JPS60264052A - Organic polymer system electrode - Google Patents

Organic polymer system electrode

Info

Publication number
JPS60264052A
JPS60264052A JP59120499A JP12049984A JPS60264052A JP S60264052 A JPS60264052 A JP S60264052A JP 59120499 A JP59120499 A JP 59120499A JP 12049984 A JP12049984 A JP 12049984A JP S60264052 A JPS60264052 A JP S60264052A
Authority
JP
Japan
Prior art keywords
electrode
resin
molecular weight
battery
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59120499A
Other languages
Japanese (ja)
Other versions
JPH0550818B2 (en
Inventor
Mitsutaka Miyabayashi
宮林 光孝
Akira Itsubo
明 伊坪
Yoshitomo Nakano
中野 義知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP59120499A priority Critical patent/JPS60264052A/en
Priority to DE3588167T priority patent/DE3588167T2/en
Priority to EP85304139A priority patent/EP0165047B1/en
Publication of JPS60264052A publication Critical patent/JPS60264052A/en
Priority to US07/036,176 priority patent/US4725422A/en
Publication of JPH0550818B2 publication Critical patent/JPH0550818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To form a light weight battery which shoes high energy density and maximum output density and provides no public hazard by utilizing the material obtained by thermally backing the linear polymer novolak resin or reaction material between said resin and hardening agent as the electrode material. CONSTITUTION:The linear polymer novolak resin is obtained by polycondensation, under the acidic catalyst, between the monosubstitution phenor (inducated by the expression I or II and X indicates a substitution group) having the substitution group such as alkyl group and chlorine group of methyl group, nonly group at the position of rotho and para and the aldehyte compound. Otherwise, this resin is caused to react with the hardening agent such as aldehyde compound. This novolak resin or product by reaction of such resin and hardening agent is formed like a film and it is then baked. Thereby, the electrode material can be obtained. A battery having excellent charge efficient can be provided by forming the electrode with such electrode material.

Description

【発明の詳細な説明】 (目的) 本発明は、軽量でエネルギー密度、最大出力密度が高く
、無公害な電池を形式しうる、高分子系材料を用いた電
極に関する。
DETAILED DESCRIPTION OF THE INVENTION (Objectives) The present invention relates to an electrode using a polymeric material that is lightweight, has high energy density, high maximum output density, and can form a non-polluting battery.

(先行技術) 近年、電池の高性能化に向けた研究開発の動きは激しい
。その中でポリアセチレン、ポリバラフェニレンなどの
共役系高分子を電極として電気化学的ドーピングを利用
した再充電可能な二次電池の開発にも多大の関心が寄せ
られている。たとえば特開昭57−121168号公報
にはアセチレン重合体を用いた電池が提案されている。
(Prior Art) In recent years, there has been a rapid movement in research and development aimed at improving the performance of batteries. Among these, there is also a great deal of interest in the development of rechargeable secondary batteries that utilize electrochemical doping using conjugated polymers such as polyacetylene and polyvaraphenylene as electrodes. For example, JP-A-57-121168 proposes a battery using an acetylene polymer.

しかしポリアセチレンは空気中で酸化劣化するなど不安
定であシ、電解質や溶媒に含まれる微量の水分や空気と
反応して劣化し、電極としての安定性に劣る。また、ポ
リアセチレンは成形が困難で特殊な重合条件下で実験的
にポリアセチレンフィルムが合成されるにすぎず工業的
な製造には問題が多い。
However, polyacetylene is unstable due to oxidative deterioration in the air, and deteriorates when it reacts with trace amounts of moisture and air contained in the electrolyte or solvent, resulting in poor stability as an electrode. Furthermore, polyacetylene is difficult to mold, and polyacetylene films are only synthesized experimentally under special polymerization conditions, which poses many problems in industrial production.

また、JaernaA of ChemicatSoc
iety、 Chemicatcomnuni cat
ion (1982) p 361以下にはボリパ、7
フエニレンを用いた電池が提案されているが、ポリバラ
フェニレンは不溶不融で成形が難しく、また、ポリバラ
フェニレンを用いた電池はセル電圧が高くこれに耐える
溶媒の選択が難しい。
Also, JaernaA of ChemicatSoc
iety, Chemicat community cat
ion (1982) p 361 and below, Boripa, 7
Batteries using phenylene have been proposed, but polyparaphenylene is insoluble and infusible and difficult to mold, and batteries using polyparaphenylene have a high cell voltage, making it difficult to select a solvent that can withstand this.

一方、空気中で酸化劣化に対し安定で、比表面積が10
0〜2saan?/fと大きな活性炭素成形体を両極に
用いた電池が特開昭58−35881号公報に提案され
ている。しかしこれは、特開昭55−99714に活性
炭素繊維を両極に用いた電気二重層容量が提案されてい
るように、活性炭電極と溶液の界面に正負の電荷が極め
て短い距離を隔てて相対して分布する電気二重層を利用
して電荷を蓄積及び放出させるものであり、自己放電が
しやすく、長時間放電に耐えず、また、電圧の平担性も
得られないなどのいくつかの重要な問題点を有している
On the other hand, it is stable against oxidative deterioration in air and has a specific surface area of 10
0-2 saan? JP-A-58-35881 proposes a battery using activated carbon molded bodies with a large diameter /f for both electrodes. However, as proposed in Japanese Patent Laid-Open No. 55-99714, an electric double layer capacitor using activated carbon fibers as both electrodes, positive and negative charges are placed at the interface between the activated carbon electrode and the solution, facing each other across a very short distance. It stores and releases electric charge using the electric double layer distributed in the electric field, and has several important issues such as being prone to self-discharge, not being able to withstand long-term discharge, and not being able to achieve voltage flatness. It has some problems.

