JPS63301462A - Organic electrolyte battery including activated carbon-aniline composite as positive electrode - Google Patents

Organic electrolyte battery including activated carbon-aniline composite as positive electrode

Info

Publication number
JPS63301462A
JPS63301462A JP62133281A JP13328187A JPS63301462A JP S63301462 A JPS63301462 A JP S63301462A JP 62133281 A JP62133281 A JP 62133281A JP 13328187 A JP13328187 A JP 13328187A JP S63301462 A JPS63301462 A JP S63301462A
Authority
JP
Japan
Prior art keywords
activated carbon
electrolyte battery
aniline
organic electrolyte
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62133281A
Other languages
Japanese (ja)
Other versions
JP2562601B2 (en
Inventor
Shizukuni Yada
静邦 矢田
Hajime Kinoshita
肇 木下
Atsushi Ishikawa
篤 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP62133281A priority Critical patent/JP2562601B2/en
Publication of JPS63301462A publication Critical patent/JPS63301462A/en
Application granted granted Critical
Publication of JP2562601B2 publication Critical patent/JP2562601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To make it possible to obtain a secondary battery with a high capacity, a high output and good rapid charge/discharge characteristics by using composite of a certain activated carbon and polimerized matter of aniline as active material for a positive electrode, and using solution of compound which can produce ions subject to doping dissolved in aprotic organic solvent as electrolyte. CONSTITUTION:Composite of activated carbon with a specific surface value of 600m<2>/g or over and polimerized matter of aniline is used as activa material for a positive electrode 1, and solution of compound which can produce ions subject to doping to the active material of the positive electrode 1 by electrolysis dissolved in aprotic organic solvent is used as electrolyte 4. The activated carbon may be in the form of powders, grains, fibers, or fabric as far as the specific surface is 600m<2>/g or over, but preferably porous activated carbon obtained by heat processing aromatic condensation polymer at over 800 deg.C shall be used, for example. An organic electrolyte battery with a large capacity, a high energy density and a good rapid charge/discharge characteristics can thus be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は有機電解質電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to organic electrolyte batteries.

更に詳しくは活性炭とアニリン類重合物との複合物を正
極活物質とし、そしてドーピングされうるイオンを生成
しうる化合物を非プロトン性有機溶媒に溶解した溶液を
電解液とする有機電解質電池に関する。
More specifically, it relates to an organic electrolyte battery in which the positive electrode active material is a composite of activated carbon and an aniline polymer, and the electrolyte is a solution of a compound capable of producing doped ions dissolved in an aprotic organic solvent.

[従来の技術] 近年、電子機器の小形化、薄形化或は軽量化は、目覚ま
しく、それに伴い電源となる電池の小形化、薄形化、軽
量化の要望が大きい。小形で性能のよい電池として現在
は酸化銀電池が多用されており、又薄形化された乾電池
や、小形軽量な高性能電池として、リチウム電池が開発
され実用化されている。しかし、これらの電池は一次電
池であるため充放電を繰り返して長時間使用することは
できない。一方、高性能な二次電池としてニッケルーカ
ドミウム電池が実用化されているが、小形化、薄形化、
軽量化という点で未だ不満足である。
[Prior Art] In recent years, electronic devices have become increasingly smaller, thinner, and lighter, and there is a strong demand for smaller, thinner, and lighter batteries that serve as power sources. Currently, silver oxide batteries are widely used as small, high-performance batteries, and lithium batteries have been developed and put into practical use as thin dry batteries and small, lightweight, high-performance batteries. However, since these batteries are primary batteries, they cannot be used for long periods of time by being repeatedly charged and discharged. On the other hand, nickel-cadmium batteries have been put into practical use as high-performance secondary batteries, but they have become smaller and thinner.
It is still unsatisfactory in terms of weight reduction.

又、大容量の二次電池として従来より鉛蓄電池か種々の
産業分野で用いられているがこの電池の最大の欠点は重
いことである。これは電極として過酸化鎗及び鉛を用い
ているため宿命的なものである。近年、電気自動車用電
池として該電池の軽量化及び性能改善が試みられたが実
用するに至らなかった。しかし蓄電池として大容量で且
つ軽量な二次電池に対する要望は強いものがある。
Furthermore, lead-acid batteries have been conventionally used as large-capacity secondary batteries in various industrial fields, but the biggest drawback of these batteries is that they are heavy. This is due to the fact that peroxide and lead are used as electrodes. In recent years, attempts have been made to reduce the weight and improve the performance of batteries for electric vehicles, but they have not been put to practical use. However, there is a strong demand for a large capacity and lightweight secondary battery as a storage battery.

以上のように現在実用化されている電池は夫々一長一短
があり、それぞれ用途に応じて使い分けされているが、
電池の小形化、薄形化、或は軽量化に対するニーズは大
きい。このようなニーズに応えようとする電池として、
近時、有機半導体である簿膜状ポリアセチレンに電子供
与性物質又は電子受容性物質をドーピングしたものを電
極活物質として用いる電池が研究され提案されている。
As mentioned above, each of the batteries currently in practical use has advantages and disadvantages, and each is used differently depending on its purpose.
There is a great need for smaller, thinner, and lighter batteries. As a battery that attempts to meet these needs,
BACKGROUND ART Recently, batteries have been researched and proposed in which film-like polyacetylene, which is an organic semiconductor, is doped with an electron-donating substance or an electron-accepting substance as an electrode active material.

該電池は二次電池として高性能で且つ薄形化、軽量化の
可能性を有しているが、大きな欠点がある。
Although this battery has high performance as a secondary battery and has the possibility of being made thinner and lighter, it has a major drawback.

それは有機半導体であるポリアセチレンが極めて不安定
な物質であり空気中の酸素により容易に酸化を受け、又
熱により変質することである。従って電池製造は不活性
ガス雰囲気で行なわなければならず、又ポリアセチレン
を電極に適した形状に製造する事にも制約を受ける。
The reason is that polyacetylene, which is an organic semiconductor, is an extremely unstable substance that is easily oxidized by oxygen in the air and deteriorated by heat. Therefore, battery manufacturing must be carried out in an inert gas atmosphere, and there are also restrictions on manufacturing polyacetylene into a shape suitable for electrodes.

また、特開昭58−35881 @公報には、少くとも
一方の電極に、i、ooo〜10,000m2/9の比
表面積を有する炭素繊維を用いた電気化学電池が提案さ
れている。同公報の発明の詳細な説明によれば、上記炭
素繊維は直径10〜20μ瓦であり、電極はこのような
炭素繊維から例えばシート状に形成される。
Further, JP-A-58-35881@ proposes an electrochemical cell using carbon fiber having a specific surface area of i,ooo to 10,000 m2/9 for at least one electrode. According to the detailed description of the invention in the publication, the carbon fibers have a diameter of 10 to 20 μm, and the electrodes are formed from such carbon fibers, for example, in the form of a sheet.

さらに、特開昭61−225761@公報には(八)平
均孔径10μm以下の連通気孔を有し且つ少くとも60
0m2/gのBET法による比表面積値を有する多孔性
活性炭を正極又は負極とし、(B)電解により該電極に
ドーピングされうるイオンを生成しつる化合物を非プロ
トン性有機溶媒に溶液した溶液を電解液とする、 ことを特徴とする有機電解質電池が提案されている。
Furthermore, JP-A No. 61-225761@publication discloses (8) having continuous pores with an average pore diameter of 10 μm or less and at least 60 μm.
A porous activated carbon having a specific surface area value of 0 m2/g by the BET method is used as a positive electrode or a negative electrode, and (B) a solution of a compound in an aprotic organic solvent that generates ions that can be doped into the electrode by electrolysis is electrolyzed. An organic electrolyte battery has been proposed that is characterized by being a liquid.

これらの電池は電極活物質の酸化安定性も高く、さらに
その成形も容易であるなど将来有望な二次電池である。
These batteries have high oxidation stability of the electrode active material and are easy to mold, making them promising secondary batteries for the future.

ところが該電池の実用化を進めるにはいくつかの課題が
残されていた。これらの課題の中で最も重要なのは電池
の容量の向上、特に取り出し)qるエネルギー密度をよ
り大きくするだめの改良である。
However, several issues remain to be solved in order to put this battery into practical use. The most important of these challenges is improving battery capacity, especially improving the ability to increase the energy density (extraction).

一方、酸化安定性の高い電極活物質としてアニリの重合
物であるポリアニリンが知られ、ポリアニリンを正極に
用いた二次電池が研究されてきた。
On the other hand, polyaniline, which is a polymer of aniline, is known as an electrode active material with high oxidation stability, and secondary batteries using polyaniline as a positive electrode have been studied.

しかし急速充放電特性に劣り、その使用範囲が限られて
いる。
However, it has poor rapid charging and discharging characteristics, and its range of use is limited.

U発明が解決しようとする問題点] 本発明の目的は、大きな容重を持ち、エネルギー密度が
高く、かつ急速充放電特性の良い有機電解質電池を提供
することにおる。
Problems to be Solved by the Invention] An object of the present invention is to provide an organic electrolyte battery that has a large capacity and weight, has a high energy density, and has good rapid charging and discharging characteristics.

