JPS61225761A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS61225761A
JPS61225761A JP60065016A JP6501685A JPS61225761A JP S61225761 A JPS61225761 A JP S61225761A JP 60065016 A JP60065016 A JP 60065016A JP 6501685 A JP6501685 A JP 6501685A JP S61225761 A JPS61225761 A JP S61225761A
Authority
JP
Japan
Prior art keywords
activated carbon
electrolyte battery
organic electrolyte
porous activated
battery according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60065016A
Other languages
Japanese (ja)
Inventor
Shizukuni Yada
静邦 矢田
Yukinori Hadou
之規 羽藤
Takuji Osaki
拓司 大崎
Kazuro Sakurai
桜井 和朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP60065016A priority Critical patent/JPS61225761A/en
Priority to US06/842,335 priority patent/US4753717A/en
Priority to EP86104063A priority patent/EP0196055B1/en
Priority to DE3650725T priority patent/DE3650725T2/en
Priority to DE86104063T priority patent/DE3689239T2/en
Priority to EP92100194A priority patent/EP0480909B1/en
Publication of JPS61225761A publication Critical patent/JPS61225761A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain an organic electrolyte battery having high capacity by using porous activated carbon having through pores as positive and negative electrodes and a solution containing a compound which produces as ion to be doped in electrode by electrolysis as electrolyte. CONSTITUTION:A film- or plate-form porous activated carbon, having through pores of a mean pore size of 10mum or less and a specific area measured by BET method of 600m<2>/g, produced from phenol resin is used in a positive electrode 1 and negative electrode 2, or in the positive electrode 1 and an alkali metal is used in the negative electrode 2. An electrolyte 4 is prepared by dissolving a compound such as LiI which produces an ion to be doped in the electrodes 1, 2 by electrolysis in an aprotic solvent, and an organic electrolyte battery is formed. Therefore, a secondary battery having high capacity, compact and thin size is economically obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有機電解質電池に関する。更に詳しくはミクロ
な連通気孔を有する多孔性活性炭を正極および/又は負
極とし、そしてドーピングされうるイオンを生成しうる
化合物を非プロトン性有機溶媒に溶解した溶液を電解液
とする有機電解質電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to organic electrolyte batteries. More specifically, it relates to an organic electrolyte battery in which a porous activated carbon having micro-interconnected pores is used as a positive electrode and/or a negative electrode, and an electrolyte is a solution in which a compound capable of producing doped ions is dissolved in an aprotic organic solvent.

〔従来の技術〕[Conventional technology]

近年、電子機器の小型化、薄形化あるいは軽量化は目覚
ましく、それに伴い電源となる電池の小型化、薄形化、
軽量化の要望が大きい。小型で性能のよい電池として現
在は酸化銀電池が多用されておシ、又薄形化された乾電
池や、小型軽量な高性能電池として、リチウム電池が開
発され実用化されている。しかしこれらの電池は1次電
池であるため充放電を繰返して長時間使用することはで
きない。一方、高性能な2次電池としてニッケル・カド
ミウム電池が実用化されているが、小型化、薄形化、軽
量化という点で未だ不満足である。
In recent years, electronic devices have become smaller, thinner, and lighter.
There is a great demand for weight reduction. Currently, silver oxide batteries are widely used as small, high-performance batteries, and lithium batteries have been developed and put into practical use as thin dry batteries and small, lightweight, high-performance batteries. However, since these batteries are primary batteries, they cannot be used for long periods of time by being repeatedly charged and discharged. On the other hand, although nickel-cadmium batteries have been put into practical use as high-performance secondary batteries, they are still unsatisfactory in terms of miniaturization, thinning, and weight reduction.

又大容量の2次電池として従来よシ鉛蓄電池が種々の産
業分野で用いられているがこの電池の最大の欠点は重い
ことである。これは電極として過酸化鉛及び鉛を用いて
いるため宿命的なものである。近年、電気自動車用電池
として該電池の軽量化及び性能改善が試みられたが実用
するに至らなかった。しかし蓄電池として大容量で且つ
軽量な2次電池に対する要望は強いものがある。
Furthermore, as a high-capacity secondary battery, cylindrical lead-acid batteries have conventionally been used in various industrial fields, but the biggest drawback of this battery is that it is heavy. This is fateful since lead peroxide and lead are used as electrodes. In recent years, attempts have been made to reduce the weight and improve the performance of batteries for electric vehicles, but they have not been put to practical use. However, there is a strong demand for a large capacity and lightweight secondary battery as a storage battery.

以上のように現在実用化されている電池は夫々一長一短
があり、それぞれ用途に応じて使い分けされているが、
電池の小型化、薄形化、或は軽量化に対するニーズは大
きい。このようなニーズに応えようとする電池として、
近時、有機半導体である薄膜状ポリアセチレンに電子供
与性物質又は電子受容性物質をドーピングしたものを電
極活物質として用いる電池が研究され、提案されている
As mentioned above, each of the batteries currently in practical use has advantages and disadvantages, and each is used differently depending on its purpose.
There is a great need for smaller, thinner, and lighter batteries. As a battery that attempts to meet these needs,
BACKGROUND ART Recently, batteries have been researched and proposed in which thin film polyacetylene, which is an organic semiconductor, is doped with an electron-donating substance or an electron-accepting substance as an electrode active material.

該電池は2次電池として高性能で且つ薄形化、軽量化の
可能性を有しているが、大きな欠点がある。
Although this battery has high performance as a secondary battery and has the potential to be made thinner and lighter, it has a major drawback.

それは有機半導体であるポリアセチレンが極めて不安定
な物質であり空気中の酸素によシ容易に酸化を受け、又
熱によシ変質することである。従って電池製造は不活性
ガス雰囲気で行なわなければならず、又ポリアセチレン
を1極に適した形状に製造することも制約を受ける。
The reason is that polyacetylene, which is an organic semiconductor, is an extremely unstable substance and is easily oxidized by oxygen in the air and deteriorated by heat. Therefore, battery manufacturing must be carried out in an inert gas atmosphere, and there are also restrictions on manufacturing polyacetylene into a shape suitable for one pole.

また、特開昭58−35881号公報には、少くとも一
方の電極に、1. OOO〜10,000m/Iの比表
面積を有する炭素繊維を用いた電気化学電池が提案され
ている。同公報の詳細な説明によれば、上記炭素繊維は
直径10〜20μmであシ、電極にはこのような炭素繊
維から例えばシート状に形成される。
Furthermore, Japanese Patent Application Laid-Open No. 58-35881 discloses that at least one electrode has 1. Electrochemical cells using carbon fibers having a specific surface area of OOO to 10,000 m/I have been proposed. According to the detailed description in the publication, the carbon fibers have a diameter of 10 to 20 μm, and the electrodes are formed from such carbon fibers in the form of a sheet, for example.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は有機電解質電池を提供することにある。 An object of the present invention is to provide an organic electrolyte battery.

