされていても、未ドーピングでもよい。2は
負極でフイルム状、布状或は多孔板等からなるポ
リアセン系骨格構造を含有する不溶不融性基体で
あり、電子供与性のドーピング剤がドーピングさ
れていても、未ドーピングでもよいが正極と同じ
状態でなければならない。即ち正極がドーピング
された状態であれば負極もドーピングされた不溶
不融性基体を用い、未ドーピング状態であれば負
極も未ドーピングの基体を用い、電池を組立てた
後、外部電源より電圧を印加して両極に夫々ドー
ピング剤をドーピングする。3は各電極から電池
ケース外部に電流を取り出したり、電気化学的ド
ーピング即ち充電するために電流を供給するため
の集電体であり、前述した方法により各電極及び
外部端子7に電圧降下を生じないように接続され
ている。4は電解液であり非プロトン性有機溶媒
に正負両極にドーピングされ得るイオンを生成し
得る前述の化合物が溶解されている。電解液は通
常液大であるが漏液を防止するためゲル状又は固
体状にして用いることもできる。5は正負両極の
接触を阻止すること及び電解液を保持することを
目的として配置されたセパレータである。該セパ
レータは電解液或はドーピング剤やアルカリ金属
等の電極活物質に対し耐久性のある連通気孔を有
する電子伝導性のない多孔体であり通常ガラス繊
維からなる布、不織布或はポリエチレン、ポリプ
ロピレン等の合成樹脂からなる布、不織布、多孔
体が用いられる。セパレータの厚さは電池の内部
抵抗を小さくするため薄い方が好ましい電解液の
保持量、流通性、強度等を勘案して決定される。
正負両極及びセパレータは電池ケース6内に実用
上問題が生じない様に固定される。電極の形状、
大きさ等は目的とする電池の形状、性能により適
宜決められる。例えば薄形電池を製造するには電
極はフイルム状又は布状が適し、大容量電池を製
造するにはフイルム状、布状又は多孔板の電極を
多数枚正負両極を交互に積層することにより達成
できる。 以上、両極に不溶不融性基体を用いる場合につ
いて説明したが正極に該基体負極にアルカリ金属
又はその合金を用いる場合も基本的には同じであ
るが予めドーピング剤がドーピングされた不溶不
融性基体を用いるのが望ましい。 本発明の電池は従来公知の有機半導体より耐酸
化性、耐熱性及び成形性に優れたポリアセン系骨
格構造を含有する不溶不融性基体を正極又は/及
び負極とし、該電極に電子受容性物質又は電子供
与性物質をドーピングしたものを電極活物質と
し、電解により該電極にドーピングされ得るイオ
ンを生成する化合物を非プロトン性有機溶媒に溶
解したものを電解液とする電池であり、小型化、
軽量化、薄形化が可能で且つ高容量、高出力で長
寿命の新規な高性能電池を安価に提供するもので
ある。以下実施例により本発明を具体的に説明す
る。 実施例 1 フエノール樹脂系繊維よりなる不織布(日本カ
イノール(株)製品、目付500g/m2)を10重量%の
レゾール型フエノール樹脂のメタノール溶液に浸
漬し、マングルにて搾液後、風乾し、フエノール
樹脂系繊維/レゾール型フエノール樹脂=9/1
(重量比)のプリプレグを作つた。該プリプレグ
1枚を150℃に加熱された加圧成型機により20
Kg/cm2の圧力下30分間硬化することによつて厚さ
1mmの多孔質板を得た。この板を窒素雰囲気下
480℃〜700℃で熱処理し、水素原子/炭素原子の
原子比が異なるポリアセン系骨格構造を含有する
不溶不融性基体を得た。 得られた多孔板を巾1cm、長さ3cmに切り出
し、一般に白金線を導電性接着剤で接着したもの
を同寸法のリチウム箔の両面に厚さ1mmのガラス
繊維紙(セパレータ)を介して配置し、濃度0.5
モル/の過塩素酸リチウムのプロピレンカーボ
ネート溶液に2cmだけ浸漬し、電池を構成した。
次に不溶不融性基体を正極、リチウム箔を負極と
して10Vの直流電圧を2時間印加した後開路電圧
及び短絡電流を測定した。その結果を第1表に示
す。第1表によりポリアセン系骨格構造を含有す
る不溶不融性基体の水素原子/炭素原子の原子比
は0.33〜0.15であり好ましくは0.30〜0.20である
ことがわかる。
The present invention relates to a novel organic electrolyte battery whose electrode active material is an electrically conductive organic polymeric material doped with an electron donating substance or an electron accepting substance. 2. Description of the Related Art In recent years, electronic devices have become increasingly smaller, thinner, and lighter, and as a result, there has been a strong demand for smaller, thinner, and lighter batteries that serve as power sources. Currently, silver oxide batteries are widely used as small, high-performance batteries, and lithium batteries have been developed and put into practical use as thin dry batteries and small, lightweight, high-performance batteries. However, since these batteries are primary batteries, they cannot be used for long periods of time by being repeatedly charged and discharged. On the other hand, as a high-performance secondary battery, nickel
Although cadmium batteries are in practical use, they are inferior to the aforementioned batteries in terms of smaller size, thinner shape, and lighter weight. Furthermore, lead-acid batteries have been conventionally used as high-capacity secondary batteries in various industrial fields, but the biggest drawback of these batteries is that they are heavy. This is inevitable because lead peroxide and lead, which have a high specific gravity, are used as electrode active materials. In recent years, attempts have been made to improve the weight ratio and performance of batteries for electric vehicles, but they have not been put to practical use. However, there is a strong demand for the development of large capacity and lightweight secondary batteries for power storage. As described above, each of the batteries currently in use has advantages and disadvantages, and is used depending on the purpose, but there is a great need for smaller, thinner, and lighter batteries. As a battery that meets these needs, a battery that uses a thin film of polyacetylene, which is an organic semiconductor, doped with an electron-donating substance or an electron-accepting substance as an electrode active material has recently been researched and proposed. Although this battery has high performance as a secondary battery and has the possibility of being made thinner and lighter, it has a major drawback. The reason is that polyacetylene, which is an organic semiconductor, is an extremely unstable substance and is easily oxidized by oxygen in the air and deteriorated by heat. Therefore, battery manufacturing must be carried out in an inert gas atmosphere, and there are also restrictions on manufacturing polyacetylene into a shape suitable for electrodes. Normally, the conditions required for batteries include high load voltage and current, long life, small change in characteristics due to temperature, small battery weight and capacity, maintenance-free, and low cost. be. The present inventors conducted intensive research to develop a battery that does not have the drawbacks of batteries that are currently in practical use or have been proposed, and that satisfies the conditions required for batteries.As a result, an insoluble and infusible substrate containing a polyacene skeleton structure was developed. A battery that satisfies the above requirements can be obtained by constructing a battery using a positive electrode and/or a negative electrode, and an electrolyte containing a compound capable of producing ions that can be doped into the electrode by electrolysis, dissolved in an aprotic organic solvent. The present invention was completed by discovering that the present invention can be obtained. An object of the present invention is to provide a lightweight secondary battery with high performance. Another object is to provide a secondary battery that can be easily made smaller or thinner. Yet another object is to provide a battery that is easy to manufacture and inexpensive. The object of the present invention is to provide an insoluble and infusible substrate containing a polyacene skeleton structure having an atomic ratio of hydrogen atoms/carbon atoms of 0.33 to 0.15, which is a heat-treated product of an aromatic condensation polymer consisting of carbon, hydrogen, and oxygen. This is achieved by constructing a battery by using a positive electrode and/or a negative electrode, and using an electrolyte containing a compound capable of producing ions that can be doped into the electrode by electrolysis dissolved in an aprotic organic solvent. The insoluble and infusible substrate containing a polyacene skeleton structure used in the present invention is an aromatic condensation polymer consisting of carbon, hydrogen, and oxygen in a non-oxidizing atmosphere with an atomic ratio of hydrogen atoms/carbon atoms of 0.33 to 1.
It can be manufactured by heating and heat-treating to a temperature of 600 to 800°C so that the temperature becomes 0.15. According to research conducted by the present inventors, a heat-treated aromatic condensation polymer consisting of carbon, hydrogen, and oxygen has an atomic ratio of hydrogen atoms/carbon atoms of 0.60 to 0.15.
