JP2542221B2 - Battery using polyaniline composite electrode - Google Patents

Battery using polyaniline composite electrode

Info

Publication number
JP2542221B2
JP2542221B2 JP62225299A JP22529987A JP2542221B2 JP 2542221 B2 JP2542221 B2 JP 2542221B2 JP 62225299 A JP62225299 A JP 62225299A JP 22529987 A JP22529987 A JP 22529987A JP 2542221 B2 JP2542221 B2 JP 2542221B2
Authority
JP
Japan
Prior art keywords
electrode
battery
polyaniline
polymer
composite electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62225299A
Other languages
Japanese (ja)
Other versions
JPS6471061A (en
Inventor
興利 木村
利幸 大澤
利幸 加幡
祥子 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP62225299A priority Critical patent/JP2542221B2/en
Publication of JPS6471061A publication Critical patent/JPS6471061A/en
Application granted granted Critical
Publication of JP2542221B2 publication Critical patent/JP2542221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0464Electro organic synthesis
    • H01M4/0466Electrochemical polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 [技術分野] 本発明はポリアニリン複合電極を用いた電池に関す
る。
TECHNICAL FIELD The present invention relates to a battery using a polyaniline composite electrode.

[従来技術] 有機物を電解酸化することにより有機ポリマーを合成
する方法は古くより知られており、有機ポリマーの合成
を電気化学的に制御することにより種々のポリマーの開
発がおこなわれてきた。
[Prior Art] A method of synthesizing an organic polymer by electrolytically oxidizing an organic substance has been known for a long time, and various polymers have been developed by electrochemically controlling the synthesis of the organic polymer.

特にピロール、アニリン、チオフェン、ベンゼンおよ
びそれらの誘導体等を電解酸化重合することによって得
られる各ポリマーがスイッチング素子、表示素子、電極
材料としての基本的特性を備えていることから盛んに研
究が行われている。[ポリピロール、A.F.Diaz.J.Chem.
Commun,1979,635.;ポリチオフェン特開昭56−47421;ポ
リアニリン、A.F.Diaz.J.Electroanal.Chem.,111,1524
(1980);ポリパラフェニレン、Electrochem.Acta.,2
761(1982)]。
In particular, since each polymer obtained by electrolytically oxidatively polymerizing pyrrole, aniline, thiophene, benzene and their derivatives has basic characteristics as a switching element, a display element and an electrode material, much research has been conducted. ing. [Polypyrrole, AFDiaz.J.Chem.
Commun, 1979, 635 .; Polythiophene JP-A-56-47421; Polyaniline, AFDiaz.J.Electroanal.Chem., 111 , 1524
(1980); Polyparaphenylene, Electrochem. Acta., 2
7 , 61 (1982)].

特にこれら素子へのポリマーの応用の内、上述したよ
うな高分子材料を電極活物質に用いた電池の軽量化、高
エネルギー密度化に適しているとして種々検討されてい
る。
In particular, among the applications of polymers to these devices, various studies have been made as being suitable for reducing the weight and increasing the energy density of batteries using the above-described polymer material as an electrode active material.

中でも材料の化学的安定性に優れているポリアニリン
を正極に用いた二次電池がクーロン効率、エネルギー密
度が高い二次電池として最近注目を集めている。
Among them, a secondary battery using polyaniline, which is excellent in chemical stability of the material, as a positive electrode has recently attracted attention as a secondary battery having high Coulomb efficiency and high energy density.

該ポリアニリンを合成する場合一般に水系電解液にア
ニリンを溶解し、その電解液を不活性な電極材料(たと
えば白金)を陰極、陽極に用い電解液としてH2SO4、HC
l、HClO4、HBF4等のプロトン酸を電解質とした酸性水溶
液が用いらる。(特開昭62−96525、J.Electroanal.Che
m.161,419(1984),27回電池討論会、講演予稿集P 20
1) このようにして得られたポリアニリンを用いた電池と
しては例えばPolymer preprints 25 No.2 248(198
4)、電気化学協会第51回大会要旨集、228(1984)に開
示されている。しかしながら実用的な電池を考えた場
合、ポリアニリンの集電方法には問題が多く、即ち一般
にポリアニリンは粉末状あるいはもろい膜状に製造され
るため、通常の集電方法のようにポリアニリンを集電体
金属坂上に圧着したり、集電体金属板上に電解重合した
ものは充放電により重合体が脱落したり集電面に接する
重合体しか、充放電に関与しないなどの問題があり、高
いクーロン効率、エネルギー密度が得られ難く、電池と
しての信頼性に問題があった。
In the case of synthesizing the polyaniline, generally, aniline is dissolved in an aqueous electrolyte solution, and the electrolyte solution is used as an inactive electrode material (for example, platinum) as a cathode and an anode, and H 2 SO 4 and HC are used as the electrolyte solution.
An acidic aqueous solution using a protonic acid such as l, HClO 4 , and HBF 4 as an electrolyte is used. (JP-A-62-96525, J. Electroanal. Che
m. 161, 419 (1984) , the battery debate 27 times, Preprint P 20
1) As a battery using the polyaniline thus obtained, for example, Polymer preprints 25 No.2 248 (198
4), The 51st Annual Meeting of the Electrochemical Society of Japan, 228 (1984). However, when considering a practical battery, there are many problems in the current collecting method of polyaniline, that is, since polyaniline is generally produced in the form of powder or fragile film, the current collecting method of polyaniline is the same as that of a normal current collecting method. The one that is pressure-bonded on a metal slope or electrolytically polymerized on a current collector metal plate has problems such as the polymer falling off due to charging and discharging, and only the polymer in contact with the current collecting surface is involved in charging and discharging. It was difficult to obtain efficiency and energy density, and there was a problem in reliability as a battery.

また、ポリアニリンを炭素粉末等の導電性粉末と混合
し、必要によりテフロン粉末等の結着剤を添加して加
圧、成形した合剤を用いる方法も一般的であるが、この
方法では電極性能は添加剤のモルフォロジーに大きく左
右され、ポリアニリンが本来持つ機能を十分に活用する
ことができない。
Also, a method is generally used in which polyaniline is mixed with a conductive powder such as carbon powder, and a binder such as Teflon powder is added if necessary, and the mixture is pressed and molded. Is greatly influenced by the morphology of the additive and cannot fully utilize the inherent function of polyaniline.

[目 的] 従って本発明の目的はポリアニリン、集電体複合電極
において、集電効率が高いポリアニリン電極を作製する
とともに、それを用いた電池を提供することにある。
[Objective] Therefore, an object of the present invention is to produce a polyaniline electrode having a high current collecting efficiency in a polyaniline / collector composite electrode, and to provide a battery using the same.

[構 成] 本発明者らは従来技術の欠点に鑑み、電気化学重合法
によるポリアニリン複合電極の作製を種々検討した結
果、過塩素酸含有反応媒体のpHが2.0以下である媒体中
で多孔質の非晶質炭素体電極上にアニリンを重合せしめ
ることにより得た複合電極を用いることにより前記目的
が達成できることを見出し本発明を完成するにいたっ
た。
[Structure] In view of the drawbacks of the prior art, the present inventors have made various studies on the production of polyaniline composite electrodes by an electrochemical polymerization method, and as a result, the perchloric acid-containing reaction medium is porous in a medium having a pH of 2.0 or less. The inventors have found that the above-mentioned object can be achieved by using a composite electrode obtained by polymerizing aniline on the amorphous carbon electrode of (1) and completed the present invention.

すなわち、本発明は過塩素酸含有反応媒体のpHが2.0
以下である媒体中で、凹凸状あるいは多孔質の非晶質炭
素体からなる反応電極上にアニリンを電気化学重合によ
り重合せしめることにより高比表面積のポリニリンを形
成せしめて得られたポリアニリン複合電極を用いること
を特徴とする電池である。
That is, the present invention, the pH of the reaction medium containing perchloric acid is 2.0
In the following medium, a polyaniline composite electrode obtained by forming polyniline having a high specific surface area by polymerizing aniline by electrochemical polymerization on a reaction electrode made of an irregular or porous amorphous carbon body is obtained. A battery characterized by being used.

本発明に用いる多孔質電極としては、セルロース、ピ
ッチ、フェノール等の成形体を焼成することにより得ら
れた非晶質炭素体が重量、機械的強度、成形性を考慮し
て最も好適に用いられる。
As the porous electrode used in the present invention, an amorphous carbon body obtained by firing a molded body of cellulose, pitch, phenol or the like is most preferably used in consideration of weight, mechanical strength and moldability. .

多孔質電極の気孔率は10%以上が好適であり、好まし
くは10〜70%、さらに好ましくは30〜60%である。気孔
率が大きいほどエネルギー密度、出力密度にとって良い
が、70%を超えると集電性が悪くなり多孔質体の強度が
急激に減少する。
The porosity of the porous electrode is preferably 10% or more, preferably 10 to 70%, more preferably 30 to 60%. The larger the porosity is, the better the energy density and the output density are. However, when the porosity exceeds 70%, the current collecting property is deteriorated and the strength of the porous body is rapidly reduced.

多孔質電極の平均気孔径は0.5〜150μmが好ましく、
さらに好ましくは1〜50μmである。平均気孔径が0.5
μm未満となると活物質を気孔内に含有せしめることが
困難となり、十分に高いエネルギー密度が得られなくな
る。一方、150μmを超えると気孔内壁面に固定される
活物質を増加させることができず、集電効率も低下す
る。
The average pore diameter of the porous electrode is preferably 0.5 to 150 μm,
More preferably, it is 1 to 50 μm. Average pore size 0.5
If it is less than μm, it becomes difficult to incorporate the active material into the pores, and a sufficiently high energy density cannot be obtained. On the other hand, if it exceeds 150 μm, the active material fixed to the inner wall surface of the pores cannot be increased, and the current collecting efficiency also decreases.

非晶質炭素体の比抵抗は10Ω・cm以下が好適であり、
低ければ低いほど内部抵抗が低下し、良好な電気化学特
性を示す。
The specific resistance of the amorphous carbon body is preferably 10 Ωcm or less,
The lower the value, the lower the internal resistance and the better electrochemical properties.

ポリアニリンは酸性媒体中でアニリンを電解重合する
ことにより、フィブリル状に合成することができるが本
発明者らは研究を重ねた結果合成時の条件である電解質
の種類、pH、電解電位、または電解電流により、フィブ
リルの長さ、太さ及びポリアニリンの比表面積及び電極
特性が種々変化することを見出し、電池への応用を種々
検討した。
Polyaniline can be synthesized in a fibril form by electrolytically polymerizing aniline in an acidic medium, but the inventors of the present invention have conducted extensive research, and as a result, the type of electrolyte, pH, electrolysis potential, or electrolysis It was found that the length and thickness of fibrils, the specific surface area of polyaniline and the electrode characteristics were variously changed by the electric current, and various applications to batteries were investigated.

その結果、上記多孔質電極上にアニリンを電解重合し
た複合電極を電池用電極に用いた場合、前記ポリアニリ
ンのBET法による比表面積が1〜200m2/gの時、充放電時
の電極反応がスムーズに行うことができるので好ましい
ことがわかった。
As a result, when a composite electrode obtained by electrolytically polymerizing aniline on the porous electrode was used as a battery electrode, when the specific surface area of the polyaniline by the BET method was 1 to 200 m 2 / g, the electrode reaction during charging and discharging was It was found to be preferable because it can be performed smoothly.

一般にポリアニリンはプロトン酸を含有する反応媒体
中において合成されるが、アニリンの重合において使用
できるプロトン酸としては塩酸、硫酸、過塩素酸、ホウ
フッ化水素酸、メタンスルホン酸、トリフルオロ酢酸、
パラトルエンスルホン酸などがあげられる。本発明の複
合電極において、プロトン酸として過塩素酸を用いた場
合、フィブリルの太さにして0.1μm以下で非常に比表
面積の大きいポリアニリンを合成することが可能であ
り、細孔径の小さい多孔質体を使用しても細孔中に重合
体が進入することができ、複合電極として良好な電気化
学特性を有するものとなる。これに対して例えば塩酸で
合成したポリアニリンは0.4μm程度のフィブリル状に
重合し細孔径の小さい多孔質体を使用すると、細孔中に
重合体が進入することが難かしく従って多孔質体を使用
する利点を十分に生かすことができない。過塩素酸の使
用量としては重合用電解液のpHで3以下、好ましくは2
以下になるように添加することが望ましい。3以上であ
ると重合体の成長速度が遅く、又できる重合体もジメチ
ルホルムアミドなどの溶媒に溶解する部分があることか
ら、その重合度が低く、充放電に対する材料の安定性も
良くない。
Generally, polyaniline is synthesized in a reaction medium containing a protic acid, but as a protic acid that can be used in the polymerization of aniline, hydrochloric acid, sulfuric acid, perchloric acid, borofluoric acid, methanesulfonic acid, trifluoroacetic acid,
Paratoluene sulfonic acid and the like can be mentioned. In the composite electrode of the present invention, when perchloric acid is used as the protonic acid, it is possible to synthesize polyaniline having a fibril thickness of 0.1 μm or less and a very large specific surface area, and a porous material having a small pore size. Even if the body is used, the polymer can enter the pores, and the composite electrode has good electrochemical properties. On the other hand, for example, when polyaniline synthesized with hydrochloric acid is polymerized into fibrils of about 0.4 μm and a porous body with a small pore size is used, it is difficult for the polymer to enter into the pores, so the porous body is used. Cannot take full advantage of The amount of perchloric acid used is 3 or less, preferably 2 at the pH of the polymerization electrolyte.
It is desirable to add it as follows. When it is 3 or more, the growth rate of the polymer is slow, and the resulting polymer also has a portion soluble in a solvent such as dimethylformamide, so that the degree of polymerization is low and the stability of the material against charge / discharge is not good.

本発明における電気化学重合においてアニリンの重合
はアニリン濃度0.1mol/以上、好ましくは0.4mol/以
上を用いて陽極酸化により行われ、電流密度0.01〜50m
A/cm2、電解電圧は通常1〜100Vの範囲で定電流法、定
電圧法及びそれ以外のいかなる方法をも用いることが可
能であるが、好ましくは定電位法を用いることが望まし
い。
In the electrochemical polymerization of the present invention, the polymerization of aniline is performed by anodic oxidation using an aniline concentration of 0.1 mol / or more, preferably 0.4 mol / or more, and the current density is 0.01 to 50 m.
The constant current method, constant voltage method and any other method can be used within a range of A / cm 2 and electrolysis voltage of usually 1 to 100 V, but it is preferable to use the constant potential method.

重合系における反応媒体としては、水、水混和性有機
溶剤及び水非混和性有機溶剤の1種又は2種以上の混合
物を使用できるが、通常、水、水混和性有機溶剤又はこ
れらの混合物を用いられる。例えば水混和性有機溶剤と
してはアセトニトリル、ベンゾニトリル、テトラヒドロ
フラン、ニトロベンゼン、ジメチルホルムアミド、ジメ
チルスルホキシドなどがあげられる。
As the reaction medium in the polymerization system, water, a water-miscible organic solvent and a mixture of two or more water-immiscible organic solvents can be used, but usually water, a water-miscible organic solvent or a mixture thereof is used. Used. Examples of the water-miscible organic solvent include acetonitrile, benzonitrile, tetrahydrofuran, nitrobenzene, dimethylformamide, dimethylsulfoxide and the like.

反応温度は−50℃から100℃が用いられる。好適には
−30℃〜50℃を用いることが好ましい。反応時間は所望
する重合体量により、また反応温度、反応系、与える電
流密度により適宜設定する必要がある。
The reaction temperature used is −50 ° C. to 100 ° C. It is preferable to use -30 ° C to 50 ° C. The reaction time must be appropriately set according to the desired amount of polymer, the reaction temperature, the reaction system, and the applied current density.

本発明の複合電極を用いた電池としては、基本的には
正極、負極および電解液より構成され、電極間にセパレ
ータを設けることもできる。電解液は、溶媒および電解
質により構成されるが、固体電解質を用いることも可能
である。
A battery using the composite electrode of the present invention is basically composed of a positive electrode, a negative electrode and an electrolytic solution, and a separator can be provided between the electrodes. The electrolytic solution is composed of a solvent and an electrolyte, but it is also possible to use a solid electrolyte.

本発明の電池は、少なくとも一方の電極が、アニオン
またはカチオンによってドープされてエネルギーを貯
え、脱ドープによって外部回路を通してエネルギーを放
出するものである。また、本発明の電池においては、こ
のドープ−脱ドープが可逆的に行われるので、二次電池
として使用することができる。
In the battery of the present invention, at least one electrode is doped with anions or cations to store energy, and dedoped to release energy through an external circuit. Further, in the battery of the present invention, since this doping-dedoping is reversibly carried out, it can be used as a secondary battery.