本発明の他の目的は、電解質溶液と接触する電極表面積
の大きな多孔性活性炭を電極とする高容量の有機電解質
電池を提供することにある。
Another object of the present invention is to provide a high-capacity organic electrolyte battery using porous activated carbon as an electrode, which has a large electrode surface area in contact with an electrolyte solution.

本発明のさらに他の目的は、小型化、薄形化あるいは軽
量化が可能でありそして製造も容易である経済的な二次
電池である有機電解質電池を提供することにある。
Still another object of the present invention is to provide an organic electrolyte battery that is an economical secondary battery that can be made smaller, thinner, lighter, and easier to manufacture.

本発明のさらに他の目的は、起電圧が高くそして長期に
亘って電荷効率の優れた二次電池を提供することにある
Still another object of the present invention is to provide a secondary battery with a high electromotive voltage and excellent charge efficiency over a long period of time.

本発明のさらに他の目的および利点は以下の説明から明
らかとなろう。
Further objects and advantages of the present invention will become apparent from the description below.

〔問題点を解決するための手段および作用〕本発明によ
れば、本発明のかかる目的および利点は、 (A)  平均孔径10μm以下の連通気孔を有し且つ
少くとも600vL′/IのBET法による比表面積値
を示す多孔性活性炭を、正極又は負極とし、 (7?)  電解により該電極にドーピングされうるイ
オンを生成しうる化合物を非プロトン性有機溶媒に溶解
した溶液を電解液とする、ことを特徴とする有機電解質
電池によって達成される。
[Means and effects for solving the problems] According to the present invention, such objects and advantages of the present invention are as follows: (A) A BET method having continuous pores with an average pore diameter of 10 μm or less and at least 600 vL'/I. (7?) Porous activated carbon having a specific surface area value of This is achieved by an organic electrolyte battery characterized by the following.

本発明において電極として用いられる上記多孔性活性炭
はフェノール樹脂から例えば次のようにして製造するこ
とができる。
The porous activated carbon used as an electrode in the present invention can be manufactured from a phenol resin, for example, in the following manner.

フェノール性水酸基を有する芳香族炭化水素化合物又は
フェノール性水酸基を有する芳香族炭化水素化合物とフ
ェノール性水酸基を有さない芳香族炭化水素化合物およ
びアルデヒド類の初期縮合物を準備し、この初期縮合物
と無機塩とを含む水溶液を調製し、この水溶液を適当な
型に流し込み、次いで水分の蒸発を抑制しつつ該水溶液
を加熱して該型内で例えば板状、フィルム状あるいは円
筒状等の形態に硬化し且つ変換し、得られた硬化体を非
酸化性雰囲気中で焼成し、次りで得られた焼成体を洗浄
して該焼成体中に含有される無機塩を除去し、必要によ
り乾燥する。
An initial condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group or an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aromatic hydrocarbon compound having no phenolic hydroxyl group and aldehydes is prepared, and this initial condensate and Prepare an aqueous solution containing an inorganic salt, pour this aqueous solution into a suitable mold, and then heat the aqueous solution while suppressing the evaporation of water to shape it into a shape such as a plate, a film, or a cylinder in the mold. After curing and conversion, the obtained cured product is fired in a non-oxidizing atmosphere, and then the obtained fired product is washed to remove inorganic salts contained in the fired product, and if necessary, dried. do.

本発明において、フェノール樹脂とはフェノール性化酸
基を有する芳香族炭化水素化合物とアルデヒド類との縮
合物である。かかる芳香族炭化水素化合物としては、例
えばフェノール、クレゾール、キシレノールの如きいわ
ゆるフェノール類が好適であるが、これらに限られない
。例えば下記式 ここで、Xおよびyはそれぞれ独立に、0.1又ll1
2である、 で表ワサれるメチレン−ビス・フェノール類であること
ができ、あるいはヒドロヤシ−ビフェニル類、ヒドロキ
シナフタレン類であることもできる。
In the present invention, the phenolic resin is a condensate of an aromatic hydrocarbon compound having a phenolic acid group and an aldehyde. As such aromatic hydrocarbon compounds, so-called phenols such as phenol, cresol, and xylenol are suitable, but are not limited thereto. For example, in the following formula, X and y are each independently 0.1 or ll1
It can be methylene bis phenols represented by 2, or it can also be hydrocarbon biphenyls or hydroxynaphthalenes.

これらのうち、実用的にはフェノール類特にフェノール
が好適である。
Among these, phenols, particularly phenol, are practically preferred.

本発明におけるフェノール樹脂としては、さらにフェノ
ール性水酸基を有する芳香族炭化水素化合物の1部をフ
ェノール性水酸基を有さない芳香族炭化水素化合物例え
ばキシレン、トルエン等で置換した変性芳香族系ポリマ
ー例えばフェノールとキシレンとホルムアルデヒドとの
縮合物である変性芳香族系ポリマーを用いることもでき
る。
The phenolic resin in the present invention further includes a modified aromatic polymer in which a part of the aromatic hydrocarbon compound having a phenolic hydroxyl group is replaced with an aromatic hydrocarbon compound not having a phenolic hydroxyl group, such as xylene, toluene, etc., such as phenol. A modified aromatic polymer which is a condensation product of xylene and formaldehyde can also be used.

またアルデヒドとしてはホルムアルデヒドのみならずア
セトアルデヒド、フルフラールの如きその他のアルデヒ
ドも使用することができるが、ホルムアルデヒドが好適
である。フェノール・ホルムアルデヒド縮合物としては
、ノーボラック型又はレゾール型或はそれらの複合物の
いずれであってもよい。
Further, as the aldehyde, not only formaldehyde but also other aldehydes such as acetaldehyde and furfural can be used, but formaldehyde is preferred. The phenol-formaldehyde condensate may be a novolac type, a resol type, or a composite thereof.

初期網金物と共に用いる上記無機塩は後の工程で除去さ
れ活性炭に連通孔を付与するために用いられる孔形成剤
であシ、例えば塩化亜鉛、塩化スズ、塩化ナトリウム、
リン酸ナトリツム、水酸化トリウムあるいは硫化トリウ
ム等である。これらのうち塩化亜鉛が特に好ましく用い
られる。無機塩は初期網金物の例えば2.5〜10重量
倍の量で用いることができる。下限より少ない量では連
通孔を有する多孔性活性炭が得難くまた上限よシ多い量
では多孔性活性炭の機械的強度が低下する傾向が大きく
なシ望ましくない。初期網金物と無機塩の水溶液は、使
用する無機塩の種類によっても異なるが例えば無機塩の
0.1〜1重量倍の水を用いて調製することができる。
The above-mentioned inorganic salts used together with the initial mesh are pore-forming agents that are removed in a later step and used to provide communicating pores to the activated carbon, such as zinc chloride, tin chloride, sodium chloride,
These include sodium phosphate, thorium hydroxide, and thorium sulfide. Among these, zinc chloride is particularly preferably used. The inorganic salt can be used in an amount of, for example, 2.5 to 10 times the weight of the initial mesh. If the amount is less than the lower limit, it is difficult to obtain porous activated carbon having communicating pores, and if the amount is more than the upper limit, the mechanical strength of the porous activated carbon tends to decrease, which is not desirable. The aqueous solution of the initial wire mesh and the inorganic salt may be prepared using, for example, water in an amount of 0.1 to 1 times the weight of the inorganic salt, although it varies depending on the type of inorganic salt used.