Particularly preferably, the insoluble and infusible substrate containing a polyacene skeleton structure represented by 0.50 to 0.20 can be doped with an electron-donating substance or an electron-accepting substance, and by such doping, the undoped substrate can be doped with an electron-donating substance or an electron-accepting substance. It has been found that the electrical conductivity can be significantly increased. It has also been found that the substrate can be doped with an ionized electron-donating substance or electron-accepting substance in an aprotic organic solvent by an electrochemical method, and the electrical conductivity can be increased as described above. It has also been found that doped materials can be undoped by electrochemical methods. As the aromatic condensation polymer consisting of carbon, hydrogen and oxygen, a condensate of an aromatic monovalent hydrogen compound having a phenolic hydroxyl group and an aldehyde is suitable. Suitable examples of such aromatic compounds include so-called phenols such as phenol, cresol, and xylenol, but are not limited thereto. For example, methylene bisphenols, hydroxybiphenyls, and hydroxynaphthalenes may be used. Among these, phenols, particularly phenol, are preferred from a practical standpoint. Further, as the aldehyde, not only formaldehyde but also acetaldehyde and other aldehydes can be used, but formaldehyde is preferred. Further, as aromatic condensation polymers, there are also copolymers or mixtures of furan resins obtained from furfural or furfuryl alcohol, and condensates of the above-mentioned aromatic hydrocarbon compounds having phenolic hydroxyl groups and aldehydes. It can be used. It is advantageous that the aromatic condensation polymer consisting of carbon, hydrogen and oxygen is previously formed into a shape suitable for use in the battery of the present invention, such as a film, plate, fiber, cloth or composite thereof, and then heat treated. The aromatic condensation polymer can be molded by a conventionally known method. For example, a method in which a mixture of powdered novolac and a curing agent is pressure molded in a heated mold, a method in which a methanol solution of novolac resin is cast onto a glass plate, the methanol is evaporated, and then the mixture is cured in a hydrochloric acid-formalin bath; Examples include a method in which a prepreg is made from phenolic resin fibers or cured phenolic resin powder and liquid resol resin or furan resin, and then pressure molded under heat. The insoluble and infusible substrate containing a polyacene skeleton structure is prepared by molding the aromatic condensation polymer in a non-oxidizing atmosphere such as nitrogen, hydrogen, argon, helium, etc. or in vacuum at 400 to 800°C, preferably
It can be produced by heating to a temperature of 450 to 750°C, particularly preferably 500 to 750°C, and heat-treating. The preferred rate of temperature increase during heat treatment varies somewhat depending on the type of aromatic condensation polymer used, its shape, etc., but generally it is possible to achieve a relatively high rate of temperature increase from room temperature to a temperature of about 300°C. However, if the thickness of the normal molded body is h (mm), then
It is preferable to set the temperature increase rate to 80/h 2 °C/hour or less. The atomic ratio of hydrogen atoms/carbon atoms of the insoluble and infusible substrate produced by setting the temperature to such a rate is
It becomes easy to control it within the range of 0.60 to 0.15, and it also becomes easy to stabilize the electrical conductivity or other mechanical properties. If the temperature of heating and heat treatment is lower than 400℃, thermal decomposition will be insufficient, while if the temperature is higher than 800℃, thermal decomposition will be too intense, and in either case, the atomic ratio of hydrogen atoms / carbon atoms will be lowered. It is extremely difficult or impossible to make the value between 0.60 and 0.15. In the battery of the present invention, the insoluble and infusible substrate containing a polyacene skeleton structure with a hydrogen atom/carbon atom atomic ratio of 0.33 to 0.15 obtained as described above is used as a positive electrode and/or a negative electrode, and is attached to the electrode by electrolysis. The electrolyte is composed of a compound capable of producing ions that can be doped dissolved in an aprotic organic solvent. The atomic ratio of hydrogen atoms/carbon atoms and the shape of the insoluble and infusible substrate used as an electrode can be arbitrarily selected depending on the performance, size, shape, etc. of the intended battery. Since the battery utilizes a reaction, it is important for the electrode to have a low electrical resistance and a large surface area in order to obtain a high-performance battery. Therefore, the atomic ratio of hydrogen atoms/hydrogen atoms is preferably 0.33 to 0.15.
It is between 0.30 and 0.20. When the atomic ratio is greater than 0.33, electrochemical doping becomes difficult due to high electrical resistance, and the electrical conductivity of the insoluble and infusible substrate after doping does not become sufficiently small, making it impossible to obtain a high-performance battery. In addition, if the atomic ratio is less than 0.15, the polyacene skeleton structure due to thermal decomposition will be sufficiently developed and the electrical resistance will be small, but it will not be possible to dope the doping agent sufficiently by electrochemical doping, making it difficult to obtain a high-performance battery. Can not. In order to increase the surface area per volume, the electrode shape is usually film-like, paper-like, cloth-like, or perforated plate. As described above, a major feature of the present invention is that the composition and shape of the insoluble and infusible substrate used for the electrode can be arbitrarily selected depending on the purpose. It is something that cannot be obtained. Compounds that can be used in the electrolytic solution and can generate ions that can be doped into the electrode include alkali metal or tetraalkylammonium halides, perchlorates, hexafluorophosphates, hexafluoroarsenates, and tetrafluoroarsenates. Examples include boronates, specifically LiI, NaI, NH 4 I, LiClO 4 , LiAsF 6 ,
LiBF 4 , KPF 6 , NaPF 6 , (n-C 4 H 9 ) 4 NClO 4 ,
(n- C4H9 ) 4NAsF6 , (n- C4H9 ) 4NPF6 , etc. are mentioned. Aprotic organic solvents are used as solvents for dissolving the above compounds, such as ethylene carbonate,
Propylene carbonate, γ-butyrolactone,
dimethylformamide, dimethylacetamide,
Examples include dimethyl sulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, methylene chloride, or a mixture thereof, but it is important to select the electrolyte in consideration of the solubility of the compound used as the electrolyte, battery performance, etc. The concentration of the above compound in the electrolyte is at least 0.1 mol/mol to reduce the internal resistance caused by the electrolyte.