これらのドーパントとしては、例えば以下の陰イオン
または陽イオンを例示することができ、陽イオンをドー
プした高分子錯体はn型の導電性高分子を、陰イオンを
ドープした高分子錯体はp型の導電性高分子を与える。
p型半導体は正極に、n型半導体は負極に用いることが
できる。
Examples of these dopants include the following anions or cations. The cation-doped polymer complex is an n-type conductive polymer, and the anion-doped polymer complex is a p-type. To give a conductive polymer.
The p-type semiconductor can be used for the positive electrode and the n-type semiconductor can be used for the negative electrode.

(1)陰イオン:PF6 -、SbF6 -、AsF6 -、SbCl6 -のようなV
a族の元素のハロゲン化物アニオン;BF4 -のようなIII a
族の元素のハロゲン化物アニオン;ClO4 -のような過塩素
酸アニオンなど。
(1) anion: PF 6 -, SbF 6 - , AsF 6 -, SbCl 6 - V , such as
halide anion of a Group elements; BF 4 - like III a
Perchlorate anions such as - ClO 4; halide anion of a family of elements.

(2)陽イオン:Li+、Na+、K+のようなアルカリ金属イ
オン、(R4N)[R:炭素数1〜20の炭化水素基]な
ど。
(2) Cations: alkali metal ions such as Li + , Na + and K + , (R 4 N) + [R: a hydrocarbon group having 1 to 20 carbon atoms] and the like.

上記のドーパントを与える化合物の具体例としては、
LiPF6、LiSbF6、LiAsF6、LiClO4、NaClO4、KI、KPF6、K
SbF6、KAsF6、KClO4、[(n−Bu)4N]・AsF6 -
[(n−Bu)4N]・ClO4 -、LiAlCl4、LiBF4などが例
示される。
Specific examples of the compound that gives the above dopant include:
LiPF 6, LiSbF 6, LiAsF 6 , LiClO 4, NaClO 4, KI, KPF 6, K
SbF 6, KAsF 6, KClO 4 , [(n-Bu) 4 N] + · AsF 6 -,
[(N-Bu) 4 N ] + · ClO 4 -, etc. LiAlCl 4, LiBF 4 is exemplified.

電池の電解液の溶媒としては、水あるいは非プロント
性溶媒で比誘電性の大きい極性非プロント性溶媒といわ
れるものが好ましい。具体的には、たとえばケトン類、
ニトリル類、エステル類、エーテル類、カーボネート
類、ニトロ化合物、スルホラン系化合物等、あるいはこ
れらの混合溶媒を溶いることができるが、これらのうち
でもニトリル類、カーボネート類、スルホラン系化合物
が好ましい。この代表例としてはアセトニトリル、プロ
ピオニトリル、ブチロニトリル、バレロニトリル、ベン
ゾニトリル、エチレンカーボネート、プロピレンカーボ
ネート、γ−ブチルラクトン、スルホラン、3−メチル
スルホラン等を挙げることができる。
As the solvent of the electrolytic solution of the battery, water or a nonprotonic solvent which is called a polar nonprotonic solvent having a large relative dielectric property is preferable. Specifically, for example, ketones,
Nitriles, esters, ethers, carbonates, nitro compounds, sulfolane compounds and the like or a mixed solvent thereof can be dissolved, and among these, nitriles, carbonates and sulfolane compounds are preferable. Typical examples thereof include acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, ethylene carbonate, propylene carbonate, γ-butyl lactone, sulfolane and 3-methylsulfolane.

本発明の電池における負極には、例えばポリピロール
及びポリピロール誘導体、ポリチオフェン及びポリチオ
フェン誘導体、ポリキノリン、ポリアセン、ポリパラフ
ェニレン、ポリアセチレン等の電導性高分子、グラファ
イト、TiS2等の層間化合物、リチウム、ナトリウム、リ
チウム−アルミニウム等のアルカリ金属またはその合
金、及びアルカリ金属又はZn、Cu、Agなどの金属を用い
ることができる。
The negative electrode in the battery of the present invention, for example, polypyrrole and polypyrrole derivatives, polythiophene and polythiophene derivatives, conductive polymers such as polyquinoline, polyacene, polyparaphenylene, polyacetylene, graphite, interlayer compounds such as TiS 2 , lithium, sodium, lithium. -Alkali metals such as aluminum or alloys thereof, and alkali metals or metals such as Zn, Cu and Ag can be used.