(発明の概要) こうした現状に鑑み、本発明者らは軽量でエネルギー密
度、最大出力密度にすぐれ、かつ長時間放電が可能で、
安定した電池性能を有する電池を形成することのできる
電極の開発に鋭意努力してきた。その結果、特定の方法
で製造することで得られる線状高分子量ノボラック樹脂
をそのまま、あるいは硬化剤と反応させ、さらにそれを
適当な条件で熱焼成して得られる材料が電気化学的にイ
オンを効率、よくドープ、脱ドープすること、さらにこ
れを電極として用いた電池が安定で良好な電池性能を有
することを発見し本発明に到達したものである。
(Summary of the Invention) In view of these current circumstances, the present inventors have developed a device that is lightweight, has excellent energy density and maximum output density, and is capable of long-time discharge.
Efforts have been made to develop electrodes that can form batteries with stable battery performance. As a result, a material obtained by producing a linear high molecular weight novolac resin by a specific method as it is or by reacting it with a curing agent and then thermally firing it under appropriate conditions can be electrochemically ionized. The present invention was achieved by discovering that it can be efficiently doped and dedoped, and that a battery using this as an electrode has stable and good battery performance.

すなわち本発明は下記(イ)ないし0)と(ロ)の反応
生成物を熱焼成して得られる電極材料を含む有機高分子
系電極を提供するものである。
That is, the present invention provides an organic polymer electrode containing an electrode material obtained by thermally firing the reaction products of (a) to (b) below.

何)オルト又はパラ位に置換基を有するモノ置換フェノ
ールとアルデヒド化合物を酸性触媒の存在下に重縮合さ
せて得られる線状高分子量ノボラック樹脂 (ロ)硬化剤 (具体的説明) 本発明は、線状高分子量ノボシック樹脂又は該ノボラッ
ク樹脂と硬化剤との反応物を熱焼成することによって得
られる。
What) A linear high molecular weight novolak resin obtained by polycondensing a monosubstituted phenol having a substituent at the ortho or para position and an aldehyde compound in the presence of an acidic catalyst (b) Curing agent (specific description) The present invention It is obtained by thermally firing a linear high molecular weight novosic resin or a reaction product of the novolak resin and a curing agent.

線状のノボラック樹脂を得るためには、オルト又はパラ
位に置換基を有するモノ置換フェノールを用いることに
よって調製することができる。
Linear novolac resins can be prepared by using monosubstituted phenols having substituents in the ortho or para position.

オルト又はパラ位に置換基を有するモノ置換フェノール
は、下記(1)式であられされる化合物である。
A monosubstituted phenol having a substituent at the ortho or para position is a compound represented by the following formula (1).

上式における置換基としては、メチル基、ノニル基など
のアルキル基、塩素などのハロゲンが通常用いられる。
As the substituent in the above formula, an alkyl group such as a methyl group or a nonyl group, or a halogen such as chlorine is usually used.

本発明に用いられるアルデヒド化合物としては、ホルム
アルデヒド、バラホルムアルデヒド、トリオキサン、ア
セトアルデヒド、フルフラール、アクロレインなどがち
る。とくにホルムアルデヒド、バラホルムアルデヒド、
トリオキサンが好ましい。
Examples of the aldehyde compounds used in the present invention include formaldehyde, paraformaldehyde, trioxane, acetaldehyde, furfural, and acrolein. Especially formaldehyde, rose formaldehyde,
Trioxane is preferred.

上記モノ置換フェノールとアルデヒド化合物を重縮合さ
せるに用いる酸性触媒としては塩酸、硝酸、硫酸、リン
酸、過塩素酸等の鉱酸、p−トルエンスルホン酸や修酸
のような有機酸が用いられる。
As the acidic catalyst used for polycondensation of the monosubstituted phenol and aldehyde compound, mineral acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and perchloric acid, and organic acids such as p-toluenesulfonic acid and oxalic acid are used. .

上記モノ置換フェノールとアルデヒド化合物を酸性触媒
を用いて高分子量の線状ノボラック樹脂を得るには、さ
らに個々のケースで製造条件を選定する必要がある。
In order to obtain a high-molecular-weight linear novolac resin using the above-mentioned monosubstituted phenol and aldehyde compound using an acidic catalyst, it is necessary to further select production conditions in each case.

高分子量線状ノボラック樹脂を重合する公知の方法とし
ては、たとえばJaurna!、 of Po4mer
 5cience+20.75〜88(1956)にW
 、 J 、 Burke 。
Known methods for polymerizing high molecular weight linear novolak resins include, for example, Jaurna! , of Po4mer
W in 5science+20.75-88 (1956)
, J., Burke.

S 、H,Ruteman !%がp−クロロフェノー
ルとホルムアルデヒドとを重縮合させることにより数平
均分子量が1600〜3300以上の高分子量ノボラッ
ク型p−クロロフェノール樹脂を得ることを報告してお
シ、また、工業化学雑誌り95〜99(1963)には
、松崎英男がノニルフェノールとバラホルムアルデヒド
をベンゼン又はトルエン中でP−)ルエンスルホンeを
触tsにして重縮合させることによシ数平均分子量が各
1555.2735のノボラック型樹脂を得ることが報
告されている。
S, H, Ruteman! % reported that a high molecular weight novolak type p-chlorophenol resin with a number average molecular weight of 1,600 to 3,300 or more was obtained by polycondensing p-chlorophenol and formaldehyde, and also, Industrial Chemistry Magazine 95 ~99 (1963), Hideo Matsuzaki polycondensed nonylphenol and paraformaldehyde in benzene or toluene with P-)luenesulfone e to produce novolak types each having a number average molecular weight of 1555.2735. It has been reported that resin can be obtained.

また、高分子量オルトクレゾールノボラック樹脂とその
製造法については特開昭57−113号公報に記述され
ている。すなわち数平均分子量550のオルトクレゾー
ルノボラック樹脂を37%ホルマリンと共に硝酸存在下
、トルエン溶媒中、加圧下175℃で反応することによ
り数平均分子量2010のジメチルアセトアミドに可溶
な線状高分子量オy)クレゾールノボラック樹脂が得ら
れる。
Furthermore, high molecular weight ortho-cresol novolac resins and their production methods are described in Japanese Patent Application Laid-Open No. 113-1983. That is, by reacting an ortho-cresol novolac resin with a number average molecular weight of 550 with 37% formalin in the presence of nitric acid in a toluene solvent under pressure at 175°C, a linear high molecular weight polymer soluble in dimethylacetamide with a number average molecular weight of 2010 is obtained. A cresol novolac resin is obtained.

また、高分子量オルト、バラクレゾール共重合ノボラッ
ク樹脂とその製造法については、特開昭56−9290
8号公報に記述されている。すなわち数平均分子量55
0のオルトクレゾールノボラック樹脂を2,6−ジメチ
ロール−p−クレゾールと共に硝酸存在下オルトジクロ
ルベンゼン溶媒中175℃で反応することにより数平均
分子量1930のジメチルアセトアミドに可溶な線状高
分子量オルト、パラクレゾール共重合樹脂が得られる。
In addition, regarding high molecular weight ortho, baracresol copolymerized novolac resin and its manufacturing method, JP-A-56-9290
It is described in Publication No. 8. That is, the number average molecular weight is 55
0 ortho-cresol novolac resin with 2,6-dimethylol-p-cresol in the presence of nitric acid in an ortho-dichlorobenzene solvent at 175°C to obtain a linear high molecular weight ortho-cresol soluble in dimethylacetamide having a number average molecular weight of 1930. A para-cresol copolymer resin is obtained.

さらに好ましい線状の高分子量オルトクレゾールノボラ
ック樹脂又はオルト、ハラクレゾールのランダム共重合
ノボラック樹脂は、次のような新規な製造法を用いるこ
とによシ可能である。すなわちオルトクレゾール又はオ
ルトクレゾールとノ(ラフレゾールの混合物を、ホルム
アルデヒド又はパラホルムアルデヒド又はトリオキサン
と共に極性有機溶剤でおるアルキルアルコール又はアル
キルカルボン酸中で酸触媒によシ重合させることで線状
の高分子量のオルトクレゾールノボラック樹脂又はオル
ト、バラクレゾールのランダム共重合ノボラック樹脂が
得られる。
A more preferable linear high molecular weight ortho-cresol novolac resin or a random copolymerized novolak resin of ortho- and halacresol can be produced by using the following novel manufacturing method. That is, a linear high molecular weight ortho-cresol can be obtained by acid-catalyzed polymerization of ortho-cresol or a mixture of ortho-cresol and northo-cresol with formaldehyde, paraformaldehyde or trioxane in an alkyl alcohol or alkyl carboxylic acid in a polar organic solvent. A cresol novolac resin or a random copolymerized novolac resin of ortho- and vala-cresol is obtained.

この方法によるノボラック樹脂は数平均分子量が210
0〜5000とかな)高分子量のものが得られる。
The novolac resin produced by this method has a number average molecular weight of 210.
0 to 5000) can be obtained.

本発明における線状高分子量ノボラック樹脂は、上述の
ような方法によ、6、vpoによる数平均分子量が10
00以上、好ましくは1200以上、さらに好ましくは
1500以上とくに好ましくは2000以上の高分子量
体として用いられる。
The linear high molecular weight novolak resin in the present invention is prepared by the method described above to have a number average molecular weight of 6 and 10 by vpo.
It is used as a polymer having a molecular weight of 00 or more, preferably 1200 or more, more preferably 1500 or more, particularly preferably 2000 or more.

また、本発明における線状高分子とは、上記高分子ノボ
ラック樹脂がジメチルアセトアミド、テトラヒドロフラ
ン、ジオキサンのいずれかの溶媒に可溶であシ、実質的
にゲル分が残存しないノボラック樹脂であることを意味
する。従って、上記の溶媒に可溶であることを満す限り
若干の分枝、網目構造を有するものであっても使用可能
である。
In addition, the linear polymer in the present invention refers to a novolak resin in which the polymeric novolac resin is soluble in any of the solvents dimethylacetamide, tetrahydrofuran, and dioxane, and has no residual gel content. means. Therefore, even those having some branching or network structure can be used as long as they are soluble in the above-mentioned solvents.

オルト又はパラ位に置換基を有するモノ置換フェノール
のかわりに置換基を有しないフェノールを用いてアルデ
ヒドと酸性触媒の存在下に重縮合させて得られるノボラ
ック型フェノール樹脂はゲル化の為に高分子量のものは
得られず、これを熱焼成して生成する材料を電極に用い
でも、良好な電池性能は得られない。
Novolac-type phenolic resin obtained by polycondensing an unsubstituted phenol with an aldehyde in the presence of an acidic catalyst instead of a monosubstituted phenol having a substituent at the ortho or para position has a high molecular weight for gelation. Even if a material produced by thermal sintering is used for electrodes, good battery performance cannot be obtained.