The amount is usually 0.5 to 1.5 mol/. As described above, the battery of the present invention uses an insoluble and infusible substrate containing a polyacene skeleton structure as a positive electrode and/or a negative electrode, and a compound that can generate ions that can be doped into the electrode by electrolysis in an aprotic organic solvent. The dissolved material is configured as an electrolyte, and the battery function is achieved by doping the positive electrode or negative electrode with an electron-accepting substance or an electron-donating substance. As a method for doping an insoluble and infusible substrate containing a polyacene skeleton structure with an electron-accepting substance or an electron-donating substance used in the present invention, a method conventionally used for conductive organic polymer materials such as polyacetylene or polyp-phenylene is used. Essentially the same doping methods can be used. Comparing the doping method of the present invention with conventionally known doping methods and describing the differences, the above-mentioned insoluble and infusible substrate used in the present invention is not only extremely stable against oxygen, but also has various other properties. Since it has high stability against chemical agents, the doping method of the present invention allows doping to be carried out under stronger conditions than conventionally known methods, for example, at a temperature of 100 to 200°C. Therefore, according to the doping method of the present invention, doping can be performed more efficiently and advantageously than conventionally known methods. When the electron-donating substance is an alkali metal, doping can be carried out by contacting the molten alkali metal or the vapor of the alkali metal with an insoluble and infusible substrate; for example, an alkali metal naphthalene complex formed in tetrahydrofuran Doping can also be carried out by bringing the material into contact with the insoluble and infusible substrate. When the electron-accepting substance is a halogen or a halogen compound, doping can be easily carried out by bringing these gases into contact with the insoluble and infusible substrate. When the electron-donating substance or electron-accepting substance can generate ions in the above-mentioned aprotic organic solvent, doping is carried out electrochemically by applying a DC voltage to the insoluble and infusible substrate as a negative or positive electrode. be able to. For example, when lithium perchlorate is dissolved in tetrahydrofuran, lithium ions and perchlorate ions are generated. When the insoluble and infusible substrate is immersed in the solution and a DC voltage is applied, the positive electrode side is doped with perchlorate ions and the negative electrode side is doped with lithium ions. When doping only the positive electrode or the negative electrode, an inert metal such as platinum, palladium, gold, etc. is used as the counter electrode. Doping conditions such as applied voltage and doping time can be arbitrarily determined in consideration of the size and shape of the electrode, the type of electrolyte, the amount of doping, and the like. Although any method may be used to dope the doping agent into the insoluble and infusible substrate, an electrochemical method is preferred in the present invention. Particularly suitable is the method of doping by electrochemical methods in the cell after assembly. The battery of the present invention uses an insoluble and infusible substrate containing a polyacene skeleton structure as a positive electrode and/or a negative electrode, and a doping agent dissolved in an aprotic organic solvent as an electrolyte. This method utilizes chemical or electrochemical doping and electrochemical undoping of a doping agent to an insoluble and infusible substrate used as a doping agent. That is, energy is stored by chemical or electrochemical doping of a doping agent into an insoluble, infusible substrate;
It is extracted externally as electrical energy through electrochemical undoping. Batteries according to the invention are divided into two types. The first type is a battery that uses an insoluble and infusible substrate containing a polyacene skeleton structure in both the positive and negative electrodes, and the second type uses an insoluble and infusible substrate in the positive electrode and an alkali metal or its anode. This is a battery that uses electrodes made of alloys. The first type is preferable for secondary batteries and for weight reduction, and the second type is preferable for batteries requiring high output, especially batteries using lithium metal for the negative electrode. The shape and size of the electrode, which is made of an insoluble and infusible substrate placed inside the battery, can be arbitrarily selected depending on the intended battery, but since the battery reaction is an electrochemical reaction on the electrode surface, it is possible to It is advantageous to increase the surface area as much as possible. Further, as a current collector for extracting current from the base to the outside of the battery, the base or a base doped with a doping agent may be used, but other conductive materials that are resistant to corrosion against the doping agent and the electrolyte may be used. Materials such as carbon, platinum,
Metals or alloys such as gold, copper, nickel, etc. can also be used. When the insoluble and infusible substrate has a high electrical resistance, or is in the form of a film or cloth, it is preferable to use a current collector in which carbon is a metal in terms of performance or battery assembly. In this case, the connection between the electrode and the current collector is to bury a part of the current collector in the electrode, press the current collector to the electrode, or create a metal layer on a part of the electrode by plating, vapor deposition, etc. to collect the current at that part. This can be done by adhering the electric body. Next, embodiments of the present invention will be explained with reference to the drawings. FIG. 1 is a basic configuration diagram of a battery according to the present invention, and 1 is an insoluble and infusible substrate containing a polyacene skeleton structure made of a positive electrode film, cloth, or porous plate, and has an electron-accepting property. It may be doped with a doping agent or may be undoped. 2 is a negative electrode, which is an insoluble and infusible substrate containing a polyacene skeleton structure in the form of a film, cloth, or porous plate, and may be doped with an electron-donating doping agent or not; must be in the same state. That is, if the positive electrode is doped, the negative electrode also uses a doped insoluble and infusible substrate, and if it is undoped, the negative electrode also uses an undoped substrate. After assembling the battery, voltage is applied from an external power source. Then, both electrodes are doped with a doping agent. 3 is a current collector for extracting current from each electrode to the outside of the battery case or for supplying current for electrochemical doping, that is, charging, and a voltage drop is caused at each electrode and external terminal 7 by the method described above. Not connected like that. Reference numeral 4 denotes an electrolytic solution in which the aforementioned compound capable of producing ions that can be doped into both positive and negative electrodes is dissolved in an aprotic organic solvent. The electrolytic solution is usually in a liquid size, but it can also be used in a gel or solid form to prevent leakage. A separator 5 is arranged for the purpose of preventing contact between the positive and negative electrodes and retaining the electrolyte. The separator is a non-electron conductive porous body with continuous pores that is resistant to electrolytes, doping agents, and electrode active materials such as alkali metals, and is usually made of glass fiber cloth, nonwoven fabric, polyethylene, polypropylene, etc. Cloths, nonwoven fabrics, and porous bodies made of synthetic resins are used. The thickness of the separator is determined in consideration of the amount of electrolyte retained, flowability, strength, etc., which is preferable to be thin in order to reduce the internal resistance of the battery.