セパレータとしては、電解質溶液のイオン移動に対し
て低抵抗であり、かつ、溶液保持性に優れたものが用い
られる。例えば、ガラス繊維フィルタ;ポリエステル、
テフロン、ポリフロン、ポリプロピレン等の高分子ポア
フィルタ、不織布;あるいはガラス繊維とこれらの高分
子からなる不織布等を用いることができる。
As the separator, one having a low resistance to the movement of ions of the electrolyte solution and having excellent solution holding property is used. For example, glass fiber filters; polyester,
Polymeric pore filters such as Teflon, polyflon, and polypropylene, non-woven fabrics; or non-woven fabrics made of glass fibers and these polymers can be used.

また、これら電解液、セパレータに代わる構成要素と
して固体電解質を用いることもできる。例えば、無機系
では、AgCl、AgBr、AgI、LiIなどの金属ハロゲン化物、
RbAg4I5、RbAg4I4CNなどが挙げられる。また、有機系で
は、ポリエチレンオキサイド、ポリプロピレンオキサイ
ド、ポリフッ化ビニリデン、ポリアクリルアミドなどを
ポリマーマトリクスとして先に述べた電解質塩をポリマ
ーマトリクス中に溶解せしめた複合体、あるいはこれら
の架橋体、低分子量ポリエチレンオキサイド、クラウン
エーテルなどのイオン解離基をポリマー主鎖にグラフト
化した高分子電解質が挙げられる。
Further, a solid electrolyte can be used as a component that replaces the electrolytic solution and the separator. For example, in inorganic systems, AgCl, AgBr, AgI, LiI and other metal halides,
Examples include RbAg 4 I 5 and RbAg 4 I 4 CN. In the organic system, polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyacrylamide or the like is used as a polymer matrix and the above-mentioned electrolyte salt is dissolved in the polymer matrix to form a complex, or a cross-linked product or low molecular weight polyethylene oxide thereof. , A polymer electrolyte in which an ion dissociative group such as crown ether is grafted onto the polymer main chain.

以下に実施例を挙げ本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1(電極の製造) 0.5mol/のアニリンを含む1.5mol/HClO4水溶液(p
H0以下)を反応溶液とし、直径16mm、厚さ1.4mm、気孔
率45%、抵抗率0.1Ω・cmのフェノール系非晶質炭素体
を反応極、白金を対極として、1.2V vs SCEの定電位電
解を行い、200Cの電気量を通電した。この電極を充分蒸
溜水で洗浄し、さらに80℃で8時間減圧乾燥した後、1m
ol/のLiClO4を含むプロピレンカーボネート溶液に入
れ、対極として白金、参照極としてAg/Ag+を用いて−0.
2V vs Ag/Ag+の電位をかけ、自然電位が0Vになるまで放
電したのち、洗浄乾燥し電池用電極とした。また、この
条件下合成したポリアニリンのBET法による比表面積は7
2m2/gであった。
Example 1 (Production of Electrode) 1.5 mol / HClO 4 aqueous solution containing 0.5 mol / aniline (p
H0) was used as the reaction solution, and a phenolic amorphous carbon body with a diameter of 16 mm, a thickness of 1.4 mm, a porosity of 45%, and a resistivity of 0.1 Ω · cm was used as the reaction electrode, and platinum was used as the counter electrode. Potential electrolysis was performed, and an electric quantity of 200C was passed. This electrode was washed thoroughly with distilled water and further dried under reduced pressure at 80 ° C for 8 hours.
It was added to a propylene carbonate solution containing ol / LiClO 4 and platinum was used as a counter electrode, and Ag / Ag + was used as a reference electrode.
A potential of 2 V vs Ag / Ag + was applied, and after discharging until the natural potential became 0 V, it was washed and dried to obtain a battery electrode. In addition, the specific surface area of the polyaniline synthesized under these conditions by the BET method is 7
It was 2 m 2 / g.

実施例2(電極の製造) 実施例1と同様に多孔質体上にアニリンを重合したの
ち、電極を蒸溜水で洗浄したのち、1mol/のLiClO4
含む水溶液に入れ、対極として白金を用い0.1mA/cm2
定電流でSCEに対して、0Vになるまで放電したのち、洗
浄乾燥し電池用電極とした。ポリアニリンの比表面積は
92m2/gであった。
Example 2 (Production of electrode) After polymerizing aniline on a porous material in the same manner as in Example 1, the electrode was washed with distilled water, and then placed in an aqueous solution containing 1 mol / LiClO 4, and platinum was used as a counter electrode. After discharging with a constant current of 0.1 mA / cm 2 to 0 V with respect to SCE, it was washed and dried to obtain a battery electrode. The specific surface area of polyaniline is
It was 92 m 2 / g.