本発明において用いられる線状高分子量ノボラック樹脂
は、賦形したものの強度を成る程度以上に保持するなど
の観点から、好ましくは硬化剤を用いて種々の程度硬化
させてから熱焼成して高分子共役系を生成する。本発明
の線状高分子量ノボラック樹脂を硬化させるに用いる硬
化剤は、ホルムアルデヒド、パラホルムアルデヒド、ア
セトアルデヒド、フルフラールなどのアルデヒド化合物
、ヘキサメチレンテトラミン、トリメチロールホスフィ
ンオキシトなどの公知の架橋剤を用いることができる。
The linear high molecular weight novolac resin used in the present invention is preferably cured to various degrees using a curing agent, and then thermally baked to form a polymer, from the viewpoint of maintaining the strength of the shaped product to a certain level. Generate a conjugated system. As the curing agent used for curing the linear high molecular weight novolak resin of the present invention, known crosslinking agents such as aldehyde compounds such as formaldehyde, paraformaldehyde, acetaldehyde, and furfural, hexamethylenetetramine, and trimethylolphosphine oxide may be used. can.

本発明に用いる線状高分子量ノボラック樹脂はフェノー
ル基のオルト位やパラ位に比し比較的反応性の乏しいメ
タ位にしか架橋反応するポジションを有しないため、通
常のフェノール樹脂の硬化反応条件よシはより反応しや
すい条件を設定する必要がある。
The linear high molecular weight novolac resin used in the present invention has a crosslinking position only at the meta position, which is relatively less reactive compared to the ortho and para positions of the phenol group, so the curing reaction conditions are different from those of ordinary phenolic resins. It is necessary to set conditions that make it easier for people to react.

また、フェノールをアルカリ触媒の存在下にアルデヒド
化合物と反応させて得られるレゾールを線状高分子量ノ
ボラック樹脂と反応させて硬化させることも可能である
It is also possible to react a resol obtained by reacting phenol with an aldehyde compound in the presence of an alkali catalyst and cure it with a linear high molecular weight novolak resin.

更に、エポキシ基を有する化合物、たとえばエポキシ樹
脂を硬化剤として用いることもできる。
Furthermore, compounds having epoxy groups, such as epoxy resins, can also be used as curing agents.

硬化剤の添加量は架橋剤の種類により異なる。The amount of curing agent added varies depending on the type of crosslinking agent.

たとえば硬化剤としてアルデヒド化合物、エポキシ化合
物を用いる場合は、線状高分子量ノボラック樹脂のフェ
ノール性OH基1モルに対し、アルデヒド化合物ないし
はエポキシ基が0〜2.5モルの範囲で添加量を選択す
る。
For example, when using an aldehyde compound or epoxy compound as a curing agent, the amount of the aldehyde compound or epoxy group to be added is selected in the range of 0 to 2.5 moles per mole of phenolic OH group of the linear high molecular weight novolac resin. .

また、ヘキサメチレンテトラミン、レゾールを硬化剤と
して用いる場合は、線状高分子量ノボラック樹脂に対し
て0〜60重量%の範囲で添加敞を選択する。
Further, when hexamethylenetetramine or resol is used as a curing agent, the amount added is selected in the range of 0 to 60% by weight based on the linear high molecular weight novolak resin.

このときベンジルジメチルアミンやイミダゾール類、ト
リスジメチルアミノメチルフェノール、BFa−ピペリ
ジン塩のような硬化促進剤、あるいは各種充填剤などを
必要に応じて添加することができる。
At this time, curing accelerators such as benzyldimethylamine, imidazoles, trisdimethylaminomethylphenol, BFa-piperidine salt, or various fillers may be added as necessary.

本発明の線状高分子量ノボラック樹脂は、そのまま、あ
るいは好ましくは上述のように硬化剤と反応させて所望
の形状に賦形してから熱焼成して電極材料を得る。すな
わち200℃〜3000℃の温度で不活性ガス(窒素、
アルゴン等)の流気下又は酸化性ガス(空気、水蒸気、
炭酸ガス等)の流気下又は両者の混合ガス流下状態で熱
焼成される。
The linear high-molecular-weight novolac resin of the present invention is used as it is, or preferably, it is reacted with a curing agent as described above to be shaped into a desired shape, and then thermally fired to obtain an electrode material. That is, inert gas (nitrogen,
under a stream of oxidizing gas (air, water vapor, etc.) or oxidizing gas (air, water vapor, etc.)
It is thermally fired under a flowing stream of carbon dioxide (carbon dioxide, etc.) or a mixture of both.

熱焼成温度は生成する高分子共役系の成長の程度に関連
し、電解質イオンのドーピングのしやすさ、ドーピング
された電荷の安定性、ドーピング前の高分子共役系の電
気伝導性などのバランスから好ましくは300℃〜20
00℃、さらに好ましくは400℃〜1500℃の温度
が進常選択される。
Thermal firing temperature is related to the degree of growth of the polymer conjugated system to be generated, and is determined by the balance of ease of doping with electrolyte ions, stability of doped charges, and electrical conductivity of the polymer conjugated system before doping. Preferably 300℃~20
A temperature of 00°C, more preferably 400°C to 1500°C is usually selected.

熱焼成時間は一般に5分以上、好ましくは10分〜20
時間、更に好ましくは20分〜10時間の範囲が用いら
れる。
Thermal firing time is generally 5 minutes or more, preferably 10 minutes to 20 minutes.
A time period, more preferably a range of 20 minutes to 10 hours, is used.