Both the positive and negative electrodes and the separator are fixed in the battery case 6 so as not to cause any practical problems. shape of the electrode,
The size etc. are appropriately determined depending on the shape and performance of the intended battery. For example, to manufacture thin batteries, electrodes in the form of film or cloth are suitable; to manufacture large capacity batteries, electrodes in the form of film, cloth, or perforated plates can be laminated alternately with positive and negative electrodes. can. Above, we have explained the case where an insoluble and infusible substrate is used for both electrodes, but basically the same is true when using the substrate for the positive electrode and an alkali metal or its alloy for the negative electrode, but an insoluble and infusible substrate doped with a doping agent in advance Preferably, a substrate is used. The battery of the present invention uses an insoluble and infusible substrate containing a polyacene skeleton structure that has better oxidation resistance, heat resistance, and moldability than conventionally known organic semiconductors as a positive electrode and/or negative electrode, and an electron-accepting substance in the electrode. Alternatively, it is a battery in which the electrode active material is doped with an electron-donating substance, and the electrolyte is a compound that generates ions that can be doped into the electrode by electrolysis, dissolved in an aprotic organic solvent.
The purpose of the present invention is to provide a new high-performance battery that can be made lighter and thinner, and has a higher capacity, higher output, and longer life at a lower cost. The present invention will be specifically explained below using Examples. Example 1 A nonwoven fabric made of phenolic resin fibers (manufactured by Nippon Kynol Co., Ltd., weight 500 g/m 2 ) was immersed in a 10% by weight methanol solution of resol-type phenolic resin, squeezed with a mangle, and air-dried. Phenol resin fiber/resol type phenol resin = 9/1
(Weight ratio) prepreg was made. One sheet of the prepreg is heated to 150°C and molded for 20 minutes.
A porous plate with a thickness of 1 mm was obtained by curing for 30 minutes under a pressure of Kg/cm 2 . This board was placed under a nitrogen atmosphere.
Heat treatment was performed at 480°C to 700°C to obtain insoluble and infusible substrates containing polyacene skeleton structures with different atomic ratios of hydrogen atoms/carbon atoms. The resulting perforated plate is cut into pieces of 1 cm wide and 3 cm long, and platinum wire is generally glued with conductive adhesive and placed on both sides of lithium foil of the same size with 1 mm thick glass fiber paper (separator) in between. and concentration 0.5
A battery was constructed by immersing 2 cm into a propylene carbonate solution of lithium perchlorate at mol/l.
Next, a DC voltage of 10 V was applied for 2 hours using the insoluble and infusible substrate as the positive electrode and the lithium foil as the negative electrode, and then the open circuit voltage and short circuit current were measured. The results are shown in Table 1. Table 1 shows that the atomic ratio of hydrogen atoms to carbon atoms of the insoluble and infusible substrate containing a polyacene skeleton structure is from 0.33 to 0.15, preferably from 0.30 to 0.20.