本発明のざらに他の目的は、小形化、薄形化あるいは軽
量化が可能でありそして製)青も容易である経済的な二
次電池である有機電解質電池を提供することにある。
Another object of the present invention is to provide an organic electrolyte battery that is an economical secondary battery that can be made smaller, thinner, lighter, and easier to manufacture.

本発明のさらに他の目的は、起電圧が高くそして長期に
亘って電荷効率の優れた二次電池を提供することにある
Still another object of the present invention is to provide a secondary battery with a high electromotive voltage and excellent charge efficiency over a long period of time.

本発明のさらに他の目的および利点は以下の説明から明
らかとなろう。
Further objects and advantages of the present invention will become apparent from the description below.

[問題を解決するための手段] 本発明者は、活性炭とアニリン類重合体との複合物を正
極活物質として用いることにより、容量が大きく且つ急
速充放電特性の良い二次電池が得られることを見い出し
た。すなわら本発明は、(A)BET法による比表面積
値が600尻/J以上の活性炭と、アニリン類重合物と
の複合物を正極活物質とし くB)電解により該正極活物質にドーピングされうるイ
オンを生成しうる化合物を非プロトン性有機溶媒に溶液
した溶液を電解液とする、ことを特徴とする有機電解質
電池である。
[Means for Solving the Problem] The present inventor has discovered that by using a composite of activated carbon and an aniline polymer as a positive electrode active material, a secondary battery with large capacity and good rapid charge/discharge characteristics can be obtained. I found out. In other words, the present invention uses (A) a composite of activated carbon having a specific surface area of 600/J or more by the BET method and an aniline polymer as a positive electrode active material, and B) doping the positive electrode active material by electrolysis. This organic electrolyte battery is characterized in that the electrolyte is a solution of a compound capable of producing ions in an aprotic organic solvent.

本発明における活性炭はBET法による表面積が600
m2/g以上であれば、粉末状、粒状、繊維状、織イl
状等の形状にある市販のものを使用することが可能であ
る。しかし、芳香族系縮合ポリマーを高温たとえばao
o ’c以上に熱処理して得られる多孔性活性炭を用い
ることが好ましい。これは対のようにして作ることがで
きる。まずフェノール性水酸基を有する芳香族炭化水素
化合物又はこれとフェノール性水酸基を有ざない芳香族
炭化水素化合物およびアルデヒド類から初期縮合物を作
り、この初期縮合物と無は塩とを含む水溶液を調整し、
この水溶液を適当な型に流し込み、次いで水分の蒸発を
抑制しつつ該水溶液を加熱して該型内で例えば板状、フ
ィルム状あるいは円筒状等の形態に硬化し、1qられた
硬化体を非酸化性雰囲気中で800℃以上に焼成し、次
いで得られた焼成体を洗浄して該焼成体中に含有される
無機塩を除去し、必要により乾燥する。
The activated carbon in the present invention has a surface area of 600 by the BET method.
If it is m2/g or more, it can be powdered, granular, fibrous, or woven.
It is possible to use commercially available products in shapes such as shapes. However, when aromatic condensation polymers are used at high temperatures, such as ao
It is preferable to use porous activated carbon obtained by heat treatment to a temperature higher than o'c. This can be made in pairs. First, an initial condensate is made from an aromatic hydrocarbon compound having a phenolic hydroxyl group or an aromatic hydrocarbon compound having no phenolic hydroxyl group and aldehydes, and an aqueous solution containing this initial condensate and a salt is prepared. death,
This aqueous solution is poured into a suitable mold, and then the aqueous solution is heated while suppressing the evaporation of water to harden in the mold into a shape such as a plate, film, or cylinder. The fired product is fired at 800° C. or higher in an oxidizing atmosphere, and then the resulting fired product is washed to remove inorganic salts contained in the fired product, and if necessary, dried.

初期縮合物と共に用いる上記無機塩は、後の工程で除去
され活性炭に連通孔を付与するために用いられる孔形成
剤であり、例えば塩化亜鉛、塩化スズ、塩化ナトリウム
、リン酸ナトリウム、水酸化ナトリウムあるいは硫化ナ
トリウム等である。
The above-mentioned inorganic salt used together with the initial condensate is a pore-forming agent that is removed in a later step and used to provide communicating pores to the activated carbon, such as zinc chloride, tin chloride, sodium chloride, sodium phosphate, and sodium hydroxide. Or sodium sulfide, etc.

これらのうち塩化亜鉛が特に好ましく用いられる。Among these, zinc chloride is particularly preferably used.

無機塩は、初期縮合物の例えば2.5〜10重量倍のm
で用いることができる。下限より少ない量では連通孔を
有する多孔性活性炭が得難くまた上限より多い■では多
孔性活性炭の機械的強度が低下する傾向が大きくなり望
ましくない。
The inorganic salt is, for example, 2.5 to 10 times the weight of the initial condensate.
It can be used in If the amount is less than the lower limit, it is difficult to obtain porous activated carbon having communicating pores, and if it is more than the upper limit (2), the mechanical strength of the porous activated carbon tends to decrease undesirably.

初期縮合物と無IN塩の水溶液は、使用する無機塩の種
類によっても異なるが例えば無liA塩の0.1〜1重
量倍の水を用いて調製することができる。
The aqueous solution of the initial condensate and the IN-free salt can be prepared using, for example, 0.1 to 1 times the weight of water as the liA-free salt, although it varies depending on the type of inorganic salt used.

フェノール性樹脂の初期縮合物と無機塩の水溶液は、例
えば水溶性レゾールに塩化亜鉛水溶液を加えた後、攪拌
することにより、均一な溶液として調製することができ
、またレゾールのメタノール溶液と塩化亜鉛水溶液を混
合することにより粘度の高いスラリー状に調製すること
もできる。その際、該水溶液に他の添加物、例えば硬化
フェノール樹脂の粉体あるいは繊維、おるいはセルロー
スの微粒子等を混入しても良い。又、上記の如く、メタ
ノール、エタノール、アセトンの如き有機溶媒を、均一
な混合のために加えても良い。かくして(qた例えば1
00.000〜100ポイズの粘度を有する水溶液は適
当な型に流し込まれ、例えば50〜200°Cの温度に
加熱される。この加熱の際、水溶液中の水分の蒸発を抑
止するのが肝要である。水溶液中において初期縮合物は
加熱を受けて徐々に硬化し、塩化亜鉛の如き無機塩水と
分離しながら三次元網目構造に成長するものと考えられ
る。
An aqueous solution of an initial condensate of a phenolic resin and an inorganic salt can be prepared as a homogeneous solution by, for example, adding an aqueous solution of zinc chloride to a water-soluble resol and then stirring, or a methanol solution of a resol and a zinc chloride solution can be prepared. A highly viscous slurry can also be prepared by mixing an aqueous solution. At this time, other additives such as hardened phenol resin powder or fibers, cellulose fine particles, etc. may be mixed into the aqueous solution. Further, as mentioned above, an organic solvent such as methanol, ethanol, or acetone may be added for uniform mixing. Thus (q for example 1
An aqueous solution having a viscosity of 0.000 to 100 poise is poured into a suitable mold and heated to a temperature of, for example, 50 to 200°C. During this heating, it is important to suppress evaporation of water in the aqueous solution. It is thought that the initial condensate is heated in an aqueous solution and gradually hardens, growing into a three-dimensional network structure while separating from an inorganic salt solution such as zinc chloride.

jqられた硬化体を非酸化性雰囲気中で焼成することに
よって該硬化体を活性炭に変えることができる。焼成は
通常800℃以上の温度で行なわれる。
By firing the cured body in a non-oxidizing atmosphere, the cured body can be converted into activated carbon. Firing is usually carried out at a temperature of 800°C or higher.

焼成の際の好ましい昇温速度は使用するフェノール系樹
脂あるいはその形状等によって多少相違するが、一般に
室温から300℃程度の温度までは比較的大きな昇温速
度とすることが可能であり、例えば100’C/時間の
速度とすることも可能である。
The preferred rate of temperature increase during firing varies somewhat depending on the phenolic resin used or its shape, but generally it is possible to set a relatively high rate of temperature increase from room temperature to a temperature of about 300°C, for example, 100°C. It is also possible to have a rate of 'C/time.

300°C以上の温度になると、樹脂の熱分解が開始し
、水蒸気、水素、メタン、−酸化炭素の如きガスが発生
し始めるため、300 ’Cに達したのちは充分遅い速
度で昇温せしめるのが有利である。非酸化性雰囲気は、
例えば窒素、アルゴン、ヘリウム、ネオン、二酸化炭素
等であり、窒素が好ましく用いられる。かかる非酸化性
雰囲気は静止していても流動していてもさしつかえない
When the temperature exceeds 300°C, thermal decomposition of the resin begins and gases such as water vapor, hydrogen, methane, and carbon oxide begin to be generated, so once the temperature reaches 300°C, the temperature should be raised at a sufficiently slow rate. is advantageous. The non-oxidizing atmosphere is
For example, nitrogen, argon, helium, neon, carbon dioxide, etc. are used, and nitrogen is preferably used. Such a non-oxidizing atmosphere may be stationary or flowing.

1qられた焼成体を水、あるいは希塩酸等で充分に洗浄
することによって焼成体中に含まれる無機塩を除去する
ことができる。無機塩を除去したのち、必要により乾燥
すると連通孔の発達した多孔性活性炭を得ることができ
る。該粉末を用いた場合、後で述べる活性炭とアニリン
類重合物との複合物を正極活物質に用いる二次電池にお
いて、電解液が十分に正極の内部まで入ることにより、
内部抵抗がより小さくなり、ドーパントがスムーズに正
活活物貿にドーピングあるいはアンド−ピングされるた
め急速放電可能である。活性炭粉末の平均粒径は100
μmを越えなければ特に問題はないが、後に述べる複合
物の成形体の成形の容易さ、成形体の強度を考慮すると
30μmにすることが望ましい。
The inorganic salts contained in the fired body can be removed by sufficiently washing the fired body with water, dilute hydrochloric acid, or the like. After removing the inorganic salt, if necessary, drying is performed to obtain porous activated carbon with developed communicating pores. When this powder is used, in a secondary battery using a composite of activated carbon and aniline polymer as the positive electrode active material, which will be described later, the electrolyte can sufficiently enter the inside of the positive electrode.
The internal resistance becomes smaller and the dopant is smoothly doped or undoped into the positive active material, allowing rapid discharge. The average particle size of activated carbon powder is 100
There is no particular problem as long as the thickness does not exceed μm, but in consideration of the ease of molding a composite molded body and the strength of the molded body, which will be described later, it is desirable that the thickness be 30 μm.

本発明において使われる活性炭はBET法による比表面
積値が少なくとも600Trt2/g−である。比表面
積値が600rrt/g未満の場合には、該活性炭とア
ニリン類重合物との複合物を正極活物質として電池を構
成した場合に、例えば充電時における充電電圧を高くす
る必要が生じるため、エネルギー効率等が低下し、又電
解液の劣化をさそうため好ましくない。
The activated carbon used in the present invention has a specific surface area value of at least 600 Trt2/g- according to the BET method. When the specific surface area value is less than 600 rrt/g, when a battery is constructed using a composite of the activated carbon and aniline polymer as a positive electrode active material, it is necessary to increase the charging voltage during charging, for example. This is undesirable because it reduces energy efficiency and may cause deterioration of the electrolyte.

本発明におけるアニリン類としてアニリン又はアニリン
誘導体を用いることができるが、実用的にはアニリンが
好ましい。アニリン誘導体としては例えばN−メチルア
ニリン、p−アミノジフェニルアミン、p−トルイジン
、p−フェニレンジアミン、0−フェニレンジアミン等
を用いることができる。
Although aniline or aniline derivatives can be used as the anilines in the present invention, aniline is preferred from a practical standpoint. As the aniline derivative, for example, N-methylaniline, p-aminodiphenylamine, p-toluidine, p-phenylenediamine, 0-phenylenediamine, etc. can be used.

本発明におけるアニリン類重合物とは前記アニリン類を
化学的あるいは電気化学的に酸化重合したものである。
The aniline polymer in the present invention is one obtained by chemically or electrochemically oxidatively polymerizing the above-mentioned anilines.

化学的重合法としては例えば次の様にして製造すること
ができる。アニリン類、あるいはアニリン類の水溶性塩
をプロトン酸と酸化剤を含有する反応媒体中で酸化重合
する。水溶性塩としては一般に塩酸、硫酸等の鉱酸塩が
望ましい。また酸化剤としては例えば酸化クロム(IV
)や重クロム酸カリウム、重クロム酸ナトリウム等のク
ロム酸塩、過マンガン酸カリウムのようなマンガン系酸
化剤、過硫酸アンモニウム等を用いることができる。プ
ロトン酸としては硫酸、塩酸、臭化水素酸、テトラフル
オロホウ酸、ヘキサフルオロリン酸、過塩素酸等を用い
ることができるが、特にテトラフルオロホウ酸、ヘキサ
フルオロリン酸、過塩素酸等のイオン半径の大きいアニ
オンを生成する酸を用いることが望ましい。反応媒体と
しては一般的には水を用いるが、アゼトン、テ1〜ラヒ
ドロフラン、酢酸等のケトン類、エーテル類又は有機酸
類等の水混和性有機溶剤、四塩化炭素、炭化水素等の水
非混和性有機溶剤も用いることができる。
As a chemical polymerization method, it can be produced, for example, as follows. Anilines or water-soluble salts of anilines are oxidatively polymerized in a reaction medium containing a protic acid and an oxidizing agent. As water-soluble salts, mineral acid salts such as hydrochloric acid and sulfuric acid are generally preferred. Further, as an oxidizing agent, for example, chromium oxide (IV
), chromates such as potassium dichromate and sodium dichromate, manganese-based oxidizing agents such as potassium permanganate, ammonium persulfate, and the like can be used. As the protonic acid, sulfuric acid, hydrochloric acid, hydrobromic acid, tetrafluoroboric acid, hexafluorophosphoric acid, perchloric acid, etc. can be used, but in particular, tetrafluoroboric acid, hexafluorophosphoric acid, perchloric acid, etc. It is desirable to use an acid that produces an anion with a large ionic radius. Water is generally used as the reaction medium, but water-miscible organic solvents such as ketones such as azetone, tetrahydrofuran and acetic acid, ethers or organic acids, and water-immiscible organic solvents such as carbon tetrachloride and hydrocarbons are also used. Organic solvents can also be used.

アニリン類あるい(;上アニリン類の水溶性塩を反応媒
体に溶解した溶液にプロトン酸酸性の酸化剤水溶液を反
応媒体の沸点以下、好ましくは常温以下の温度において
滴下すると、通常数分程度の誘導時間を経た後、直らに
重合体が析出する。かくして冑られた重合体は十分に水
洗した後もプロトン酸アニオンを含んでおり、これをア
ンモニア水等のアルカリ性水溶液で十分に洗浄ざらに再
度水で洗浄する必要がある。
When an aqueous solution of a protonic acidic oxidizing agent is added dropwise to a solution of a water-soluble salt of an aniline or aniline dissolved in a reaction medium at a temperature below the boiling point of the reaction medium, preferably below room temperature, the reaction usually takes about several minutes. After the induction period, the polymer precipitates immediately.The polymer thus removed contains protonic acid anions even after being thoroughly washed with water, and this is thoroughly washed with an alkaline aqueous solution such as aqueous ammonia and then washed again. Needs to be washed with water.

ここで重合体中に未反応物、プロトン酸アニオン過剰の
酸化剤等の不純物が少量でも残っていると、これと活性
炭との複合物を正極活物質として用いた二次電池の自己
放電特性、サイクル寿命等を低下さける原因となる。
If even a small amount of impurities such as unreacted substances and excessive protonic acid anions remain in the polymer, the self-discharge characteristics of a secondary battery using a composite of these and activated carbon as the positive electrode active material will deteriorate. This may cause a reduction in cycle life, etc.

電気化学的重合法としては例えば次の様にして”jyJ
aすることができる。アニリン類あるいはアニリン類の
水溶性塩とプロトン酸を前jホした化学的重合法に用い
られる反応媒体中に溶解させたプロトン酸酸性溶液中に
、例えば白金の如ぎ不活性金属を用いた対極、及び例え
ばAQ /ACI Cρ標準電極、飽和カロメル標i%
j電極の如き標準電極、ざらに作用(画を取り付(シた
電解槽を準備する。この時のプロトン酸も化学的重合法
と同様、テトラフルオロホウ酸、ヘキ]ノフルオロリン
酸、過塩素酸等のイオン半径の大きいアニオンを生成す
るプロ]〜ン酸が望ましい。
As an electrochemical polymerization method, for example, "jyJ
a. A counter electrode using an inert metal, such as platinum, in an acidic solution of anilines or a water-soluble salt of anilines and a protic acid in a reaction medium used in the chemical polymerization process described above. , and e.g. AQ/ACI Cρ standard electrode, saturated calomel standard i%
Prepare an electrolytic cell with a standard electrode such as a j-electrode and an electrolyte.The protonic acid at this time is similar to the chemical polymerization method, such as tetrafluoroboric acid, hex]nofluorophosphoric acid, or perchloric acid. Preferred acids that produce anions with large ionic radii, such as

上記電解槽を用い参照(※に対して適切な電位幅、すな
わち溶媒及びプロトン酸の分解反応が牛しることなくア
ニリン類の手合のみが作用極上で生ずる電位幅内で電解
重合をさせる。電解重合法としては定電流電解法、定電
位走査法等が知られているが、上)ホした適切な電位幅
内に作用極の電位か保持される方法であればいずれでも
良い。この様な方法で得られる重合体は化学的重合法と
同様の後処理によって不純物を含まない重合体とするこ
とができる。
Using the above electrolytic cell, electrolytic polymerization is carried out within an appropriate potential range for reference (*), that is, within a potential range in which only the action of anilines occurs at the working electrode without decomposition reactions of the solvent and protonic acid. As the polymerization method, a constant current electrolysis method, a constant potential scanning method, etc. are known, but any method may be used as long as the potential of the working electrode is maintained within the appropriate potential width as described in (a) above. The polymer obtained by such a method can be made into a polymer free of impurities by post-treatment similar to the chemical polymerization method.

本発明における活性炭とアニリン類の重合物との複合物
とは(1)活性炭粉末とアニリン類重合物の粉末を直接
複合させたもの、またはバインダーにより一体化したも
の、(2)活性炭表面上にアニリン類を電気化学的に重
合することにより複合させたちのが好ましい。
The composite of activated carbon and aniline polymer in the present invention is (1) a composite of activated carbon powder and aniline polymer powder directly or integrated with a binder; (2) a composite of activated carbon powder and aniline polymer powder; It is preferable to combine anilines by electrochemically polymerizing them.

活性炭の粉末とアニリン類重合物の粉末を十分に混合す
ることにより複合物が得られる。その複合比は該複合物
を正極活物質に用いた二次電池の使用用途により異なる
が、活性炭/アニリン類の重合物の複合比が重量比で2
0〜0.05であることが好ましい。この上限以上又は
下限以下の場合、複合の長所が無くなり、好ましくない
A composite is obtained by thoroughly mixing activated carbon powder and aniline polymer powder. The composite ratio differs depending on the usage of the secondary battery using the composite as a positive electrode active material, but the composite ratio of activated carbon/aniline polymer is 2 by weight.
It is preferably 0 to 0.05. If it is more than this upper limit or less than this lower limit, the advantages of the composite will be lost, which is not preferable.

該複合物を正極とする際、該複合物を板状、フィルム状
、円筒状等の形状に成形する必要がある。
When using the composite as a positive electrode, it is necessary to mold the composite into a plate, film, cylinder, or other shape.

一般に活性炭/アニリン類重合物の複合比が約1以下の
場合、アニリン類重合物自身にIl!1着性があるため
そのまま成形することにより正極とすることができるが
、約1を越える場合、成形体の強度あるいは結着性が低
下する為、バインダーを加える必要がある。
Generally, when the composite ratio of activated carbon/aniline polymer is about 1 or less, the aniline polymer itself has Il! Since it has a one-stick property, it can be molded as is to form a positive electrode, but if it exceeds about one, the strength or binding properties of the molded product will decrease, so it is necessary to add a binder.

バインダーの種類は後で述べる本発明における電解液に
不溶のものであれば特に限定されないが、例えば38R
等のゴム系バインダー、ポリ四フッ化エチレン等のフッ
素系樹脂、ポリプロピレン、ポリエチレン等の熱可塑性
樹脂が好ましく、その混合比は複合物総重ωに対し20
%以下が望ましい。
The type of binder is not particularly limited as long as it is insoluble in the electrolyte solution in the present invention described later, but for example, 38R
Rubber binders such as, fluorine resins such as polytetrafluoroethylene, thermoplastic resins such as polypropylene, polyethylene, etc. are preferable, and the mixing ratio thereof is 20% relative to the total weight of the composite ω.
% or less is desirable.

板状、フィルム状、円筒状等に成形する成形法としては
、活性炭及びアニリン類重合物及び場合によりバインダ
ーから成る混合物を金型に入れ室温あるいは必要に応じ
て加熱下で加圧成形すれば良い。また該混合物を適当な
溶媒、例えば水、メタノール、DMF、四塩化炭素等の
比較的沸点の低い溶媒と混練してペースト状にし、後で
)ホベる集電体上に塗付あるいは加圧上接着さけ、その
後に適当な方法で乾燥させ、正極として用いることもで
きる。さらには後で述べる電解液と共に該混合物をアル
ゴンガス等の水を含まない雰囲気下で混練俊、後で述べ
る集電体上に塗付あるいは加圧上接着させ、そのまま正
極として用いることもできる。
To form a plate, film, cylinder, etc., a mixture of activated carbon, aniline polymer, and optionally a binder may be placed in a mold and pressure molded at room temperature or under heating if necessary. . In addition, the mixture is kneaded with a suitable solvent, such as water, methanol, DMF, carbon tetrachloride, etc., to form a paste, which is then applied onto a hoovering current collector or applied under pressure. It can also be used as a positive electrode by drying it by an appropriate method after adhesion. Furthermore, the mixture may be kneaded together with an electrolytic solution, which will be described later, in a water-free atmosphere such as argon gas, and then applied or adhered under pressure onto a current collector, which will be described later, and used as it is as a positive electrode.

活性炭表面上にアニリン類を電気化学的に重合させた複
合物は例えば次の様にして製造することができる。
A composite obtained by electrochemically polymerizing anilines on the surface of activated carbon can be produced, for example, in the following manner.

本発明における板状、フィルム状、織布状等の活性炭そ
れ白身を作用極とし、後はアニリン類の電気化学的重合
法と同様の方法で該活性炭表面上にアニリン類の重合物
を電気化学的に重合することができる。この場合に活性
炭は多数の連通孔を持つものであるものが特に好ましい
In the present invention, the white of activated carbon in the form of a plate, film, fabric, etc. is used as a working electrode, and then a polymer of anilines is electrochemically applied to the surface of the activated carbon using a method similar to the electrochemical polymerization method of anilines. can be polymerized. In this case, activated carbon having a large number of communicating pores is particularly preferred.

多数の連通孔を持つ場合、先に述べた長所に加えアニリ
ン類の重合物を該基体の外面だけでなく内部表面にも容
易に重合させることができ均質な複合物とすることが可
能である。
When a substrate has a large number of communicating pores, in addition to the above-mentioned advantages, it is possible to easily polymerize the aniline polymer not only on the outer surface of the substrate but also on the inner surface thereof, making it possible to form a homogeneous composite. .

活性炭とアニリン類の重合物の複合比は、上記の電気化
学的複合の場合に回路を流れる電荷量によって調節する
ことができる。例えば回路中にクーロンメーターを入れ
、必要な電荷量になるまで電気化学的重合を進めるだけ
で、ある一定の複合比の複合物を(qることかでき、そ
の複合比の範囲は前述したとおりである。
The composite ratio of activated carbon and aniline polymer can be adjusted by the amount of charge flowing through the circuit in the case of the above electrochemical composite. For example, by simply inserting a coulomb meter into the circuit and proceeding with electrochemical polymerization until the required amount of charge is reached, it is possible to produce a compound with a certain composite ratio (q), and the range of the composite ratio is as described above. It is.

電気化学的重合により複合が完了した複合物は前jホし
た理由で十分に洗浄され、乾燥することにより正極とな
る。
The composite, which has been completed by electrochemical polymerization, is thoroughly washed for the reason described above and dried to become a positive electrode.

かくして得られた本発明における複合物の成形体は空気
中に長時間放置しても電気伝導度等の物性に変化はなく
、酸化安定性に優れている。また、耐熱性、耐薬品性に
優れているため、電極材として用い電池を(育成する場
合電極の劣化の問題が生じない。
The molded composite of the present invention thus obtained does not change its physical properties such as electrical conductivity even when left in air for a long time, and has excellent oxidation stability. In addition, since it has excellent heat resistance and chemical resistance, there is no problem of electrode deterioration when using it as an electrode material to grow batteries.

電解により正極活物質にドーピングされうるイオンを生
成しつる化合物としては、例えばアルカリ金属又はテ[
・ラアルキルアンモニウムのハロゲン化物過塩素酸塩、
6フツ化リン酸塩、6フツ化ヒ酸塩、4フツ化ホウ素酸
塩等が挙げられる。具体的には、Li  L Na I
、KI、NH41、LiCρ04 、Li BF4 、
LI As F6、Li PF6 、Na C,Il 
04 、Na BF4、Na As F6 、Na P
F6 、KCN O4、K B F4 、KAS F6
 、K P F6、(C2H5)4NCΩ04、(n 
 C48g)4NCfI’04、(t−04Hc) >
4 NCΩ04、(C2ト15  >  4 NBF4
  、  (n−C4Hg  )4N B F4 、 
 (t−C4ト19 >  4 NBF4  、(C2
H5) 4 N P 「6 、  (n−C4ト19 
) 4NPF 6 、  (t  −C4ト19  >
4  NPF6  、  Li   B(C2ト!5 
 )4  、  Li   B  (C6ト15 ) 
4 又(まLi1」F4等が挙げられる。
Compounds that generate ions that can be doped into the positive electrode active material by electrolysis include, for example, alkali metals or
・Ralkylammonium halide perchlorate,
Examples include hexafluorophosphate, hexafluoroarsenate, tetrafluoroborate, and the like. Specifically, Li L Na I
, KI, NH41, LiCρ04 , Li BF4 ,
LI As F6, Li PF6, Na C, Il
04, Na BF4, Na As F6, Na P
F6, KCN O4, K B F4, KAS F6
, K P F6, (C2H5)4NCΩ04, (n
C48g)4NCfI'04, (t-04Hc)>
4 NCΩ04, (C2to15 > 4 NBF4
, (n-C4Hg)4N B F4 ,
(t-C4to19 > 4 NBF4, (C2
H5) 4 NP ``6, (n-C4to19
) 4NPF 6, (t-C4to19>
4 NPF6, Li B (C2 to!5
)4, Li B (C6to15)
4 Mata (MaLi1) F4 etc. are mentioned.

前記化合物を溶解する溶媒としては非プロトン性有殿溶
媒が用いられる。例えばエチレンカーボネイト、プロピ
レンカーボネイト、γ−ブヂロラクトン、ジメヂルホル
ムアミド、ジメヂルアセトアミド、ジメヂルスルホキシ
ド、アセトニトリル、ジメトキシエタン、テトラヒドロ
フラン、ジオキソラン、スルホラン又はこれらの混合物
が挙げられる。これらのうちから電解質として用いられ
る前記化合物の溶解性、電池性能等を1;慮して選択さ
れる。
As the solvent for dissolving the compound, an aprotic precipitate solvent is used. Examples include ethylene carbonate, propylene carbonate, γ-butyrolactone, dimedylformamide, dimedylacetamide, dimedyl sulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, sulfolane, or mixtures thereof. It is selected from among these in consideration of the solubility of the compound used as an electrolyte, battery performance, etc.

電解液中の前期化合物のQf%は、電解液による内部抵
抗を小さくするため少くとも0.1モル/fJ以上とす
るのが望ましく、通常0.2〜1.5モル/gとするの
がより好ましい。
The Qf% of the former compound in the electrolyte is preferably at least 0.1 mol/fJ or more in order to reduce the internal resistance due to the electrolyte, and is usually 0.2 to 1.5 mol/g. More preferred.

本発明の電池の電池作用は正極活物質として用いる活性
炭とアニリン類の重合物との複合物へのドーピング剤の
電気化学的ドーピングと電気化学的アンド−ピングを利
用するものである。
The battery action of the battery of the present invention utilizes electrochemical doping and electrochemical and-doping of a doping agent to a composite of activated carbon and aniline polymer used as a positive electrode active material.

本発明に係る電池の負極にはアルカリ金属又はアルカリ
土類金属を用いる場合が最も実用的であるが、例えば次
の様にして製造される不溶不融性基体を用いることもで
きる。
Although it is most practical to use an alkali metal or an alkaline earth metal for the negative electrode of the battery according to the present invention, it is also possible to use an insoluble and infusible substrate manufactured as follows, for example.

該不溶不融性基体は多孔性活性炭を製造する方法におけ
る熱処理温度を350℃〜aoo ’cとすること以外
は多孔性活性炭を製造する場合と同様の方法で得られる
The insoluble and infusible substrate can be obtained in the same manner as in the method for producing porous activated carbon, except that the heat treatment temperature in the method for producing porous activated carbon is 350° C. to 350° C. to 350° C. to 350° C. to AOO’C.

該不溶不融性基体は (a)水素原子/炭素原子の原子比が0.5〜0.05
であるポリアセン系骨格構造を有し、 (b)BET法による比表面積値が少くとも600m/
’?であり、そして (C)平均孔径10μm以下の連通気孔を持つ、もので
ある。
The insoluble and infusible substrate has (a) an atomic ratio of hydrogen atoms/carbon atoms of 0.5 to 0.05;
(b) has a specific surface area value of at least 600 m/
'? and (C) having continuous pores with an average pore diameter of 10 μm or less.

アルカリ金属およびアルカリ土類金属としては、例えば
セシrクム、ルビジウム、カリウム、ナトリウム、リチ
ウム、バリウム、ストロンチウム、力ルシウムが挙げら
れる。これらのうちリチウムが最も好ましい。これらの
金属は単独であるいは合金として用いることもできる。
Examples of alkali metals and alkaline earth metals include cesium, rubidium, potassium, sodium, lithium, barium, strontium, and lucium. Of these, lithium is most preferred. These metals can be used alone or as an alloy.

電池内に配置される複合物の成形体よりなる電極の形状
、大きさは目的とする電池の種類により任意に選ぶこと
ができるが、電池反応は電極表面上の電気化学的反応で
あるため電極は可能な限り表面積を大きくすることが有
利である。
The shape and size of the electrode made of a composite molded body placed in the battery can be arbitrarily selected depending on the type of battery intended, but since the battery reaction is an electrochemical reaction on the electrode surface, the electrode It is advantageous to have as large a surface area as possible.

電池外部に電流を取り出すための集電体としてはドーピ
ング剤及び電解液に対し耐蝕性のある導電物v1、例え
ば炭素、白金、ニッケル、ステンレス等を用いることが
出来る。
As a current collector for extracting current to the outside of the battery, a conductive material v1 that is resistant to corrosion by doping agents and electrolytes, such as carbon, platinum, nickel, stainless steel, etc., can be used.

次に図により本発明の実施態様を説明する。第1図は本
発明に係る電池の基本構成図である。
Next, embodiments of the present invention will be explained with reference to the drawings. FIG. 1 is a basic configuration diagram of a battery according to the present invention.

第1図において、1は正極であり、フィルム状あるいは
板状等である複合物の成形体であり、2は負極であり、
同様にフィルム状あるいは板状等であるアルカリ金属、
アルカリ土類金属あるいはこれらの金属と他の金属との
合金、または先に述べた不溶不融性基体等である。
In FIG. 1, 1 is a positive electrode, which is a composite molded body in the form of a film or plate, and 2 is a negative electrode.
Similarly, alkali metals in the form of films or plates, etc.
These include alkaline earth metals, alloys of these metals and other metals, or the above-mentioned insoluble and infusible substrates.

3.3′は省電)へから外部に電流を取り出したり、電
気化学的ドーピング、即ら充電するために電流を供給す
るための集電体であり、前jホした方法により各電極及
び外部端子7.7′に電圧降下を生じないように接続さ
れている。4は電解液であり、非プロトン性有機溶媒に
ドーピングされうるイオンを生成しうる前)ボの化合物
が溶解されている。電解液は通常液状で必るが漏液を防
止するためゲル状又は固体状にして用いることもでさる
3.3' is a current collector for taking out current from the outside (for power saving) or supplying current for electrochemical doping, that is, for charging. It is connected to terminals 7 and 7' in such a way that no voltage drop occurs. Reference numeral 4 represents an electrolytic solution in which the compound described above that can generate ions that can be doped into an aprotic organic solvent is dissolved. The electrolyte must normally be in liquid form, but it can also be used in gel or solid form to prevent leakage.

5は正負両極の接触を阻止すること及び電解液を保持す
る事を目的として配置されたセパレータである。該セパ
レータは電解液或はドーピング剤やアルカリ金属等の電
極活物質に対し耐久性のある連通気孔を右する電子伝導
性のない多孔体であり、通常ガラス繊維、ポリエチレン
或はポリプロピレン等からなる布、不織布或は多孔体が
用いられる。
A separator 5 is arranged for the purpose of preventing contact between the positive and negative electrodes and retaining the electrolyte. The separator is a porous material with no electronic conductivity that provides continuous pores that are durable for electrolytes, doping agents, and electrode active materials such as alkali metals, and is usually made of cloth made of glass fiber, polyethylene, or polypropylene. , nonwoven fabric or porous material.

セパレータの厚さは電池の内部抵抗を小さくするため薄
い方が好ましいが、電解液の保持量、流通性、強度等を
勘案して決′定される。正負極及びセパレータは電池ケ
ース6内に実用上問題が生じないように固定される。電
極の形状、大きさ等は目的とする電池の形状、性能によ
り適宜状められる。
The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but it is determined by taking into account the amount of electrolyte retained, flowability, strength, etc. The positive and negative electrodes and the separator are fixed within the battery case 6 so as not to cause any practical problems. The shape, size, etc. of the electrode are determined as appropriate depending on the shape and performance of the intended battery.

例えば薄形電池を製造するには電極はフィルム状が適し
、大容量電池を製造するにはフィルム状或は板状等の電
極を多数枚正負両極を交互に積層することにより達成で
きる。
For example, film-shaped electrodes are suitable for manufacturing thin batteries, and large-capacity batteries can be achieved by laminating a large number of film-shaped or plate-shaped electrodes alternately with positive and negative electrodes.

例えば負極としてリチ【クムを用い、電解液としてLi
CfJO41モル/ρプロピレンカーボネート溶液を用
いた場合、電池組み立て後の起電力は2.5〜3.2V
である。次に外部電源により電圧を印加してCρ04−
イオンを該正極活物質にドーピングすると、起電力は3
.5〜4.5vとなる。
For example, lithium is used as the negative electrode, and Li is used as the electrolyte.
When using CfJO41 mol/ρ propylene carbonate solution, the electromotive force after battery assembly is 2.5 to 3.2V.
It is. Next, apply voltage from an external power supply to Cρ04-
When ions are doped into the positive electrode active material, the electromotive force is 3
.. It becomes 5-4.5v.

また外部に電流を放出することにより、複合物より成る
正極活物質にリチウムイオンをドーピングすると、起電
力は1.0〜2.5Vとなるが、外部電源により電圧を
印加し、リチウムイオンをアンド−ピングすると再び起
電力は2,5〜3.2Vとなる。
Furthermore, when a positive electrode active material made of a composite material is doped with lithium ions by discharging a current to the outside, the electromotive force will be 1.0 to 2.5V. -When pinging, the electromotive force becomes 2.5 to 3.2V again.

ドーピング又はアンド−ピングは一定電流下でも一定電
圧下でも、また電流及び電圧の変化する条件下のいずれ
で行ってもよい。
Doping or undoping may be performed under constant current, constant voltage, or varying current and voltage conditions.

負極に前述の不溶不融性基体を用いた場合、起電力は約
OVであり外部電源により電圧を印加して両極にドーピ
ング剤をドーピングすることにより、1.0〜3.5v
の起電力となる。
When the above-mentioned insoluble and infusible substrate is used as the negative electrode, the electromotive force is approximately OV, and by applying a voltage from an external power source and doping both electrodes with the doping agent, the electromotive force is 1.0 to 3.5V.
becomes the electromotive force.

いずれの場合においても該正極活物質にドーピングされ
るドーピング剤の量は該正極活物質の炭素原子1個に対
するドーピングされるイオン数の百分率で0.5〜20
%が好ましい。
In either case, the amount of doping agent doped into the positive electrode active material is 0.5 to 20 as a percentage of the number of ions doped to one carbon atom of the positive electrode active material.
% is preferred.

活性炭とアニリン類の重合物の複合物を正極活物質とし
て用いる本発明の電池は充放電を繰返し動作することの
できる二次電池である。
The battery of the present invention, which uses a composite of activated carbon and a polymer of anilines as a positive electrode active material, is a secondary battery that can be repeatedly charged and discharged.

また本発明の二次電池は従来公知の活性炭を利用した二
次電池に比べ高容量、高出力の高性能二次電池である。
Furthermore, the secondary battery of the present invention is a high-performance secondary battery with higher capacity and higher output than conventionally known secondary batteries using activated carbon.

また小形化、薄形化、軽量化が可能で、長期にわたって
性能の劣化しない二次電池である。
It is also a secondary battery that can be made smaller, thinner, and lighter, and its performance will not deteriorate over a long period of time.

さらにまた本発明の二次電池は急速充放電特性の良い二
次電池である。
Furthermore, the secondary battery of the present invention is a secondary battery with good rapid charging and discharging characteristics.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 (1)水溶性レゾール(約60%淵度)/塩化亜鎗/水
を中ω比で10/25/4の割合で混合した水溶液を1
00 cm×100 cmXo、5 anの型に流し込
みその上にガラス板を被せ水分が蒸発しない様にした後
、約100℃の温度で1時間加熱して硬化させた。
Example 1 (1) An aqueous solution prepared by mixing water-soluble resol (approximately 60% depth)/half chloride/water in a ratio of 10/25/4 at a medium omega ratio.
The mixture was poured into a 00 cm x 100 cm Xo, 5 ann mold, covered with a glass plate to prevent moisture from evaporating, and then heated at a temperature of about 100° C. for 1 hour to harden.

該フェノール樹脂をシリコニット電気炉中に入れ窒素気
流下で40°C/時間の速度で昇温して、900 ’C
まで焼成した。次に該板状熱処理物を希塩酸で洗った後
水洗し乾燥した。
The phenolic resin was placed in a siliconite electric furnace and heated at a rate of 40°C/hour under a nitrogen stream to 900'C.
Baked to . Next, the plate-shaped heat-treated product was washed with dilute hydrochloric acid, water, and dried.

該板状多孔体をディスクミルで粉砕し平均粒径8μの活
性炭粉末を得た。次にBET法によって比表面積値を測
定したところ1800′rd/9と極めて高い値であっ
た。
The plate-shaped porous body was pulverized with a disk mill to obtain activated carbon powder with an average particle size of 8 μm. Next, when the specific surface area value was measured by the BET method, it was found to be an extremely high value of 1800'rd/9.

(2)蒸溜水909と濃塩酸9.2mlを加え、更にア
ニリン10gを溶解させ、アニリン塩酸塩水溶液を調製
した。別に過塩素酸(60%水溶液> 50mと重クロ
ム酸カリム10.5gを溶解した酸化性水溶液を調製し
、これを上記アニリンの塩酸酸性水溶液中に攪拌下、室
温で40分間を要して滴下した。更に15分間晴拌後、
反応混合物をアセトン1.5g中に投じ、1.5時間V
丑拌後重合体を濾別した。さらに蒸溜水中で攪拌洗浄1
変、続いて1Nアンモニア水中で攪拌洗浄し、濾別し、
ざらに濾液が中性になるまで蒸溜水で洗浄した。70℃
で10時間減圧乾燥したところ紫色のアニリン重合体粉
末5.8gを得た。
(2) 909 g of distilled water and 9.2 ml of concentrated hydrochloric acid were added, and 10 g of aniline was further dissolved to prepare an aqueous aniline hydrochloride solution. Separately, prepare an oxidizing aqueous solution in which 50 m of perchloric acid (60% aqueous solution > 50 m) and 10.5 g of potassium dichromate are dissolved, and dropwise add this to the above-mentioned hydrochloric acid aqueous solution of aniline at room temperature over 40 minutes while stirring. After stirring for another 15 minutes,
The reaction mixture was poured into 1.5 g of acetone and V
After stirring, the polymer was filtered off. Further washing with stirring in distilled water 1
Then, the mixture was stirred and washed in 1N ammonia water, and filtered.
The filtrate was washed with distilled water until it became neutral. 70℃
After drying under reduced pressure for 10 hours, 5.8 g of purple aniline polymer powder was obtained.

(3) (1)で社Iられた活性炭粉末とアニリン重合
体粉末、それぞれ5gずつ混合し、四フッ化エチレンパ
ウダー0139を加え十分に混練したl/100Kg/
criの圧力で室温上加圧成形を行い、厚さ約300μ
mのフィルムを得た。
(3) Mix 5g each of the activated carbon powder and aniline polymer powder prepared in (1), add tetrafluoroethylene powder 0139, and mix thoroughly.l/100Kg/
Pressure molded at room temperature under cr pressure to a thickness of approximately 300μ
A film of m was obtained.

(4)次に充分に脱水したプロピレンカーボネートにL
iC,1104を溶解させた1、0モル/Nの溶液を電
解液としリチウム金属を負極とし、上記した成形フィル
ムを正極とした電池を第1図の様に組んだ。集電体とし
てはステンレスメツシュを用い、セパレーターとしては
ガラス繊維からなるフェルトを用いた。
(4) Next, add L to sufficiently dehydrated propylene carbonate.
A battery was assembled as shown in FIG. 1, using a 1.0 mol/N solution of iC,1104 as an electrolyte, lithium metal as a negative electrode, and the above molded film as a positive electrode. A stainless steel mesh was used as the current collector, and felt made of glass fiber was used as the separator.

ドーピングmは活性炭とアニリンの重合物の炭素原子1
個当りのドーピングされるイオンの数で表わす。本発明
ではドーピングされるイオンの数は回路を流れた電流値
より求めた。
Doping m is 1 carbon atom in the polymer of activated carbon and aniline.
It is expressed in terms of the number of ions doped per individual. In the present invention, the number of ions to be doped is determined from the value of the current flowing through the circuit.

電池を組立てた直後の電圧は2,8Vであった。The voltage immediately after the battery was assembled was 2.8V.

次に該電池に外部より電圧を印7JI Lで、1時間当
りのドーピングmが1%となるように一定電流でClO
4−イオンを正極に3時間ドーピングした。
Next, apply a voltage to the battery externally at 7 JI L, and apply ClO at a constant current so that the doping m per hour is 1%.
The positive electrode was doped with 4-ions for 3 hours.

ドーピング剤終了時の開路電圧は4.OVであった。The open circuit voltage at the end of the doping agent is 4. It was OV.

次に1時間当りのアンド−ピング量が1%となるように
一定電流を回路に流し、C,G o4−イオンのアンド
−ピングを行い、開路電圧が3.OVになるまで続(プ
た。該テストにおけるドーピング量に対するアンド−ピ
ング量の値は80%であった。
Next, a constant current is passed through the circuit so that the amount of and-ping per hour is 1%, and and-ping of C, Go4- ions is performed, and the open circuit voltage is 3. The test continued until OV was reached.The value of the undoping amount relative to the doping amount in this test was 80%.

さらに該電池に1時間あたりのドープ量又はアンドープ
♀が5%となるような電流密度で、充放電を4.0 V
〜2,8■で行った所、その容量は1%の時の90%で
あり、急速充放電特性にもかかわらず大きなものであっ
た。
Further, the battery was charged and discharged at 4.0 V at a current density such that the amount of doping or undoped ♀ per hour was 5%.
When tested at ~2.8cm, the capacity was 90% of the 1% capacity, which was large despite its rapid charging and discharging characteristics.

比較例1 実施例1(2)で得られたアニリンの重合物の粉末10
Sj、カーボンブラック0.9gを十分に混練し、厚さ
約250μmのフィルムに加圧成形した。
Comparative Example 1 Powder 10 of the aniline polymer obtained in Example 1 (2)
Sj and 0.9 g of carbon black were thoroughly kneaded and pressure-molded into a film with a thickness of about 250 μm.

該フィルムを用いる以外は実施例1(4)と同様にして
テストを行った所、1時間あたりのドープ量又はアンド
ープ量が5%の時は1%の時に比べ容■が40%になり
、急速充放電特性が悪かった。
A test was conducted in the same manner as in Example 1 (4) except for using the film, and when the doping amount or undoping amount per hour was 5%, the volume (2) was 40% compared to when it was 1%. Rapid charge/discharge characteristics were poor.

実施例2 (1)水溶性レゾール(約60%si>/m化亜鉛/水
を重量比で10/35/8の割合で混合した水溶液をフ
ィルムアプリケーターでガラス板上に成膜した。次に成
膜した水溶液上にガラス板を被せ水分が蒸発しない様に
した後、約100’Cの温度で1時間加熱して硬化させ
た。
Example 2 (1) An aqueous solution of a water-soluble resol (approximately 60% si>/m zinc oxide/water mixed in a weight ratio of 10/35/8 was formed into a film on a glass plate using a film applicator. After covering the formed aqueous solution with a glass plate to prevent moisture from evaporating, the film was cured by heating at a temperature of about 100'C for 1 hour.

該フェノール樹脂複合体をシリコニット電気炉中に入れ
窒素気流下で40’C/時間の速度で界温しで、900
°Cまで焼成した。次に該フィルム状熱処理物を希塩酸
で洗った後水洗し乾燥した。
The phenolic resin composite was placed in a siliconite electric furnace and heated to ambient temperature at a rate of 40'C/hour under a nitrogen stream to 900°C.
Calcined to °C. Next, the heat-treated film was washed with dilute hydrochloric acid, then water, and dried.

次にBET法によって比表面積値を測定したところ18
00m/gと極めて高い値であった。
Next, when the specific surface area value was measured by the BET method, 18
It was an extremely high value of 00 m/g.

次に該フィルム状活性炭の気孔状態を電子顕微鏡にて観
察したところ10μm以下微細な連通気孔を有してあり
、その柱の太さは10μm以下と(へめで細かった。
Next, when the pore state of the film-form activated carbon was observed using an electron microscope, it was found that it had fine continuous pores of 10 μm or less, and the thickness of the columns was 10 μm or less (flat and thin).

(2)次に5.OJのアニリン塩酸塩を100 dの0
.4mol/ρ過塩素酸水溶液に溶解し、該水溶液にA
q/八gへ1!標準電極を参照極とし、2 X 2 c
niの白金板を対極、そして(1)で得た2 X 2 
cnrの活性炭フィルムにカーボンペーストで白金線を
取りつけたものを作用極として電解槽とした。
(2) Next, 5. OJ aniline hydrochloride 100 d 0
.. Dissolved in 4 mol/ρ perchloric acid aqueous solution, and added A to the aqueous solution.
1 to q/8g! Using the standard electrode as a reference electrode, 2 × 2 c
Ni platinum plate was used as the counter electrode, and the 2 × 2 plate obtained in (1)
A CNR activated carbon film with a platinum wire attached using carbon paste was used as a working electrode to form an electrolytic cell.

作用電極にi、ovの電圧をポテンシオスタットにより
15分間印加した後、該フィルムを水洗、続いて0.5
Nアンモニア水に2時間つけておき、ざらに十分に水洗
し、60°Cで48時間減圧乾燥した。
After applying a voltage of i, ov to the working electrode by a potentiostat for 15 minutes, the film was washed with water, followed by a voltage of 0.5
It was soaked in N ammonia water for 2 hours, rinsed thoroughly with water, and dried under reduced pressure at 60°C for 48 hours.

重量を測定した所、電解重合前の活性炭フィルム重ωに
対して20%の増加が認められた。
When the weight was measured, a 20% increase in the weight ω of the activated carbon film before electrolytic polymerization was observed.

(3)水溶性レゾール(約60%濃度)/塩化亜鉛/水
を重量比で10/35/8の割合で混合した水溶液をフ
ィルムアプリケーターでガラス板上に成膜した。次に成
膜した水溶液上にガラス板を被せ水分が蒸発しない様に
した後、約100℃の温度で1時間加熱して硬化させた
(3) An aqueous solution containing water-soluble resol (approximately 60% concentration)/zinc chloride/water mixed in a weight ratio of 10/35/8 was formed into a film on a glass plate using a film applicator. Next, a glass plate was placed over the formed aqueous solution to prevent moisture from evaporating, and then heated at a temperature of about 100° C. for 1 hour to cure it.

該フェノール樹脂フィルムをシリコニット電気炉中に入
れ窒素気流下で40’C/時間の速度で背温して、60
0°Cまで熱処理を行った。次に該熱処理物を希塩酸で
洗った後、水洗し、その後乾燥づることによってフィル
ム状多孔性不溶不融=13 H4体を17だ。
The phenolic resin film was placed in a siliconite electric furnace and back-heated at a rate of 40°C/hour under a nitrogen stream to a temperature of 60°C.
Heat treatment was performed to 0°C. Next, the heat-treated product was washed with dilute hydrochloric acid, washed with water, and then dried to form a film-like porous insoluble infusible = 13 H4 body.

(4)(2)で得られたアニリンを電解重合した活性炭
フィルムを正極とし、(3)で得られた多孔性フィルム
を負極とし、電解液として (C2+−15) 4NC,[+ 04の1モル/Ωプ
ロピレンカーボネート溶解を使用して電池を構成し、充
放電テス1〜を行った。
(4) The activated carbon film obtained by electrolytically polymerizing the aniline obtained in (2) was used as the positive electrode, the porous film obtained in (3) was used as the negative electrode, and the electrolyte was (C2+-15) 4NC, [+ 04 of 1 Batteries were constructed using mol/Ω propylene carbonate dissolution, and charge/discharge tests 1 to 1 were conducted.

電池を組立てた直後の電圧はOVてあった。Immediately after assembling the battery, the voltage was OV.

次に外部電源より電圧を印加して正極にCρ04−イオ
ンを、負極に(C2)−1,) 4N”イオンをドーピ
ングすることによって充電した。
Next, a voltage was applied from an external power source to dope the positive electrode with Cρ04− ions and the negative electrode with (C2)−1,) 4N″ ions, thereby charging the battery.

充電速度は1時間当りのドーピング量が1%となるよう
にし、3 [k’i間行った。この時の開路電圧は2.
5Vであった。次に充電時と同じ速度でCU O4−イ
オン及び(C2H5)4N イオンのアンド−ピングを
行うことによって放電し、電子電圧がOV G、:なる
まで続りた。ドーピング量に対する充放電電圧の関係は
ほぼ直線であり、キャパシターに似た特性をもつ電池で
あった。この電池をキャパシターと考えてそのキャパシ
ター容量を計算すると電(※l当り30F/!7であっ
た。(F:ファラッド) 比較例2 カイノール繊維の平織物(日本カイノール礼装のフェノ
ール樹脂繊維の織物)をシリコニット電気炉にて非酸化
性雰囲気下、900℃まで焼成し、炭化した後、同温度
で電気炉中に水蒸気をふきこみ、約1時間付活処理を行
った。得られた活性炭織物のBET法による比表面積値
は1800yr(/gてあった。繊維径は約15μmで
あり、織物の機械的強度はほとんどなかった。
The charging rate was such that the doping amount per hour was 1%, and the charging was carried out for 3 k'i. The open circuit voltage at this time is 2.
It was 5V. Next, discharging was performed by and-pumping CU O4- ions and (C2H5)4N ions at the same rate as during charging, and continued until the electron voltage reached OV G, :. The relationship between the doping amount and the charge/discharge voltage was almost linear, indicating that the battery had characteristics similar to a capacitor. Considering this battery as a capacitor and calculating the capacitor capacity, it was 30F/!7 per liter (F: Farad) Comparative Example 2 Plain woven fabric of Kynor fiber (fabric of phenolic resin fiber of Japanese Kynor formal dress) was fired to 900°C in a non-oxidizing atmosphere in a siliconite electric furnace to carbonize it, and then activated by blowing steam into the electric furnace at the same temperature for about 1 hour. The specific surface area value determined by the BET method was 1800 yr/g. The fiber diameter was approximately 15 μm, and the woven fabric had almost no mechanical strength.

次に該活性炭織物を正極及び負極とし実施例2と全く同
じ構成で電池を組み立て、同じ条件で充放電テストを行
った。電池をキャパシターと考えてそのキャパシター容
量を計算すると電極重量当り16F/!17であった。
Next, a battery was assembled using the activated carbon fabric as a positive electrode and a negative electrode in exactly the same configuration as in Example 2, and a charge/discharge test was conducted under the same conditions. Considering the battery as a capacitor and calculating the capacitor capacity, it is 16F/per electrode weight! It was 17.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電池の基本構成を示すものである
。1は正極、2は負極、3は集電体、4は電解液、5は
セパレーター、6は電池ケース、7は外部端子を表わす
FIG. 1 shows the basic configuration of a battery according to the present invention. 1 is a positive electrode, 2 is a negative electrode, 3 is a current collector, 4 is an electrolytic solution, 5 is a separator, 6 is a battery case, and 7 is an external terminal.

Claims (1)

【特許請求の範囲】 1、BET法による比表面積値が600m^2/g以上
の活性炭と、アニリン類重合物との複合物を正極活物質
とし、電解により該正極活物質にドーピングされうるイ
オンを生成しうる化合物を非プロトン性有機溶媒に溶液
した溶液を電解液とすることを特徴とする有機電解質電
池。 2、活性炭が芳香族系縮合ポリマーを熱処理して得たも
のであって、平均孔径10μm以下の連通気孔を有し且
つ少くとも600m^2/gのBET法による比表面積
値を示す特許請求の範囲第1項に記載の有機電解質電池
。 3、アニリン類がアニリンである特許請求の範囲第1項
に記載の有機電解質電池。 4、活性炭とアニリン類重合物の重合比が20〜0.0
5である特許請求の範囲第1項に記載の有機電解質電池
。 5、活性炭とアニリン類重合物との複合物が、炭性炭粉
末とアニリン類重合物粉末を複合させたもの又は活性炭
表面上にアニリン類を重合させたものである特許請求の
範囲第1項に記載の有機電解質電池。 6、アルカリ金属又はアルカリ土類金属又はその合金が
負極である特許請求の範囲第1項記載の有機電解質電池
。 7、負極がリチウム又はリチウム合金である特許請求の
範囲第6項記載の有機電解質電池。 8、負極が、フェノール性水酸基を有する芳香族炭化水
素化合物とアルデヒド類との縮合物である芳香族系縮合
ポリマーの熱処理物であって、(a)水素原子/炭素原
子の原子数比が0.5〜0.05であるポリアセン系骨
格構造を有し、(b)BET法による比表面積値が少く
とも600m^2/gであり、そして (c)平均孔径10μm以下の連通気孔を持つ、不溶不
融性基体である特許請求の範囲第1項記載の有機電解質
電池。 9、電解によりドーピングされうるイオンを生成しうる
化合物がLiI、NaI、KI、 NH_4I、LiClO_4、LiBF_4、LiAs
F_6、LiPF_6、NaClO_4、NaBF_4
、NaAsF_6、NaPF_6、KClO_4、KB
F_4、KAsF_6、KPF_6、(C_2H_5)
_4NClO_4、 (n−C_4H_9)_4NClO_4、 (t−C_4H_9)_4NClO_4、 (C_2H_5)_4NBF_4、(n−C_4H_9
)_4NBF_4、(t−C_4H_9)_4NBF_
4、(C_2H_5)_4NPF_6、(n−C_4H
_9)_4NPF_6、(t−C_4H_9)_4NP
F_6、LiB(C_2H_5)_4、LiB(C_6
H_5)_4又はLiHF_4である特許請求の範囲第
1項に記載の有機電解質電池。 10、非プロトン性有機溶媒がエチレンカーボネート、
プロピレンカーボネイト、γ−ブチロラクトン、ジメチ
ルホルムアミド、ジメチルアセトアミド、ジメチルスル
ホキシド、アセトニトリル、ジメトキシエタン、テトラ
ヒドロフランン、ジオキソラン、またはスルホランであ
る特許請求の範囲第1項に記載の有機電解質電池。
[Claims] 1. A composite of activated carbon having a specific surface area of 600 m^2/g or more by the BET method and an aniline polymer as a positive electrode active material, and ions that can be doped into the positive electrode active material by electrolysis. An organic electrolyte battery characterized in that an electrolyte solution is a solution of a compound capable of producing , in an aprotic organic solvent. 2. The activated carbon is obtained by heat treating an aromatic condensation polymer, has continuous pores with an average pore diameter of 10 μm or less, and has a specific surface area value of at least 600 m^2/g by the BET method. The organic electrolyte battery according to scope 1. 3. The organic electrolyte battery according to claim 1, wherein the aniline is aniline. 4. The polymerization ratio of activated carbon and aniline polymer is 20 to 0.0
5. The organic electrolyte battery according to claim 1. 5. Claim 1, wherein the composite of activated carbon and aniline polymer is a composite of carbonic carbon powder and aniline polymer powder, or a composite of aniline polymerized on the surface of activated carbon. The organic electrolyte battery described in . 6. The organic electrolyte battery according to claim 1, wherein the negative electrode is an alkali metal, an alkaline earth metal, or an alloy thereof. 7. The organic electrolyte battery according to claim 6, wherein the negative electrode is lithium or a lithium alloy. 8. The negative electrode is a heat-treated product of an aromatic condensation polymer that is a condensation product of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde, and (a) the atomic ratio of hydrogen atoms / carbon atoms is 0. .5 to 0.05, (b) has a specific surface area value of at least 600 m^2/g by the BET method, and (c) has continuous pores with an average pore diameter of 10 μm or less. The organic electrolyte battery according to claim 1, which is an insoluble and infusible substrate. 9. Compounds that can generate ions that can be doped by electrolysis include LiI, NaI, KI, NH_4I, LiClO_4, LiBF_4, LiAs
F_6, LiPF_6, NaClO_4, NaBF_4
, NaAsF_6, NaPF_6, KClO_4, KB
F_4, KAsF_6, KPF_6, (C_2H_5)
_4NClO_4, (n-C_4H_9)_4NClO_4, (t-C_4H_9)_4NClO_4, (C_2H_5)_4NBF_4, (n-C_4H_9
)_4NBF_4, (t-C_4H_9)_4NBF_
4, (C_2H_5)_4NPF_6, (n-C_4H
_9)_4NPF_6, (t-C_4H_9)_4NP
F_6, LiB(C_2H_5)_4, LiB(C_6
The organic electrolyte battery according to claim 1, which is H_5)_4 or LiHF_4. 10, the aprotic organic solvent is ethylene carbonate,
The organic electrolyte battery according to claim 1, which is propylene carbonate, γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, or sulfolane.
JP62133281A 1987-05-30 1987-05-30 Organic electrolyte battery with activated carbon-aniline composite as positive electrode Expired - Lifetime JP2562601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62133281A JP2562601B2 (en) 1987-05-30 1987-05-30 Organic electrolyte battery with activated carbon-aniline composite as positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62133281A JP2562601B2 (en) 1987-05-30 1987-05-30 Organic electrolyte battery with activated carbon-aniline composite as positive electrode

Publications (2)

Publication Number Publication Date
JPS63301462A true JPS63301462A (en) 1988-12-08
JP2562601B2 JP2562601B2 (en) 1996-12-11

Family

ID=15100973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62133281A Expired - Lifetime JP2562601B2 (en) 1987-05-30 1987-05-30 Organic electrolyte battery with activated carbon-aniline composite as positive electrode

Country Status (1)

Country Link
JP (1) JP2562601B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198298A (en) * 1991-07-29 1993-08-06 Valence Technol Inc Rechargeable lithium rocking chair battery and electrode used for said battery
US5451476A (en) * 1992-11-23 1995-09-19 The Trustees Of The University Of Pennsylvania Cathode for a solid-state battery
US6686089B1 (en) 1998-09-04 2004-02-03 Nec Tokin Corporation Battery electrode, secondary battery, and method of manufacturing same
JP2006147405A (en) * 2004-11-22 2006-06-08 Nissan Motor Co Ltd Electrode for lithium ion secondary battery, and lithium ion secondary battery using it
WO2007088604A1 (en) * 2006-02-01 2007-08-09 Eamex Corporation Electric storage element having electrode containing conductive polymer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225761A (en) * 1985-03-30 1986-10-07 Kanebo Ltd Organic electrolyte battery
JPS6243065A (en) * 1985-08-19 1987-02-25 Showa Denko Kk Nonaqueous secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225761A (en) * 1985-03-30 1986-10-07 Kanebo Ltd Organic electrolyte battery
JPS6243065A (en) * 1985-08-19 1987-02-25 Showa Denko Kk Nonaqueous secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198298A (en) * 1991-07-29 1993-08-06 Valence Technol Inc Rechargeable lithium rocking chair battery and electrode used for said battery
US5451476A (en) * 1992-11-23 1995-09-19 The Trustees Of The University Of Pennsylvania Cathode for a solid-state battery
US6686089B1 (en) 1998-09-04 2004-02-03 Nec Tokin Corporation Battery electrode, secondary battery, and method of manufacturing same
JP2006147405A (en) * 2004-11-22 2006-06-08 Nissan Motor Co Ltd Electrode for lithium ion secondary battery, and lithium ion secondary battery using it
WO2007088604A1 (en) * 2006-02-01 2007-08-09 Eamex Corporation Electric storage element having electrode containing conductive polymer

Also Published As

Publication number Publication date
JP2562601B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
JPS63314762A (en) Organic electrolyte cell using aluminum-lithium alloy as negative electrode
JPH0324024B2 (en)
JP2562601B2 (en) Organic electrolyte battery with activated carbon-aniline composite as positive electrode
JP2532878B2 (en) Organic electrolyte battery with activated carbon metal oxide composite as positive electrode
JP2515547B2 (en) Organic electrolyte battery using aniline composite as positive electrode
JPH0630260B2 (en) Organic electrolyte battery
JP2519180B2 (en) Organic electrolyte battery
JP2542221B2 (en) Battery using polyaniline composite electrode
JP2588405B2 (en) Organic electrolyte battery using high concentration mixed solute
JPS61225761A (en) Organic electrolyte battery
WO2022239746A1 (en) Binder for silicon negative electrode of lithium ion secondary battery
JP2519454B2 (en) Organic electrolyte battery using nitrogen-containing substrate as electrode
JP2534490B2 (en) Organic electrolyte battery
JPH0528986A (en) Organic electrolyte battery
JP2616775B2 (en) Organic electrolyte battery with ternary composite as cathode
JP2681888B2 (en) Organic electrolyte battery
JP2532879B2 (en) Method for manufacturing electrode for organic electrolyte battery
JPH07176301A (en) Electrode for secondary battery and manufacture thereof
JPH01658A (en) Organic electrolyte battery using high concentration mixed solute
JP2601776B2 (en) Organic electrolyte battery
JPS6177275A (en) Organic electrolyte battery
JPH01248471A (en) Secondary battery
JP2522662B2 (en) Organic electrolyte battery with polythiophene as positive electrode
JP2646462B2 (en) Organic electrolyte battery
JPS6180773A (en) Organic electrolyte cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 11