生成する電極材料の比表面積を大きくすることによって
、これを電極として用いた電池の最大出力密度を大きく
することができる。したがって電池の最大出力密度を大
きくしたい時には生成する電極材料からなる成形体又は
生成する電極材料を含む成形体の比表面積を好ましくは
10m’/P以上、更に好ましくは50 m” / を
以上に、とくに好ましくは100m’/f以上にするの
がよい。この場合には熱焼成する時、酸化性ガス(水蒸
気、空気、炭酸ガス等)流下又は酸化性ガスと不活性ガ
スの混合流下に熱焼成することで比表面積を大きくする
ことができる。また、一度不活性ガス流下で熱焼成した
後、さらに酸化性ガス流下又は酸化性ガスと不活性ガス
の混合流下に熱焼成するととで比表面積を大きくするこ
ともできる。
By increasing the specific surface area of the produced electrode material, the maximum output density of a battery using this material as an electrode can be increased. Therefore, when it is desired to increase the maximum output density of the battery, the specific surface area of the molded body made of the electrode material to be produced or the molded body containing the electrode material to be produced is preferably 10 m'/P or more, more preferably 50 m'/P or more, Particularly preferably, it is 100 m'/f or more.In this case, when performing thermal firing, the thermal firing is performed under a flow of oxidizing gas (steam, air, carbon dioxide, etc.) or under a mixed flow of oxidizing gas and inert gas. By doing so, the specific surface area can be increased.Furthermore, the specific surface area can be increased by performing thermal calcination under an inert gas flow and then further thermal calcination under an oxidizing gas flow or a mixed flow of an oxidizing gas and an inert gas. You can also make it bigger.

また、線状高分子量ノボラック樹脂と硬化剤との反応物
から多孔質成形体を成形し、これを熱焼成することで比
表面積を大きくすることもできる。
Further, the specific surface area can also be increased by molding a porous molded body from a reaction product of a linear high molecular weight novolak resin and a curing agent and then thermally baking the molded body.

熱焼成する前の線状高分子量ノボラック樹脂又は、該ノ
ボラック樹脂と硬化剤との反応生成物は、繊維状、粉状
、粒状、フィルム状、フェルト状など各種の形状に成形
して用いられる。とくに比表面積を大きくとりたい場合
、繊維状、フェルト状、ハニカム状の形態が強度、とり
あつかいやすさの点で好ましい。フィルム状の形態の線
状高分子量ノボラック樹脂と硬化剤との反応物を熱焼成
してフィルム状の高分子共役系を得た場合には、そのま
ま電池の電極として用いることができる。
The linear high molecular weight novolak resin or the reaction product of the novolak resin and a curing agent before being fired is used after being formed into various shapes such as fibrous, powder, granular, film, and felt. In particular, when a large specific surface area is desired, fiber-like, felt-like, and honeycomb-like forms are preferable in terms of strength and ease of handling. When a film-like polymer conjugated system is obtained by thermally baking a reaction product of a linear high-molecular-weight novolac resin in a film-like form and a curing agent, it can be used as it is as an electrode for a battery.

また、繊維状、粉状、粒状の電極材料を得た場合、これ
を公知の方法でベーパー状、シート状、フィルム状に賦
形して電池の電極として用いることができる。
Furthermore, when a fibrous, powder, or granular electrode material is obtained, it can be shaped into a vapor, sheet, or film by a known method and used as a battery electrode.

本発明電傳は、線状高分子ノボラック樹脂を焼成して得
られた電極材料を単独で形成する他、該電極材料に炭素
繊維などの導電材、補強材等を添加して形成することも
できる。この場合、成形体中に含有される本発明電極材
料の含量は、好ましくは50重量70以上、さらに好ま
しくは70重量%以上である。
In addition to forming the electrode material obtained by firing a linear polymeric novolac resin alone, the electrode of the present invention can also be formed by adding a conductive material such as carbon fiber, a reinforcing material, etc. to the electrode material. can. In this case, the content of the electrode material of the present invention contained in the molded body is preferably 50% by weight or more, and more preferably 70% by weight or more.

本発明有機高分子系電極を用いて電池を製造する場合に
は、本発明電極を両極に用いる場合と、本発明電極を一
方の極に、リチウム、アルミニウムリチウム合金、可融
合金などの金属を対電極に用いる場合および本発明電極
を一方の極に、本発明電極以外の共役系化合物を対電極
に用いる場合がある。軽量、低コスト、安全性といった
点からは両極に本発明電極を用いるのが好ましい。また
、とくに電圧の平担性を要する場合や起電力を高くとり
たい時などは、一方の極に本発明電極を用い、リチウム
、アルミニウムリチウム合金、可融合金などの金属を対
電極に用いるのが好ましい。
When manufacturing a battery using the organic polymer-based electrode of the present invention, there are cases in which the electrode of the present invention is used as both electrodes, and cases in which the electrode of the present invention is used as one electrode and a metal such as lithium, aluminum-lithium alloy, or fusible metal is used. In some cases, the electrode of the present invention is used as one electrode and a conjugated compound other than the electrode of the present invention is used as the counter electrode. From the viewpoints of light weight, low cost, and safety, it is preferable to use the electrodes of the present invention for both poles. In addition, especially when voltage flatness is required or when a high electromotive force is desired, it is possible to use the electrode of the present invention for one electrode and use a metal such as lithium, aluminum-lithium alloy, or fusible metal for the counter electrode. is preferred.

電解質としてはLi ClO4、L、i(ン、LiPF
a、KCNS。
As an electrolyte, Li ClO4, L, i(n, LiPF
a.KCNS.

NaPF5、 Li BF4、N(Bu)4Ct04、
N(Bu)4CAなどのアルカリ金属塩、アルカリ土類
金属塩、テトラアルキルアンモニウム塩などの公知の塩
をプロピレンカーボネート、エチレンカーボネート、ア
セトニトリル、γ−ブチロラクトン、ジメチルフォルム
アマイド、ジメチルスルフオキシド、エチルエーテル、
テトラヒドロフラン、グライム類等一般に電池に用いら
れる有機溶媒の一種又は二種以上の混合尋媒に溶解させ
たものを通常は用いる。
NaPF5, LiBF4, N(Bu)4Ct04,
Known salts such as alkali metal salts such as N(Bu)4CA, alkaline earth metal salts, and tetraalkylammonium salts are combined with propylene carbonate, ethylene carbonate, acetonitrile, γ-butyrolactone, dimethylformamide, dimethyl sulfoxide, and ethyl ether. ,
Usually, a solvent dissolved in one or a mixture of two or more organic solvents commonly used in batteries, such as tetrahydrofuran and glyme, is used.