【表】 実施例 2 実施例1で得た水素原子/炭素原子の原子比が
0.23の不溶不融性基体の多孔板を実施例1と同様
に巾1cm、長さ3cmに切り出し、一端に集電用白
金線を導電性接着剤で接着したもの2枚の間に厚
さ1mmのガラス繊維紙を挿入して一対の電極を組
立て濃度0.5モル/の過塩素酸リチウムのプロ
ピレンカーボネート溶液を電解液として電池を組
立てた。次に一方の不溶不融性基体を正極、他方
を負極として15Vの直流電圧を3時間印加した後
両電極間の開路電圧及び短絡電流を測定したとこ
ろ、夫々3.0V、3mAであつた。又、1mAの
定電流で30分間放電させたところ開路電圧は
1.8Vとなつた。再び15Vの直流電圧を30分間印加
したところ開路電圧は3.0Vに回復した。 実施例 3 実施例2と同様にして一対の電極を組立て、過
塩素酸リチウム溶液の代りに濃度1モル/の過
塩素産テトラブチルアンモニウムのプロピレンカ
ーボネート溶液を電解液として電池を組立てた。
次に10Vの直流電圧を5時間印加後開路電圧及び
短絡電流を測定したところ夫々2.8V、5mAで
あつた。 実施例 4 数平均分子量1000のノボラツク樹脂/メタノー
ル/ホルマリン(約37%濃度の水溶液)を重量比
で3/3/1の割合で混合した溶液をガラス板上
に流し、アプリケーターを用いて引き伸ばした。
その後、約30分間風乾してメタノールを除去した
後、ガラス板上に付着させたまゝ5N塩酸内に入
れ70℃の温度で90分間硬化反応させた。その後充
分に温水で洗浄し、約1日風乾して厚みが20μの
硬化フエノール樹脂フイルムを得た。 得られた樹脂フイルムを窒素ガス雰囲気中670
℃迄昇温加熱して水素原子/炭素原子の原子比が
0.25のポリアセン系骨格構造を含有する不溶不融
性フイルムを得た。該フイルムを巾1cm、長さ3
cmに切り、一端の一部を導電性接着剤で炭素板に
接着したものを2枚作り、セパレータとして厚さ
0.2mmの紙を用いて一対の電極を作製した。得
られた電極をヨウ化リチウムのテトラハイドロフ
ラン飽和溶液に浸漬し、10Vの直流電圧を2時間
印加した。開路電圧は3.0V、短絡電流は1mA
であつた。
[Table] Example 2 The atomic ratio of hydrogen atoms/carbon atoms obtained in Example 1 is
A porous plate made of a 0.23 insoluble and infusible substrate was cut out to a width of 1 cm and a length of 3 cm in the same manner as in Example 1, and a platinum wire for current collection was glued to one end with a conductive adhesive, with a thickness of 1 mm between the two sheets. A pair of electrodes were assembled by inserting glass fiber paper, and a battery was assembled using a propylene carbonate solution of lithium perchlorate with a concentration of 0.5 mol/ml as the electrolyte. Next, a DC voltage of 15 V was applied for 3 hours using one of the insoluble and infusible substrates as a positive electrode and the other as a negative electrode, and then the open circuit voltage and short circuit current between both electrodes were measured, and they were 3.0 V and 3 mA, respectively. Also, when discharged at a constant current of 1 mA for 30 minutes, the open circuit voltage was
It became 1.8V. When 15V DC voltage was applied again for 30 minutes, the open circuit voltage recovered to 3.0V. Example 3 A pair of electrodes were assembled in the same manner as in Example 2, and a battery was assembled using a propylene carbonate solution of tetrabutylammonium produced from perchlorate at a concentration of 1 mol/molar as the electrolyte instead of the lithium perchlorate solution.
Next, after applying a DC voltage of 10 V for 5 hours, the open circuit voltage and short circuit current were measured and found to be 2.8 V and 5 mA, respectively. Example 4 A solution of novolak resin with a number average molecular weight of 1000/methanol/formalin (aqueous solution with a concentration of about 37%) mixed in a weight ratio of 3/3/1 was poured onto a glass plate and stretched using an applicator. .
Thereafter, the film was air-dried for about 30 minutes to remove methanol, and then placed on a glass plate in 5N hydrochloric acid for curing reaction at a temperature of 70°C for 90 minutes. Thereafter, it was thoroughly washed with warm water and air-dried for about one day to obtain a cured phenolic resin film with a thickness of 20 μm. The obtained resin film was heated to 670°C in a nitrogen gas atmosphere.
By heating to ℃, the atomic ratio of hydrogen atoms/carbon atoms becomes
An insoluble and infusible film containing a polyacene skeleton structure of 0.25% was obtained. The film is 1cm wide and 3cm long.
Cut into cm pieces and glue a part of one end to a carbon plate with conductive adhesive to make two sheets, and use them as separators to make a thick
A pair of electrodes was made using 0.2 mm paper. The obtained electrode was immersed in a saturated solution of lithium iodide in tetrahydrofuran, and a DC voltage of 10 V was applied for 2 hours. Open circuit voltage is 3.0V, short circuit current is 1mA
It was hot.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電池の基本構成を示す説
明図であり、1は正極、2は負極、3は集電体、
4は電解液、5はセパレータ、6は電池ケース、
7は外部端子を表わす。
FIG. 1 is an explanatory diagram showing the basic configuration of a battery according to the present invention, in which 1 is a positive electrode, 2 is a negative electrode, 3 is a current collector,
4 is an electrolyte, 5 is a separator, 6 is a battery case,
7 represents an external terminal.

Claims (1)

【特許請求の範囲】 1 炭素、水素および酸素からなる芳香族系縮合
ポリマーの熱処理物であつて水素原子/炭素原子
の原子比が0.33〜0.15で表わされるポリアセン系
骨格構造を含有する不溶不融性基体を正極又は/
及び負極とし、電解により該電極にドーピングさ
れ得るイオンを生成し得る化合物を非プロトン性
有機溶媒に溶解したものを電解液とすることを特
徴とする有機電解質電池。 2 芳香族系縮合ポリマーがフエノールとホルム
アルデヒドとの縮合物である特許請求の範囲第1
項記載の有機電解質電池。 3 ポリアセン系骨格構造を含有する不溶不融性
基体が室温での直流電導度が10〜10-7Ω-1・cm-1
である特許請求の範囲第1項記載の有機電解質電
池。 4 ドーピングされ得るイオンを生成し得る化合
物がLiI、NaI、NH4I、LiClO4、LiAsF6
LiBF4、KPF6、NaPF6、(n−C4H94NClO4
(n−C4H94NAsF6、又は(n−C4H94NPF6
ある特許請求の範囲第1項記載の有機電解質電
池。 5 非プロトン性有機溶媒がプロピレンカーボネ
ート、γ−ブチロラクトン、ジメチルホルムアミ
ド、ジメチルアセトアミド、ジメチルスルホキシ
ド、エチレンカーボネート、ジメトキシエタン、
テトラヒドロフラン、塩化メチレン又はこれらの
2種以上の混合物である特許請求の範囲第1項記
載の有機電解質電池。 6 正極がポリアセン系骨格構造を含有する不溶
不融基体、負極がアルカリ金属又はアルカリ金属
の合金である特許請求の範囲第1項記載の有機電
解質電池。 7 アルカリ金属がリチウムである特許請求の範
囲第6項記載の有機電解質電池。 8 ポリアセトン系骨格構造を含有する不溶不融
基体がフイルム、板、多孔板繊維、布、不織布又
はそれらの複合体である特許請求の範囲第1項又
は第6項記載の有機電解質電池。
[Scope of Claims] 1. An insoluble and infusible heat-treated product of an aromatic condensation polymer consisting of carbon, hydrogen and oxygen, containing a polyacene skeleton structure with an atomic ratio of hydrogen atoms/carbon atoms of 0.33 to 0.15. The positive electrode or/
and an organic electrolyte battery, characterized in that the negative electrode is an electrolytic solution prepared by dissolving in an aprotic organic solvent a compound capable of producing ions that can be doped into the electrode by electrolysis. 2. Claim 1, wherein the aromatic condensation polymer is a condensate of phenol and formaldehyde.
The organic electrolyte battery described in Section 1. 3 The insoluble and infusible substrate containing a polyacene skeleton structure has a DC conductivity of 10 to 10 -7 Ω -1 cm -1 at room temperature.
An organic electrolyte battery according to claim 1. 4 Compounds that can generate ions that can be doped include LiI, NaI, NH 4 I, LiClO 4 , LiAsF 6 ,
LiBF 4 , KPF 6 , NaPF 6 , (n-C 4 H 9 ) 4 NClO 4 ,
The organic electrolyte battery according to claim 1 , which is (n- C4H9 ) 4NAsF6 or ( n - C4H9 ) 4NPF6 . 5 The aprotic organic solvent is propylene carbonate, γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene carbonate, dimethoxyethane,
The organic electrolyte battery according to claim 1, which is tetrahydrofuran, methylene chloride, or a mixture of two or more thereof. 6. The organic electrolyte battery according to claim 1, wherein the positive electrode is an insoluble and infusible substrate containing a polyacene skeleton structure, and the negative electrode is an alkali metal or an alkali metal alloy. 7. The organic electrolyte battery according to claim 6, wherein the alkali metal is lithium. 8. The organic electrolyte battery according to claim 1 or 6, wherein the insoluble and infusible substrate containing a polyacetone skeleton structure is a film, plate, perforated fiber, cloth, nonwoven fabric, or a composite thereof.