フェノール性樹脂の初期網金物と無機塩の水溶μ液は、
例えば水溶性レゾールに塩化亜鉛水溶液を加えた後、攪
拌することによシ、均一な溶液として調製することがで
き、またレゾールのメタノール溶液と塩化亜鉛水溶液を
混合することにより粘度の高いスラリー状に調製するこ
ともできる。その際、該水溶液に他の添加物、例えば硬
化フェノール樹脂の粉体あるいは繊維、あるいはセルロ
ースの微粒子等を混入しても良い。又、上記の如く、メ
タノール、エタノール、アセトンの如き有機溶媒を、均
一な混合のために加えても良い。かくして、例えば10
0,000〜100ポイズの粘度を有する水溶液は適当
な型に流し込まれ、例えば50〜200℃の温度に加熱
される。この加熱の際、水溶液中の水分の蒸発を抑止す
るのが肝要でめる。すなわち、水溶液中において初期網
金物は加熱を受けて徐々に硬化し、塩化亜鉛の如き無機
塩水と分離しながら6次元網目構造に成長するものと考
えられる。
The initial mesh of phenolic resin and the aqueous μ solution of inorganic salt are
For example, by adding a zinc chloride aqueous solution to a water-soluble resol and then stirring, a homogeneous solution can be prepared, or by mixing a methanol solution of the resol and a zinc chloride aqueous solution, a highly viscous slurry can be prepared. It can also be prepared. At this time, other additives such as hardened phenol resin powder or fibers, cellulose fine particles, etc. may be mixed into the aqueous solution. Further, as mentioned above, an organic solvent such as methanol, ethanol, or acetone may be added for uniform mixing. Thus, for example 10
An aqueous solution having a viscosity of 0,000 to 100 poise is poured into a suitable mold and heated to a temperature of, for example, 50 to 200°C. During this heating, it is important to suppress evaporation of water in the aqueous solution. That is, it is thought that the initial mesh is heated in an aqueous solution, gradually hardens, and grows into a six-dimensional network structure while separating from inorganic salt water such as zinc chloride.

得られた硬化体を非酸化性雰囲気中で焼成する・−こと
によって該硬化体を炭素に変えることができる。焼成は
通常800℃以上の温度に達するまで行なわれる。焼成
の際の好ましい昇温速度は使用するフェノール系樹脂あ
るいはその形状等によって多少相違するが、一般に室温
から300℃程度の温度までは比較的大きな昇温速度と
することが可能であり、例えば100℃/時間の速度と
することも可能である。300℃以上の温度になると、
樹脂の熱分解が開始し、水蒸気(H* 0 ) 、水素
、メタン、−酸化炭素の如きガスが発生し始めるため、
300℃に達したのちは充分に遅い速度で昇温せしめる
のが有利である。非酸化性雰囲気は、例えば窒素、アル
ゴン、ヘリウム、ネオン、二酸化炭素等であり、窒素が
好ましく用いられる。かかる非酸化性雰囲気は静止して
いても流動していてもさしつかえない。
By firing the obtained cured body in a non-oxidizing atmosphere, the cured body can be converted into carbon. Firing is usually carried out until a temperature of 800° C. or higher is reached. The preferred rate of temperature increase during firing varies somewhat depending on the phenolic resin used or its shape, but generally it is possible to set a relatively high rate of temperature increase from room temperature to a temperature of about 300°C, for example, 100°C. A rate of °C/hour is also possible. When the temperature reaches 300℃ or more,
Thermal decomposition of the resin begins and gases such as water vapor (H* 0 ), hydrogen, methane, and carbon oxide begin to be generated.
After reaching 300°C, it is advantageous to raise the temperature at a sufficiently slow rate. Examples of the non-oxidizing atmosphere include nitrogen, argon, helium, neon, carbon dioxide, etc., with nitrogen being preferably used. Such a non-oxidizing atmosphere may be stationary or flowing.

得られた焼成体を水、あるいは希塩酸等で十分に洗浄す
ることによって焼成体中に含まれる無機塩を除去するこ
とができる。無機塩を除去したのち、必要によシ乾燥す
ると連通孔の発達した多孔性活性炭を得ることができる
Inorganic salts contained in the fired body can be removed by thoroughly washing the fired body with water, dilute hydrochloric acid, or the like. After removing the inorganic salt, if necessary, drying is performed to obtain porous activated carbon with developed communicating pores.

かくして得られる多孔性活性炭は機械的強度、耐薬品性
に優れておシ、またフィルム状、板状、円筒状等の任意
の形状とすることが可能なため電極材として好適である
The porous activated carbon thus obtained has excellent mechanical strength and chemical resistance, and can be formed into any shape such as a film, a plate, or a cylinder, making it suitable as an electrode material.

本発明で用いられる上記多孔性活性炭は炭素部おるいは
連通気孔が3次元網目構造を採っているため、流体が細
部まで自由に出入りし易い連通気孔を有している。平均
孔径は10μm以下と微細でアシ、孔径の揃ったすなわ
ち孔径分布のシャープ彦多孔体でおる。例えば、上記製
造法において、金属塩化物を含む未硬化フェノ−゛ル樹
脂水溶液の組成あるいは熱硬化条件を選定することによ
って、平均孔径が0.03〜0.1μmと極めて微細な
多孔体から平均孔径が10μm程度の多孔体までを得る
ことができるため、電池の仕様に応じて使い分けること
が可能である。
The porous activated carbon used in the present invention has a three-dimensional network structure of carbon parts or communicating pores, so that it has communicating pores that allow fluid to easily enter and exit fine parts. The average pore size is 10 μm or less, which is fine, and it is a sharp porous material with uniform pore size, that is, a pore size distribution. For example, in the above manufacturing method, by selecting the composition of the uncured phenolic resin aqueous solution containing metal chloride or the thermosetting conditions, the average pore size can be made from extremely fine porous materials with an average pore size of 0.03 to 0.1 μm. Since it is possible to obtain a porous body with a pore diameter of about 10 μm, it is possible to use it depending on the specifications of the battery.

また本発明の多孔性活性炭はBET法による比表面積値
が少くとも600m/gである。比表面積が600rr
?/11未満の多孔性活性炭を電極として電池を構成し
た場合には、例えば充電時における充電電圧を高くする
必要が生じるため、エネルギー効率等が低下し、又電解
液の劣化をさそうため好ましくない。
Further, the porous activated carbon of the present invention has a specific surface area value of at least 600 m/g by the BET method. Specific surface area is 600rr
? When a battery is constructed using porous activated carbon with a porous activated carbon of less than /11 as an electrode, it is not preferable because, for example, it is necessary to increase the charging voltage during charging, resulting in a decrease in energy efficiency, etc., and also causing deterioration of the electrolyte.

本発明で用いられる多孔性活性炭の見掛は密度(嵩密度
)は通常0.2〜Q、6.9/iである。換言すれば、
本発明で用いられる多孔性活性炭には比較的気孔率の高
い多孔体から比較的気孔率の低い多孔体まで包含される
。多孔体の機械的強度は見掛は密度によって変わるが、
例えば0.211/−の多孔体でも実用上、必要な強度
を有している。
The apparent density (bulk density) of the porous activated carbon used in the present invention is usually 0.2 to Q, 6.9/i. In other words,
The porous activated carbon used in the present invention includes porous bodies with relatively high porosity to porous bodies with relatively low porosity. The mechanical strength of porous materials varies depending on the density, but
For example, even a porous material having a diameter of 0.211/- has a strength necessary for practical use.

本発明の有機電解質電池は上記のとおり上記の多孔性活
性炭を正極及び/又は負極とし、電解によシ該電極にド
ーピングされうるイオンを生成しうる化合物を非プロト
ン性有機溶媒に溶解した溶液を電解液とする有機2次電
池である。
As described above, the organic electrolyte battery of the present invention uses the above-mentioned porous activated carbon as a positive electrode and/or negative electrode, and contains a solution in which a compound capable of producing ions that can be doped into the electrode by electrolysis is dissolved in an aprotic organic solvent. This is an organic secondary battery that uses an electrolyte.

↓ 電極にドーピングされるイオンを生成しうる、化合物と
しては、例えばアルカリ金属又はテトラアルギルアンモ
ニウムのハロゲン化物過塩素酸塩、6フツ化リン酸塩、
6フツ化ヒ酸塩、4フツ化ホウ素酸塩等が挙げられる。
↓ Compounds that can generate ions to be doped into the electrode include, for example, alkali metal or tetraargylammonium halide perchlorates, hexafluorophosphates,
Examples include hexafluoroarsenate, tetrafluoroborate, and the like.

具体的にはLil。Specifically, Lil.

MalSNB41.LiCIO4、LiAsF6、Li
BF、 、KPF6、HapF6、(n −C4H,)
 4NCIO,、(C4H9)、NCI O4、(Cg
Hs)4N B’4、(n−C,B、) 4NBF4、
(n−C4H9)4NAsF6、(n−C4H9) 4
NpF・あるいはL i HF 、等が挙げられる。
MalSNB41. LiCIO4, LiAsF6, Li
BF, , KPF6, HapF6, (n-C4H,)
4NCIO,, (C4H9), NCI O4, (Cg
Hs)4N B'4, (n-C,B,) 4NBF4,
(n-C4H9)4NAsF6, (n-C4H9)4
Examples include NpF. or Li HF.

前記化合物を溶解する溶媒としては非プロトン性有機溶
媒が用いられる。例えばエチレンカーボネート、プロピ
レンカーボネート、r−ブチロラクトン、ジメチルホル
ムアミド、ジメチルアセトアミド、ジメチルスルホキシ
ド、アセトニトリル、ジメトキシエタン、テトラヒドロ
7ラン、塩化メチレンあるいはスルホラン又はこれらの
混合物が選択される。
An aprotic organic solvent is used as the solvent for dissolving the compound. For example, ethylene carbonate, propylene carbonate, r-butyrolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile, dimethoxyethane, tetrahydroctane, methylene chloride or sulfolane or mixtures thereof are selected.

電解液中の前記化合物の浸度は、電解液による内部抵抗
を小さくするため、少なくともCL1モル/1以上とす
る。のが望ましく、通常0.2〜1.5モ性炭へのドー
ピング剤の電気化学的ドーピングと、電気化学的アンド
−ピングを利用するものである。
The degree of immersion of the compound in the electrolytic solution is set to at least 1 mole of CL/1 or more in order to reduce the internal resistance due to the electrolytic solution. It is preferable to use electrochemical doping of a doping agent to 0.2 to 1.5 mole carbon and electrochemical and-doping.

即ちエネルギーが多孔性活性炭へのドーピング剤の電気
化学的ドーピングにより蓄えられるか、或は外部に放出
される電気化学的アンド−ピングによυ、電気エネルギ
ーとして外部に取出されるか、或は内部に蓄えられる。
That is, energy can be stored by electrochemical doping of the porous activated carbon with a doping agent, or can be extracted externally as electrical energy by electrochemical doping, which is released to the outside, or can be extracted internally. is stored in

本発明に係る電池は2つのタイプに分けられる。Batteries according to the invention are divided into two types.

第1のタイプは正極及び負極の両極に多孔性活性炭を用
いる電池であり、第2のタイプは正極に多孔性活性炭を
用い負極にアルカリ金属又はアルカリ土類金属を用いる
電極である。アルカリ金属およびアルカリ土類金属とし
ては、例えばセシウム、ルビジウム、カリウム、ナトリ
ウム、リチウム、バリウム、ストロンチウム、カルシウ
ムがあげられる。とれらのうちリチウムが最も好ましい
。これらの金属は単独であるいは合金として用いること
ができる。
The first type is a battery that uses porous activated carbon for both the positive and negative electrodes, and the second type is an electrode that uses porous activated carbon for the positive electrode and an alkali metal or alkaline earth metal for the negative electrode. Examples of alkali metals and alkaline earth metals include cesium, rubidium, potassium, sodium, lithium, barium, strontium, and calcium. Of these, lithium is most preferred. These metals can be used alone or as an alloy.

電池内に配置される多孔性活性炭からなる電極の形状、
大きさは、目的とする電池の種類によシ任意に選ぶこと
ができるが、電池反応は電極表面上の電気化学的反応で
あるため電極は可能な限シ、表面積を大きくすることが
有利である。又、該基体よシミ池外部に電流を取出すた
めの集電体としては多孔性活性炭あるいはドーピング剤
でドーピングされた多孔性活性炭を用いることもできる
が、ドーピング剤及び電解液に対し耐食性のある他の導
電性物質、例えば炭素、白金、ニッケル、ステンレス等
を用いることもできる。
The shape of the electrode made of porous activated carbon placed inside the battery,
The size can be chosen arbitrarily depending on the type of battery desired, but since the battery reaction is an electrochemical reaction on the surface of the electrode, it is advantageous to make the surface area of the electrode as large as possible. be. In addition, porous activated carbon or porous activated carbon doped with a doping agent can be used as a current collector for extracting current from the substrate to the outside of the stain pond. Conductive materials such as carbon, platinum, nickel, stainless steel, etc. can also be used.

次に図によシ本発明の実施態様を説明する。第1図は本
発明に係る電池の基本構成図である。
Next, embodiments of the present invention will be explained with reference to the drawings. FIG. 1 is a basic configuration diagram of a battery according to the present invention.

まず、本発明に係る電池の第1のタイプ、即ち正極及び
負極の両極に多孔性活性炭を用いる電池について説明す
る。第1図において、1は正極であシ、フィルム状ある
いは板状等である多孔性活性炭であシ、2は負極であシ
、同様にフィルム状おるいは板状等である多孔性活性炭
である。これらはいずれもドーピング剤でドーピングさ
れていても、されていなくてもよい。電池を組み立てた
後、外部電源よシミ圧を印加して、ドーピング剤をドー
ピングする。例えば両極ともに未ドーピングの多孔性活
性炭を用いた場合、電池の組み立て後の該電池の起電圧
はOvであシ、外部電源によ□シミ圧を印加して、両極
にドーピング剤をドーピングすることにより該電池は起
電力を有するようになる。3,3′は各電極から外部に
電流を取り出したシ、電気化学的ドーピング、即ち充電
するために電流を供給するための集電体であり、前述し
た方法により各電極及び外部端子7.7′に電圧降下を
生じないように接続されている。4は電解液であシ、非
゛プロトン性有機溶媒に正負両極にドーピングされうる
イオンを生成しうる前述の化金物が溶解されている。電
解液は通常液状であるが漏液を防止するためゲル状又は
固体状にして用いることもできる。5は正負両極の接触
を阻止すること及び電解液を保持することを目的として
配置されたセパレータである。該セノ臂レータは電解液
或はドーピング剤やアルカリ金属等の電極活物質に対し
耐久性のめる連続気孔を有する電子伝導性のない多孔体
であシ、通常ガラス繊維、ポリエチレン或はポリノロピ
レン等からなる布、不織布或は多孔体が用いられる。セ
・ぐレータの厚さは電池の内部抵抗を小さくするため薄
い方が好ましいが、電解液の保持量、流通性、強度等を
勘案して決定される。。正負正極及びセパレータは電池
ケース6内に実用上問題が生じないように固定される。
First, a first type of battery according to the present invention, that is, a battery using porous activated carbon for both the positive and negative electrodes will be described. In Figure 1, 1 is the positive electrode, which is porous activated carbon in the form of a film or plate, and 2 is the negative electrode, which is porous activated carbon which is also in the form of a film or plate. be. These may or may not be doped with a doping agent. After assembling the battery, a doping agent is doped by applying stain pressure from an external power source. For example, when undoped porous activated carbon is used for both electrodes, the electromotive force of the battery after assembly is Ov, and stain pressure is applied from an external power source to dope the doping agent to both electrodes. As a result, the battery has an electromotive force. Reference numerals 3 and 3' denote current collectors for supplying current for electrochemical doping, that is, charging, from which current is taken out from each electrode to the outside, and each electrode and external terminal 7.7 are ’ is connected so as not to cause a voltage drop. Reference numeral 4 denotes an electrolytic solution in which the aforementioned metal compound capable of producing ions that can be doped into both positive and negative electrodes is dissolved in an aprotic organic solvent. The electrolyte is usually in liquid form, but it can also be used in gel or solid form to prevent leakage. A separator 5 is arranged for the purpose of preventing contact between the positive and negative electrodes and retaining the electrolyte. The ceno-arm plate is a porous material with no electronic conductivity and has continuous pores that enhances its durability against electrolytes, doping agents, and electrode active materials such as alkali metals, and is usually made of glass fiber, polyethylene, polynolopyrene, etc. Cloth, nonwoven fabric, or porous material is used. The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but it is determined by taking into consideration the amount of electrolyte retained, flowability, strength, etc. . The positive and negative electrodes and the separator are fixed in the battery case 6 so as not to cause any practical problems.

電極の形状、大きさ等は目的とする電池の形状、性能に
より適宜状められる。例えば薄形電池を製造するには、
電極はフィルム状が適し、大容量電池を製造するにはフ
ィルム状、或は板状等の電極を多数板正負両極を交互に
積層することによシ達成できる。
The shape, size, etc. of the electrode are determined as appropriate depending on the shape and performance of the intended battery. For example, to manufacture thin batteries,
Film-shaped electrodes are suitable, and large-capacity batteries can be produced by laminating a large number of film-shaped or plate-shaped electrodes, with both positive and negative electrodes alternately stacked.

次に本発明に係る電池の第2のタイプ、即ち正極に多孔
性活性炭を用い、負極にアルカリ金属又はアルカリ土類
金属を用いる場合について説明する。第1図を借りて説
明するとこの第2のタイプの電池では、負極2がアルカ
リ金属又はアルカリ土類金属となっている点が第1のタ
イプの電池と異なるだけで、他の1.3〜7は第1のタ
イプの電池の場合を同じ意味を持っている。
Next, a second type of battery according to the present invention, that is, a case where porous activated carbon is used for the positive electrode and an alkali metal or alkaline earth metal is used for the negative electrode, will be described. To explain with reference to FIG. 1, this second type of battery differs from the first type only in that the negative electrode 2 is made of an alkali metal or alkaline earth metal. 7 has the same meaning for the first type of battery.

この第2のタイプの電池の場合、ドーピング機構、即ち
電池の動作機構は更に2つの機構に分けられる。第1の
機構では多孔性活性炭に電子受容性ドーピング剤がドー
ピングされるのが充電に相当し、アンド−ピングされる
のが放電に対応する電池である。例えば電極として未−
ドーピング多孔性活性炭及びリチウムを電解液としてL
iC10゜部電源によシミ圧を印加してCt O,−イ
オンを多孔性活性炭にドーピングすると、起電力は五5
〜4.5■となる。第2の機構では多孔性活性炭に電子
供与性ドーピング剤をドーピングするのが放電に相当し
、アンド−ピングするのが充電に対応する電池である。
For this second type of battery, the doping mechanism, ie the operating mechanism of the battery, can be further divided into two mechanisms. In the first mechanism, porous activated carbon is doped with an electron-accepting doping agent, which corresponds to charging, and undoping corresponds to discharging. For example, as an electrode,
Doped porous activated carbon and lithium as electrolyte
When porous activated carbon is doped with CtO,- ions by applying stain pressure to the iC10° power supply, the electromotive force is 55%.
〜4.5■. In the second mechanism, doping porous activated carbon with an electron-donating doping agent corresponds to discharging, and undoping corresponds to charging.

例えば上記した電池構成では電池組み立て後の起電圧は
約3vであシ、外部に電流を放出することにより、多孔
性活性炭にリチウムイオンをドーピングすると、起電力
#:t 1.0〜2.5Yとなるが、外部電源によシミ
圧を印加し、リチウムイオンをアンド−ピングすると再
び起電力は約3yとなる。
For example, in the battery configuration described above, the electromotive voltage after battery assembly is approximately 3V, and if porous activated carbon is doped with lithium ions by discharging a current to the outside, the electromotive force #: t 1.0 to 2.5Y However, when the stain pressure is applied by an external power source and the lithium ions are and-pumped, the electromotive force becomes approximately 3y again.

ドーピング又はアンド−ピングは一定電流下でも一定電
圧下でも、また電流及び電圧の変化する条件下のいずれ
で行ってもよいが多孔性活性炭にドーピングされるドー
ピング剤の量は該活性炭の炭素原子1個に対するドーピ
ングされるイオン数の百分率で05〜10%が好ましい
Doping or undoping may be carried out under a constant current, a constant voltage, or under conditions where the current and voltage are varied, but the amount of doping agent doped into the porous activated carbon is determined by the amount of doping agent per carbon atom of the activated carbon. The percentage of the number of ions to be doped with respect to the total number of ions is preferably 05 to 10%.

多孔性活性炭を電極として用いる本発明の電池は充放電
を繰返し動作することのできる2次電池であり、その起
電圧は該電池の構成によって異なるが第1のタイプでは
1〜3V、第2のタイプで第1機構を利用する場合には
3.5〜4,5■であり、又第2のタイプで第2機構を
利用する場合には約3vである。又本発明の電池は特に
重量当シのエネルギー密度が大きく、適量のドーピング
を行えば多孔性活性炭の重量を基準として、約300F
H7k&の値を有している。又パワー密度については電
池の構成によシ、差はあるが鉛蓄電池より、はるかに大
きなノ9ワー密度を有している。更に、本発明における
上記多孔性活性炭を電極として使用すると、内部抵抗の
小さく、繰返し充放電の可能な、長期にわたって電池性
能の低下しない2次電池を製造することができる。
The battery of the present invention using porous activated carbon as an electrode is a secondary battery that can be repeatedly charged and discharged, and its electromotive voltage varies depending on the configuration of the battery, but the first type has a voltage of 1 to 3 V, and the second type has a voltage of 1 to 3 V. When the first type is used, the voltage is 3.5 to 4.5V, and when the second type is used, the voltage is about 3V. In addition, the battery of the present invention has a particularly high energy density per weight, and if an appropriate amount of doping is performed, the energy density will be approximately 300F based on the weight of porous activated carbon.
It has a value of H7k&. Regarding power density, although there are differences depending on the structure of the battery, it has a much higher power density than a lead-acid battery. Furthermore, when the porous activated carbon of the present invention is used as an electrode, it is possible to produce a secondary battery that has a low internal resistance, can be repeatedly charged and discharged, and does not exhibit deterioration in battery performance over a long period of time.

本発明の2次電池は従来公知の活性炭素繊維を利用した
2次電池に比較して微細な構造を有した多孔状活性炭を
使用するため電解液の侵入が容易であり、界面でのドー
ピングがスムーズに行なわれるため、高容量、高出力の
高性能2次電池である。また小型化、薄形化、軽量化が
可能で、長期にわたって性能の劣化しない2次電池であ
る。
The secondary battery of the present invention uses porous activated carbon with a fine structure compared to conventional secondary batteries using activated carbon fibers, so it is easier for electrolyte to penetrate, and doping at the interface is prevented. Because it is carried out smoothly, it is a high-performance secondary battery with high capacity and high output. It is also a secondary battery that can be made smaller, thinner, and lighter, and its performance will not deteriorate over a long period of time.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

なお、本明細書において、連通孔の平均孔径は次のよう
にして測定されまた定義される。
In addition, in this specification, the average pore diameter of the communicating pores is measured and defined as follows.

試料について、例えば1,000〜10,000倍で電
子顕微鏡写真を撮影する。この写真に任意の直線を引き
、その直線と交叉する孔の数をnとすると、平均孔径(
カは下記式により算出される。
An electron micrograph is taken of the sample at a magnification of, for example, 1,000 to 10,000 times. If an arbitrary straight line is drawn on this photograph and the number of holes that intersect with the straight line is n, then the average pore diameter (
The force is calculated using the following formula.

Σ1t i=1 d=  − ここで、liは直線が交叉する孔で切断されの該切断さ
れる長さの和であシ、外は該直線と交叉する孔の数であ
る、但しnは10以上の値をとるものとする。
Σ1t i=1 d= − Here, li is the sum of the lengths of the straight lines cut by the intersecting holes, and the outside is the number of holes that intersect the straight lines, provided that n is 10 The value shall be greater than or equal to the value.

実施例 1 水溶性レゾール(約60%濃度)/塩化亜鉛/水を重量
比で10/25/4の割合で混合した水溶液をフィルム
アプリケーターでガラス板上に成膜した。次に成膜した
水溶液上にガラス板を被せ水分が蒸発しない様にした後
、約100℃の温度で1時間加熱して硬化させた。
Example 1 An aqueous solution containing water-soluble resol (approximately 60% concentration)/zinc chloride/water mixed in a weight ratio of 10/25/4 was formed into a film on a glass plate using a film applicator. Next, a glass plate was placed over the formed aqueous solution to prevent moisture from evaporating, and then heated at a temperature of about 100° C. for 1 hour to cure it.

該フェノール樹脂複合体をシリコニット電気炉て、90
0℃まで焼成した。次に該フィルム状熱処理物を希塩酸
で洗った後水洗し乾燥した。
The phenolic resin composite was heated in a silicone electric furnace at 90°C.
It was fired to 0°C. Next, the heat-treated film was washed with dilute hydrochloric acid, then water, and dried.

このようにして得られたフィルムは厚みが約200μm
であシ、見掛は密度は約0.3 Ji’ / CrIで
あった。また活性炭とは思えない程機械的強度に優えて
おり、若干の可とう性まで有していた。次にBET法に
よって比表面積値を測定したところ1800m/Ji’
と極めて高い値であった。
The film thus obtained has a thickness of approximately 200 μm.
The apparent density was approximately 0.3 Ji'/CrI. It also had excellent mechanical strength, which was hard to believe for activated carbon, and even had some flexibility. Next, the specific surface area value was measured using the BET method and was found to be 1800 m/Ji'
This was an extremely high value.

次に該フィルム性活性炭の気孔状態を観察するためにフ
ィルム断面の電子顕做鏡写真を撮った。
Next, an electron microscope photograph of a cross section of the film was taken in order to observe the pore state of the film-like activated carbon.

第2図に示す。図から明らかな様に3次元網目状構造で
10μm以下微細な連通気孔を有しておシ、その柱の太
さは10μm以下と極めて細かった。
Shown in Figure 2. As is clear from the figure, it had a three-dimensional network structure with fine communicating holes of less than 10 μm, and the thickness of the pillars was extremely thin, less than 10 μm.

次に充分に脱水したグロピレンカーボネートにLiBF
、を溶解させた1、0モル/lの溶液を電解液としリチ
ウム金属を負極とし、上記した多孔状活性炭のフィルム
を正極とした電池を第1図の様に組立てた。集電体とし
てはステンレスメツシュを用い、セパレーターとしては
ガラス繊維からなるフェルトを用いた。本実施例は本発
明における第2タイプの第1機構を利用する電池である
Next, LiBF is added to sufficiently dehydrated glopylene carbonate.
A battery was assembled as shown in FIG. 1, using a 1.0 mol/l solution of , as an electrolyte, lithium metal as a negative electrode, and the porous activated carbon film described above as a positive electrode. A stainless steel mesh was used as the current collector, and felt made of glass fiber was used as the separator. This example is a battery that utilizes the second type of first mechanism of the present invention.

即ち、電子受容性ドーピング剤であるBF4−イオンを
多孔状活性炭にドーピングするのが充電に相当し、アン
ド−2ングするのが放電に相当する。
That is, doping porous activated carbon with BF4- ions, which are electron-accepting doping agents, corresponds to charging, and carrying out AND-2 corresponds to discharging.

又ドーピング量は活性炭中の炭素原子1個当りのドーピ
ングされるイオンの数で表わすこととしたが、本発明で
はドーピングされるイオンの数は回路を流れた電流値よ
り求めたものである。
Further, the doping amount is expressed by the number of doped ions per carbon atom in the activated carbon, but in the present invention, the number of doped ions is determined from the value of the current flowing through the circuit.

電池を組立てた直後の電圧は3.0■であった。The voltage immediately after assembling the battery was 3.0 ■.

次に該電池に外部より電圧を印加して、1時間当りのド
ーピング量が1%となるように一定電流でBF、″′イ
オンを多孔状活性炭に3.5時間ドーピングした。ドー
ピング終了時の開路電圧は4.4Vてらった。次に1時
間当りのアンド−ピング量が1%と碌るように一定電流
を回路に流し、BF4″″イオンのアンド−ピングを行
い、開路電圧が五〇Vになるまで続は起。該テストにお
けるドーピング量に対するアンド−ピング量の値は80
%であった。
Next, a voltage was applied externally to the battery, and the porous activated carbon was doped with BF, ``'' ions at a constant current for 3.5 hours so that the doping amount per hour was 1%. The open circuit voltage was 4.4 V.Next, a constant current was applied to the circuit so that the amount of and-ping per hour was 1%, and the and-ping of BF4'' ions was carried out, and the open circuit voltage was 50 V. The continuation continues until V. The value of the and-doping amount for the doping amount in this test is 80
%Met.

実施例 2 本実施例は本発明における第1タイプの電池、即ち正極
及び負極に多孔性活性炭からなる成形体を用いる2次電
池に関する。
Example 2 This example relates to the first type of battery according to the present invention, that is, a secondary battery using molded bodies made of porous activated carbon for the positive and negative electrodes.

実施例1で得られた多孔性活性炭フィルムを正極及び負
極に用い、電解液として(CvHs)4NCtO,の1
モル/737’ロピレンカーボネート溶液を使用して電
池を構成し、充放電テストを行った。
The porous activated carbon film obtained in Example 1 was used as a positive electrode and a negative electrode, and (CvHs)4NCtO, 1 was used as an electrolyte.
A battery was constructed using a mol/737' propylene carbonate solution and subjected to charge/discharge tests.

電池を組立てた直後の電圧はOvであった。次に外部電
源より電圧を印加して正極にCtO,−イオンを負極に
(CvHs)+N+イオンをドーピングすることによっ
て充電した。充電速度は1時間当りのドーピング量が1
%となるようにし、3時間行った。この時の開路電圧は
3.OVであった。
The voltage immediately after the battery was assembled was Ov. Next, a voltage was applied from an external power supply to charge the battery by doping the positive electrode with CtO, - ions and the negative electrode with (CvHs)+N+ ions. The charging speed is 1 doping amount per hour.
% for 3 hours. The open circuit voltage at this time is 3. It was OV.

次に充電時と同じ速度でCtO4−イオン及び((’!
H5)4A’+イオンのアンド−ピングを行うこぼ直線
であり、キャパシターに似た特性をもつ電池であった。
Next, CtO4- ions and (('!
H5) It was a bumpy straight line that performs and-pumping of 4A'+ ions, and the battery had characteristics similar to a capacitor.

この電池をキャパシターと考えてそのキヤAジター容量
を計算すると電極重量当り25 F/iであった。(F
:ファラッド)比較例 1 カイノール繊維の平織物(日本カイノール社製のフェノ
ール樹脂繊維の織物)をシリコニット電気炉にて非酸化
性雰囲気下、900℃まで焼成し、炭化した後、同温度
で電気炉中に水蒸気を吹登こみ、約1時間付活処理を行
った。得られた活性炭織物のEET法による比表面積値
は1600m”/Iであった。繊維径は約15μmであ
り、織物の機械的強度はほとんどなった。
Considering this battery as a capacitor, its capacitance was calculated to be 25 F/i per electrode weight. (F
: Farad) Comparative Example 1 A plain woven fabric of Kynol fiber (woven fabric of phenolic resin fiber manufactured by Nippon Kynol Co., Ltd.) was fired in a silicone electric furnace to 900°C in a non-oxidizing atmosphere, carbonized, and then heated in an electric furnace at the same temperature. Steam was blown into the container and activated for about 1 hour. The specific surface area value of the obtained activated carbon fabric by the EET method was 1600 m''/I. The fiber diameter was about 15 μm, and the mechanical strength of the fabric was almost the same.

次に該活性炭織物を正極及び負極をし実施例2と全く同
じ構成で電池を組み立て、同じ条件で充放電テストを行
った。電池をキヤIぐジターと考えてそのキャ/セシタ
ー容量を計算すると電極重量当り16F/Iであった。
Next, a battery was assembled with the same configuration as in Example 2 using the activated carbon fabric as a positive electrode and a negative electrode, and a charge/discharge test was conducted under the same conditions. Considering the battery as a capacitor, the capacitance was calculated to be 16 F/I per electrode weight.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電池の基本構成を示すものである
。1は正極、2は負極、3は集電体、4は電解液、5は
セル−ター、6は電池ケース、7は外部端子を表わす。 第2図は本発明の多孔性活性炭フィルムの断面の電顕写
真である。写真中、右下に示す棒線の長さは5μmであ
る。
FIG. 1 shows the basic configuration of a battery according to the present invention. 1 is a positive electrode, 2 is a negative electrode, 3 is a current collector, 4 is an electrolytic solution, 5 is a celltor, 6 is a battery case, and 7 is an external terminal. FIG. 2 is an electron micrograph of a cross section of the porous activated carbon film of the present invention. In the photograph, the length of the bar shown at the bottom right is 5 μm.

Claims (1)

【特許請求の範囲】 1、(A)平均孔径10μm以下の連通気孔を有し且つ
少くとも600m^2/gのBET法による比表面積値
を示す多孔性活性炭を、正極又は負極とし、 (B)電解により該電極にドーピングされうるイオンを
生成しうる化合物を非プロトン性有機溶媒に溶解した溶
液を電解液とする、 ことを特徴とする有機電解質電池。 2、上記多孔性活性炭の連通気孔の平均孔径が0.2〜
10μmである特許請求の範囲第1項に記載の有機電解
質電池。 3、上記多孔性活性炭の連通気孔が三次元網目状に存在
する特許請求の範囲第1項に記載の有機電解質電池。 4、上記多孔性活性炭の嵩密度が0.2〜0.6g/c
m^2である特許請求の範囲第1項に記載の有機電解質
電池。 5、上記多孔性活性炭がフィルム状又は板状の形態にあ
る特許請求の範囲第1項に記載の有機電解質電池。 6、多孔性活性炭が正極であり、そしてアルカリ金属又
はアルカリ土類金属が負極である特許請求の範囲第1項
に記載の有機電解質電池。 7、負極がアルカリ金属であり、アルカリ金属かリチウ
ム又はリチウム合金である特許請求の範囲第1項に記載
の有機電解質電池。 8、多孔性活性炭が正極および負極をなす特許請求の範
囲第1項に記載の有機電解質電池。 9、ドーピングされうるイオンを生成しうる化合物がL
iI、NaI、NH_4I、LiUO_4、LiAsF
_6、LiBF_4、KPF_6、NaPF_6(C_
2H_5)_4NClO_4、(n−C_4H_9)_
4、NClO(C_2H_5)_4NBF_4、(n−
C_4H_9)_4NBF_4、(n−C_4H_9)
_4NAsF_6、(n−C_4H_9)_4PF_6
又はLiHF_2である特許請求の範囲第1項記載の有
機電解質電池。 10、非プロトン性有機溶媒がエチレンカーボネート、
プロピレンカーボネート、r−ブチロラクトン、ジメチ
ルホルムアミド、ジメチルアセトアミド、ジメチルスル
ホキシド、アセトニトリル、ジメトキシエタン、テトラ
ヒドロフラン、塩化メチレン又はスルホランである特許
請求の範囲第1項に記載の有機電解質電池。
[Claims] 1. (A) A porous activated carbon having continuous pores with an average pore diameter of 10 μm or less and exhibiting a specific surface area value by the BET method of at least 600 m^2/g is used as a positive electrode or a negative electrode, (B ) An organic electrolyte battery characterized in that the electrolyte is a solution in which a compound capable of producing ions that can be doped into the electrode by electrolysis is dissolved in an aprotic organic solvent. 2. The average pore diameter of the continuous pores of the porous activated carbon is 0.2~
The organic electrolyte battery according to claim 1, which has a thickness of 10 μm. 3. The organic electrolyte battery according to claim 1, wherein the communicating pores of the porous activated carbon exist in a three-dimensional network. 4. The bulk density of the porous activated carbon is 0.2 to 0.6 g/c
The organic electrolyte battery according to claim 1, wherein m^2. 5. The organic electrolyte battery according to claim 1, wherein the porous activated carbon is in the form of a film or a plate. 6. The organic electrolyte battery according to claim 1, wherein the porous activated carbon is the positive electrode, and the alkali metal or alkaline earth metal is the negative electrode. 7. The organic electrolyte battery according to claim 1, wherein the negative electrode is an alkali metal, and the alkali metal is lithium or a lithium alloy. 8. The organic electrolyte battery according to claim 1, wherein porous activated carbon constitutes a positive electrode and a negative electrode. 9. A compound that can generate ions that can be doped is L
iI, NaI, NH_4I, LiUO_4, LiAsF
_6, LiBF_4, KPF_6, NaPF_6(C_
2H_5)_4NClO_4, (n-C_4H_9)_
4, NClO(C_2H_5)_4NBF_4, (n-
C_4H_9)_4NBF_4, (n-C_4H_9)
_4NAsF_6, (n-C_4H_9)_4PF_6
or LiHF_2, the organic electrolyte battery according to claim 1. 10, the aprotic organic solvent is ethylene carbonate,
The organic electrolyte battery according to claim 1, which is propylene carbonate, r-butyrolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, methylene chloride, or sulfolane.
JP60065016A 1985-03-25 1985-03-30 Organic electrolyte battery Pending JPS61225761A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60065016A JPS61225761A (en) 1985-03-30 1985-03-30 Organic electrolyte battery
US06/842,335 US4753717A (en) 1985-03-25 1986-03-21 Porous article having open pores prepared from aromatic condensation polymer and use thereof
EP86104063A EP0196055B1 (en) 1985-03-25 1986-03-25 Porous article having open pores prepared from aromatic condensation polymer and use thereof
DE3650725T DE3650725T2 (en) 1985-03-25 1986-03-25 Porous activated carbon made from aromatic condensation polymers and their application in electrodes for electrochemical cells
DE86104063T DE3689239T2 (en) 1985-03-25 1986-03-25 Porous article made of aromatic condensation polymers with open pores and its application.
EP92100194A EP0480909B1 (en) 1985-03-25 1986-03-25 Porous active carbon prepared from aromatic condensation polymer and use thereof in electrodes for electrochemical cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60065016A JPS61225761A (en) 1985-03-30 1985-03-30 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPS61225761A true JPS61225761A (en) 1986-10-07

Family

ID=13274757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60065016A Pending JPS61225761A (en) 1985-03-25 1985-03-30 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS61225761A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301462A (en) * 1987-05-30 1988-12-08 Kanebo Ltd Organic electrolyte battery including activated carbon-aniline composite as positive electrode
JPH05198298A (en) * 1991-07-29 1993-08-06 Valence Technol Inc Rechargeable lithium rocking chair battery and electrode used for said battery
JP2017228513A (en) * 2016-06-15 2017-12-28 株式会社リコー Nonaqueous electrolyte storage element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301462A (en) * 1987-05-30 1988-12-08 Kanebo Ltd Organic electrolyte battery including activated carbon-aniline composite as positive electrode
JP2562601B2 (en) * 1987-05-30 1996-12-11 鐘紡株式会社 Organic electrolyte battery with activated carbon-aniline composite as positive electrode
JPH05198298A (en) * 1991-07-29 1993-08-06 Valence Technol Inc Rechargeable lithium rocking chair battery and electrode used for said battery
JP2017228513A (en) * 2016-06-15 2017-12-28 株式会社リコー Nonaqueous electrolyte storage element

Similar Documents

Publication Publication Date Title
EP0480909B1 (en) Porous active carbon prepared from aromatic condensation polymer and use thereof in electrodes for electrochemical cells
JPH046072B2 (en)
JPS60170163A (en) Organic electrolyte cell
JP2532878B2 (en) Organic electrolyte battery with activated carbon metal oxide composite as positive electrode
JPH0630260B2 (en) Organic electrolyte battery
JPS61225761A (en) Organic electrolyte battery
JP2562601B2 (en) Organic electrolyte battery with activated carbon-aniline composite as positive electrode
JP2614725B2 (en) Organic electrolyte battery with activated carbon metal sulfide composite as cathode
JP2534490B2 (en) Organic electrolyte battery
JP2519180B2 (en) Organic electrolyte battery
JP2515547B2 (en) Organic electrolyte battery using aniline composite as positive electrode
JP2524184B2 (en) Organic electrolyte battery containing composite electrodes
JP2519454B2 (en) Organic electrolyte battery using nitrogen-containing substrate as electrode
JP2588404B2 (en) Organic electrolyte battery
JPH0624160B2 (en) Organic electrolyte battery
JP2646461B2 (en) Organic electrolyte battery
JPS6177275A (en) Organic electrolyte battery
JPH0624159B2 (en) Organic electrolyte battery
JP2614724B2 (en) Organic electrolyte battery with metal sulfide composite as positive electrode
JP2616774B2 (en) Organic electrolyte battery using metal oxide composite as positive electrode
JPS6180773A (en) Organic electrolyte cell
JP2522662B2 (en) Organic electrolyte battery with polythiophene as positive electrode
JPH0624157B2 (en) Organic electrolyte battery
JPH0658799B2 (en) Battery electrode manufacturing method
JPS6180774A (en) Organic electrolyte cell