分解電圧の高い溶媒を用いるという観点からは、有機溶
媒としてプロピレンカーボネート、エチレンカーボネー
トなどが好ましい。また、液漏れのないコンパクトな電
池を得るためには、常温(あるいは電池の使用温度)で
固体の電解質を用いるのが好ましい。
From the viewpoint of using a solvent with a high decomposition voltage, propylene carbonate, ethylene carbonate, etc. are preferable as the organic solvent. Furthermore, in order to obtain a compact battery that does not leak, it is preferable to use an electrolyte that is solid at room temperature (or the operating temperature of the battery).

本発明電極を用いた電池は、たとえばつぎのようにして
用いられる。本発明電極を両極に用い、一定電圧をかけ
であるいは定電流が流れるように電圧を規制して充電す
ると、電極の電極材料は電解質イオンがドープされて、
それぞれp型電極、n型電極となり、この両極に生じる
起電力を利用して電池として使用することができる。放
電により電解質イオンはそれぞれの電極から脱ドープさ
れ、電流がとりだせる。こうした充電、放電のサイクル
を繰り返すことにより二次電池として使用することがで
きる。
A battery using the electrode of the present invention is used, for example, in the following manner. When the electrode of the present invention is used as both electrodes and charged by applying a constant voltage or regulating the voltage so that a constant current flows, the electrode material of the electrode is doped with electrolyte ions,
They become a p-type electrode and an n-type electrode, respectively, and can be used as a battery by utilizing the electromotive force generated at these two electrodes. Due to the discharge, electrolyte ions are dedoped from each electrode, allowing current to be extracted. By repeating such charging and discharging cycles, it can be used as a secondary battery.

また、ドープ量の異なるP!!!!電極どおし、n型電
極どおしを用いても起電力を生ずるが、その起電力は両
極にp型、n型電極を用いた場合に比して低いものとな
る。
In addition, P! with different doping amounts! ! ! ! Although an electromotive force is generated even if both electrodes or n-type electrodes are used, the electromotive force is lower than when p-type and n-type electrodes are used for both poles.

また、一方の電極にリチウム、アルミニウムリチウム合
金、可融合金などの金属を対電極に用いた場合も、両極
に定電圧をかけであるいは定電流が流れるように電圧を
規制して充電することで、一方の極の高分子共役系に電
解質イオンがドープされて起電力を生じ、放電による脱
ドープの作用で電流がとりだされて電池として使用する
ことができる。
Also, when one electrode uses a metal such as lithium, aluminum-lithium alloy, or fusible metal as the counter electrode, it is possible to charge by applying a constant voltage to both electrodes or regulating the voltage so that a constant current flows. Electrolyte ions are doped into the polymer conjugated system of one electrode to generate an electromotive force, and a current is extracted by the action of dedoping due to discharge, so that it can be used as a battery.

以下実施例をあげて本発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

実施例1 (1)線状高分子量ノボラック樹脂の合成オルトクレゾ
ール108f、パラホルムアルデヒド32り、エチルセ
ロソルブ240 F全硫酸10tと共に反応器に入れ攪
拌しながら115℃で4時間反応した。反応終了後17
fのNaHCOaと水3f)IFを加えて中和した後、
高速に攪拌しながら水2を中に反応液を投入し、沈殿し
てくる樹脂を戸別後乾燥して樹脂115?を得た。この
樹脂はメタノール、エタノール、ブタノール、オクタツ
ール、メチルセロソルブ、エチルセロソルブ、テトラヒ
ドロフラン、ジオキサン、アセトン、メチルエチルケト
ン、酢酸エチルに可溶であり、ゲル分はない。ベンゼン
、トルエン、キシレン、クロロホルム、四塩化炭素には
不溶であった。蒸気王法(メチルエチルケトン中40℃
)で測定した数平均分子量は2600、顕微鏡法によ請
求めた樹脂の軟化点は155℃であった。この樹脂は赤
外吸収スペクトルと核磁気共鳴の測定から、この樹脂が
クレゾールがメチレン基により連結した線状ノボラック
樹脂であることが確認された。
Example 1 (1) Synthesis of linear high molecular weight novolac resin 108f of orthocresol, 32ml of paraformaldehyde, and 10t of ethyl cellosolve 240F total sulfuric acid were placed in a reactor and reacted at 115°C for 4 hours with stirring. 17 after completion of reaction
After neutralization by adding f NaHCOa and water 3 f) IF,
While stirring at high speed, the reaction solution was poured into water 2, and the precipitated resin was separated and dried to form resin 115? I got it. This resin is soluble in methanol, ethanol, butanol, octatool, methyl cellosolve, ethyl cellosolve, tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, and ethyl acetate, and has no gel content. It was insoluble in benzene, toluene, xylene, chloroform, and carbon tetrachloride. Steam method (40℃ in methyl ethyl ketone)
) The number average molecular weight was 2600, and the softening point of the resin determined by microscopy was 155°C. From infrared absorption spectrum and nuclear magnetic resonance measurements, it was confirmed that this resin is a linear novolac resin in which cresol is linked through methylene groups.

(2) 硬化剤との反応 上記線状高分子量ノボラック樹脂2.17 ?、ヘキサ
ミン0.33 fをエタノールに溶かした後、ガラス板
上にキャストした。その後風乾してエタノールを除去し
た。その後120℃の温度で硬化反応をおこなった。
(2) Reaction with curing agent The above linear high molecular weight novolak resin 2.17? , 0.33 f of hexamine was dissolved in ethanol and then cast onto a glass plate. Thereafter, the ethanol was removed by air drying. Thereafter, a curing reaction was carried out at a temperature of 120°C.

(3) 熱焼成 上記硬化したフィルムを窒素流下5℃/ minの昇温
速度で600℃迄昇温した。さらに600℃で30分間
保持した。こうして厚み10μmの黒色のフィルム状電
極材料を得た。
(3) Thermal firing The cured film was heated to 600°C at a rate of 5°C/min under nitrogen flow. The temperature was further maintained at 600°C for 30 minutes. In this way, a black film-like electrode material with a thickness of 10 μm was obtained.

(4)上記電極材料を用いた電池 上E厚み10μmのフィルム状電極材料10m9を55
メツシユの白金製金網に包み電極及び補助電極とした。
(4) 10m9 of film-like electrode material with a thickness of 10μm on the battery using the above electrode material
It was wrapped in a mesh platinum wire mesh and used as an electrode and an auxiliary electrode.

1.0モル/lのLiC604のプロピレンカーボネー
ト溶液中に上記電極及び補助電極2組を浸した。両電極
間に0.5 waxの厚みのグラスファイバーF紙を隔
膜としておいだ。両補助電極間に白金線をリード線とし
てつなぎ、ポテンショスタット/ガルバノスタット(北
斗電工社製HA−501)に接続した。両電極間に3.
5vの一定電圧をかけて充電した。クーロンメーター指
示値で0.5クーロンの電荷を充電した時点で充電をう
ちきった。
The above electrode and two sets of auxiliary electrodes were immersed in a 1.0 mol/l LiC604 propylene carbonate solution. Glass fiber F paper with a thickness of 0.5 wax was placed between both electrodes as a diaphragm. A platinum wire was connected as a lead wire between both auxiliary electrodes, and connected to a potentiostat/galvanostat (HA-501 manufactured by Hokuto Denko Co., Ltd.). 3 between both electrodes.
It was charged by applying a constant voltage of 5V. Charging was completed when a charge of 0.5 coulombs was charged as indicated by the coulomb meter.

(5) 電池性能 上記充電後の電池の開路電圧を測定し1.7vを得た。(5) Battery performance The open circuit voltage of the battery after the above charging was measured and was found to be 1.7V.

また、上記充電後直ちに50にΩの抵抗を両極間につな
いで定抵抗放電を実施し、開路電圧が0.1 vになる
迄に放電した電荷量は0.35クーロンであった。
Immediately after the above charging, constant resistance discharge was performed by connecting a 50Ω resistor between the two electrodes, and the amount of charge discharged until the open circuit voltage reached 0.1 V was 0.35 coulombs.

また、上記充電後、3日間放置した後、50にΩの抵抗
を両極間につないで定抵抗放電を実施し、開路電圧が0
.1vになる迄に放電した電荷量は0.28クーロンで
あった。
After the above charging, after leaving it for 3 days, a constant resistance discharge was performed by connecting a 50Ω resistor between the two electrodes, and the open circuit voltage was 0.
.. The amount of charge discharged until it reached 1V was 0.28 coulombs.

比較例1 (1)実施例1の線状高分子量ノボラック樹脂のかわシ
に、フェノールとホルムアルデヒド(ホルムアルデヒド
/フェノール=Q、IJモル比)の酸触媒による反応で
生成する数平均分子量600のノボラック樹脂を用いた (2)硬化反応 上記ノボラック樹脂を用いた以外は実施例1と同様の方
法で実施した。
Comparative Example 1 (1) A novolac resin with a number average molecular weight of 600 produced by an acid-catalyzed reaction of phenol and formaldehyde (formaldehyde/phenol = Q, IJ molar ratio) was added to the linear high molecular weight novolac resin of Example 1. (2) Curing reaction using the above Novolac resin was carried out in the same manner as in Example 1 except that the above novolac resin was used.

(3)熱焼成 上記硬化フィルムを用いた以外は実施例1と同様の方法
により熱焼成し厚さ10μmの高分子共役系フィルムを
得た。
(3) Thermal baking A polymer conjugated film having a thickness of 10 μm was obtained by thermal baking in the same manner as in Example 1 except that the above-mentioned cured film was used.

(4)上記高分子共役系を用いた電池 上記厚さ10μmの高分子共役系フィルム10■を用い
た以外はすべて実施例1と同様の方法で電池を構成し、
実施例1と同様にして充電した。
(4) Battery using the above polymer conjugated system A battery was constructed in the same manner as in Example 1 except that the above 10 μm thick polymer conjugated film 10cm was used,
Charging was carried out in the same manner as in Example 1.

クーロンメーター指示値で0.5クーロンの電荷を充電
した時点で充電をうちきった。
Charging was completed when a charge of 0.5 coulombs was charged as indicated by the coulomb meter.

(5)電池性能 上記充電後の電池の開路電圧を測定し、1.2vを得た
(5) Battery Performance The open circuit voltage of the battery after the above charging was measured and was found to be 1.2V.

また、上記充電後直ちに50にΩの抵抗を両極間につな
いで定抵抗放電を実施し、開路電圧が0.1vになる迄
に放電した電荷量は0.29クーロンであった。
Immediately after the above charging, constant resistance discharge was carried out by connecting a 50Ω resistor between the two electrodes, and the amount of charge discharged until the open circuit voltage reached 0.1V was 0.29 coulombs.

また、上記充電後、3日間放置した後、50にΩの抵抗
を両極間につないで定抵抗放電を実施し、開路電圧が0
.jvになる迄に放電した電荷量は0.19クーロンで
あった。
After the above charging, after leaving it for 3 days, a constant resistance discharge was performed by connecting a 50Ω resistor between the two electrodes, and the open circuit voltage was 0.
.. The amount of charge discharged until reaching jv was 0.19 coulombs.

実施例1と比較例1の比較 実施例1の電池は充電後直ちに放電した場合及び充電後
3日間放置した後放電した場合共に、比較例1の電池に
対して電荷効率(放電電荷量の充電電荷量に対する割合
)が大きく、電池としてすぐれていることがわかる。
Comparison of Example 1 and Comparative Example 1 The battery of Example 1 has a higher charge efficiency (discharge amount of charge It can be seen that the ratio of the amount of charge to the amount of charge is large, making it an excellent battery.

特許出願人 三菱油化株式会社 岱理人 弁理士 古 川 秀 利 (ほか1名)Patent applicant Mitsubishi Yuka Co., Ltd. Tairito Patent Attorney Hidetoshi Furukawa (1 other person)

Claims (1)

【特許請求の範囲】 1、下記(()又は(支)と(ロ)の反応生成物を熱焼
成して得られる電極材料を含有することを特徴と量る有
機高分子系電極。 (イ)オルト又はバラ位罠置換基を有するモノ置換フェ
ノールとアルデヒド化合物を酸性触媒の存在下に重縮合
させて得られる線状高分子量ノボラック樹脂 (ロ)硬化剤
[Claims] 1. An organic polymer-based electrode characterized by containing an electrode material obtained by thermally sintering the reaction product of the following (() or (support) and (b). ) A linear high molecular weight novolak resin obtained by polycondensing a monosubstituted phenol having an ortho- or para-trap substituent and an aldehyde compound in the presence of an acidic catalyst (b) Curing agent
JP59120499A 1984-06-12 1984-06-12 Organic polymer system electrode Granted JPS60264052A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59120499A JPS60264052A (en) 1984-06-12 1984-06-12 Organic polymer system electrode
DE3588167T DE3588167T2 (en) 1984-06-12 1985-06-11 Secondary batteries containing pseudo-graphite produced by pyrolysis as the electrode material
EP85304139A EP0165047B1 (en) 1984-06-12 1985-06-11 Secondary batteries containing electrode material obtained by pyrolysis
US07/036,176 US4725422A (en) 1984-06-12 1987-04-08 Electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59120499A JPS60264052A (en) 1984-06-12 1984-06-12 Organic polymer system electrode

Publications (2)

Publication Number Publication Date
JPS60264052A true JPS60264052A (en) 1985-12-27
JPH0550818B2 JPH0550818B2 (en) 1993-07-30

Family

ID=14787710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59120499A Granted JPS60264052A (en) 1984-06-12 1984-06-12 Organic polymer system electrode

Country Status (1)

Country Link
JP (1) JPS60264052A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209864A (en) * 1982-05-31 1983-12-06 Kanebo Ltd Organic electrolyte battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209864A (en) * 1982-05-31 1983-12-06 Kanebo Ltd Organic electrolyte battery

Also Published As

Publication number Publication date
JPH0550818B2 (en) 1993-07-30

Similar Documents

Publication Publication Date Title
US4725422A (en) Electrode material
Zhang et al. Anion exchange membranes from brominated poly (aryl ether ketone) containing 3, 5-dimethyl phthalazinone moieties for vanadium redox flow batteries
EP0196055B1 (en) Porous article having open pores prepared from aromatic condensation polymer and use thereof
US8293851B2 (en) Crosslinkable sulfonated copolymer and fuel cell including polymeric composition of the same
JP4828112B2 (en) PROTON CONDUCTIVE POLYMER MATERIAL AND SOLID ELECTROLYTE MEMBRANE, ELECTROCHEMICAL CELL, AND FUEL CELL USING THE SAME
JPH046072B2 (en)
JPH0324024B2 (en)
EP0149497B1 (en) Insoluble and infusible substrate with a polyacen-type skeletal structure, and its applications for electrical conductor or organic cell
EP0175373B1 (en) Insoluble and infusible substrate with a polyacen-type skeletal structure
US20110081597A1 (en) Polymer electrolyte, crosslinked polymer electrolyte, polymer electrolyte membrane and use of the same
JPS60264052A (en) Organic polymer system electrode
JP2001319655A (en) Secondary battery and capacitor using polyquinoxaline ether
CN110387036A (en) A kind of random polyarylether electrode active material and preparation method thereof containing purpurine side chain
US20130102740A1 (en) Sulfonated poly(arylene ether) copolymer having a cross-linkable structure, and polyelectrolyte membrane comprising same
JP2007106986A (en) Block copolymer and method for producing the same, polymer electrolyte, catalytic composition, polymer electrolyte membrane, membrane/electrode assembly and fuel cell
JP6755490B2 (en) Polymers, crosslinked polymers, polymer gel electrolytes, methods for producing polymer gel electrolytes, and magnesium batteries
KR20170069029A (en) Anion exchange membrane for redox flow battery and method for preparing the same
JP2524184B2 (en) Organic electrolyte battery containing composite electrodes
JPS61263044A (en) Electrode material
KR100936069B1 (en) Semi-interpenetration polymer network membranes, Method for preparing thereof and Direct methanol fuel cell comprising the same
JP2646461B2 (en) Organic electrolyte battery
Zhou et al. Preparation of anion exchange membrane based on imidazolium functionalized poly (arylene ether ketone)
JP2601784B2 (en) Organic electrolyte battery
JPS6177275A (en) Organic electrolyte battery
JP2003242833A (en) Proton conductive polymeric solid electrolyte, its producing method, electrolytic membrane consisting thereof, its producing method, electrochemical element using electrolyte and/or electrolytic membrane, and its producing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term