JP57093437A 1982-05-31 1982-05-31 Organic electrolyte battery Granted JPS58209864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57093437A JPS58209864A (en) 1982-05-31 1982-05-31 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57093437A JPS58209864A (en) 1982-05-31 1982-05-31 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS58209864A JPS58209864A (en) 1983-12-06
JPH046072B2 true JPH046072B2 (en) 1992-02-04

Family

ID=14082288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57093437A Granted JPS58209864A (en) 1982-05-31 1982-05-31 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS58209864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10270097B2 (en) 2011-08-31 2019-04-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949161A (en) * 1982-09-14 1984-03-21 Nippon Denso Co Ltd Organic battery
JPS60170163A (en) * 1984-02-10 1985-09-03 Kanebo Ltd Organic electrolyte cell
US4615960A (en) * 1984-01-19 1986-10-07 Kanebo, Ltd. Insoluble and infusible substrate with a polyacene-type skeletal structure, and its applications for electrical conductor or organic cell
JPS60264052A (en) * 1984-06-12 1985-12-27 Mitsubishi Petrochem Co Ltd Organic polymer system electrode
JPS6180774A (en) * 1984-09-27 1986-04-24 Kanebo Ltd Organic electrolyte cell
JPS6177275A (en) * 1984-09-20 1986-04-19 Kanebo Ltd Organic electrolyte battery
JPS6180773A (en) * 1984-09-27 1986-04-24 Kanebo Ltd Organic electrolyte cell
US4753717A (en) * 1985-03-25 1988-06-28 Kanebo Ltd. Porous article having open pores prepared from aromatic condensation polymer and use thereof
JPH0630260B2 (en) * 1985-03-25 1994-04-20 鐘紡株式会社 Organic electrolyte battery
JPH0658799B2 (en) * 1985-03-30 1994-08-03 鐘紡株式会社 Battery electrode manufacturing method
JPS62122066A (en) * 1985-04-30 1987-06-03 Mitsubishi Petrochem Co Ltd Nonaqueous solvent battery
JP2552652B2 (en) * 1986-03-25 1996-11-13 日本電信電話株式会社 Electrolyte for lithium battery
JP2534490B2 (en) * 1987-03-06 1996-09-18 鐘紡株式会社 Organic electrolyte battery
JP2632421B2 (en) * 1990-02-08 1997-07-23 鐘紡株式会社 Battery electrode
EP0567658B1 (en) * 1991-11-20 1998-03-11 Honda Giken Kogyo Kabushiki Kaisha Carbon-based material
TWI565654B (en) 2014-08-08 2017-01-11 Kureha Corp Production method of carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery and carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery
TWI604655B (en) 2014-08-08 2017-11-01 Kureha Corp Non-aqueous electrolyte secondary battery negative carbonaceous material
TWI599092B (en) 2014-08-08 2017-09-11 Kureha Corp Non-Aqueous Electrolyte Secondary Battery Negative Carbonaceous Material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136469A (en) * 1980-03-11 1981-10-24 University Patents Inc Secondary cell and method of charging same
JPS5734605A (en) * 1980-08-11 1982-02-25 Matsushita Electric Ind Co Ltd Method of producing conductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136469A (en) * 1980-03-11 1981-10-24 University Patents Inc Secondary cell and method of charging same
JPS5734605A (en) * 1980-08-11 1982-02-25 Matsushita Electric Ind Co Ltd Method of producing conductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10270097B2 (en) 2011-08-31 2019-04-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
US11283075B2 (en) 2011-08-31 2022-03-22 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
US11799084B2 (en) 2011-08-31 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Method for making LiFePO4 by hydrothermal method

Also Published As

Publication number Publication date
JPS58209864A (en) 1983-12-06

Similar Documents

Publication Publication Date Title
JPH046072B2 (en)
EP0196055B1 (en) Porous article having open pores prepared from aromatic condensation polymer and use thereof
JPH0324024B2 (en)
EP0149497B1 (en) Insoluble and infusible substrate with a polyacen-type skeletal structure, and its applications for electrical conductor or organic cell
JPS63314762A (en) Organic electrolyte cell using aluminum-lithium alloy as negative electrode
JP2000030710A (en) Polymer secondary battery and its manufacture
JPH0630260B2 (en) Organic electrolyte battery
JP2562601B2 (en) Organic electrolyte battery with activated carbon-aniline composite as positive electrode
JP2524184B2 (en) Organic electrolyte battery containing composite electrodes
JP2534490B2 (en) Organic electrolyte battery
JP2519454B2 (en) Organic electrolyte battery using nitrogen-containing substrate as electrode
JP2519180B2 (en) Organic electrolyte battery
JP2968097B2 (en) Organic electrolyte battery
JP2515547B2 (en) Organic electrolyte battery using aniline composite as positive electrode
JP2522662B2 (en) Organic electrolyte battery with polythiophene as positive electrode
JP2588404B2 (en) Organic electrolyte battery
JPS6177275A (en) Organic electrolyte battery
JPH0624160B2 (en) Organic electrolyte battery
JP2588405B2 (en) Organic electrolyte battery using high concentration mixed solute
JPS61225761A (en) Organic electrolyte battery
JPS6180774A (en) Organic electrolyte cell
JPS63218158A (en) Organic electrolyte battery
JPS6231960A (en) Organic electrolyte battery
JPH0658799B2 (en) Battery electrode manufacturing method
JP2646461B2 (en) Organic electrolyte battery