実施例3(電極の製造) 気孔率が65%のフェノール系非晶質炭素体を反応極に
用いる他は実施例1と同様に電池用電極を製造したポリ
アニリンの比表面積は112m2/gであった。
Example 3 (Production of electrode) A polyaniline for producing a battery electrode was produced in the same manner as in Example 1 except that a phenol-based amorphous carbon material having a porosity of 65% was used as a reaction electrode. The specific surface area was 112 m 2 / g. there were.

実施例4(電極の製造) 0.5mol/HClO4を含む溶液(pH 1.6)を使用する以外
は実施例3と同様に電池用電極を製造した。ポリアニリ
ンの比表面積は143m2/gであった。
Example 4 (Production of electrode) A battery electrode was produced in the same manner as in Example 3 except that a solution (pH 1.6) containing 0.5 mol / HClO 4 was used. The specific surface area of polyaniline was 143 m 2 / g.

比較例1(電極の製造) 0.4mol/HClO4を含む溶液(pH2.2)を使用する以外
は実施例3と同様に電池用電極を製造した。ポリアニリ
ンの比表面積は77m2/gであった。
Comparative Example 1 (Production of Electrode) A battery electrode was produced in the same manner as in Example 3 except that a solution (pH 2.2) containing 0.4 mol / HClO 4 was used. The specific surface area of polyaniline was 77 m 2 / g.

比較例2(電極の製造) 1.5mol/HClを含む溶液(pH 0以下)を使用する以外
は実施例3と同様に電池用電極を製造したポリアニリン
の比表面積は22m2/gであった。
Comparative Example 2 (Production of Electrode) The specific surface area of polyaniline used for producing a battery electrode was 22 m 2 / g in the same manner as in Example 3 except that a solution containing 1.5 mol / HCl (pH 0 or less) was used.

比較例3(電極の製造) 3.5mol/HClを含む溶液(pH 0以下)を使用する以外
は実施例3と同様に電池用電極を製造した。ポリアニリ
ンの比表面積は11m2/gであった。
Comparative Example 3 (Production of Electrode) A battery electrode was produced in the same manner as in Example 3 except that a solution containing 3.5 mol / HCl (pH 0 or less) was used. The specific surface area of polyaniline was 11 m 2 / g.

電池性能試験 電極の製造において作製した電極を正極とし負極とし
てLiもしくはZn電解液として1mol/LiBF4を含むプロピ
レンカーボネートもしくは0.5mol/ZnSO4を含む水、セ
パレータとしてポリプロピレン不織布を用いてボタン電
池CR2025と同規格サイズのボタン型電池を製造し定電流
1mAで充放電を行い、電池性能を評価した。
Battery performance test The electrode prepared in the production of the electrode is used as a positive electrode and as a negative electrode Li or Zn as a propylene carbonate containing 1 mol / LiBF 4 or 0.5 mol / ZnSO 4 as a electrolytic solution, and polypropylene battery as a separator using a button battery CR2025. Manufactures button type batteries of the same standard size and produces constant current
The battery performance was evaluated by charging and discharging at 1 mA.

[効 果] 以上の説明から明らかなように、本発明の構成によれ
ば、高度にモルフォロジーの抑制された、集電効率の高
いポリアニリン複合電極が製造されるとともに高クーロ
ン効率、高エネルギー密度の電池が提供される。
[Effect] As is clear from the above description, according to the configuration of the present invention, a polyaniline composite electrode having a highly suppressed morphology and a high current collection efficiency can be manufactured, and a high Coulombic efficiency and a high energy density can be obtained. Batteries are provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加幡 利幸 東京都大田区中馬込1丁目3番6号 株 式会社リコー内 (72)発明者 米山 祥子 東京都大田区中馬込1丁目3番6号 株 式会社リコー内 (56)参考文献 特開 昭60−221964(JP,A) 特開 昭59−18578(JP,A) 特開 昭62−93868(JP,A) 特開 昭62−20243(JP,A) ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Toshiyuki Kabata 1-3-6 Nakamagome, Ota-ku, Tokyo Within Ricoh Co., Ltd. (72) Inventor Shoko Yoneyama 1-3-6 Nakamagome, Ota-ku, Tokyo (56) Reference JP 60-221964 (JP, A) JP 59-18578 (JP, A) JP 62-93868 (JP, A) JP 62-20243 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】過塩素酸含有反応媒体のpHが2以下である
媒体中で、凹凸状あるいは多孔質の非晶質炭素体からな
る反応電極上に、アニリンを電気化学重合により重合せ
しめることにより高比表面積のポリアニリンを形成せし
めて得られたポリアニリン複合電極を用いることを特徴
とする電池。
1. An aniline is polymerized by electrochemical polymerization on a reaction electrode composed of an irregular or porous amorphous carbon body in a medium in which the pH of the perchloric acid-containing reaction medium is 2 or less. A battery characterized by using a polyaniline composite electrode obtained by forming polyaniline having a high specific surface area.
JP62225299A 1987-09-10 1987-09-10 Battery using polyaniline composite electrode Expired - Fee Related JP2542221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62225299A JP2542221B2 (en) 1987-09-10 1987-09-10 Battery using polyaniline composite electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62225299A JP2542221B2 (en) 1987-09-10 1987-09-10 Battery using polyaniline composite electrode

Publications (2)

Publication Number Publication Date
JPS6471061A JPS6471061A (en) 1989-03-16
JP2542221B2 true JP2542221B2 (en) 1996-10-09

Family

ID=16827160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62225299A Expired - Fee Related JP2542221B2 (en) 1987-09-10 1987-09-10 Battery using polyaniline composite electrode

Country Status (1)

Country Link
JP (1) JP2542221B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210305626A1 (en) * 2020-03-25 2021-09-30 Power Iv, Inc. Secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450581B1 (en) * 1990-04-04 1995-06-28 Sony Corporation Polymerization method
JP7337600B2 (en) * 2019-08-26 2023-09-04 日東電工株式会社 Power storage device positive electrode active material, power storage device positive electrode, and power storage device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918578A (en) * 1982-07-21 1984-01-30 Nippon Denso Co Ltd Organic battery
JPS60221964A (en) * 1984-04-18 1985-11-06 Bridgestone Corp Secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210305626A1 (en) * 2020-03-25 2021-09-30 Power Iv, Inc. Secondary battery
US11777144B2 (en) * 2020-03-25 2023-10-03 Power Iv, Inc. Secondary battery

Also Published As

Publication number Publication date
JPS6471061A (en) 1989-03-16

Similar Documents

Publication Publication Date Title
KR20000052995A (en) An electrochemical storage cell containing at least one electrode formulated from a fluorophenyl thiophene polymer
JPS63314762A (en) Organic electrolyte cell using aluminum-lithium alloy as negative electrode
JP2725786B2 (en) Sheet-like electrode, method of manufacturing the same, and secondary battery using the same
JPS6289749A (en) Electrode material
JP2542221B2 (en) Battery using polyaniline composite electrode
JP2000123825A (en) High polymer electrode
JP2562601B2 (en) Organic electrolyte battery with activated carbon-aniline composite as positive electrode
JPH0568829B2 (en)
JP2018133126A (en) Secondary battery electrode active material and secondary battery arranged by use thereof
JP2934452B2 (en) Rechargeable battery
JP2010239097A (en) Electrode active material, and electrode using the same
JPH01230216A (en) Energy storing apparatus for nonaqueous electrolyte
JP2826850B2 (en) Method for producing polyaniline
JPH07130356A (en) Electrode for secondary battery and secondary battery having the electrode
JPH08295713A (en) Solid polymer electrolyte, battery and solid electric double layer capacitor containing same, their production and material for solid polymer electrolyte
JPH0821430B2 (en) Secondary battery
JP2610026B2 (en) Battery electrode
JP2588405B2 (en) Organic electrolyte battery using high concentration mixed solute
CN109863633A (en) Electrochemical appliance
WO2020262440A1 (en) Electrochemical device
JP2669672B2 (en) Joint
JPH0722025B2 (en) Secondary battery
JP2501821B2 (en) Secondary battery
JPH0785420B2 (en) Organic secondary battery
JP2908794B2 (en) How to use polyaniline electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees