JP2646462B2 - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JP2646462B2
JP2646462B2 JP3204772A JP20477291A JP2646462B2 JP 2646462 B2 JP2646462 B2 JP 2646462B2 JP 3204772 A JP3204772 A JP 3204772A JP 20477291 A JP20477291 A JP 20477291A JP 2646462 B2 JP2646462 B2 JP 2646462B2
Authority
JP
Japan
Prior art keywords
lithium
battery
pas
electrode
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3204772A
Other languages
Japanese (ja)
Other versions
JPH0528987A (en
Inventor
肇 木下
正敏 小森
信雄 安東
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP3204772A priority Critical patent/JP2646462B2/en
Publication of JPH0528987A publication Critical patent/JPH0528987A/en
Application granted granted Critical
Publication of JP2646462B2 publication Critical patent/JP2646462B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は有機電解質電池に係り、
更に詳細には負極としてポリアセン系骨格構造を有する
不溶不融性基体成形体を熱硬化性樹脂溶液を含浸,硬化
して得られる成形体にリチウムを担持させたものを適用
した有機電解質電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte battery,
More specifically, the present invention relates to an organic electrolyte battery in which, as a negative electrode, a molded product obtained by impregnating a cured insoluble and infusible substrate having a polyacene skeleton structure with a thermosetting resin solution and carrying lithium on the molded product is applied.

【0002】[0002]

【従来の技術】近年、導電性高分子、遷移金属酸化物あ
るいは活性炭を正極とした電池が提案されている。これ
らの電池の負極としてリチウムを用いた場合には、高い
電圧を有し、容量及びエネルギー密度が大きいエネルギ
ー源用二次電池が得られる。しかしながらこのような負
極にリチウムを用いた電池の実用化に際しては、デンド
ライト発生に伴う充放電サイクル寿命の低下という問題
があった。デンドライトは充電の際にリチウム負極表面
に発生する樹枝状あるいはこけ状のリチウム結晶であ
る。該デンドライトは充放電の繰返しに伴い成長し遂に
は両極が短絡しサイクル寿命がつきてしまう。従って該
デンドライトの発生を抑制することが該電池の実用化に
際しては重要となる。近時、グラファイト等の炭素材、
ポリアセチレン、ポリパラフェニレン等の導電性高分子
にリチウムを担持させたリチウム電池の研究が進められ
ている。しかしながら、デンドライトの発生は著しく少
ないもののリチウムの出し入れに対して、構造の変化が
大きく、サイクル特性が低下するという問題があった。
また、一般に電池用電極は粉末等の形状にある活物質を
例えばポリ四フッ化エチレンバインダー,ポリエチレ
ン,ポリプロピレン等の熱可塑性樹脂バインダー等と混
練,加圧成形したものが、生産性,寸法安定性の観点か
ら、好ましく用いられる。
2. Description of the Related Art In recent years, batteries using a conductive polymer, a transition metal oxide or activated carbon as a positive electrode have been proposed. When lithium is used as the negative electrode of these batteries, a secondary battery for an energy source having a high voltage, a large capacity and a high energy density can be obtained. However, when a battery using lithium for such a negative electrode is put into practical use, there is a problem that the charge / discharge cycle life is reduced due to the generation of dendrite. Dendrite is a dendritic or moss-like lithium crystal generated on the surface of a lithium negative electrode during charging. The dendrite grows with the repetition of charge and discharge, and eventually the two electrodes are short-circuited, resulting in a long cycle life. Therefore, it is important to suppress the generation of the dendrite when the battery is put to practical use. Recently, carbon materials such as graphite,
Research on lithium batteries in which lithium is supported on a conductive polymer such as polyacetylene or polyparaphenylene has been advanced. However, although the generation of dendrites is extremely small, there is a problem that a change in the structure is large with respect to lithium in / out, and the cycle characteristics are deteriorated.
In general, a battery electrode is obtained by kneading an active material in the form of a powder or the like with a thermoplastic resin binder such as a polytetrafluoroethylene binder, polyethylene, or polypropylene, and press-molding, thereby improving productivity and dimensional stability. From the viewpoint of, it is preferably used.

【0003】一方、既にポリアセン系骨格構造を含有す
る不溶不融性基体が二次電池の安定な負極材料として提
案されているが(特開昭59−3806号公報、特開昭
60−170163号公報等)、粉末状等の上記不溶不
融性基体を上記方法で成形した成形体にリチウムを担持
させた場合、電極のゆるみが著しく、電池特性、特に急
速充放電特性,サイクル特性に問題が残されていた。
On the other hand, an insoluble and infusible substrate already containing a polyacene skeleton structure has been proposed as a stable negative electrode material for a secondary battery (JP-A-59-3806 and JP-A-60-170163). In the case where lithium is supported on a compact obtained by molding the above-described insoluble and infusible substrate in the form of a powder or the like by the above-described method, the electrode is remarkably loosened, and there is a problem in battery characteristics, particularly rapid charge / discharge characteristics and cycle characteristics. Was left.

【0004】[0004]

【発明が解決しようとする問題点】本発明者等は上記問
題点に鑑み鋭意研究を続けた結果本発明を完成したもの
である。本発明の目的は長期に亘って充電,放電が可能
なかつ急速充電特性の良い二次電池を提供するにある。
本発明の他の目的は急速放電特性の良い二次電池を提供
するにある。本発明のさらに他の目的は製造が容易な二
次電池を提供するにある。
DISCLOSURE OF THE INVENTION The present inventors have made intensive studies in view of the above problems and completed the present invention. An object of the present invention is to provide a secondary battery which can be charged and discharged for a long period of time and has a good rapid charging characteristic.
Another object of the present invention is to provide a secondary battery having good rapid discharge characteristics. Still another object of the present invention is to provide a secondary battery which is easy to manufacture.

【0005】[0005]

【問題点を解決するための手段】本発明の上記の目的
は、正極,負極並びに電解液としてリチウム塩の非プロ
トン性有機溶媒溶液を備えた有機電解質電池であって、
負極が炭素,水素,酸素より成る芳香族系縮合ポリマー
の熱処理物である水素原子/炭素原子の原子比が0.5
〜0.05であるポリアセン系骨格構造を含有する不溶
不融性基体をバインダーを用いて成形した後、熱硬化性
樹脂溶液を含浸,硬化して得られる成形体にリチウムを
モル百分率で3%以上担持させたものであり、かつ上記
成形体が下記式を満足することを特徴とする有機電解質
電池によって達成される。 Va ≧0.2(cc) (Va :不溶不融性基体をバインダーで成形した成形体
1ccあたりの100Å以上の空孔体積 Vb :熱硬化性樹脂溶液を含浸,硬化した後の成形体1
ccあたりの100Å以上の空孔体積)
SUMMARY OF THE INVENTION The object of the present invention is to provide an organic electrolyte battery comprising a positive electrode, a negative electrode and a solution of a lithium salt in an aprotic organic solvent as an electrolyte,
The negative electrode is a heat-treated product of an aromatic condensed polymer composed of carbon, hydrogen and oxygen, and has an atomic ratio of hydrogen atoms / carbon atoms of 0.5.
After molding an insoluble and infusible substrate containing a polyacene-based skeletal structure of about 0.05 to 0.05% using a binder, a thermosetting resin solution is impregnated and cured to obtain a molded article containing 3% by mole of lithium. The present invention is achieved by an organic electrolyte battery which is supported as described above, and wherein the molded article satisfies the following formula. V a ≧ 0.2 (cc) (V a : Void volume of 100 ° or more per 1 cc of a molded article obtained by molding an insoluble and infusible substrate with a binder. V b : Molded article 1 after impregnated with a thermosetting resin solution and cured.
Pore volume of more than 100mm per cc)

【0006】本発明におけるポリアセン系骨格構造を含
有する不溶不融性基体(以下、PASと記す)は本願の
出願人の出願にかかる特開昭59−3806号公報に記
載されている芳香族系縮合ポリマーを特定の条件で熱処
理することにより得られる。また600m2 /g以上の
BET法による比表面積を有するPASは本願の出願人
の出願にかかる特開昭60−170163号公報に記載
されている方法により得られる。具体的には高い比表面
積を必要としない場合、本発明に用いる芳香族系縮合ポ
リマーとしては、(a)フェノール・ホルムアルデヒド
樹脂の如き、フェノール性水酸基を有する芳香族系炭化
水素化合物とアルデヒド類の縮合物、(b)キシレン変
性フェノール、ホルムアルデヒド樹脂(フェノールの一
部をキシレンで置換したもの)の如き、フェノール性水
酸基を有する芳香族系炭化水素化合物、フェノール性水
酸基を有さない芳香族系炭化水素化合物およびアルデヒ
ドの縮合物及び(c)フラン樹脂が好適なものとして挙
げられる。
The insoluble and infusible substrate having a polyacene skeleton structure (hereinafter referred to as PAS) according to the present invention is an aromatic base described in Japanese Patent Application Laid-Open No. 59-3806 filed by the present applicant. It is obtained by subjecting the condensation polymer to heat treatment under specific conditions. PAS having a specific surface area of 600 m 2 / g or more according to the BET method can be obtained by the method described in Japanese Patent Application Laid-Open No. Sho 60-170163 filed by the present applicant. Specifically, when a high specific surface area is not required, the aromatic condensation polymer used in the present invention includes (a) an aromatic hydrocarbon compound having a phenolic hydroxyl group, such as a phenol-formaldehyde resin, and an aldehyde. Aromatic hydrocarbon compounds having a phenolic hydroxyl group, such as condensates, (b) xylene-modified phenol, formaldehyde resin (a part of phenol substituted with xylene), and aromatic hydrocarbons having no phenolic hydroxyl group Condensates of hydrogen compounds and aldehydes and (c) furan resins are preferred.

【0007】該芳香族系縮合ポリマーを、非酸化性雰囲
気(真空状態も含む)中で、400℃〜1000℃の温
度、好ましくは600℃〜800℃の適当な温度まで徐
々に加熱し水素原子/炭素原子の原子比(以下H/Cと
記す)が0.50〜0.05、好ましくは0.35〜
0.10の熱処理物とするとPASが得られる。600
2 /g以上のBET法による比表面積を有するPAS
の場合、前記した芳香族系縮合ポリマーに塩化亜鉛、リ
ン酸ナトリウム等の無機塩を混合する。混入する量は、
無機塩の種類及び目的とする電極の形状、性能によって
異なるが、重量比で10/1〜1/7が好ましい。この
ようにして得られた無機塩と芳香族系縮合ポリマーの混
合物はポリマーの組成、無機塩の種類等によって異なる
が通常50〜180℃の温度で、2〜90分間加熱する
ことにより硬化、かくして得られた硬化体を、次いで非
酸化性雰囲気中で350〜800℃の温度、好ましくは
400℃〜750℃の温度まで加熱し、得られた熱処理
体を水あるいは希塩酸等で十分洗浄することによって、
熱処理体中に含まれている無機塩を除去する。その後、
これを乾燥すると、H/C=0.50〜0.05好まし
くは0.35〜0.10の600m2 /g以上の比表面
積を有するPASが得られる。本発明に用いるPASは
X線回折(Cukα線)においてメインピークの位置が
2θで24°以下に生じ、且つ2θで41°〜46°の
間にブロードなピークを示すものが好適である。
The aromatic condensation polymer is gradually heated to a suitable temperature of 400 ° C. to 1000 ° C., preferably 600 ° C. to 800 ° C. in a non-oxidizing atmosphere (including a vacuum state) to form a hydrogen atom. / The atomic ratio of carbon atoms (hereinafter referred to as H / C) is 0.50 to 0.05, preferably 0.35 to
When the heat treatment is performed at 0.10, PAS is obtained. 600
PAS having a specific surface area of at least m 2 / g by the BET method
In the case of the above, an inorganic salt such as zinc chloride or sodium phosphate is mixed with the above-mentioned aromatic condensation polymer. The amount to be mixed is
The ratio by weight is preferably from 10/1 to 1/7, though it depends on the type of the inorganic salt and the shape and performance of the intended electrode. The mixture of the inorganic salt and the aromatic condensation polymer thus obtained varies depending on the composition of the polymer, the kind of the inorganic salt and the like, but is usually cured at a temperature of 50 to 180 ° C. by heating for 2 to 90 minutes, thus. The obtained cured body is then heated in a non-oxidizing atmosphere to a temperature of 350 to 800 ° C., preferably 400 to 750 ° C., and the obtained heat-treated body is sufficiently washed with water or dilute hydrochloric acid. ,
The inorganic salt contained in the heat-treated body is removed. afterwards,
When this is dried, a PAS having a specific surface area of 600 m 2 / g or more of H / C = 0.50 to 0.05, preferably 0.35 to 0.10 is obtained. The PAS used in the present invention is preferably one in which the position of the main peak occurs at 24 or less at 2θ in X-ray diffraction (Cukα ray) and shows a broad peak at 41 from 46 ° to 2θ.

【0008】PASは芳香族系多環構造が適度に発達
し、かつ、平面ポリアセン系骨格構造の平均距離が比較
的大きいことが示唆され、リチウムを安定に担持するこ
とができる。H/Cが0.05未満の場合、リチウムを
担持したとき、あるいはリチウムを出し入れした時(充
放電時)に基体構造に変化を生じ易くなり、サイクル特
性が劣化する。またH/Cが0.5を越える時は、リチ
ウムを安定に担持させることができず、この様なPAS
にリチウムを担持させた負極を用いて製造した電池は自
己放電が大きくなる。本発明におけるPASは成形しや
すい様、粉体,短繊維状等の形状に製造又は適当な形状
で製造し、粉体,短繊維状等の形状に加工されたPAS
を用いる。本発明の負極の製造法は、先に上記形態にあ
るPASを、例えばポリ四フッ化エチレン,ポリエチレ
ン,ポリプロピレン等の電池用電極に一般的に用いられ
るバインダーと混合あるいは必要に応じて混練,成形
し、予備成形体を得た後、該成形体に熱硬化性樹脂の初
期縮合物溶液を含浸後、加熱等により乾燥、硬化を行う
方法である。本発明における熱硬性樹脂としては、例え
ばフェノール樹脂,メラミン樹脂,フラン樹脂等が好ま
しく用いられる。かくして得られた含浸成形体は、リチ
ウムの担持に対して、電極のゆるみを抑止し得るもので
ある。また、該含浸成形体は場合により、不活性雰囲気
中(真空を含む)熱処理して用いることもできる。
[0008] PAS suggests that the aromatic polycyclic structure is moderately developed, and that the average distance of the planar polyacene skeleton structure is relatively large, so that PAS can stably carry lithium. If the H / C is less than 0.05, the structure of the base is likely to change when lithium is carried or when lithium is taken in and out (during charging and discharging), and the cycle characteristics deteriorate. When H / C exceeds 0.5, lithium cannot be stably supported.
A battery manufactured using a negative electrode having lithium supported thereon has a large self-discharge. The PAS in the present invention is manufactured in the form of powder, short fiber or the like or manufactured in an appropriate shape so as to be easily molded, and is processed into the form of powder, short fiber or the like.
Is used. In the method for producing a negative electrode according to the present invention, the PAS in the above-described form is mixed with a binder generally used for battery electrodes such as polytetrafluoroethylene, polyethylene, polypropylene, or the like, or kneaded and molded as necessary. Then, after obtaining a preformed body, the formed body is impregnated with a solution of an initial condensate of a thermosetting resin, and then dried and cured by heating or the like. As the thermosetting resin in the present invention, for example, phenol resin, melamine resin, furan resin and the like are preferably used. The impregnated molded body thus obtained can suppress the loosening of the electrode with respect to lithium loading. In addition, the impregnated molded body may be used after being heat-treated in an inert atmosphere (including a vacuum) in some cases.

【0009】例えば熱硬化性樹脂としてフェノール樹脂
を用いた場合、リチウムと反応し易い水酸基,カルボニ
ル基等が大量に存在し、リチウムを担持させる時に余分
なリチウムを必要とする為、加熱処理によりあらかじめ
これらの官能基を減少させておくことが有利である。加
熱温度は150℃以上、好ましくは250℃〜500℃
であり、高温になるにつれ、電極強度が低下し本発明本
来の効果が得にくくなる。本発明の負極における空孔体
積は、水銀圧入法(ポロシメーター)で測定される成形
体1ccあたりの100Å以上の空孔体積(cc)で規
定され、上記予備成形体の空孔体積をVa ,上記含浸成
形体の空孔体積をVb としたとき、
For example, when a phenol resin is used as the thermosetting resin, a large amount of hydroxyl groups, carbonyl groups, etc., which easily react with lithium are present, and extra lithium is required when carrying lithium. It is advantageous to keep these functional groups reduced. Heating temperature is 150 ° C or higher, preferably 250 ° C to 500 ° C
However, as the temperature increases, the strength of the electrode decreases, and it becomes difficult to obtain the original effect of the present invention. Pore volume in the negative electrode of the present invention is defined by the mercury porosimetry 100Å or more pore volume per shaped body 1cc measured in (porosimeter) (cc), the pore volume of the preform V a, When the pore volume of the impregnated molded body is Vb ,

【0010】Va <0.2(cc)の場合、いかに含浸
を工夫しても予備成形体自身の空孔体積が小さいことか
ら、含浸成形体の空孔体積もおのずと小さくなり、電極
活物質であるPAS近傍の電解液量が少ないことから、
急速充電性が悪くなる。 る様な含浸を行った場合、急速充電性が悪くなる。本発
明における含浸成形体中に占る熱硬化性樹脂の割合はP
ASの形状、PASの比表面積、担持させるリチウムの
量等により決定されるが、重量比で1%以 ある。この割合が1%未満の場合、たとえ空孔体積が本
発明の範囲内であったとしても、電極のゆるみを抑止す
る効果が小さく好ましくない。
[0010] For V a <0.2 (cc), since the pore volume of the preform itself be devised how impregnation is small, the pore volume of the impregnated molded body is also naturally reduced, the electrode active material Since the amount of electrolyte near the PAS is small,
Poor chargeability. When such impregnation is performed, quick chargeability is deteriorated. In the present invention, the proportion of the thermosetting resin in the impregnated molded article is P
It is determined by the shape of the AS, the specific surface area of the PAS, the amount of lithium to be supported, and the like. is there. If this ratio is less than 1%, even if the pore volume is within the range of the present invention, the effect of suppressing the loosening of the electrode is small, which is not preferable.

【0011】本発明の有機電解質電池に用いられる負極
は上述の方法で得られるPASの含浸成形体又は該成形
体の熱処理物にリチウムを担持せしめたものである。リ
チウムの担持の方法としては、電解法、気相法、液相
法、イオン注入法等公知の方法から適宜選択して行えば
よい。例えば電解法でリチウムを担持する場合は、リチ
ウムイオンを含む電解液中に、PAS成形体を作用電極
として浸漬し、同一電解液中の対極との間で、電流を流
すか、又は電圧を印加する。また上記成形体に適量のリ
チウム箔を直接接触させる方法によっても担持されるこ
とができる。気相法を用いる場合には、例えばリチウム
の蒸気に、PAS成形体を晒す。また液相法を用いる場
合は例えばリチウムイオンを含む錯体と不溶不融性基体
とを反応せしめる。この反応に用いる錯体としては、例
えばアルカリ金属のナフタレン錯体、アルコキシドなど
が挙げられるが、これらに限定されるものではない。上
記方法によってPASに担持せしめるリチウムの量はモ
ル百分率(PASの炭素原子1個に対するリチウムの数
の百分率)で表わして3%以上、好ましくは10%以上
である。リチウムの量はPASの比表面積によっても異
なり、リチウムを担持せしめたPAS成形体の電位がL
i/Li+ に対して1.0〜0Vになる様にリチウムを
担持させるのが望ましい。リチウムの量が少ない場合、
本発明の電池の容量が低下し、多い場合には過剰のリチ
ウムがPAS成形体表面に析出し、好ましくない。
The negative electrode used in the organic electrolyte battery of the present invention is obtained by supporting lithium on a PAS-impregnated compact obtained by the above-described method or a heat-treated product of the compact. The method for supporting lithium may be appropriately selected from known methods such as an electrolytic method, a gas phase method, a liquid phase method, and an ion implantation method. For example, when lithium is supported by an electrolytic method, the PAS molded body is immersed in an electrolyte containing lithium ions as a working electrode, and a current is applied or a voltage is applied between the counter electrode in the same electrolyte. I do. Further, it can also be supported by a method in which an appropriate amount of lithium foil is brought into direct contact with the above-mentioned molded body. When the gas phase method is used, the PAS compact is exposed to, for example, lithium vapor. When the liquid phase method is used, for example, a complex containing lithium ions is reacted with an insoluble and infusible substrate. Examples of the complex used in this reaction include, but are not limited to, an alkali metal naphthalene complex and an alkoxide. The amount of lithium supported on the PAS by the above method is 3% or more, preferably 10% or more, expressed as a molar percentage (percentage of the number of lithium to one carbon atom of the PAS). The amount of lithium also depends on the specific surface area of the PAS, and the potential of the PAS compact supporting lithium is L
It is desirable to support lithium so that i / Li + becomes 1.0 to 0 V. If the amount of lithium is small,
If the capacity of the battery of the present invention is reduced, and if the capacity is large, excessive lithium is undesirably deposited on the surface of the PAS molded body.

【0012】本発明に用いる電解液を構成する溶媒とし
ては非プロトン性有機溶媒を用いられる。非プロトン性
有機溶媒としては、例えばエチレンカーボネイト、プロ
ピレンカーボネイト、γ−ブチロラクトン、ジメチルホ
ルムアミド、ジメチルアセトアミド、ジメチルスルホキ
シド、アセトニトリル、ジメトキシエタン、テトラヒド
ロフラン、ジオキソラン、塩化メチレン、スルホラン又
はこれら非プロトン性有機溶媒の二種以上の混合液のい
ずれを使用してもよい。また、上記の混合又は単一の溶
媒に溶解させる電解質は、リチウムイオンを生成しうる
電解質のいずれでもよい。このような電解質は、例えば
LiI、LiClO4 、LiAsF6 、LiBF4 、又
はLiHF2 である。上記の電解質及び溶媒は十分に脱
水された状態で混合され、電解液とするのであるが、電
解液中の前期電解質の濃度は電解液による内部抵抗を小
さくするため少なくとも0.1モル/l以上とするのが
望ましく、通常0.2〜1.5モル/lとするのがより
好ましい。
An aprotic organic solvent is used as a solvent constituting the electrolytic solution used in the present invention. Examples of the aprotic organic solvent include, for example, ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolan, methylene chloride, sulfolane, or a mixture of these aprotic organic solvents. Any mixture of more than one species may be used. The electrolyte mixed or dissolved in a single solvent may be any electrolyte capable of generating lithium ions. Such an electrolyte is, for example, LiI, LiClO 4 , LiAsF 6 , LiBF 4 or LiHF 2 . The above electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolyte. The concentration of the electrolyte in the electrolyte is at least 0.1 mol / l or more in order to reduce the internal resistance due to the electrolyte. And more preferably 0.2 to 1.5 mol / l.

【0013】本発明の有機電解質電池の正極としては、
例えば後述する電気化学的にドーピング及びアンドーピ
ングできる導電性高分子体、金属酸化物などを用いるこ
とができる。電気化学的にドーピング及びアンドーピン
グできる導電性高分子としては、ポリアセチレン、ポリ
チオフェン、ポリアニリン及び芳香族系縮合ポリマーの
熱処理物であるポリアセン系有機半導体等がある。電極
材として用いる場合、安定性、及び成型体が実用上極め
て重要であり、この観点から、ポリアセン系有機半導体
及びアニリン類の重合物が特に好ましい。正極として好
ましく用いうる金属の酸化物は、リチウムイオンをイン
ターカレーション又はデインターカレーション(本発明
においてはドーピング又はアンドーピングと呼ぶ)によ
り可逆的に出入れできる、例えばバナジウム、クロム、
マンガンのごとき遷移金属の酸化物である。上記正極の
中で最も好ましいのは、ポリアセン系有機半導体である
(特開昭60−170163号公報)。該半導体は特に
安定性に優れており、又急速充電性に優れた正極である
こと、さらには該半導体を正極に用いることに4.0V
の電圧を有する高電圧の電池を作成することも可能であ
り、また繰り返し充放電による劣化もほとんどなく、サ
イクル特性に優れる電池が作成可能となる。電池外部に
電流を取り出すための集電体としてはドーピング剤及び
電解液に対し耐蝕性の導電物質、例えば炭素、白金、ニ
ッケル、ステンレス等を用いることが出来る。
As the positive electrode of the organic electrolyte battery of the present invention,
For example, a conductive polymer, metal oxide, or the like, which can be electrochemically doped and undoped, which will be described later, can be used. Examples of conductive polymers that can be electrochemically doped and undoped include polyacetylene, polythiophene, polyaniline, and polyacene-based organic semiconductors that are heat-treated aromatic condensation polymers. When used as an electrode material, stability and a molded body are extremely important in practical use, and from this viewpoint, a polymer of a polyacene-based organic semiconductor and an aniline is particularly preferable. Metal oxides which can be preferably used as the positive electrode can reversibly enter and leave lithium ions by intercalation or deintercalation (referred to as doping or undoping in the present invention), for example, vanadium, chromium,
An oxide of a transition metal such as manganese. The most preferable of the positive electrodes is a polyacene-based organic semiconductor (Japanese Patent Application Laid-Open No. Sho 60-170163). The semiconductor is particularly excellent in stability and is a positive electrode excellent in rapid chargeability.
It is also possible to produce a high-voltage battery having the following voltage, and there is almost no deterioration due to repeated charging and discharging, and a battery having excellent cycle characteristics can be produced. As a current collector for extracting a current to the outside of the battery, a conductive material having corrosion resistance to a doping agent and an electrolytic solution, for example, carbon, platinum, nickel, stainless steel, or the like can be used.

【0014】次に図面により本発明の実施態様の一例を
説明する。図1は本発明に係る電池の基本構成の説明図
である。図1において、(1)は正極であり、(2)は
負極である。(3),(3′)は集電体であり、各電極
及び外部端子(7),(7′)に電圧降下を生じないよ
うに接続されている。(4)は電解液であり、ドーピン
グされうるイオンを生成しうる前述の化合物が非プロト
ン性有機溶媒に溶解されている。電解液は通常液状であ
るが漏液を防止するためゲル状又は固体状にして用いる
こともできる。(5)は正負両極の接触を阻止する事及
び電解液を保持する事を目的として配置されたセパレー
ターである。該セパレーターは、電解液或は電極活物質
に対し、該セパレーターは電解液或はドーピング剤やア
ルカリ金属等の電極活物質に対し耐久性のある連通気孔
を有する電子伝導性のない多孔体であり、通常ガラス繊
維、ポリエチレン或はポリプロピレン等からなる布、不
織布或は多孔体が用いられる。セパレータの厚さは電池
の内部抵抗を小さくするため薄い方が好ましいが、電解
液の保持量、流通性、強度等を勘案して決定される。正
負極及びセパレータは電池ケース(6)内に実用上問題
が生じないように固定される。電極の形状、大きさ等は
目的とする電池の形状、性能により適宜決められる。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of a basic configuration of a battery according to the present invention. In FIG. 1, (1) is a positive electrode, and (2) is a negative electrode. (3) and (3 ') are current collectors, which are connected to each electrode and the external terminals (7) and (7') so as not to cause a voltage drop. (4) is an electrolytic solution in which the above-mentioned compound capable of generating ions that can be doped is dissolved in an aprotic organic solvent. The electrolyte is usually liquid, but may be used in a gel or solid state to prevent liquid leakage. (5) is a separator arranged for the purpose of preventing contact between the positive and negative electrodes and holding the electrolytic solution. The separator is a non-electron-conductive porous body having continuous air holes that are durable with respect to the electrolytic solution or the electrode active material such as a doping agent or an alkali metal. Usually, cloth, nonwoven fabric or porous body made of glass fiber, polyethylene or polypropylene is used. The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but is determined in consideration of the amount of retained electrolyte, flowability, strength, and the like. The positive and negative electrodes and the separator are fixed in the battery case (6) so that there is no practical problem. The shape, size, and the like of the electrode are appropriately determined depending on the shape and performance of the intended battery.

【0015】[0015]

【発明の効果】本発明の有機電解質電池はポリアセン系
骨格構造を含有する不溶不融性基体を特定の空孔体積を
持つように成形することによって得られる負極を用いる
ことにより、急速充電特性、長期サイクル特性に優れた
二次電池である。
The organic electrolyte battery of the present invention uses a negative electrode obtained by molding an insoluble and infusible substrate having a polyacene skeleton structure so as to have a specific pore volume, thereby achieving a rapid charge characteristic, A secondary battery with excellent long-term cycle characteristics.

【0016】[0016]

【実施例】【Example】

(1)予備成形体(PAS1,2,3)の製造 水溶性レゾール(約60%濃度)、塩化亜鉛及び水を重
量比で10:25:4の割合で混合した水溶液をフィル
ムアプリケーターでガラス板上に成膜した。次に成膜し
た水溶液上にガラスを被せ水分が蒸発しない様にした
後、約100℃の温度1時間加熱して硬化させた。該フ
ェノール樹脂フィルムをシリコニット電気炉中に入れ窒
素気流下で10℃/時間の速度で昇温して650℃まで
熱処理を行った。次に該熱処理物を希塩酸で洗った後、
水洗し、その後乾燥することにより、高比表面積のPA
Sフィルムを得た。このPASの(水素原子)/(炭素
原子)の原子比は0.17であり、BET法で測定し
た。比表面積は1840m2 /gであった。続いてこの
PASフィルムをディスクミルで粉砕し、粉砕時間を変
えることにより3種のPAS粉末を得た。このPAS粉
末100部に対してポリ四フッ化エチレン粉末8部を加
え十分混練した後シート状に成形することにより予備成
形体(PAS1,PAS2,PAS3)を得た。
(1) Production of preform (PAS1,2,3) A glass plate is prepared by mixing an aqueous solution obtained by mixing a water-soluble resol (about 60% concentration), zinc chloride and water at a weight ratio of 10: 25: 4 with a film applicator. A film was formed thereon. Next, a glass was put on the formed aqueous solution so that water did not evaporate, and then heated at a temperature of about 100 ° C. for 1 hour to be cured. The phenol resin film was placed in a siliconite electric furnace, and heated at a rate of 10 ° C./hour under a nitrogen stream to heat-treat to 650 ° C. Next, after washing the heat-treated product with dilute hydrochloric acid,
By washing with water and then drying, a high specific surface area PA
An S film was obtained. The (hydrogen atom) / (carbon atom) atomic ratio of this PAS was 0.17, and was measured by the BET method. The specific surface area was 1840 m 2 / g. Subsequently, this PAS film was pulverized with a disk mill, and three types of PAS powders were obtained by changing the pulverization time. To 100 parts of this PAS powder, 8 parts of polytetrafluoroethylene powder was added, kneaded well, and then formed into a sheet to obtain a preform (PAS1, PAS2, PAS3).

【0017】(2)空孔体積の測定 空孔体積はPORESIZER 9310(MICRO
MERITICS製、U.S.A)を用いポロシメータ
ーによる水銀圧入法により測定した。本発明では成形体
1(cc)あたりに含まれる100Å以上の細孔体積を
測定し、空孔体積とした。予備成形体PAS1〜3の空
孔体積Va を表1に示す。
(2) Measurement of Pore Volume The pore volume is PORESIZER 9310 (MICRO)
MERITICS, U.S.A. S. It measured by the mercury intrusion method with a porosimeter using A). In the present invention, the volume of pores of 100 ° or more contained per 1 (cc) of the molded body was measured and defined as the pore volume. The pore volume V a of the preform PAS1~3 shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】(3)含浸成形体の製造 予備成形体PAS1〜3を、表2に示す所定の濃度のレ
ゾール型フェノール樹脂初期縮合物のメタノール溶液に
約10分間つけることにより、含浸を行った。続いて1
00℃の温度で約2時間乾燥硬化することにより含浸成
形体を得た。空孔体積を上記(2)の方法で測定した結
果を表2に示す。
(3) Production of Impregnated Molded Articles The preformed articles PAS1 to 3 were impregnated by dipping them in a methanol solution of a resol-type phenolic resin precondensate having a predetermined concentration shown in Table 2 for about 10 minutes. Then 1
By drying and curing at a temperature of 00 ° C. for about 2 hours, an impregnated molded body was obtained. Table 2 shows the results of measuring the pore volume by the method (2).

【0020】(4)正極の製造 水溶性レゾール(約60%濃度)、塩化亜鉛及び水を重
量比で10:25:4の割合で混合した水溶液をフィル
ムアプリケーターでガラス板上に成膜した。次に成膜し
た水溶液上にガラスを被せ水分が蒸発しない様にした
後、約100℃の温度1時間加熱して硬化させた。該フ
ェノール樹脂フィルムをシリコニット電気炉中に入れ窒
素気流下で40℃/時間の速度で昇温して、500℃ま
で熱処理を行った。次に該熱処理物を希塩酸で洗った
後、水洗し、その後乾燥することによって不溶不融性基
体を得た。該基体の(水素原子)/(炭素原子)=0.
25、BET法による比表面積は2100m2 /gであ
った。該不溶不融性基体をディスクミルで粉砕した粉末
100部、アセチレンブラック15部、四フッ化エチレ
ン粉末10部を充分に混練後、ローラーを用いて約50
0μのフィルムに成形した。
(4) Production of Positive Electrode An aqueous solution in which a water-soluble resol (about 60% concentration), zinc chloride and water were mixed at a weight ratio of 10: 25: 4 was formed on a glass plate using a film applicator. Next, a glass was put on the formed aqueous solution so that water did not evaporate, and then heated at a temperature of about 100 ° C. for 1 hour to be cured. The phenol resin film was placed in a siliconite electric furnace, heated at a rate of 40 ° C./hour under a nitrogen stream, and heat-treated to 500 ° C. Next, the heat-treated product was washed with diluted hydrochloric acid, washed with water, and then dried to obtain an insoluble and infusible substrate. (Hydrogen atom) / (carbon atom) = 0.
25. The specific surface area measured by the BET method was 2100 m 2 / g. After 100 parts of the powder obtained by pulverizing the insoluble and infusible substrate with a disk mill, 15 parts of acetylene black, and 10 parts of ethylene tetrafluoride powder were sufficiently kneaded, the mixture was rolled using a roller for about 50 parts.
Formed into a 0μ film.

【0021】(5)電池の作成 下表2No.1〜No.7の含浸成形体それぞれについ
て電池を作成した。含浸成形体へのLiの担持は電気化
学的手法を用いた。用いた電気化学セルは含浸成形体を
作用極とし、リチウム金属を対極及び参照極とし、十分
に脱水したプロピレンカーボネートにLiClO4 を溶
解させた1モル/lの溶液を電解液とした。リチウムに
対して0.2Vの電圧を12時間印加することにより、
リチウムを担持させた。リチウムの担持量は電気化学セ
ルに流れた電流を積算することによって求めた。No.
1〜No.7のリチウムの担持率は表2に示す。かくし
て得られた7種の負極と(5)で得られた正極を組合せ
て図1のように電池を組んだ。集電体としてはステンレ
ス金網を用い、セパレーターとしてはガラス繊維からな
るフェルトを用いた。また電解液としては1モル/l
LiClO4 −プロピレンカーボネート溶液を用い電池
を組んだ。電池の初期電圧はいずれの場合も約2.7V
であった。
(5) Preparation of Battery No. 2 in Table 2 below 1 to No. A battery was prepared for each of the 7 impregnated molded bodies. The electrochemical method was used to carry Li on the impregnated molded body. In the electrochemical cell used, the impregnated molded body was used as a working electrode, lithium metal was used as a counter electrode and a reference electrode, and a 1 mol / l solution of LiClO 4 dissolved in sufficiently dehydrated propylene carbonate was used as an electrolyte. By applying a voltage of 0.2 V to lithium for 12 hours,
Lithium was supported. The amount of lithium carried was determined by integrating the current flowing through the electrochemical cell. No.
1 to No. Table 2 shows the loading ratio of lithium of No. 7. A battery was assembled as shown in FIG. 1 by combining the seven types of negative electrodes thus obtained and the positive electrode obtained in (5). A stainless steel wire mesh was used as a current collector, and a felt made of glass fiber was used as a separator. 1 mol / l as electrolyte
A battery was assembled using the LiClO 4 -propylene carbonate solution. The initial voltage of the battery is about 2.7 V in each case
Met.

【0022】(6)急速充電性の測定 上記電池に外部電源より4.0Vの電圧を約12時間印
加し、充電を行ない、次いで1mA/cm2 の電流密度
で2.0Vまで放電し、初期容量を求めた。続いて充電
時間を30分とし、同様の測定を行い、急速充電時容量
とした。急速充電率を(急速充電時容量)/(初期容
量)の比として算出して表2に示した。
(6) Measurement of rapid chargeability A voltage of 4.0 V was applied to the above-mentioned battery from an external power source for about 12 hours to perform charging, and then discharged at a current density of 1 mA / cm 2 to 2.0 V. The capacity was determined. Subsequently, the charging time was set to 30 minutes, and the same measurement was performed to obtain the capacity at the time of quick charging. The quick charge rate was calculated as a ratio of (capacity during quick charge) / (initial capacity) and is shown in Table 2.

【0023】[0023]

【表2】 [Table 2]

【0024】 .5については、急速充電性が0.7以下と低いことが
わかる。
[0024] . As for No. 5, it can be seen that the quick chargeability is as low as 0.7 or less.

【0025】[0025]

【図面の簡単な説明】 図1は本発明に係る電池の基本構成の説明図であり、
(1)は正極、(2)負極、(3),(3′)は集電
体、(4)は電解液、(5)はセパレーター、(6)電
池ケース、(7),(7′)は外部端子を表わす。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of a basic configuration of a battery according to the present invention.
(1) is a positive electrode, (2) a negative electrode, (3) and (3 ') are current collectors, (4) is an electrolyte, (5) is a separator, (6) a battery case, (7) and (7'). ) Indicates an external terminal.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極,負極並びに電解液としてリチウム
塩の非プロトン性有機溶媒溶液を備えた有機電解質電池
であって、負極が炭素,水素,酸素より成る芳香族系縮
合ポリマーの熱処理物である水素原子/炭素原子の原子
比が0.5〜0.05であるポリアセン系骨格構造を含
有する不溶不融性基体をバインダーを用いて成形した
後、熱硬化性樹脂溶液を含浸,硬化して得られる成形体
にリチウムをモル百分率で3%以上担持させたものであ
り、かつ上記成形体が下記式を満足することを特徴とす
る有機電解質電池。 Va ≧0.2(cc) (ただし、Va :不溶不融性基体をバインダーで成形し
た成形体1ccあたりの100Å以上の空孔体積 Vb :熱硬化性樹脂溶液を含浸,硬化した後の成形体1
ccあたりの100Å以上の空孔体積)
1. An organic electrolyte battery comprising a positive electrode, a negative electrode and a solution of a lithium salt in an aprotic organic solvent as an electrolytic solution, wherein the negative electrode is a heat-treated product of an aromatic condensation polymer comprising carbon, hydrogen and oxygen. An insoluble and infusible substrate containing a polyacene-based skeleton having an atomic ratio of hydrogen atom / carbon atom of 0.5 to 0.05 is molded using a binder, and then impregnated with a thermosetting resin solution and cured. An organic electrolyte battery, wherein lithium is supported on the obtained molded body in a molar percentage of 3% or more, and the molded body satisfies the following formula. V a ≧ 0.2 (cc) (However, V a : a void volume of 100 ° or more per 1 cc of a molded article obtained by molding an insoluble and infusible substrate with a binder V b : a molded article 1 after impregnating and curing a thermosetting resin solution
Pore volume of more than 100mm per cc)
JP3204772A 1991-07-19 1991-07-19 Organic electrolyte battery Expired - Fee Related JP2646462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3204772A JP2646462B2 (en) 1991-07-19 1991-07-19 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3204772A JP2646462B2 (en) 1991-07-19 1991-07-19 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH0528987A JPH0528987A (en) 1993-02-05
JP2646462B2 true JP2646462B2 (en) 1997-08-27

Family

ID=16496094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3204772A Expired - Fee Related JP2646462B2 (en) 1991-07-19 1991-07-19 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP2646462B2 (en)

Also Published As

Publication number Publication date
JPH0528987A (en) 1993-02-05

Similar Documents

Publication Publication Date Title
JPS63314762A (en) Organic electrolyte cell using aluminum-lithium alloy as negative electrode
JP2574730B2 (en) Organic electrolyte battery
JP3403856B2 (en) Organic electrolyte battery
JP2968097B2 (en) Organic electrolyte battery
JP2920079B2 (en) Organic electrolyte battery
JP2646462B2 (en) Organic electrolyte battery
JPH08162161A (en) Organic electrolytic battery
JP2632427B2 (en) Organic electrolyte battery
JP2646461B2 (en) Organic electrolyte battery
JPH05159807A (en) Manufacture of organic electrolyte battery
JP2574731B2 (en) Organic electrolyte battery
JPH08162159A (en) Organic elctrolytic battery
JP2869355B2 (en) Organic electrolyte battery
JP2912517B2 (en) Organic electrolyte battery
JP2869354B2 (en) Organic electrolyte battery
JP3403894B2 (en) Organic electrolyte battery
JP2588405B2 (en) Organic electrolyte battery using high concentration mixed solute
JP2619842B2 (en) Organic electrolyte battery
JPH09102301A (en) Organic electrolyte battery
JP2920070B2 (en) Organic electrolyte battery
JP2616775B2 (en) Organic electrolyte battery with ternary composite as cathode
JPS63301465A (en) Organic electrolyte battery with composite matter of aniline as positive electrode
JP2601784B2 (en) Organic electrolyte battery
JP2869191B2 (en) Organic electrolyte battery
JP2588404B2 (en) Organic electrolyte battery

Legal Events

Date Code Title Description
S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees