WO2022239746A1 - Binder for silicon negative electrode of lithium ion secondary battery - Google Patents

Binder for silicon negative electrode of lithium ion secondary battery Download PDF

Info

Publication number
WO2022239746A1
WO2022239746A1 PCT/JP2022/019708 JP2022019708W WO2022239746A1 WO 2022239746 A1 WO2022239746 A1 WO 2022239746A1 JP 2022019708 W JP2022019708 W JP 2022019708W WO 2022239746 A1 WO2022239746 A1 WO 2022239746A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
negative electrode
electrode
bisiminoacenaphthene
lithium ion
Prior art date
Application number
PCT/JP2022/019708
Other languages
French (fr)
Japanese (ja)
Inventor
紀佳 松見
ラージャシェーカル バダム
アグマン グプタ
Original Assignee
国立大学法人北陸先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北陸先端科学技術大学院大学 filed Critical 国立大学法人北陸先端科学技術大学院大学
Priority to JP2023521017A priority Critical patent/JPWO2022239746A1/ja
Publication of WO2022239746A1 publication Critical patent/WO2022239746A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder for silicon negative electrodes of lithium ion secondary batteries. More specifically, the present invention relates to a binder for a silicon negative electrode of a lithium ion secondary battery, a bisiminoacenaphthene crosslinked polymer that can be suitably used as a binder for a silicon negative electrode of the lithium ion secondary battery, a method for producing the same, and the silicon.
  • the present invention relates to a silicon negative electrode containing a negative electrode binder and a lithium ion secondary battery containing the silicon negative electrode.
  • Graphite is generally used as the negative electrode active material for lithium-ion secondary batteries.
  • the theoretical capacity of graphite filled with lithium ions is 372 mAh/g
  • the use of silicon particles, which have a much higher theoretical capacity than graphite, as a negative electrode active material has been studied in recent years.
  • a negative electrode active material that prevents electrical isolation of silicon particles due to expansion and contraction of silicon particles
  • scaly silicon particles adhere to the surface of a carbon substrate, and part of the scaly silicon particles is the carbon group.
  • a binder for a silicon negative electrode of a lithium ion secondary battery that sticks into a material has been proposed (see, for example, claim 1 of Patent Document 1).
  • the negative electrode active material is said to prevent electrical isolation of the silicon particles due to expansion and contraction of the silicon particles, but the initial discharge capacity is about 800 mAh/g (see FIG. 12 of Patent Document 1, for example). .
  • the present invention has been made in view of the above-mentioned prior art, and is suitable for use as a binder for a silicon negative electrode that provides a lithium ion secondary battery with excellent durability to charge and discharge and a high discharge capacity, and the binder for a silicon negative electrode. and a method for producing the same, a silicon negative electrode containing the binder for a silicon negative electrode, and a lithium ion secondary battery containing the silicon negative electrode.
  • Z represents a divalent organic group
  • a bisiminoacenaphthene polymer having a repeating unit represented by the formula (I) is subjected to a cross-linking reaction with a compound forming the linking group Y:
  • a binder for a silicon negative electrode of a lithium ion secondary battery comprising a bisiminoacenaphthene crosslinked polymer in which a repeating unit represented by the following is crosslinked with another repeating unit represented by the formula (I) via a linking group Y , (4) A silicon negative electrode for a lithium ion secondary battery, wherein the silicon negative electrode has the formula (I):
  • X - is a monovalent anion
  • Y is a linking group
  • Z is a divalent organic group
  • a repeating unit represented by the other formula (I) are crosslinked through a linking group Y, a lithium ion binder for a silicon negative electrode containing a bisiminoacenaphthene crosslinked polymer.
  • silicon negative electrodes for secondary batteries (5) The silicon negative electrode for a lithium ion secondary battery according to (4) above, wherein the half-cell open-circuit potential of the silicon negative electrode is 2.0 V or higher.
  • a lithium ion secondary battery having a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, wherein the negative electrode is the silicon for lithium ion secondary battery according to (4) or (5) above.
  • the lithium ion secondary battery according to (6) above which has an initial discharge capacity of 2500 mAh or more per 1 g of silicon.
  • a bisimino that can be suitably used as a binder for a silicon negative electrode that provides a lithium ion secondary battery with excellent durability against charging and discharging and a high discharge capacity, and a binder for a silicon negative electrode of the lithium ion secondary battery.
  • an acenaphthene crosslinked polymer a method for producing the same, a silicon negative electrode containing the binder for a silicon negative electrode, and a lithium ion secondary battery containing the silicon negative electrode.
  • FIG. 1 is a graph showing a Fourier transform infrared (FT-IR) spectrum of the bisiminoacenaphthene polymer obtained in Preparation Example 1.
  • FIG. 1 is a graph showing the 1 H-NMR spectrum of the bisiminoacenaphthene crosslinked polymer obtained in Example 1.
  • FIG. 1 is a graph showing the Fourier transform infrared (FT-IR) spectra of the bisiminoacenaphthene polymer obtained in Preparation Example 1 and the bisiminoacenaphthene crosslinked polymer obtained in Example 1.
  • FT-IR Fourier transform infrared
  • FIG. 1 is a graph showing an X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene crosslinked polymer obtained in Example 1.
  • FIG. 4 is a graph showing an X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene crosslinked polymer obtained in Example 2.
  • FIG. 4 is a graph showing an X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene crosslinked polymer obtained in Example 3.
  • FIG. 4 is a graph showing an X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene crosslinked polymer obtained in Example 4.
  • FIG. 4 is a graph showing an X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene crosslinked polymer obtained in Example 4.
  • 4 is a graph showing the results of electrical conductivity measurements using negative half-cells in which Electrode A, Electrode B, or Electrode C is used. 4 is a graph showing the results of cyclic voltammetry measurements using negative half-cells in which electrode A, electrode B, or electrode C is used. (a) is a graph showing the results of measuring cyclic voltammetry when the scanning speed is changed using a negative half-cell using electrode A; (b) is a graph showing the results of measuring the negative half-cell using electrode A 2 is a graph showing the results of examining the relationship between the scanning speed of cyclic voltammetry and the maximum current value.
  • (a) is a graph showing the results of examining cycle stability using negative half-cells using electrode A, electrode B, or electrode C;
  • (c) shows the results of charge-discharge efficiency investigation using negative half-cells using electrode A, electrode B, or electrode C.
  • graph. (a) is a graph showing the Nyquist plot of the negative half-cell using electrode A, (b) is a graph showing the Nyquist plot of the negative half-cell using electrode B, and (c) is a graph showing the Nyquist plot of the negative half-cell using electrode C.
  • FIG. 2 is a graph showing a Nyquist plot of a negative electrode half-cell; (a) and (b) are graphs showing the dynamic impedance of the negative half-cell using electrode A, (c) and (d) showing the dynamic impedance of the negative half-cell using electrode B. Graphs (e) and (f) show the dynamic impedance of a negative half-cell in which electrode C is used.
  • 1 is a graph showing impedance versus potential at the solid electrolyte interface (SEI) of a negative half-cell in which Electrode A, Electrode B or Electrode C is used; 3 is a drawing-substituting scanning electron micrograph of the surfaces of electrode A and electrode B.
  • SEI solid electrolyte interface
  • the repeating unit represented by and other repeating units represented by the formula (I) are crosslinked via the linking group Y.
  • the repeating unit represented by formula (I) may be the same as another repeating unit represented by formula (I) that is bonded to the repeating unit represented by formula (I) via a linking group, can be different.
  • the bisiminoacenaphthene crosslinked polymer of the present invention is a compound useful as a binder for silicon negative electrodes of lithium ion secondary batteries.
  • a bisiminoacenaphthene crosslinked polymer as a binder for a silicon negative electrode of a lithium-ion secondary battery, not only is it possible to increase the discharge capacity of the lithium-ion secondary battery, but also the durability of the lithium-ion secondary battery to charging and discharging. can be improved.
  • X - is a monovalent anion.
  • monovalent anions include Cl- , Br-, I- , PF6- , ClO4- , NO3- , BF4- , SCN- , CN- , CH3COO- , CH3CH2 COO ⁇ , NO 3 ⁇ , CF 3 COO ⁇ , CF 3 CF 2 COO ⁇ , nitrite ion, hypochlorite ion, chlorite ion, chlorate ion, perchlorate ion, permanganate ion, hydrogen carbonate ion, dihydrogen phosphate ion, hydrogen sulfide ion, thiocyanate ion, sulfonate ion, phenoxide ion, trifluoromethanesulfonyl ion, bis(fluorosulfonyl)imide ion, tetrafluoroborate i
  • halogenide ions are preferable, and Cl - , Br - or I - , more preferably Cl - or Br - , even more preferably Br - .
  • X is preferably a halogen atom, such as a chlorine atom, a bromine atom, or an iodine atom, from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging. More preferably a chlorine atom or a bromine atom, and even more preferably a bromine atom.
  • halogen atoms may be used alone, or two or more of them may be used in combination.
  • Y is a linking group. More specifically, Y binds the repeating unit represented by formula (I) to another repeating unit represented by formula (I) adjacent to the repeating unit represented by formula (I). is the basis of In the bisiminoacenaphthene crosslinked polymer of the present invention, a repeating unit represented by the formula (I) and a repeating unit represented by another formula (I) different from the repeating unit represented by the formula (I) are combined into a linking group Y It has a crosslinked structure because it is bound via
  • linking group Y is a linking group for linking the repeating unit represented by the formula (I) with another repeating unit represented by the formula (I), the repeating unit represented by the formula (I) and other exists between the repeating unit represented by the formula (I).
  • the linking group Y includes a divalent group.
  • a divalent group is a group having two bonds.
  • the divalent group may be a divalent organic group or a divalent inorganic group.
  • a divalent organic group is preferred because it facilitates preparation of the bisiminoacenaphthene crosslinked polymer.
  • a divalent organic group is an organic group having two bonds.
  • the divalent organic groups from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging, even if it has a substituent and / or a hetero atom A good divalent hydrocarbon group is preferred.
  • divalent hydrocarbon groups which may have a substituent and/or a hetero atom
  • the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging From a divalent aliphatic group optionally having a substituent and / or a hetero atom, an oxyalkylene group optionally having a substituent such as an oligooxyethylene group, an oligooxypropylene group, and a substituent and/or a divalent aromatic group optionally having a heteroatom is preferred.
  • divalent aliphatic groups include methylene group, ethylene group, n-propylene group, isopropylene group, n-butylene group, sec-butylene group, tert-butylene group, isobutylene group, 2-ethylbutylene group, 3,3-dimethylbutylene group, n-pentylene group, isopentylene group, neopentylene group, tert-pentylene group, cyclopentylene group, 1-methylpentylene group, 3-methylpentylene group, 2-ethylpentylene group, 4-methyl-2-pentylene group, n-hexylene group, 1-methylhexylene group, 2-ethylhexylene group, 2-butylhexylene group, cyclohexylene group, 4-methylcyclohexylene group, 4-tert- butylcyclohexylene group, n-heptylene group, 1-methylheptylene group,
  • substituents include halogen atoms, cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups, cyclic ether groups, heteroatoms, hydroxyl groups, carboxyl groups, carbonyl groups, mercapto groups, sulfonyl groups, sulfinyl groups, silyl groups, siloxanyl groups, alkenyl groups, alkoxy groups, and the like.
  • substituents cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups and cyclic ether groups are preferred.
  • heteroatom include boron atom, oxygen atom, nitrogen atom, phosphorus atom, silicon atom, sulfur atom and the like.
  • divalent aromatic groups examples include arylene groups such as phenylene groups, naphthylene groups, fluorenylene groups, anthracenylene groups, phenanthrylene groups, and biphenylylene groups.
  • Arylene groups include halogen atoms, cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups, cyclic ether groups, hetero atoms, hydroxyl groups, carboxyl groups, carbonyl groups, mercapto groups, sulfonyl groups, sulfinyl groups, and silyl groups. , a siloxanyl group, an alkenyl group, and an alkoxy group.
  • substituents cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups and cyclic ether groups are preferred.
  • halogen atoms include fluorine, chlorine, bromine and iodine atoms.
  • heteroatom include boron atom, oxygen atom, nitrogen atom, phosphorus atom, silicon atom, sulfur atom and the like.
  • aromatic groups from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability against charge and discharge of the lithium ion secondary battery, an alkylene group that may have a substituent, a substituent and an arylene group optionally having a substituent are preferred, an alkylene group having 1 to 12 carbon atoms, an oxyalkylene group having 2 to 4 carbon atoms and 6 to 12 carbon atoms is more preferred, an alkylene group having 1 to 12 carbon atoms, an oligooxyethylene group and an oligooxypropylene group are more preferred, and an alkylene group having 4 to 12 carbon atoms is even more preferred.
  • cyano group, dialkylamino group, alkoxy group, nitro group, cycloalkyl group from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability against charge and discharge of the lithium ion secondary battery.
  • groups and cyclic ether groups are preferred.
  • the divalent organic group is a divalent hydrocarbon group which may have a substituent from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging. is preferably
  • divalent hydrocarbon groups which may have a substituent, a substituent and A divalent aliphatic group optionally having/or a heteroatom and a divalent aromatic group optionally having a substituent and/or a heteroatom are preferred.
  • divalent aliphatic groups include methylene group, ethylene group, n-propylene group, isopropylene group, n-butylene group, sec-butylene group, tert-butylene group, isobutylene group, 2-ethylbutylene group, 3,3-dimethylbutylene group, n-pentylene group, isopentylene group, neopentylene group, tert-pentylene group, cyclopentylene group, 1-methylpentylene group, 3-methylpentylene group, 2-ethylpentylene group, 4-methyl-2-pentylene group, n-hexylene group, 1-methylhexylene group, 2-ethylhexylene group, 2-butylhexylene group, cyclohexylene group, 4-methylcyclohexylene group, 4-tert- butylcyclohexylene group, n-heptylene group, 1-methylheptylene group,
  • the alkylene group may have an alicyclic structure.
  • Alkylene groups include halogen atoms, cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups, cyclic ether groups, hetero atoms, hydroxyl groups, carboxyl groups, carbonyl groups, mercapto groups, sulfonyl groups, sulfinyl groups, and silyl groups. , a siloxanyl group, an alkenyl group, and an alkoxy group.
  • substituents cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups and cyclic ether groups are preferred.
  • the heteroatom include boron atom, oxygen atom, nitrogen atom, phosphorus atom, silicon atom, sulfur atom and the like.
  • divalent aromatic groups examples include arylene groups such as phenylene groups, naphthylene groups, fluorenylene groups, anthracenylene groups, phenanthrylene groups, and biphenylylene groups.
  • Arylene groups include halogen atoms, cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups, cyclic ether groups, hydroxyl groups, carboxyl groups, carbonyl groups, mercapto groups, sulfonyl groups, sulfinyl groups, silyl groups, and siloxanyl groups. , an alkenyl group, or an alkoxy group.
  • cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups and cyclic ether groups are preferred.
  • halogen atoms include fluorine, chlorine, bromine and iodine atoms.
  • heteroatom include boron atom, oxygen atom, nitrogen atom, phosphorus atom, silicon atom, sulfur atom and the like.
  • halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are used from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging.
  • a cyano group, a dialkylamino group, an alkoxy group, a nitro group, a cycloalkyl group, and a cyclic ether group are preferred.
  • R 1 and R 2 each independently represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group; R 7 is a direct bond; indicates a divalent aliphatic hydrocarbon group, ether bond, amide bond, ester bond or thio group
  • An arylene group represented by and the like can be mentioned. These arylene groups may be used alone or in combination.
  • R 1 and R 2 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group. Both R 1 and R 2 are preferably hydrogen atoms from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging.
  • R3 , R4 , R5 and R6 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group.
  • R 3 , R 4 , R 5 and R 6 are all preferably hydrogen atoms from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging.
  • R7 is a direct bond, a divalent aliphatic hydrocarbon group, an ether bond, an amide bond, an ester bond or a thio group.
  • R 7 is preferably a direct bond, a methylene group, an ether bond, an amide bond or an ester bond from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging. preferable.
  • the alkylene group optionally having a substituent is the formula (V):
  • R 8 and R 9 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group, and m is an integer of 1 to 12
  • a group represented by and the like can be mentioned.
  • R 8 and R 9 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group, and among these, a hydrogen atom is preferred.
  • m is preferably an integer of 1-12, more preferably an integer of 4-12.
  • Z has an optionally substituted arylene group and a substituent from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charge and discharge.
  • An arylene group having 6 to 16 carbon atoms which may be substituted and an alkylene group having 4 to 8 carbon atoms which may have a substituent are more preferable, and an arylene group having 6 to 12 carbon atoms which may have a substituent.
  • a phenylene group which may have a substituent is more preferred, and a phenylene group is particularly preferred.
  • the average molecular weight (for example, weight average molecular weight, number average molecular weight, etc.) of the bisiminoacenaphthene crosslinked polymer can be measured by gel permeation chromatography. Have difficulty.
  • the number average molecular weight of the bisiminoacenaphthene crosslinked polymer can be estimated based on the amount of the compound forming the linking group Y such as the bisiminoacenaphthene polymer having a repeating unit represented by and the dihalogenated organic compound.
  • the number average molecular weight of the bisiminoacenaphthene crosslinked polymer estimated based on the amount of the compound forming the linking group Y such as the bisiminoacenaphthene polymer having a repeating unit represented by formula (II) and the dihalogenated organic compound is , from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging, it is preferably 10,000 to 100,000.
  • a bisiminoacenaphthene polymer having a repeating unit represented by formula (II) can be used as a starting material for the bisiminoacenaphthene crosslinked polymer of the present invention.
  • a bisiminoacenaphthene polymer having a repeating unit represented by formula (II) can be prepared by reacting acenaphthenequinone with an organic diamine compound. More specifically, the bisiminoacenaphthene polymer is prepared, for example, by suspending acenaphthenequinone in an organic solvent such as acetonitrile, adding acetic acid to the resulting suspension, and adding an organic diamine compound to the resulting mixture. can be easily prepared by adding and polycondensing acenaphthenequinone and an organic diamine compound.
  • organic diamine compounds include aromatic diamine compounds that may have substituents, aliphatic diamine compounds that may have substituents, and the like.
  • the aliphatic diamine compound may have an alicyclic structure.
  • the substituent include halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a cyano group, a dialkylamino group, an alkoxy group, a nitro group, a cycloalkyl group, and a cyclic ether group.
  • the invention is not limited to only such examples.
  • aromatic diamine compounds having 6 to 12 carbon atoms which may have a substituent are preferred.
  • aromatic diamine compounds represented by aromatic diamine compounds
  • aromatic diamine compounds may be used alone or in combination of two or more.
  • R 1 and R 2 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group. Both R 1 and R 2 are preferably hydrogen atoms from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging.
  • R3 , R4 , R5 and R6 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group.
  • R 3 , R 4 , R 5 and R 6 are all preferably hydrogen atoms from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging.
  • R7 is a direct bond, a divalent aliphatic hydrocarbon group, an ether bond, an amide bond, an ester bond or a thio group.
  • R 7 is preferably a direct bond, a methylene group, an ether bond, an amide bond or an ester bond from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging.
  • aromatic diamine compounds which may have a substituent aromatic diamine compounds represented by formula (VI) are preferred, phenylenediamine is more preferred, and p-phenylenediamine is even more preferred.
  • R 8 and R 9 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group, among which a hydrogen atom is preferred.
  • m is preferably an integer of 1-12, more preferably an integer of 4-12.
  • aliphatic diamine compounds include linear aliphatic diamine compounds such as 1,2-ethylenediamine, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-hexamethylenediamine, and 1,10-diaminodecane.
  • branched chain aliphatic diamine compounds such as 1,2-diamino-2-methylpropane, 2,3-diamino-2,3-butane and 2-methyl-1,5-diaminopentane; 1,4-diaminocyclohexane,
  • Examples include alicyclic diamine compounds such as 1,3-bis(aminomethyl)cyclohexane and 1,4-bis(aminomethyl)cyclohexane, but the present invention is not limited to these examples.
  • the number average molecular weight of the bisiminoacenaphthene polymer having the repeating unit represented by formula (II) is, from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging, It is preferably between 10,000 and 100,000.
  • the bisiminoacenaphthene crosslinked polymer of the present invention can be obtained, for example, by dissolving a bisiminoacenaphthene polymer having a repeating unit represented by formula (II) in an organic solvent such as N-methylpyrrolidone (NMP), and the resulting solution is A compound that forms the linking group Y is added to the solution while stirring under reflux in an inert gas atmosphere such as nitrogen gas or argon gas to separate the biiminoacenaphthene polymer and the compound that forms the linking group Y. It can be obtained by reacting.
  • NMP N-methylpyrrolidone
  • the compound forming the linking group Y may be an organic compound or an inorganic compound.
  • the compound forming the linking group Y is preferably an organic compound, since the bisiminoacenaphthene crosslinked polymer can be easily prepared.
  • a hydrocarbon optionally having a substituent and/or a hetero atom
  • They are preferably compounds, more preferably aliphatic compounds which may have substituents and/or heteroatoms, and aromatic compounds which may have substituents and/or heteroatoms.
  • Examples of compounds forming the linking group Y include formula (IX): X1 - Y - X2 (IX) (Wherein, X 1 and X 2 each independently represent a group that generates a monovalent anion, and Y is the same as above) The compound represented by is mentioned. X 1 may be the same as or different from X 2 .
  • Examples of X 1 and X 2 each independently include a halogen atom, PF 6 -, ClO 4 -, NO 3 -, BF 4 -, SCN-, CN-, CH 3 COO- group, CH 3 CH 2 COO-- group, NO 3 -- group, CF 3 COO-- group, CF 3 CF 2 CO-- group, nitrite group, hypochlorous acid group, chlorous acid group, chloric acid group, perchlorate acid group, permanganate group, hydrogen carbonate group, dihydrogen phosphate group, hydrogen sulfide group, thiocyanate group, sulfonic acid group, phenoxide group, trifluoromethanesulfonyl group, bis(fluorosulfonyl)imide group, tetrafluoroborate group , a tetraarylborate group, a hexafluoroantimonate group, and the like.
  • X 1 and X 2 from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging, it is preferably a halogen atom, such as a chlorine atom and a bromine atom. Or it is more preferably an iodine atom.
  • Y is the same as above.
  • aliphatic compounds forming the linking group Y include methane, ethane, n-propane, isopropane, n-butane, sec-butane, tert-butane, isobutane, 2-ethylbutane, and 3,3-dimethylbutane.
  • n-pentane isopentane, neopentane, tert-pentane, cyclopentane, 1-methylpentane, 3-methylpentane, 2-ethylpentane, 4-methyl-2-pentane, n-hexane, 1-methylhexane, 2- ethylhexane, 2-butylhexane, cyclohexane, 4-methylcyclohexane, 4-tert-butylcyclohexane, n-heptane, 1-methylheptane, 2,2-dimethylheptane, 2-ethylheptane, 2-butylheptane, n- Octane, tert-octane, 2-ethyloctane, 2-butyloctane, 2-hexyloctane, 3,7-dimethyloctane, cyclooctane, n-nonane,
  • heteroatom examples include boron atom, oxygen atom, nitrogen atom, phosphorus atom, silicon atom, sulfur atom and the like.
  • substituents include cyano group, dialkylamino group, alkoxy group, nitro group, cycloalkyl group, cyclic ether group, hetero atom, hydroxyl group, carboxyl group, carbonyl group, mercapto group, sulfonyl group, sulfinyl group, and silyl. groups, siloxanyl groups, alkenyl groups, alkoxy groups, and the like.
  • cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups and cyclic ether groups are preferred.
  • heteroatom include boron atom, oxygen atom, nitrogen atom, phosphorus atom, silicon atom, sulfur atom and the like.
  • aromatic compounds that form the linking group Y include dihalides of aromatic compounds such as benzene, naphthalene groups, fluorene, anthracene, phenanthrene, and biphenylene.
  • Dihalides of aromatic compounds include cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups, cyclic ether groups, heteroatoms, hydroxyl groups, carboxyl groups, carbonyl groups, mercapto groups, sulfonyl groups, sulfinyl groups, and silyl groups. may have substituents such as groups, siloxanyl groups, alkenyl groups and alkoxy groups. Among the substituents, cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups and cyclic ether groups are preferred.
  • the halogen atoms include fluorine, chlorine, bromine and iodine atoms.
  • the heteroatom include boron atom, oxygen atom, nitrogen atom, phosphorus atom, silicon atom, sulfur atom and the like.
  • dihalides of aliphatic compounds which may have substituents and/or heteroatoms
  • dihalides of aromatic compounds which may have substituents and/or heteroatoms
  • lithium ion secondary a dihalide of an aliphatic compound which may have a substituent, an oxy which may have a substituent Alkylene dihalides and dihalides of optionally substituted aromatic compounds are preferred, dihalides of aliphatic compounds having 1 to 12 carbon atoms, dihalides of oxyalkylene having 2 to 4 carbon atoms and carbon More preferred are dihalides of aromatic compounds having 6 to 12 carbon atoms, more preferred are dihalides of aliphatic compounds having 1 to 12 carbon atoms, dihalides of oligooxyethylene and dihalides of oligooxypropylene, and 4 to 12 carbon atoms.
  • cyano group, dialkylamino group, alkoxy group, nitro group, cycloalkyl group from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability against charge and discharge of the lithium ion secondary battery.
  • groups and cyclic ether groups are preferred.
  • formula (X) X 3 -Y 1 -X 4 (X) (Wherein, X 3 and X 4 are each independently a halogen atom, and Y 1 is an alkylene group having 1 to 12 carbon atoms or an arylene group having 6 to 12 carbon atoms.)
  • X 3 and X 4 are each independently a halogen atom, and Y 1 is an alkylene group having 1 to 12 carbon atoms or an arylene group having 6 to 12 carbon atoms.
  • a compound represented by is preferred.
  • Suitable compounds of formula (IX) include dichloromethane, dichloroethane, dichloropropane, dichlorobutane, dichloropentane, dichlorohexane, dichloroheptane, dichlorooctane, dibromomethane, dibromoethane, dibromopropane, dibromobutane, dibromopentane, Dibromohexane, dibromoheptane, dibromooctane, diiodomethane, diiodoethane, diiodopropane, diiodobutane, diiodopentane, diiodohexane, diiodoheptane, diiodoctane, etc.
  • Aliphatic compounds, oxyalkylene compounds having 2 to 4 carbon atoms having 2 halogen atoms and aromatic compounds having 6 to 12 carbon atoms (aromatic hydrocarbon compounds) having 2 halogen atoms are more More preferred are aliphatic compounds having 1 to 12 carbon atoms and having 2 halogen atoms, and even more preferred are aliphatic compounds having 4 to 12 carbon atoms and having 2 halogen atoms.
  • reaction temperature for reacting the bisiminoacenaphthene polymer and the compound forming the linking group Y is not particularly limited, it is preferably about 60 to 180°C from the viewpoint of enhancing the reaction efficiency.
  • reaction time between the bisiminoacenaphthene polymer and the compound forming the linking group Y varies depending on the amount of the organic solvent used, the reaction temperature, etc., and cannot be generally determined, but is usually 10 to 50. about an hour.
  • the repeating unit represented by the formula (I) and the other repeating unit represented by the formula (I) form a linking group.
  • a reaction mixture containing the bisiminoacenaphthene crosslinked polymer crosslinked via Y is obtained.
  • the bisiminoacenaphthene crosslinked polymer may be recovered by drying the resulting reaction mixture under reduced pressure.
  • the bisiminoacenaphthene crosslinked polymer obtained as described above has a linking group Y as represented by formula (I), and the repeating unit represented by formula (I) and the repeating unit represented by formula (I) Since the repeating unit represented by the formula (I) and the repeating unit represented by the other formula (I) are crosslinked via the linking group Y, it has a strong structure. Therefore, it is considered that the bisiminoacenaphthene crosslinked polymer improves the brittleness of silicon, reduces the internal resistance of the negative electrode, and suppresses the decomposition of the electrolyte.
  • the bisiminoacenaphthene crosslinked polymer since the bisiminoacenaphthene crosslinked polymer has a quaternized nitrogen atom, it has the property of firmly trapping anions, and is soluble in an aprotic polar organic solvent.
  • a representative example of the bisiminoacenaphthene crosslinked polymer is the formula (XI):
  • the bisiminoacenaphthene crosslinked polymer of the present invention may contain repeating units other than the repeating unit represented by formula (I) as long as the object of the present invention is not hindered.
  • aprotic polar organic solvent examples include nitrile organic solvents such as acetonitrile, propionitrile and benzonitrile; ketone organic solvents such as acetone, acetylacetone, methyl ethyl ketone and methyl isobutyl ketone; formamide; Examples include amide organic solvents such as formamide and N,N-dimethylacetamide, but the present invention is not limited to such examples.
  • the binder for the silicon negative electrode of the lithium ion secondary battery of the present invention contains the bisiminoacenaphthene crosslinked polymer. Since the binder for a silicon negative electrode of a lithium ion secondary battery of the present invention contains the above-mentioned bisiminoacenaphthene crosslinked polymer, by using the bisiminoacenaphthene crosslinked polymer in a silicon negative electrode of a lithium ion secondary battery, , it is possible to improve the durability against charge and discharge of the lithium ion secondary battery and increase the discharge capacity.
  • the binder for a silicon negative electrode of the present invention also has the advantage that it can be used by being dissolved in an aprotic polar organic solvent. Examples of the aprotic polar organic solvent include those exemplified above.
  • the binder for a silicon negative electrode of the present invention may be composed only of the above-mentioned bisiminoacenaphthene crosslinked polymer, and may include, for example, polyvinylidene fluoride (PVDF), 1-methyl-2 - Other negative electrode binders such as pyrrolidone (NMP), polytetrafluoroethylene (PTFE), fluororubber, and ethylene propylene diene rubber may be included, and components such as organic solvents may also be included.
  • PVDF polyvinylidene fluoride
  • NMP pyrrolidone
  • PTFE polytetrafluoroethylene
  • fluororubber fluororubber
  • ethylene propylene diene rubber ethylene propylene diene rubber
  • the binder for silicon negative electrodes of this invention is used for a silicon negative electrode.
  • a negative electrode active material and the binder for a silicon negative electrode of the present invention are mixed in appropriate amounts, and an organic solvent is added to the resulting mixture to prepare a paste-like negative electrode mixture. It can be produced by applying the material to the surface of a metal foil current collector such as copper, drying, hot roll press molding if necessary, and drying.
  • silicon is used, which expands and contracts significantly during charging and discharging of the lithium-ion secondary battery.
  • the silicon may be amorphous silicon or silicon crystallites.
  • Silicon nanoparticles can be used as silicon. Silicon nanoparticles, which are readily available commercially, can be prepared as follows.
  • alkoxysilane compound can be used as a raw material for silicon nanoparticles.
  • alkoxysilane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethylethoxysilane, N-(2-aminoethyl)amino Examples include methyltrimethoxysilane and the like, but the present invention is not limited only to such examples. These alkoxysilane compounds may be used alone or in combination of two or more. Alkoxysilane compounds can be used as a mixture with water.
  • the alkoxysilane compound is preferably reduced in advance. Reduction of the alkoxysilane compound can be performed, for example, by adding a reducing agent to a mixture of the alkoxysilane compound and water.
  • a reducing agent for example, by adding a reducing agent to a mixture of the alkoxysilane compound and water.
  • the temperature at which the alkoxysilane compound is reduced is not particularly limited, it is usually about 5 to 80.degree.
  • the atmosphere in which the alkoxysilane compound is reduced is not particularly limited, and may be air or an inert gas such as nitrogen gas or argon gas.
  • reducing agents include ascorbic acid, ascorbic acid such as sodium ascorbate and potassium ascorbate and salts thereof, sulfites such as sodium sulfite, potassium sulfite, sodium hydrogen sulfite, aldehyde sodium hydrogen sulfite and potassium hydrogen sulfite, and pyrosulfite. Pyrosulfites such as sodium, potassium pyrosulfite, sodium pyrosulfite, and potassium pyrosulfite are included, but the present invention is not limited to these examples. These reducing agents may be used alone or in combination of two or more.
  • the amount of reducing agent varies depending on the type of reducing agent, so it cannot be determined unconditionally.
  • the reducing agent is generally preferably used in an amount necessary to neutralize the alkoxysilane compound.
  • the temperature at which the reducing agent is added to the mixture of the alkoxysilane compound and water is not particularly limited, it is usually about 5 to 80°C.
  • the mixture is preferably stirred until it has a uniform composition, from the viewpoint of obtaining silicon nanoparticles having a uniform particle size.
  • an aqueous dispersion of silicon nanoparticles can be obtained.
  • the average particle size of the silicon nanoparticles obtained above is preferably 1 to 300 nm from the viewpoint of improving the dispersion stability and the durability of the lithium ion secondary battery to charging and discharging and increasing the discharge capacity. It is more preferably up to 250 nm, and even more preferably 3 to 200 nm.
  • the average particle size of the silicon nanoparticles is obtained by selecting arbitrarily 100 silicon nanoparticles from an image taken with a scanning electron microscope, obtaining the average value of the vertical axis and the horizontal axis of each silicon nanoparticle, It means a value obtained by summing the average values of 100 silicon nanoparticles and dividing the total value by 100.
  • the negative electrode active material only silicon may be used as the negative electrode active material, or other negative electrode active materials may be used as long as the object of the present invention is not hindered.
  • the other negative electrode active material is not particularly limited as long as it is an active material capable of intercalating and deintercalating lithium ions.
  • examples of other negative electrode active materials include metallic lithium, lithium alloys, silicon-containing compounds, silicon-containing alloys, tin, tin-containing alloys, metal oxides, metal sulfides, metal nitrides, carbon-based materials such as graphite, and the like.
  • the present invention is not limited only to such examples.
  • organic solvent examples include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methylethylketone, cyclohexanone, methyl acetate, diethyltriamine, N,N-dimethylaminopropylamine, ethylene oxide and tetrahydrofuran. , is not limited to such examples.
  • the negative electrode mixture may contain a conductive aid if necessary.
  • Conductive agents include, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; conductive fibers such as carbon fiber and metal fiber; carbon fluoride; copper; and organic conductive materials such as polyphenylene derivatives, etc., but the present invention is not limited to these examples.
  • the content of the conductive aid in the negative electrode mixture is generally preferably 10% by mass or less.
  • the negative electrode mixture may contain an appropriate amount of a clathrate compound, if necessary.
  • the inclusion compound has the property of absorbing gas generated within the battery.
  • the clathrate compound include cyclodextrins such as ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin, and crown ethers such as 12-crown-4, 15-crown-5 and 18-crown-6.
  • the content of the clathrate compound in the negative electrode mixture is generally preferably about 3 to 10% by mass.
  • the content of the negative electrode binder in the silicon negative electrode is preferably 0.3 to 30% by mass, more preferably 0.5 to 25% by mass, and the content of the negative electrode active material is preferably 65 to 98.7% by mass. %, more preferably 70 to 98% by mass, the content of the conductive aid is preferably 1 to 20% by mass, more preferably 1.5 to 10% by mass, and the content of other components is It is preferably 0 to 15% by mass, more preferably 0 to 10% by mass.
  • Examples of current collectors include copper, aluminum, nickel, silver, tin, indium, magnesium, iron, chromium, molybdenum, and alloys thereof, but the present invention is not limited to these examples. do not have.
  • the lithium ion secondary battery of the present invention has the same structure as commonly used lithium ion secondary batteries.
  • a lithium ion secondary battery of the present invention usually has a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte.
  • Examples of the shape of the lithium ion secondary battery include a cylindrical shape and a laminated shape, but the present invention is not limited to these examples.
  • a coin battery can be constructed by laminating, for example, a case, an active material, a porous separator in which an electrolytic solution is absorbed, a lithium foil, a spacer, a spring, and a lid in this order.
  • the lithium ion secondary battery of the present invention is, for example, a CR2025 type coin battery
  • the negative electrode, separator and non-aqueous electrolyte are housed in a case.
  • An embodiment in which the lithium ion secondary battery is a CR2025 type coin battery will be described below, but the present invention is not limited to such an embodiment.
  • the case used for the CR2025 type coin battery is hollow inside, has an opening, and also serves as a positive electrode container.
  • a cover is provided in the opening of the case, and the cover also serves as a negative electrode cover.
  • a gasket is provided between the case and the lid in order to maintain an insulated state and a sealed state between the case and the lid. The space between the case and the lid accommodates an electrode and a non-aqueous electrolyte.
  • Electrode has a positive electrode, a separator and a negative electrode, which are arranged in this order.
  • the positive electrode is in contact with the inner surface of the case, and the negative electrode is in contact with the inner surface of the lid.
  • the positive electrode may be the same as the positive electrode used in commonly used lithium ion secondary batteries, and the present invention is not limited by the composition and structure of the positive electrode.
  • the positive electrode is prepared by, for example, mixing a positive electrode active material, a conductive material, and a binder in a predetermined ratio, adding a solvent to the resulting mixture, optionally activated carbon, a viscosity adjusting additive, etc. in appropriate amounts, and are kneaded to prepare a positive electrode mixture paste, which is then applied to the surface of a current collector, press-molded if necessary, and dried.
  • positive electrode active materials include lithium and lithium-manganese composite oxides, but the present invention is not limited to these examples.
  • conductive materials include carbon black such as acetylene black, natural graphite, artificial graphite, and expanded graphite, but the present invention is not limited to these examples.
  • binders include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluororubber, ethylene propylene diene rubber, etc., but the present invention is not limited to these examples.
  • solvents include N-methyl-2-pyrrolidone and the like, but the present invention is not limited to such examples.
  • current collectors include copper, aluminum, nickel, silver, tin, indium, magnesium, iron, chromium, molybdenum, and alloys thereof, but the present invention is not limited to these examples. do not have.
  • a separator is used between the positive electrode and the negative electrode.
  • the separator separates the positive electrode and the negative electrode, holds the electrolyte, and forms a lithium ion transfer path between the positive electrode and the negative electrode.
  • Polyolefin-based resins such as polyethylene and polypropylene, cellulose, and glass foil films can be used as separators. It is preferable that the thin film has a large number of micropores formed therein.
  • the aforementioned silicon negative electrode is used for the negative electrode.
  • the open-circuit potential of the silicon anode half-cell is usually 2.0 V (versus Li/Li + ) or higher.
  • Non-aqueous electrolyte examples include cyclic carbonates such as ethylene carbonate, diethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate; chain carbonates; ether compounds such as tetrahydrofuran, 2-methyltetrahydrofuran, and dimethoxyethane; however, the present invention is not limited to these examples.
  • cyclic carbonates such as ethylene carbonate, diethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate
  • chain carbonates such as tetrahydrofuran, 2-methyltetrahydrofuran, and dimethoxyethane
  • ether compounds such as tetrahydrofuran, 2-methyltetrahydrofuran, and dimethoxyethane
  • the lithium ion secondary battery of the present invention uses the binder for a silicon negative electrode of the present invention in the silicon negative electrode, it has excellent properties such as high discharge capacity and excellent durability against charging and discharging.
  • the lithium ion secondary battery of the present invention is, for example, a coin battery
  • the initial discharge capacity is 2500 mAh or more per 1 g of silicon, and the charge/discharge efficiency after 1000 charge/discharge cycles is maintained at about 100%. Therefore, it is remarkably excellent in maintaining the discharge capacity and durability against charge and discharge.
  • FT-IR Fourier transform infrared spectroscopy
  • GPC Gel Permeation Chromatography
  • a liquid pump unit manufactured by JASCO Corporation, product number: PU-2080
  • a column oven manufactured by GL Science, product number: CO 631A, setting Temperature: 40 ° C.
  • UV-visible detector manufactured by JASCO Corporation, product number: UV-2075
  • differential refractometer manufactured by JASCO Corporation, product number: RI-2031
  • column manufactured by Showa Denko Co., Ltd.
  • X-ray photoelectron spectroscopy (XPS) analysis X-ray photoelectron spectroscopic analysis was carried out using an X-ray photoelectron spectroscopic analyzer (product name: S-PROBE 2803, manufactured by Whison Instrument Co., Ltd.).
  • Electrochemical properties were investigated using a VSP electrochemical measurement system (manufactured by Biologic) equipped with a frequency response analyzer.
  • Cyclic voltammetry Cyclic voltammetry was measured using a potentiostat (manufactured by Biologic, product number: VSM) at room temperature using a negative electrode half-cell. The potential range during cyclic voltammetry measurement was adjusted to 0.01 to 1.2 V, and the scan speed was adjusted to 0.1 mV/s.
  • Impedance (EIS) and Dynamic Impedance (DEIS) Impedance (EIS) and dynamic impedance (DEIS) were examined at a frequency of 10 MHz to 0.1 Hz and an amplitude of 10 mV using an impedance analyzer (manufactured by Solartron, product number: 1260).
  • the yield of the bisiminoacenaphthene polymer obtained above was about 70%.
  • the bisiminoacenaphthene polymer was a dark brown powder and was soluble in polar aprotic solvents such as dimethylformamide and N-methylpyrrolidone by heating.
  • the 1 H-NMR spectrum of the bisiminoacenaphthene polymer obtained above is shown in FIG. 1, and the Fourier transform infrared (FT-IR) spectrum of the bisiminoacenaphthene polymer is shown in FIG. From the results shown in FIGS. 1 and 2, the bisiminoacenaphthene polymer obtained above could be identified.
  • FT-IR Fourier transform infrared
  • the mixed solution obtained above was refluxed at 150° C. for 24 hours with stirring, allowed to cool for 3 hours, N-methylpyrrolidone was evaporated under reduced pressure, and dried under reduced pressure at 120° C. for 12 hours to obtain bisimino.
  • An acenaphthene crosslinked polymer A was obtained.
  • the bisiminoacenaphthene crosslinked polymer A obtained above was black and had stickiness.
  • FIG. 3 1 H-NMR of the bisiminoacenaphthene crosslinked polymer A obtained above is shown in FIG. 3 and below.
  • ArP indicates a peak based on aromatic protons
  • NMP indicates a peak based on N-methylpyrrolidone of the solvent.
  • FIG. 4 shows the Fourier transform infrared (FT-IR) spectra of the bisiminoacenaphthene polymer and the bisiminoacenaphthene crosslinked polymer A obtained above.
  • symbol A indicates the Fourier transform infrared (FT-IR) spectrum of the bisiminoacenaphthene crosslinked polymer A
  • symbol B indicates the Fourier transform infrared (FT-IR) spectrum of the bisiminoacenaphthene polymer.
  • Table 1 shows the measurement results of Fourier transform infrared (FT-IR) spectra of the bisiminoacenaphthene polymer and the bisiminoacenaphthene crosslinked polymer A.
  • the bisiminoacenaphthene crosslinked polymer A has a peak based on a quaternary nitrogen atom and a peak based on a carbon-hydrogen bond.
  • FIG. 5 shows the X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene crosslinked polymer A obtained above.
  • P indicates a peak based on a quaternized nitrogen atom
  • Q indicates a peak based on a piperidine skeleton.
  • NMP N-methylpyrrolidone
  • the mixed solution obtained above was refluxed at 150° C. for 36 hours with stirring, allowed to cool for 3 hours, N-methylpyrrolidone was evaporated under reduced pressure, and dried under reduced pressure at 120° C. for 12 hours to obtain bisimino.
  • An acenaphthene crosslinked polymer B was obtained.
  • the bisiminoacenaphthene crosslinked polymer B obtained above was black and had stickiness.
  • FIG. 6 shows the X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene polymer of the bisiminoacenaphthene crosslinked polymer B obtained above.
  • XPS X-ray photoelectron spectroscopy
  • NMP N-methylpyrrolidone
  • the mixed solution obtained above was refluxed at 150° C. for 25 hours with stirring, allowed to cool for 3 hours, N-methylpyrrolidone was evaporated under reduced pressure, and dried under reduced pressure at 120° C. for 12 hours to obtain bisimino.
  • Acenaphthene crosslinked polymer C was obtained.
  • the bisiminoacenaphthene crosslinked polymer C obtained above was black and had stickiness.
  • FIG. 7 shows the X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene crosslinked polymer C obtained above.
  • XPS X-ray photoelectron spectroscopy
  • NMP N-methylpyrrolidone
  • the mixed solution obtained above was refluxed at 150° C. for 20 hours with stirring, allowed to cool for 3 hours, N-methylpyrrolidone was evaporated under reduced pressure, and dried under reduced pressure at 120° C. for 12 hours to obtain bisimino.
  • An acenaphthene crosslinked polymer D was obtained.
  • the bisiminoacenaphthene crosslinked polymer D obtained above was black and had stickiness.
  • FIG. 8 shows the X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene crosslinked polymer D obtained above.
  • XPS X-ray photoelectron spectroscopy
  • the performance is the same regardless of which of the bisiminoacenaphthene crosslinked polymer A, the bisiminoacenaphthene crosslinked polymer B, the bisiminoacenaphthene crosslinked polymer C, and the bisiminoacenaphthene crosslinked polymer D is used to prepare the electrode. It was possible to obtain an electrode and a negative half-cell having
  • a mixture of 20 mg of bisiminoacenaphthene crosslinked polymer A, 25 mg of graphite, 20 mg of acetylene black (average particle size: 40 nm) and 35 mg of silicon powder (average particle size: 100 nm) and 2 mL of N-methylpyrrolidone were ball milled (manufactured by Fritsch, product name: A slurry was obtained by kneading with a palverizer 7). The slurry obtained above was applied to a copper foil (vertical: 20 mm, horizontal: 100 mm, thickness: 20 ⁇ m) with a doctor blade, dried under reduced pressure at a temperature of 90 ° C. for about 12 hours, and then dried at 80 ° C. between rollers. Roll-pressed by passing at temperature to produce Electrode A with a coating thickness of about 39 ⁇ m.
  • Comparative example 1 As a conventional electrode, except that 20 mg of polyacrylic acid was used instead of 20 mg of bisiminoacenaphthene crosslinked polymer A when preparing electrode A, the same operation as that for preparing electrode A was performed to obtain a coating film thickness. was about 27 ⁇ m.
  • Comparative example 2 As a conventional electrode, the coating film thickness was obtained in the same manner as the operation for producing electrode A, except that 20 mg of bisiminoacenaphthene crosslinked polymer A was used in producing electrode A, and 20 mg of carboxymethylcellulose sodium salt was used. Electrode C was fabricated with a thickness of about 31 ⁇ m.
  • a silicon negative electrode was produced by punching each electrode obtained above into a disk having a diameter of 13 mm.
  • Electrode A electrode B or electrode C obtained above as the negative electrode, using lithium foil as the counter electrode and the reference electrode, and using a polypropylene separator [manufactured by Asahi Kasei Corp., product name: Celgard 2500, thickness: 25 ⁇ m] as the separator.
  • a negative electrode half-cell was fabricated in an argon gas atmosphere using an electrolyte obtained by dissolving LiPF6 to a concentration of 1M in a solvent obtained by mixing ethylene carbonate and diethylene carbonate at a mass ratio of 1:1 as an electrolyte. The negative half-cell was left at room temperature for 12 hours for stabilization.
  • the open-circuit potential of the negative electrode half-cell using electrode A as the negative electrode was measured, the open-circuit potential was 2.0 to 2.1 V (vs. Li/Li + ).
  • FIG. 9(a) shows the results of measuring electrical conductivity using a negative electrode half-cell in which electrode A is used.
  • FIG. 9(b) shows the result of measuring the electrical conductivity using the negative half-cell using the electrode B and the result of measuring the electrical conductivity using the negative half-cell using the electrode C.
  • P indicates the result of examining the electrical conductivity using the negative half-cell using the electrode B
  • Q indicates the electrical conductivity using the negative half-cell using the electrode C. The result of having investigated conductivity is shown.
  • Electrode A has an electrical conductivity of 2.16 ⁇ 10 ⁇ 3 ⁇ ⁇ 1 m ⁇ 1
  • Electrode B has an electrical conductivity of 0.682 ⁇ 10 ⁇ 3 ⁇ ⁇ 1 m ⁇ 1 . Since the electric conductivity of electrode C is 0.132 ⁇ 10 ⁇ 3 ⁇ ⁇ 1 m ⁇ 1 , the electric conductivity of electrode A is significantly superior to the electric conductivity of electrodes B and C. It was confirmed that
  • FIG. 10 shows the measurement results of cyclic voltammetry.
  • (a) is the result of cyclic voltammetry using the negative half-cell using electrode A
  • (b) is the result of cyclic voltammetry using the negative half-cell using electrode B
  • (c) shows the result of cyclic voltammetry measurement using a negative half-cell in which electrode C is used.
  • Reference numerals 1 to 4 in FIG. 10 indicate the data of the 1st to 4th cycles, respectively.
  • the lithiation data in the first cycle is unstable due to the decomposition reaction of the electrolyte and the binder.
  • the first reverse scan shows a voltage of about 0.66 V, corresponding to decomposition of the electrolyte, and a crystalline silicon phase (Li 15 Si 4 ). It can be seen that there are two prominent peaks at 0.0052 V corresponding to alloying. It was confirmed that a peak corresponding to the alloying of the amorphous silicon phase (Li 12 Si 7 ) appeared at about 0.21 V after the second scan in the reverse direction. A forward scan from 0.005 to 1.2 V also confirmed the appearance of two peaks (0.35 V and 0.51 V) attributed to a two-step lithium dealloying process.
  • the diffusion coefficient of lithium ions in the negative half-cell in which electrode A is used is 9.94 ⁇ 10 ⁇ 7 , for example, X, Su, Q. Wu, J. Li , X. Xiao, A. Lott, W. Lu, B. W. Sheldon, J. Wu, Advanced Energy Materials 2014, 4, 1300882. From the high value, it was confirmed that the electrode A is extremely excellent in diffusibility of lithium ions therein.
  • the negative electrode half-cell using the electrode A has a remarkably high and stable discharge capacity of about 2500 mAh/g or more even after 1000 cycles or more of charging and discharging. It was confirmed that From the results shown in FIG. 12(b), it was confirmed that in the negative electrode half-cell using electrode A, the capacity retention rate was maintained at about 99% or more even after 800 charge/discharge cycles. was done. Further, from the results shown in FIG. 12(c), it was confirmed that the negative electrode half-cell using the electrode A maintained the charge-discharge efficiency at around 100%.
  • the discharge capacity at 350 cycles is 1000 mAh/g or less as shown in FIG. As shown in b), it was confirmed that the capacity retention rate had already decreased at the point of 50 cycles, and that the capacity retention rate was about 50% or less at the point of 350 cycles.
  • the negative half-cell using electrode A has a larger discharge capacity than the conventional negative half-cell using electrode B or electrode C, and the capacity can be maintained even after 800 cycles or more. It was confirmed that the remarkably high rate is excellent in durability and that the charge/discharge efficiency is stable and high.
  • EIS Electrochemical Impedance Spectroscopy
  • the internal resistance indicated by the Nyquist plot after fabrication of the negative half-cell is 415 ⁇ for the negative half-cell using electrode A, whereas electrode B is used.
  • the negative half-cell and the negative half-cell using electrode C were 620 ⁇ and 1875 ⁇ , respectively. From this, it was confirmed that the internal resistance of the negative half-cell in which the electrode A was used was considerably low from the initial stage.
  • the internal resistance indicated by the Nyquist plot after 15 cycles of charging and discharging of the negative electrode half-cell is 110 ⁇ for the negative electrode half-cell using the electrode A. , 360 ⁇ for the negative half-cell using electrode B and 250 ⁇ for the negative half-cell using electrode C. From this, it was confirmed that the internal resistance of the negative half-cell in which the electrode A was used was considerably low even when charging and discharging were repeated.
  • Dynamic Impedance Dynamic impedance was examined at potentials of 1.2 to 0.005 V using a negative half-cell in which electrode A was used. After repeating the operation of charging and discharging at a potential from 1.2 V to 0.005 V for 1000 cycles, the dynamic impedance was measured, and after repeating the operation of charging and discharging at a potential from 0.005 V to 1.2 V for 1000 cycles. The results of measuring the dynamic impedance are shown in FIGS. 14(a) and 14(b), respectively.
  • the dynamic impedance was examined at potentials of 1.2 to 0.005 V using the negative half-cell in which electrode B was used. After repeating the operation of charging and discharging at a potential from 1.2 V to 0.005 V for 300 cycles, the dynamic impedance was measured, and after repeating the operation of charging and discharging at a potential from 0.005 V to 1.2 V for 300 cycles. The results of measuring the dynamic impedance are shown in FIGS. 14(c) and (d), respectively.
  • the dynamic impedance was investigated at potentials of 1.2 to 0.005 V using the negative half-cell in which electrode C was used. After repeating the operation of charging and discharging at a potential from 1.2 V to 0.005 V for 300 cycles, the dynamic impedance was measured, and after repeating the operation of charging and discharging at a potential from 0.005 V to 1.2 V for 300 cycles. The results of measuring the dynamic impedance are shown in FIGS. 14(e) and 14(f), respectively.
  • the maximum value of the solid electrolyte interface (SEI) impedance in the negative electrode half-cell in which the electrode A is used is about 50 ⁇ .
  • the maximum value of the impedance of the solid electrolyte interface (SEI) of the negative half-cell using the conventional electrode B is 750 ⁇
  • the solid electrolyte interface (SEI) of the negative half-cell using the electrode C is 750 ⁇ . is 1200 ⁇ . From this, the negative half-cell using the electrode A has a much lower impedance at the solid electrolyte interface (SEI) than the conventional negative half-cell using the electrode B or electrode C, and the internal resistance was very small and almost stable regardless of the applied voltage.
  • Example 5 A disk obtained by punching the electrode A was used as the negative electrode. Metallic lithium punched into a disk having the same size as the negative electrode was used as the positive electrode.
  • the electrolyte was prepared by dissolving LiPF 6 to a concentration of 1M in a solvent in which ethylene carbonate and diethylene carbonate were mixed at a mass ratio of 1:1. I left it.
  • a CR2025 type coin battery (non-aqueous electrolyte secondary battery) for performance evaluation was produced using the negative electrode, positive electrode and electrolyte obtained above, and a separator made of a polypropylene microporous film having a thickness of 30 ⁇ m. .
  • the charging/discharging characteristics of the coin battery obtained above were examined using a charging/discharging device [manufactured by Electrofield Co., Ltd., trade name: ABE1024].
  • the coin battery had an initial discharge capacity of 2,500 mAh or more per 1 g of silicon, and maintained a charge-discharge efficiency of about 100% after 1,000 charge-discharge cycles. From this, it was confirmed that the coin battery in which the electrode A was used as the negative electrode was excellent in the maintenance of the discharge capacity and the durability against charging and discharging.
  • a lithium ion secondary battery having a silicon negative electrode containing a binder for a silicon negative electrode of a lithium ion secondary battery of the present invention has a high discharge capacity and excellent durability against charging and discharging.
  • the lithium ion secondary battery of the present invention since the lithium ion secondary battery of the present invention is practical, it can be used not only as a coin battery, but also as a mobile phone such as a smart phone, a notebook personal computer, a tablet personal computer, a digital camera, and a hybrid battery. It is expected to be put to practical use in applications such as automobiles and electric vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

This bisiminoacenaphthene crosslinked polymer including a bisiminoacenaphthene crosslinked polymer in which a repeating unit represented by formula (I) (X- represents a monovalent anion, Y represents a linking group, and Z represents a divalent organic group.) is crosslinked with a repeating unit represented by another formula (I) via a linking group Y exhibits excellent charge/discharge durability and has large discharge capacity. The bisiminoacenaphthene crosslinked polymer is thus used for a binder for a silicon negative electrode of a lithium ion secondary battery and a lithium ion secondary battery including a silicon negative electrode containing the binder for a silicon negative electrode.

Description

リチウムイオン二次電池のシリコン負極用バインダーBinder for silicon negative electrodes of lithium-ion secondary batteries
 本発明は、リチウムイオン二次電池のシリコン負極用バインダーに関する。さらに詳しくは、本発明は、リチウムイオン二次電池のシリコン負極用バインダー、前記リチウムイオン二次電池のシリコン負極用バインダーに好適に用いることができるビスイミノアセナフテン架橋ポリマーおよびその製造方法、前記シリコン負極用バインダーを含むシリコン負極、ならびに前記シリコン負極を含むリチウムイオン二次電池に関する。 The present invention relates to a binder for silicon negative electrodes of lithium ion secondary batteries. More specifically, the present invention relates to a binder for a silicon negative electrode of a lithium ion secondary battery, a bisiminoacenaphthene crosslinked polymer that can be suitably used as a binder for a silicon negative electrode of the lithium ion secondary battery, a method for producing the same, and the silicon. The present invention relates to a silicon negative electrode containing a negative electrode binder and a lithium ion secondary battery containing the silicon negative electrode.
 リチウムイオン二次電池の負極活物質には一般にグラファイトが用いられている。しかし、グラファイトにリチウムイオンを充填したときの理論容量が372mAh/gであることから、近年、理論容量がグラファイトよりもはるかに高いシリコン粒子を負極活物質に用いることが検討されている。 Graphite is generally used as the negative electrode active material for lithium-ion secondary batteries. However, since the theoretical capacity of graphite filled with lithium ions is 372 mAh/g, the use of silicon particles, which have a much higher theoretical capacity than graphite, as a negative electrode active material has been studied in recent years.
 しかし、シリコン粒子にリチウムイオンを充填したとき、当該シリコン粒子の体積が3倍程度に膨張するため、リチウムイオンの充填および放出を繰り返しているうちにシリコン粒子が破壊され、破壊された微細シリコン粒子が電気的に孤立するとともに、シリコン粒子の破壊面に新たな被覆層が形成されることから二次電池の充放電サイクル特性が低下するものと考えられている(例えば、特許文献1の段落[0003]参照)。 However, when silicon particles are filled with lithium ions, the volume of the silicon particles expands to about three times. is electrically isolated, and a new coating layer is formed on the fracture surface of the silicon particles, which is thought to reduce the charge-discharge cycle characteristics of the secondary battery (for example, paragraph [ 0003]).
 そこで、シリコン粒子の膨張および収縮によるシリコン粒子の電気的孤立が防止された負極活物質として、炭素基材の表面に鱗片状シリコン粒子が付着し、前記鱗片状シリコン粒子の一部が前記炭素基材に突き刺さっているリチウムイオン二次電池のシリコン負極用バインダーが提案されている(例えば、特許文献1の請求項1参照)。前記負極活物質は、シリコン粒子の膨張収縮によるシリコン粒子の電気的孤立が防止されているとされているが、初期放電容量が800mAh/g程度である(例えば、特許文献1の図12参照)。 Therefore, as a negative electrode active material that prevents electrical isolation of silicon particles due to expansion and contraction of silicon particles, scaly silicon particles adhere to the surface of a carbon substrate, and part of the scaly silicon particles is the carbon group. A binder for a silicon negative electrode of a lithium ion secondary battery that sticks into a material has been proposed (see, for example, claim 1 of Patent Document 1). The negative electrode active material is said to prevent electrical isolation of the silicon particles due to expansion and contraction of the silicon particles, but the initial discharge capacity is about 800 mAh/g (see FIG. 12 of Patent Document 1, for example). .
 近年においては、充放電に対する耐久性に優れ、放電容量が高いリチウムイオン二次電池を与えるシリコン負極用バインダーの開発が求められている。 In recent years, there has been a demand for the development of binders for silicon negative electrodes that provide lithium-ion secondary batteries with excellent charge/discharge durability and high discharge capacity.
特開2016-143462号公報JP 2016-143462 A
 本発明は、前記従来技術に鑑みてなされたものであり、充放電に対する耐久性に優れ、放電容量が高いリチウムイオン二次電池を与えるシリコン負極用バインダー、前記シリコン負極用バインダーに好適に用いることができるビスイミノアセナフテン架橋ポリマーおよびその製造方法、前記シリコン負極用バインダーを含むシリコン負極、ならびに前記シリコン負極を含むリチウムイオン二次電池を提供することを課題とする。 The present invention has been made in view of the above-mentioned prior art, and is suitable for use as a binder for a silicon negative electrode that provides a lithium ion secondary battery with excellent durability to charge and discharge and a high discharge capacity, and the binder for a silicon negative electrode. and a method for producing the same, a silicon negative electrode containing the binder for a silicon negative electrode, and a lithium ion secondary battery containing the silicon negative electrode.
 本発明は、
(1) 式(I):
The present invention
(1) Formula (I):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、X-は1価の陰イオン、Yは連結基、Zは2価の有機基を示す)
で表わされる繰り返し単位と他の式(I)で表わされる繰り返し単位とが連結基Yを介して架橋されているビスイミノアセナフテン架橋ポリマー、
(2) 式(II):
(Wherein, X - is a monovalent anion, Y is a linking group, and Z is a divalent organic group)
A bisiminoacenaphthene crosslinked polymer in which repeating units represented by and other repeating units represented by formula (I) are crosslinked via a linking group Y,
(2) Formula (II):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、Zは2価の有機基を示す)
で表わされる繰り返し単位を有するビスイミノアセナフテンポリマーと連結基Yを形成する化合物とを架橋反応させることを特徴とする式(I):
(Wherein, Z represents a divalent organic group)
wherein a bisiminoacenaphthene polymer having a repeating unit represented by the formula (I) is subjected to a cross-linking reaction with a compound forming the linking group Y:
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、X-は1価の陰イオン、Yは連結基、Zは2価の有機基を示す)
で表わされる繰り返し単位と他の式(I)で表わされる繰り返し単位とが連結基Yを介して架橋されているビスイミノアセナフテン架橋ポリマーの製造方法、
(3) 式(I):
(Wherein, X - is a monovalent anion, Y is a linking group, and Z is a divalent organic group)
A method for producing a bisiminoacenaphthene crosslinked polymer in which repeating units represented by and other repeating units represented by formula (I) are crosslinked via a linking group Y,
(3) Formula (I):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、X-は1価の陰イオン、Yは連結基、Zは2価の有機基を示す)
で表わされる繰り返し単位と他の式(I)で表わされる繰り返し単位とが連結基Yを介して架橋されているビスイミノアセナフテン架橋ポリマーを含有してなるリチウムイオン二次電池のシリコン負極用バインダー、
(4) リチウムイオン二次電池用シリコン負極であって、前記シリコン負極が式(I):
(Wherein, X - is a monovalent anion, Y is a linking group, and Z is a divalent organic group)
A binder for a silicon negative electrode of a lithium ion secondary battery comprising a bisiminoacenaphthene crosslinked polymer in which a repeating unit represented by the following is crosslinked with another repeating unit represented by the formula (I) via a linking group Y ,
(4) A silicon negative electrode for a lithium ion secondary battery, wherein the silicon negative electrode has the formula (I):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、X-は1価の陰イオン、Yは連結基、Zは2価の有機基を示す)
で表わされる繰り返し単位と他の式(I)で表わされる繰り返し単位とが連結基Yを介して架橋されているビスイミノアセナフテン架橋ポリマーを含有するシリコン負極用バインダーを含有してなるリチウムイオン二次電池用シリコン負極、
(5) シリコン負極の半電池の開放電位が2.0V以上である前記(4)に記載のリチウムイオン二次電池用シリコン負極、
(6) 正極と負極と正極および負極の間に配置されたセパレータとを有するリチウムイオン二次電池であって、前記負極が前記(4)または(5)に記載のリチウムイオン二次電池用シリコン負極であるリチウムイオン二次電池、および
(7) シリコン1gあたりの初期放電容量が2500mAh以上である前記(6)に記載のリチウムイオン二次電池
に関する。
(Wherein, X - is a monovalent anion, Y is a linking group, and Z is a divalent organic group)
and a repeating unit represented by the other formula (I) are crosslinked through a linking group Y, a lithium ion binder for a silicon negative electrode containing a bisiminoacenaphthene crosslinked polymer. silicon negative electrodes for secondary batteries,
(5) The silicon negative electrode for a lithium ion secondary battery according to (4) above, wherein the half-cell open-circuit potential of the silicon negative electrode is 2.0 V or higher.
(6) A lithium ion secondary battery having a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, wherein the negative electrode is the silicon for lithium ion secondary battery according to (4) or (5) above. (7) The lithium ion secondary battery according to (6) above, which has an initial discharge capacity of 2500 mAh or more per 1 g of silicon.
 本発明によれば、充放電に対する耐久性に優れ、放電容量が高いリチウムイオン二次電池を与えるシリコン負極用バインダー、前記リチウムイオン二次電池のシリコン負極用バインダーに好適に用いることができるビスイミノアセナフテン架橋ポリマーおよびその製造方法、前記シリコン負極用バインダーを含むシリコン負極、ならびに前記シリコン負極を含むリチウムイオン二次電池が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, a bisimino that can be suitably used as a binder for a silicon negative electrode that provides a lithium ion secondary battery with excellent durability against charging and discharging and a high discharge capacity, and a binder for a silicon negative electrode of the lithium ion secondary battery. Provided are an acenaphthene crosslinked polymer, a method for producing the same, a silicon negative electrode containing the binder for a silicon negative electrode, and a lithium ion secondary battery containing the silicon negative electrode.
調製例1で得られたビスイミノアセナフテンポリマーの1H-NMRスペクトルを示すグラフである。2 is a graph showing the 1 H-NMR spectrum of the bisiminoacenaphthene polymer obtained in Preparation Example 1. FIG. 調製例1で得られたビスイミノアセナフテンポリマーのフーリエ変換赤外分光(FT-IR)スペクトルを示すグラフである。1 is a graph showing a Fourier transform infrared (FT-IR) spectrum of the bisiminoacenaphthene polymer obtained in Preparation Example 1. FIG. 実施例1で得られたビスイミノアセナフテン架橋ポリマーの1H-NMRスペクトルを示すグラフである。1 is a graph showing the 1 H-NMR spectrum of the bisiminoacenaphthene crosslinked polymer obtained in Example 1. FIG. 調製例1で得られたビスイミノアセナフテンポリマーおよび実施例1で得られたビスイミノアセナフテン架橋ポリマーのフーリエ変換赤外分光(FT-IR)スペクトルを示すグラフである。1 is a graph showing the Fourier transform infrared (FT-IR) spectra of the bisiminoacenaphthene polymer obtained in Preparation Example 1 and the bisiminoacenaphthene crosslinked polymer obtained in Example 1. FIG. 実施例1で得られたビスイミノアセナフテン架橋ポリマーのX線光電子分光(XPS)スペクトルを示すグラフである。1 is a graph showing an X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene crosslinked polymer obtained in Example 1. FIG. 実施例2で得られたビスイミノアセナフテン架橋ポリマーのX線光電子分光(XPS)スペクトルを示すグラフである。4 is a graph showing an X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene crosslinked polymer obtained in Example 2. FIG. 実施例3で得られたビスイミノアセナフテン架橋ポリマーのX線光電子分光(XPS)スペクトルを示すグラフである。4 is a graph showing an X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene crosslinked polymer obtained in Example 3. FIG. 実施例4で得られたビスイミノアセナフテン架橋ポリマーのX線光電子分光(XPS)スペクトルを示すグラフである。4 is a graph showing an X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene crosslinked polymer obtained in Example 4. FIG. 電極A、電極Bまたは電極Cが使用されている負極半電池を用いて電気伝導率を測定した結果を示すグラフである。4 is a graph showing the results of electrical conductivity measurements using negative half-cells in which Electrode A, Electrode B, or Electrode C is used. 電極A、電極Bまたは電極Cが使用されている負極半電池を用いてサイクリックボルタンメトリーを測定した結果を示すグラフである。4 is a graph showing the results of cyclic voltammetry measurements using negative half-cells in which electrode A, electrode B, or electrode C is used. (a)は電極Aが使用されている負極半電池を用いて走査速度を変更したときのサイクリックボルタンメトリーを測定した結果を示すグラフ、(b)は電極Aが使用されている負極半電池を用いてサイクリックボルタンメトリーの走査速度と最大電流値との関係を調べた結果を示すグラフである。(a) is a graph showing the results of measuring cyclic voltammetry when the scanning speed is changed using a negative half-cell using electrode A; (b) is a graph showing the results of measuring the negative half-cell using electrode A 2 is a graph showing the results of examining the relationship between the scanning speed of cyclic voltammetry and the maximum current value. (a)は電極A、電極Bまたは電極Cが使用されている負極半電池を用いてサイクル安定性を調べた結果を示すグラフ、(b)は電極A、電極Bまたは電極Cが使用されている負極半電池を用いて容量維持率を調べた結果を示すグラフ、(c)は電極A、電極Bまたは電極Cが使用されている負極半電池を用いて充放電効率を調べた結果を示すグラフである。(a) is a graph showing the results of examining cycle stability using negative half-cells using electrode A, electrode B, or electrode C; (c) shows the results of charge-discharge efficiency investigation using negative half-cells using electrode A, electrode B, or electrode C. graph. (a)は電極Aが使用されている負極半電池のナイキストプロットを示すグラフ、(b)は電極Bが使用されている負極半電池のナイキストプロットを示すグラフ、(c)は電極Cが使用されている負極半電池のナイキストプロットを示すグラフである。(a) is a graph showing the Nyquist plot of the negative half-cell using electrode A, (b) is a graph showing the Nyquist plot of the negative half-cell using electrode B, and (c) is a graph showing the Nyquist plot of the negative half-cell using electrode C. Fig. 2 is a graph showing a Nyquist plot of a negative electrode half-cell; (a)および(b)は電極Aが使用されている負極半電池の動的インピーダンスを示すグラフ、(c)および(d)は電極Bが使用されている負極半電池の動的インピーダンスを示すグラフ、(e)および(f)は電極Cが使用されている負極半電池の動的インピーダンスを示すグラフである。(a) and (b) are graphs showing the dynamic impedance of the negative half-cell using electrode A, (c) and (d) showing the dynamic impedance of the negative half-cell using electrode B. Graphs (e) and (f) show the dynamic impedance of a negative half-cell in which electrode C is used. 電極A、電極Bまたは電極Cが使用されている負極半電池の固体電解質界面(SEI)のインピーダンスと電位との関係を示すグラフである。1 is a graph showing impedance versus potential at the solid electrolyte interface (SEI) of a negative half-cell in which Electrode A, Electrode B or Electrode C is used; 電極Aおよび電極Bの表面の図面代用走査電子顕微鏡写真である。3 is a drawing-substituting scanning electron micrograph of the surfaces of electrode A and electrode B. FIG.
 次に本発明を詳細に説明するが、本発明は、以下に記載の実施態様のみに限定されるものではなく、本明細書に記載されている技術的思想の範囲内で当業者が種々の変更および修正をすることができる。 Next, the present invention will be described in detail, but the present invention is not limited only to the embodiments described below, and various Changes and modifications can be made.
〔ビスイミノアセナフテン架橋ポリマー〕
 本発明のビスイミノアセナフテン架橋ポリマーは、前記したように、式(I):
[Bisiminoacenaphthene crosslinked polymer]
The bisiminoacenaphthene crosslinked polymers of the present invention are represented by formula (I):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、X-は1価の陰イオン、Yは連結基、Zは2価の有機基を示す)
で表わされる繰り返し単位と他の式(I)で表わされる繰り返し単位とが連結基Yを介して架橋されている。式(I)で表わされる繰り返し単位は、当該式(I)で表わされる繰り返し単位と連結基を介して結合されている他の式(I)で表わされる繰り返し単位と同一であってもよく、異なっていてもよい。
(Wherein, X - is a monovalent anion, Y is a linking group, and Z is a divalent organic group)
The repeating unit represented by and other repeating units represented by the formula (I) are crosslinked via the linking group Y. The repeating unit represented by formula (I) may be the same as another repeating unit represented by formula (I) that is bonded to the repeating unit represented by formula (I) via a linking group, can be different.
 本発明のビスイミノアセナフテン架橋ポリマーは、リチウムイオン二次電池のシリコン負極用バインダーに有用な化合物である。ビスイミノアセナフテン架橋ポリマーをリチウムイオン二次電池のシリコン負極用バインダーに用いることにより、リチウムイオン二次電池の放電容量を高めることができるのみならず、リチウムイオン二次電池の充放電に対する耐久性を向上させることができる。 The bisiminoacenaphthene crosslinked polymer of the present invention is a compound useful as a binder for silicon negative electrodes of lithium ion secondary batteries. By using a bisiminoacenaphthene crosslinked polymer as a binder for a silicon negative electrode of a lithium-ion secondary battery, not only is it possible to increase the discharge capacity of the lithium-ion secondary battery, but also the durability of the lithium-ion secondary battery to charging and discharging. can be improved.
 式(I)において、Xは、1価の陰イオンである。1価の陰イオンの例としては、Cl-、Br-、I-、PF6 -、ClO4 -、NO3 -、BF4 -、SCN-、CN-、CH3COO-、CH3CH2COO-、NO3 -、CF3COO-、CF3CF2COO-、亜硝酸イオン、次亜塩素酸イオン、亜塩素酸イオン、塩素酸イオン、過塩素酸イオン、過マンガン酸イオン、炭酸水素イオン、リン酸二水素イオン、硫化水素イオン、チオシアン酸イオン、スルホン酸イオン、フェノキシドイオン、トリフルオロメタンスルホニルイオン、ビス(フルオロスルホニル)イミドイオン、テトラフルオロボレートイオン、テトラアリールボレートイオン、ビス(オキサレート)ボレートイオン、ビス(トリフルオロメチルスルホニル)イミドイオン、ビス(ペンタフルオロエチルスルホニル)イミドイオン、ヘキサフルオロアンチモネートイオンなどが挙げられる。これらの1価の陰イオンは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 In formula (I), X - is a monovalent anion. Examples of monovalent anions include Cl- , Br-, I- , PF6- , ClO4- , NO3- , BF4- , SCN- , CN- , CH3COO- , CH3CH2 COO , NO 3 , CF 3 COO , CF 3 CF 2 COO , nitrite ion, hypochlorite ion, chlorite ion, chlorate ion, perchlorate ion, permanganate ion, hydrogen carbonate ion, dihydrogen phosphate ion, hydrogen sulfide ion, thiocyanate ion, sulfonate ion, phenoxide ion, trifluoromethanesulfonyl ion, bis(fluorosulfonyl)imide ion, tetrafluoroborate ion, tetraarylborate ion, bis(oxalate)borate ions, bis(trifluoromethylsulfonyl)imide ions, bis(pentafluoroethylsulfonyl)imide ions, hexafluoroantimonate ions, and the like. Each of these monovalent anions may be used alone, or two or more of them may be used in combination.
 Xのなかでは、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、ハロゲン化物イオンであることが好ましく、Cl-、Br-またはI-であることがより好ましく、Cl-またはBr-であることがさらに好ましく、Br-であることがさらに一層好ましい。したがって、Xは、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、ハロゲン原子であることが好ましく、塩素原子、臭素原子またはヨウ素原子であることがより好ましく、塩素原子または臭素原子であることがさらに好ましく、臭素原子であることがさらに一層に好ましい。これらのハロゲン原子は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 Among X - , halogenide ions are preferable, and Cl - , Br - or I - , more preferably Cl - or Br - , even more preferably Br - . Therefore, X is preferably a halogen atom, such as a chlorine atom, a bromine atom, or an iodine atom, from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging. more preferably a chlorine atom or a bromine atom, and even more preferably a bromine atom. Each of these halogen atoms may be used alone, or two or more of them may be used in combination.
 式(I)において、Yは、連結基である。より具体的には、Yは、式(I)で表わされる繰り返し単位と当該式(I)で表わされる繰り返し単位と隣接している他の式(I)で表わされる繰り返し単位とを結合させるための基である。本発明のビスイミノアセナフテン架橋ポリマーは、式(I)で表わされる繰り返し単位と当該式(I)で表わされる繰り返し単位とは異なる他の式(I)で表わされる繰り返し単位とが連結基Yを介して結合していることから、架橋構造を有する。 In formula (I), Y is a linking group. More specifically, Y binds the repeating unit represented by formula (I) to another repeating unit represented by formula (I) adjacent to the repeating unit represented by formula (I). is the basis of In the bisiminoacenaphthene crosslinked polymer of the present invention, a repeating unit represented by the formula (I) and a repeating unit represented by another formula (I) different from the repeating unit represented by the formula (I) are combined into a linking group Y It has a crosslinked structure because it is bound via
 連結基Yは、式(I)で表わされる繰り返し単位と他の式(I)で表わされる繰り返し単位とを連結させるための連結基であることから、式(I)で表わされる繰り返し単位と他の式(I)で表わされる繰り返し単位との間に1つ存在する。 Since the linking group Y is a linking group for linking the repeating unit represented by the formula (I) with another repeating unit represented by the formula (I), the repeating unit represented by the formula (I) and other exists between the repeating unit represented by the formula (I).
 連結基Yとしては、2価の基が挙げられる。2価の基は、2個の結合手を有する基である。2価の基は、2価の有機基であってもよく、2価の無機基であってもよい。2価の基のなかでは、ビスイミノアセナフテン架橋ポリマーの調製が容易であることから、2価の有機基が好ましい。 The linking group Y includes a divalent group. A divalent group is a group having two bonds. The divalent group may be a divalent organic group or a divalent inorganic group. Among the divalent groups, a divalent organic group is preferred because it facilitates preparation of the bisiminoacenaphthene crosslinked polymer.
 2価の有機基は、結合手を2個有する有機基である。2価の有機基のなかでは、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、置換基および/またはヘテロ原子を有していてもよい2価の炭化水素基であることが好ましい。 A divalent organic group is an organic group having two bonds. Among the divalent organic groups, from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging, even if it has a substituent and / or a hetero atom A good divalent hydrocarbon group is preferred.
 置換基および/またはヘテロ原子を有していてもよい2価の炭化水素基のなかでは、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、置換基および/またはヘテロ原子を有していてもよい2価の脂肪族基、オリゴオキシエチレン基、オリゴオキシプロピレン基などの置換基を有していてもよいオキシアルキレン基、ならびに置換基および/またはヘテロ原子を有していてもよい2価の芳香族基が好ましい。 Among the divalent hydrocarbon groups which may have a substituent and/or a hetero atom, the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging From, a divalent aliphatic group optionally having a substituent and / or a hetero atom, an oxyalkylene group optionally having a substituent such as an oligooxyethylene group, an oligooxypropylene group, and a substituent and/or a divalent aromatic group optionally having a heteroatom is preferred.
 2価の脂肪族基の例としては、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、sec-ブチレン基、tert-ブチレン基、イソブチレン基、2-エチルブチレン基、3,3-ジメチルブチレン基、n-ペンチレン基、イソペンチレン基、ネオペンチレン基、tert-ペンチレン基、シクロペンチレン基、1-メチルペンチレン基、3-メチルペンチレン基、2-エチルペンチレン基、4-メチル-2-ペンチレン基、n-ヘキシレン基、1-メチルヘキシレン基、2-エチルヘキシレン基、2-ブチルヘキシレン基、シクロヘキシレン基、4-メチルシクロヘキシレン基、4-tert-ブチルシクロヘキシレン基、n-ヘプチレン基、1-メチルヘプチレン基、2,2-ジメチルヘプチレン基、2-エチルヘプチレン基、2-ブチルヘプチレン基、n-オクチレン基、tert-オクチレン基、2-エチルオクチレン基、2-ブチルオクチレン基、2-ヘキシルオクチレン基、3,7-ジメチルオクチレン基、シクロオクチレン基、n-ノニレン基、n-デシレン基、アダマンチレン基、2-エチルデシレン基、2-ブチルデシレン基、2-ヘキシルデシレン基、2-オクチルデシレン基、n-ウンデシレン基、n-ドデシレン基、2-エチルドデシレン基、2-ブチルドデシレン基、2-ヘキシルドデシレン基、2-オクチルデシレン基、n-トリデシレン基、n-テトラデシレン基、n-ペンタデシレン基、n-ヘキサデシレン基、2-エチルヘキサデシレン基、2-ブチルヘキサデシレン基、2-ヘキシルヘキサデシレン基、2-オクチルヘキサデシレン基、n-ヘプタデシレン基、n-オクタデシレン基、n-ノナデシレン基などのアルキレン基が挙げられる。前記アルキレン基は、脂環構造を有していてもよい。 Examples of divalent aliphatic groups include methylene group, ethylene group, n-propylene group, isopropylene group, n-butylene group, sec-butylene group, tert-butylene group, isobutylene group, 2-ethylbutylene group, 3,3-dimethylbutylene group, n-pentylene group, isopentylene group, neopentylene group, tert-pentylene group, cyclopentylene group, 1-methylpentylene group, 3-methylpentylene group, 2-ethylpentylene group, 4-methyl-2-pentylene group, n-hexylene group, 1-methylhexylene group, 2-ethylhexylene group, 2-butylhexylene group, cyclohexylene group, 4-methylcyclohexylene group, 4-tert- butylcyclohexylene group, n-heptylene group, 1-methylheptylene group, 2,2-dimethylheptylene group, 2-ethylheptylene group, 2-butylheptylene group, n-octylene group, tert-octylene group, 2-ethyloctylene group, 2-butyloctylene group, 2-hexyloctylene group, 3,7-dimethyloctylene group, cyclooctylene group, n-nonylene group, n-decylene group, adamantylene group, 2-ethyldecylene group, 2 -butyldecylene group, 2-hexyldecylene group, 2-octyldecylene group, n-undecylene group, n-dodecylene group, 2-ethyldodecylene group, 2-butyldodecylene group, 2-hexyldodecylene group, 2-octylde sylene group, n-tridecylene group, n-tetradecylene group, n-pentadecylene group, n-hexadecylene group, 2-ethylhexadecylene group, 2-butylhexadecylene group, 2-hexylhexadecylene group, 2-octyl Alkylene groups such as a hexadecylene group, n-heptadecylene group, n-octadecylene group and n-nonadecylene group can be mentioned. The alkylene group may have an alicyclic structure.
 前記置換基の例としては、ハロゲン原子、シアノ基、ジアルキルアミノ基、アルコキシ基、ニトロ基、シクロアルキル基、環状エーテル基、ヘテロ原子、水酸基、カルボキシル基、カルボニル基、メルカプト基、スルホニル基、スルフィニル基、シリル基、シロキサニル基、アルケニル基、アルコキシ基などが挙げられる。置換基のなかでは、シアノ基、ジアルキルアミノ基、アルコキシ基、ニトロ基、シクロアルキル基および環状エーテル基が好ましい。前記ヘテロ原子の例としては、ホウ素原子、酸素原子、窒素原子、リン原子、ケイ素原子、硫黄原子などが挙げられる。 Examples of the substituents include halogen atoms, cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups, cyclic ether groups, heteroatoms, hydroxyl groups, carboxyl groups, carbonyl groups, mercapto groups, sulfonyl groups, sulfinyl groups, silyl groups, siloxanyl groups, alkenyl groups, alkoxy groups, and the like. Among the substituents, cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups and cyclic ether groups are preferred. Examples of the heteroatom include boron atom, oxygen atom, nitrogen atom, phosphorus atom, silicon atom, sulfur atom and the like.
 2価の芳香族基の例としては、フェニレン基、ナフチレン基、フルオレニレン基、アントラセニレン基、フェナントリレン基、ビフェニリレン基などのアリーレン基が挙げられる。 Examples of divalent aromatic groups include arylene groups such as phenylene groups, naphthylene groups, fluorenylene groups, anthracenylene groups, phenanthrylene groups, and biphenylylene groups.
 アリーレン基は、ハロゲン原子、シアノ基、ジアルキルアミノ基、アルコキシ基、ニトロ基、シクロアルキル基、環状エーテル基、ヘテロ原子、水酸基、カルボキシル基、カルボニル基、メルカプト基、スルホニル基、スルフィニル基、シリル基、シロキサニル基、アルケニル基、アルコキシ基などの置換基を有していてもよい。前記置換基のなかでは、シアノ基、ジアルキルアミノ基、アルコキシ基、ニトロ基、シクロアルキル基および環状エーテル基が好ましい。前記ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。前記ヘテロ原子の例としては、ホウ素原子、酸素原子、窒素原子、リン原子、ケイ素原子、硫黄原子などが挙げられる。 Arylene groups include halogen atoms, cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups, cyclic ether groups, hetero atoms, hydroxyl groups, carboxyl groups, carbonyl groups, mercapto groups, sulfonyl groups, sulfinyl groups, and silyl groups. , a siloxanyl group, an alkenyl group, and an alkoxy group. Among the substituents, cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups and cyclic ether groups are preferred. Examples of the halogen atoms include fluorine, chlorine, bromine and iodine atoms. Examples of the heteroatom include boron atom, oxygen atom, nitrogen atom, phosphorus atom, silicon atom, sulfur atom and the like.
 置換基および/またはヘテロ原子を有していてもよい2価の脂肪族基、置換基を有していてもよいオキシアルキレン基ならびに置換基および/またはヘテロ原子を有していてもよい2価の芳香族基のなかでは、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、置換基を有していてもよいアルキレン基、置換基を有していてもよいオキシアルキレン基および置換基を有していてもよいアリーレン基が好ましく、炭素数1~12のアルキレン基、炭素数が2~4のオキシアルキレン基および炭素数6~12のアリーレン基がより好ましく、炭素数1~12のアルキレン基、オリゴオキシエチレン基およびオリゴオキシプロピレン基がさらに好ましく、炭素数4~12のアルキレン基がさらに一層好ましい。前記置換基のなかでは、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、シアノ基、ジアルキルアミノ基、アルコキシ基、ニトロ基、シクロアルキル基および環状エーテル基が好ましい。 A divalent aliphatic group optionally having substituents and/or heteroatoms, an oxyalkylene group optionally having substituents and a divalent optionally having substituents and/or heteroatoms Among the aromatic groups, from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability against charge and discharge of the lithium ion secondary battery, an alkylene group that may have a substituent, a substituent and an arylene group optionally having a substituent are preferred, an alkylene group having 1 to 12 carbon atoms, an oxyalkylene group having 2 to 4 carbon atoms and 6 to 12 carbon atoms is more preferred, an alkylene group having 1 to 12 carbon atoms, an oligooxyethylene group and an oligooxypropylene group are more preferred, and an alkylene group having 4 to 12 carbon atoms is even more preferred. Among the substituents, cyano group, dialkylamino group, alkoxy group, nitro group, cycloalkyl group, from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability against charge and discharge of the lithium ion secondary battery. groups and cyclic ether groups are preferred.
 Zは、2価の有機基である。2価の有機基は、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、置換基を有していてもよい2価の炭化水素基であることが好ましい。  Z is a divalent organic group. The divalent organic group is a divalent hydrocarbon group which may have a substituent from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging. is preferably
 置換基を有していてもよい2価の炭化水素基のなかでは、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、置換基および/またはヘテロ原子を有していてもよい2価の脂肪族基、ならびに置換基および/またはヘテロ原子を有していてもよい2価の芳香族基が好ましい。 Among the divalent hydrocarbon groups which may have a substituent, a substituent and A divalent aliphatic group optionally having/or a heteroatom and a divalent aromatic group optionally having a substituent and/or a heteroatom are preferred.
 2価の脂肪族基の例としては、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、sec-ブチレン基、tert-ブチレン基、イソブチレン基、2-エチルブチレン基、3,3-ジメチルブチレン基、n-ペンチレン基、イソペンチレン基、ネオペンチレン基、tert-ペンチレン基、シクロペンチレン基、1-メチルペンチレン基、3-メチルペンチレン基、2-エチルペンチレン基、4-メチル-2-ペンチレン基、n-ヘキシレン基、1-メチルヘキシレン基、2-エチルヘキシレン基、2-ブチルヘキシレン基、シクロヘキシレン基、4-メチルシクロヘキシレン基、4-tert-ブチルシクロヘキシレン基、n-ヘプチレン基、1-メチルヘプチレン基、2,2-ジメチルヘプチレン基、2-エチルヘプチレン基、2-ブチルヘプチレン基、n-オクチレン基、tert-オクチレン基、2-エチルオクチレン基、2-ブチルオクチレン基、2-ヘキシルオクチレン基、3,7-ジメチルオクチレン基、シクロオクチレン基、n-ノニレン基、n-デシレン基、アダマンチレン基、2-エチルデシレン基、2-ブチルデシレン基、2-ヘキシルデシレン基、2-オクチルデシレン基、n-ウンデシレン基、n-ドデシレン基、2-エチルドデシレン基、2-ブチルドデシレン基、2-ヘキシルドデシレン基、2-オクチルデシレン基、n-トリデシレン基、n-テトラデシレン基、n-ペンタデシレン基、n-ヘキサデシレン基、2-エチルヘキサデシレン基、2-ブチルヘキサデシレン基、2-ヘキシルヘキサデシレン基、2-オクチルヘキサデシレン基、n-ヘプタデシレン基、n-オクタデシレン基、n-ノナデシレン基などのアルキレン基が挙げられる。前記アルキレン基は、脂環構造を有していてもよい。アルキレン基は、ハロゲン原子、シアノ基、ジアルキルアミノ基、アルコキシ基、ニトロ基、シクロアルキル基、環状エーテル基、ヘテロ原子、水酸基、カルボキシル基、カルボニル基、メルカプト基、スルホニル基、スルフィニル基、シリル基、シロキサニル基、アルケニル基、アルコキシ基などの置換基を有していてもよい。前記置換基のなかでは、シアノ基、ジアルキルアミノ基、アルコキシ基、ニトロ基、シクロアルキル基および環状エーテル基が好ましい。前記ヘテロ原子の例としては、ホウ素原子、酸素原子、窒素原子、リン原子、ケイ素原子、硫黄原子などが挙げられる。 Examples of divalent aliphatic groups include methylene group, ethylene group, n-propylene group, isopropylene group, n-butylene group, sec-butylene group, tert-butylene group, isobutylene group, 2-ethylbutylene group, 3,3-dimethylbutylene group, n-pentylene group, isopentylene group, neopentylene group, tert-pentylene group, cyclopentylene group, 1-methylpentylene group, 3-methylpentylene group, 2-ethylpentylene group, 4-methyl-2-pentylene group, n-hexylene group, 1-methylhexylene group, 2-ethylhexylene group, 2-butylhexylene group, cyclohexylene group, 4-methylcyclohexylene group, 4-tert- butylcyclohexylene group, n-heptylene group, 1-methylheptylene group, 2,2-dimethylheptylene group, 2-ethylheptylene group, 2-butylheptylene group, n-octylene group, tert-octylene group, 2-ethyloctylene group, 2-butyloctylene group, 2-hexyloctylene group, 3,7-dimethyloctylene group, cyclooctylene group, n-nonylene group, n-decylene group, adamantylene group, 2-ethyldecylene group, 2 -butyldecylene group, 2-hexyldecylene group, 2-octyldecylene group, n-undecylene group, n-dodecylene group, 2-ethyldodecylene group, 2-butyldodecylene group, 2-hexyldodecylene group, 2-octylde sylene group, n-tridecylene group, n-tetradecylene group, n-pentadecylene group, n-hexadecylene group, 2-ethylhexadecylene group, 2-butylhexadecylene group, 2-hexylhexadecylene group, 2-octyl Alkylene groups such as a hexadecylene group, n-heptadecylene group, n-octadecylene group and n-nonadecylene group can be mentioned. The alkylene group may have an alicyclic structure. Alkylene groups include halogen atoms, cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups, cyclic ether groups, hetero atoms, hydroxyl groups, carboxyl groups, carbonyl groups, mercapto groups, sulfonyl groups, sulfinyl groups, and silyl groups. , a siloxanyl group, an alkenyl group, and an alkoxy group. Among the substituents, cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups and cyclic ether groups are preferred. Examples of the heteroatom include boron atom, oxygen atom, nitrogen atom, phosphorus atom, silicon atom, sulfur atom and the like.
 2価の芳香族基の例としては、フェニレン基、ナフチレン基、フルオレニレン基、アントラセニレン基、フェナントリレン基、ビフェニリレン基などのアリーレン基が挙げられる。アリーレン基は、ハロゲン原子、シアノ基、ジアルキルアミノ基、アルコキシ基、ニトロ基、シクロアルキル基、環状エーテル基、水酸基、カルボキシル基、カルボニル基、メルカプト基、スルホニル基、スルフィニル基、シリル基、シロキサニル基、アルケニル基、アルコキシ基などの置換基を有していてもよい。前記置換基のなかでは、シアノ基、ジアルキルアミノ基、アルコキシ基、ニトロ基、シクロアルキル基および環状エーテル基が好ましい。前記ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。前記ヘテロ原子の例としては、ホウ素原子、酸素原子、窒素原子、リン原子、ケイ素原子、硫黄原子などが挙げられる。 Examples of divalent aromatic groups include arylene groups such as phenylene groups, naphthylene groups, fluorenylene groups, anthracenylene groups, phenanthrylene groups, and biphenylylene groups. Arylene groups include halogen atoms, cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups, cyclic ether groups, hydroxyl groups, carboxyl groups, carbonyl groups, mercapto groups, sulfonyl groups, sulfinyl groups, silyl groups, and siloxanyl groups. , an alkenyl group, or an alkoxy group. Among the substituents, cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups and cyclic ether groups are preferred. Examples of the halogen atoms include fluorine, chlorine, bromine and iodine atoms. Examples of the heteroatom include boron atom, oxygen atom, nitrogen atom, phosphorus atom, silicon atom, sulfur atom and the like.
 前記置換基のなかでは、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子、シアノ基、ジアルキルアミノ基、アルコキシ基、ニトロ基、シクロアルキル基、環状エーテル基が好ましい。 Among the substituents, halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are used from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging. , a cyano group, a dialkylamino group, an alkoxy group, a nitro group, a cycloalkyl group, and a cyclic ether group are preferred.
 前記置換基を有していてもよいアリーレン基としては、例えば、式(III): Examples of the arylene group optionally having a substituent include formula (III):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、R1およびR2は、それぞれ独立して水素原子、置換または非置換の脂肪族炭化水素基、ハロゲン原子、アミノ基またはニトロ基を示す)
で表わされるアリーレン基、式(IV):
(wherein R 1 and R 2 each independently represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group)
An arylene group represented by formula (IV):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、R3、R4、R5およびR6は、それぞれ独立して水素原子、置換または非置換の脂肪族炭化水素基、ハロゲン原子、アミノ基またはニトロ基、R7は直接結合、2価の脂肪族炭化水素基、エーテル結合、アミド結合、エステル結合またはチオ基を示す)
で表わされるアリーレン基などが挙げられる。これらのアリーレン基は、それぞれ単独で用いてもよく、併用してもよい。
(wherein R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group; R 7 is a direct bond; indicates a divalent aliphatic hydrocarbon group, ether bond, amide bond, ester bond or thio group)
An arylene group represented by and the like can be mentioned. These arylene groups may be used alone or in combination.
 式(III)において、R1およびR2は、それぞれ独立して水素原子、置換または非置換の脂肪族炭化水素基、ハロゲン原子、アミノ基またはニトロ基である。R1およびR2は、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、いずれも水素原子であることが好ましい。 In formula (III), R 1 and R 2 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group. Both R 1 and R 2 are preferably hydrogen atoms from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging.
 式(IV)において、R3、R4、R5およびR6は、それぞれ独立して水素原子、置換または非置換の脂肪族炭化水素基、ハロゲン原子、アミノ基またはニトロ基である。R3、R4、R5およびR6は、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、いずれも水素原子であることが好ましい。R7は、直接結合、2価の脂肪族炭化水素基、エーテル結合、アミド結合、エステル結合またはチオ基である。R7は、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、直接結合、メチレン基、エーテル結合、アミド結合またはエステル結合であることが好ましい。 In formula ( IV ), R3 , R4 , R5 and R6 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group. R 3 , R 4 , R 5 and R 6 are all preferably hydrogen atoms from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging. . R7 is a direct bond, a divalent aliphatic hydrocarbon group, an ether bond, an amide bond, an ester bond or a thio group. R 7 is preferably a direct bond, a methylene group, an ether bond, an amide bond or an ester bond from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging. preferable.
 前記置換基を有していてもよいアルキレン基としては、式(V): The alkylene group optionally having a substituent is the formula (V):
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式中、R8およびR9は、それぞれ独立して水素原子、置換または非置換の脂肪族炭化水素基、ハロゲン原子、アミノ基またはニトロ基、mは1~12の整数を示す)
で表わされる基などが挙げられる。R8およびR9は、それぞれ独立して水素原子、置換または非置換の脂肪族炭化水素基、ハロゲン原子、アミノ基またはニトロ基であるが、これらのなかでは、水素原子が好ましい。mは、1~12の整数であることが好ましく、4~12の整数であることがより好ましい。
(wherein R 8 and R 9 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group, and m is an integer of 1 to 12)
A group represented by and the like can be mentioned. R 8 and R 9 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group, and among these, a hydrogen atom is preferred. m is preferably an integer of 1-12, more preferably an integer of 4-12.
 Zは、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、置換基を有していてもよいアリーレン基および置換基を有していてもよいアルキレン基が好ましく、置換基を有していてもよい炭素数6~12のアリーレン基および置換基を有していてもよい炭素数1~12のアルキレン基より好ましく、置換基を有していてもよい炭素数6~16のアリーレン基および置換基を有していてもよい炭素数4~8のアルキレン基がさらに好ましく、置換基を有していてもよい炭素数6~12のアリーレン基がさらに一層好ましく、置換基を有していてもよいフェニレン基がさらに好ましく、フェニレン基が特に好ましい。 Z has an optionally substituted arylene group and a substituent from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charge and discharge. is preferably an alkylene group having a substituent, preferably an arylene group having 6 to 12 carbon atoms which may have a substituent and an alkylene group having 1 to 12 carbon atoms which may have a substituent, having a substituent An arylene group having 6 to 16 carbon atoms which may be substituted and an alkylene group having 4 to 8 carbon atoms which may have a substituent are more preferable, and an arylene group having 6 to 12 carbon atoms which may have a substituent. is more preferred, a phenylene group which may have a substituent is more preferred, and a phenylene group is particularly preferred.
 本発明のビスイミノアセナフテン架橋ポリマーは、架橋構造を有することから、ゲル透過クロマトグラフィーによって当該ビスイミノアセナフテン架橋ポリマーの平均分子量(例えば、重量平均分子量、数平均分子量など)を測定することが困難である。 Since the bisiminoacenaphthene crosslinked polymer of the present invention has a crosslinked structure, the average molecular weight (for example, weight average molecular weight, number average molecular weight, etc.) of the bisiminoacenaphthene crosslinked polymer can be measured by gel permeation chromatography. Have difficulty.
 しかし、本発明のビスイミノアセナフテン架橋ポリマーの原料として用いられる式(II): However, formula (II) used as a raw material for the bisiminoacenaphthene crosslinked polymer of the present invention:
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式中、Zは前記と同じ)
で表わされる繰り返し単位を有するビスイミノアセナフテンポリマーおよびジハロゲン化有機化合物などの連結基Yを形成する化合物の使用量に基づいてビスイミノアセナフテン架橋ポリマーの数平均分子量を推定することができる。式(II)で表わされる繰り返し単位を有するビスイミノアセナフテンポリマーおよびジハロゲン化有機化合物などの連結基Yを形成する化合物の使用量に基づいて推定されるビスイミノアセナフテン架橋ポリマーの数平均分子量は、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、10000~100000であることが好ましい。
(Wherein, Z is the same as above)
The number average molecular weight of the bisiminoacenaphthene crosslinked polymer can be estimated based on the amount of the compound forming the linking group Y such as the bisiminoacenaphthene polymer having a repeating unit represented by and the dihalogenated organic compound. The number average molecular weight of the bisiminoacenaphthene crosslinked polymer estimated based on the amount of the compound forming the linking group Y such as the bisiminoacenaphthene polymer having a repeating unit represented by formula (II) and the dihalogenated organic compound is , from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging, it is preferably 10,000 to 100,000.
 本発明のビスイミノアセナフテン架橋ポリマーの原料として、式(II)で表わされる繰り返し単位を有するビスイミノアセナフテンポリマーを用いることができる。 A bisiminoacenaphthene polymer having a repeating unit represented by formula (II) can be used as a starting material for the bisiminoacenaphthene crosslinked polymer of the present invention.
 式(II)で表わされる繰り返し単位を有するビスイミノアセナフテンポリマーは、アセナフテンキノンと有機ジアミン化合物とを反応させることによって調製することができる。より具体的には、ビスイミノアセナフテンポリマーは、例えば、アセナフテンキノンをアセトニトリルなどの有機溶媒中で懸濁させ、得られた懸濁液に酢酸を添加し、得られた混合物に有機ジアミン化合物を添加し、アセナフテンキノンと有機ジアミン化合物とを重縮合させることにより、容易に調製することができる。 A bisiminoacenaphthene polymer having a repeating unit represented by formula (II) can be prepared by reacting acenaphthenequinone with an organic diamine compound. More specifically, the bisiminoacenaphthene polymer is prepared, for example, by suspending acenaphthenequinone in an organic solvent such as acetonitrile, adding acetic acid to the resulting suspension, and adding an organic diamine compound to the resulting mixture. can be easily prepared by adding and polycondensing acenaphthenequinone and an organic diamine compound.
 有機ジアミン化合物としては、置換基を有していてもよい芳香族ジアミン化合物、置換基を有していてもよい脂肪族ジアミン化合物などが挙げられる。前記脂肪族ジアミン化合物は、脂環構造を有していてもよい。前記置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子、シアノ基、ジアルキルアミノ基、アルコキシ基、ニトロ基、シクロアルキル基、環状エーテル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。有機ジアミン化合物のなかでは、置換基を有していてもよい炭素数6~12の芳香族ジアミン化合物が好ましい。 Examples of organic diamine compounds include aromatic diamine compounds that may have substituents, aliphatic diamine compounds that may have substituents, and the like. The aliphatic diamine compound may have an alicyclic structure. Examples of the substituent include halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a cyano group, a dialkylamino group, an alkoxy group, a nitro group, a cycloalkyl group, and a cyclic ether group. The invention is not limited to only such examples. Among organic diamine compounds, aromatic diamine compounds having 6 to 12 carbon atoms which may have a substituent are preferred.
 置換基を有していてもよい芳香族ジアミン化合物としては、例えば、式(VI): Examples of aromatic diamine compounds that may have substituents include formula (VI):
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式中、R1およびR2は前記と同じ)
で表わされる芳香族ジアミン化合物、式(VII):
(Wherein, R 1 and R 2 are the same as above)
An aromatic diamine compound represented by the formula (VII):
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式中、R3、R4、R5、R6およびR7は前記と同じ)
で表わされる芳香族ジアミン化合物などが挙げられる。これらの芳香族ジアミン化合物は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
(wherein R 3 , R 4 , R 5 , R 6 and R 7 are the same as above)
and aromatic diamine compounds represented by. These aromatic diamine compounds may be used alone or in combination of two or more.
 式(VI)において、R1およびR2は、それぞれ独立して水素原子、置換または非置換の脂肪族炭化水素基、ハロゲン原子、アミノ基またはニトロ基である。R1およびR2は、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、いずれも水素原子であることが好ましい。 In formula (VI), R 1 and R 2 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group. Both R 1 and R 2 are preferably hydrogen atoms from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging.
 式(VII)において、R3、R4、R5およびR6は、それぞれ独立して水素原子、置換または非置換の脂肪族炭化水素基、ハロゲン原子、アミノ基またはニトロ基である。R3、R4、R5およびR6は、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、いずれも水素原子であることが好ましい。R7は、直接結合、2価の脂肪族炭化水素基、エーテル結合、アミド結合、エステル結合またはチオ基である。R7は、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、直接結合、メチレン基、エーテル結合、アミド結合またはエステル結合であることが好ましい。置換基を有していてもよい芳香族ジアミン化合物のなかでは、式(VI)で表わされる芳香族ジアミン化合物が好ましく、フェニレンジアミンがより好ましく、p-フェニレンジアミンがさらに好ましい。 In formula (VII), R3 , R4 , R5 and R6 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group. R 3 , R 4 , R 5 and R 6 are all preferably hydrogen atoms from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging. . R7 is a direct bond, a divalent aliphatic hydrocarbon group, an ether bond, an amide bond, an ester bond or a thio group. R 7 is preferably a direct bond, a methylene group, an ether bond, an amide bond or an ester bond from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging. preferable. Among the aromatic diamine compounds which may have a substituent, aromatic diamine compounds represented by formula (VI) are preferred, phenylenediamine is more preferred, and p-phenylenediamine is even more preferred.
 置換基を有していてもよい脂肪族ジアミン化合物としては、例えば、式(VIII): Examples of aliphatic diamine compounds that may have substituents include formula (VIII):
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(式中、R8、R9およびmは前記と同じ)
で表わされる脂肪族ジアミン化合物などが挙げられる。式(VIII)において、R8およびR9は、それぞれ独立して水素原子、置換または非置換の脂肪族炭化水素基、ハロゲン原子、アミノ基またはニトロ基であるが、これらのなかでは、水素原子が好ましい。mは、1~12の整数であることが好ましく、4~12の整数であることがより好ましい。
(Wherein, R 8 , R 9 and m are the same as above)
and aliphatic diamine compounds represented by. In formula (VIII), R 8 and R 9 are each independently a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a halogen atom, an amino group or a nitro group, among which a hydrogen atom is preferred. m is preferably an integer of 1-12, more preferably an integer of 4-12.
 脂肪族ジアミン化合物としては、例えば、1,2-エチレンジアミン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ヘキサメチレンジアミン、1,10-ジアミノデカンなど直鎖脂肪族ジアミン化合物;1,2-ジアミノ-2-メチルプロパン、2,3-ジアミノ-2,3-ブタン、2-メチル-1,5-ジアミノペンタンなどの分岐鎖脂肪族ジアミン化合物;1,4-ジアミノシクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサンなどの脂環式ジアミン化合物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Examples of aliphatic diamine compounds include linear aliphatic diamine compounds such as 1,2-ethylenediamine, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-hexamethylenediamine, and 1,10-diaminodecane. branched chain aliphatic diamine compounds such as 1,2-diamino-2-methylpropane, 2,3-diamino-2,3-butane and 2-methyl-1,5-diaminopentane; 1,4-diaminocyclohexane, Examples include alicyclic diamine compounds such as 1,3-bis(aminomethyl)cyclohexane and 1,4-bis(aminomethyl)cyclohexane, but the present invention is not limited to these examples.
 式(II)で表わされる繰り返し単位を有するビスイミノアセナフテンポリマーの数平均分子量は、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、10000~100000であることが好ましい。 The number average molecular weight of the bisiminoacenaphthene polymer having the repeating unit represented by formula (II) is, from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging, It is preferably between 10,000 and 100,000.
 本発明のビスイミノアセナフテン架橋ポリマーは、例えば、式(II)で表わされる繰り返し単位を有するビスイミノアセナフテンポリマーをN-メチルピロリドン(NMP)などの有機溶媒に溶解させ、得られた溶液を窒素ガス、アルゴンガスなどの不活性ガス雰囲気中にて還流下で撹拌しながら、連結基Yを形成する化合物を当該溶液に添加し、ビスイミノアセナフテンポリマーと連結基Yを形成する化合物とを反応させることにより、得ることができる。 The bisiminoacenaphthene crosslinked polymer of the present invention can be obtained, for example, by dissolving a bisiminoacenaphthene polymer having a repeating unit represented by formula (II) in an organic solvent such as N-methylpyrrolidone (NMP), and the resulting solution is A compound that forms the linking group Y is added to the solution while stirring under reflux in an inert gas atmosphere such as nitrogen gas or argon gas to separate the biiminoacenaphthene polymer and the compound that forms the linking group Y. It can be obtained by reacting.
 連結基Yを形成する化合物は、有機化合物であってもよく、無機化合物であってもよい。連結基Yを形成する化合物は、ビスイミノアセナフテン架橋ポリマーの調製が容易であることから、有機化合物であることが好ましい。有機化合物のなかでは、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、置換基および/またはヘテロ原子を有していてもよい炭化水素化合物であることが好ましく、置換基および/またはヘテロ原子を有していてもよい脂肪族化合物、ならびに置換基および/またはヘテロ原子を有していてもよい芳香族化合物がより好ましい。 The compound forming the linking group Y may be an organic compound or an inorganic compound. The compound forming the linking group Y is preferably an organic compound, since the bisiminoacenaphthene crosslinked polymer can be easily prepared. Among the organic compounds, from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging, a hydrocarbon optionally having a substituent and/or a hetero atom They are preferably compounds, more preferably aliphatic compounds which may have substituents and/or heteroatoms, and aromatic compounds which may have substituents and/or heteroatoms.
 連結基Yを形成する化合物の例としては、式(IX):
   X1-Y-X2                       (IX)
(式中、X1およびX2は、それぞれ独立して1価の陰イオンを生成する基を示し、Yは、前記と同じである)
で表わされる化合物が挙げられる。X1は、X2と同一であってもよく、異なっていてもよい。
Examples of compounds forming the linking group Y include formula (IX):
X1 - Y - X2 (IX)
(Wherein, X 1 and X 2 each independently represent a group that generates a monovalent anion, and Y is the same as above)
The compound represented by is mentioned. X 1 may be the same as or different from X 2 .
 X1およびX2の例としては、それぞれ独立して、ハロゲン原子、PF6-基、ClO4-基、NO3-基、BF4-基、SCN-基、CN-基、CH3COO-基、CH3CH2COO-基、NO3-基、CF3COO-基、CF3CF2CO-基、亜硝酸基、次亜塩素酸基、亜塩素酸基、塩素酸基、過塩素酸基、過マンガン酸基、炭酸水素基、リン酸二水素基、硫化水素基、チオシアン酸基、スルホン酸基、フェノキシド基、トリフルオロメタンスルホニル基、ビス(フルオロスルホニル)イミド基、テトラフルオロボレート基、テトラアリールボレート基、ヘキサフルオロアンチモネート基などが挙げられる。X1およびX2のなかでは、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、ハロゲン原子であることが好ましく、塩素原子、臭素原子またはヨウ素原子であることがより好ましい。Yは、前記と同じである。 Examples of X 1 and X 2 each independently include a halogen atom, PF 6 -, ClO 4 -, NO 3 -, BF 4 -, SCN-, CN-, CH 3 COO- group, CH 3 CH 2 COO-- group, NO 3 -- group, CF 3 COO-- group, CF 3 CF 2 CO-- group, nitrite group, hypochlorous acid group, chlorous acid group, chloric acid group, perchlorate acid group, permanganate group, hydrogen carbonate group, dihydrogen phosphate group, hydrogen sulfide group, thiocyanate group, sulfonic acid group, phenoxide group, trifluoromethanesulfonyl group, bis(fluorosulfonyl)imide group, tetrafluoroborate group , a tetraarylborate group, a hexafluoroantimonate group, and the like. Among X 1 and X 2 , from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability of the lithium ion secondary battery against charging and discharging, it is preferably a halogen atom, such as a chlorine atom and a bromine atom. Or it is more preferably an iodine atom. Y is the same as above.
 連結基Yを形成する脂肪族化合物の代表例としては、メタン、エタン、n-プロパン、イソプロパン、n-ブタン、sec-ブタン、tert-ブタン、イソブタン、2-エチルブタン、3,3-ジメチルブタン、n-ペンタン、イソペンタン、ネオペンタン、tert-ペンタン、シクロペンタン、1-メチルペンタン、3-メチルペンタン、2-エチルペンタン、4-メチル-2-ペンタン、n-ヘキサン、1-メチルヘキサン、2-エチルヘキサン、2-ブチルヘキサン、シクロヘキサン、4-メチルシクロヘキサン、4-tert-ブチルシクロヘキサン、n-ヘプタン、1-メチルヘプタン、2,2-ジメチルヘプタン、2-エチルヘプタン、2-ブチルヘプタン、n-オクタン、tert-オクタン、2-エチルオクタン、2-ブチルオクタン、2-ヘキシルオクタン、3,7-ジメチルオクタン、シクロオクタン、n-ノナン、n-デカン、アダマンタン、2-エチルデカン、2-ブチルデカン、2-ヘキシルデカン、2-オクチルデカン、n-ウンデカン、n-ドデカン、2-エチルドデカン、2-ブチルドデカン、2-ヘキシルドデカン、2-オクチルデカン、n-トリデカン、n-テトラデカン、n-ペンタデカン、n-ヘキサデカン、2-エチルヘキサデカン、2-ブチルヘキサデカン、2-ヘキシルヘキサデカン、2-オクチルヘキサデカン、n-ヘプタデカン、n-オクタデカン、n-ノナデカンなどの脂肪族化合物のジハロゲン化物が挙げられる。前記脂肪族化合物のジハロゲン化物は、ヘテロ原子、置換基または脂環構造を有していてもよい。ハロゲン原子の例としては、塩素原子、臭素原子およびヨウ素原子が挙げられる。 Representative examples of aliphatic compounds forming the linking group Y include methane, ethane, n-propane, isopropane, n-butane, sec-butane, tert-butane, isobutane, 2-ethylbutane, and 3,3-dimethylbutane. , n-pentane, isopentane, neopentane, tert-pentane, cyclopentane, 1-methylpentane, 3-methylpentane, 2-ethylpentane, 4-methyl-2-pentane, n-hexane, 1-methylhexane, 2- ethylhexane, 2-butylhexane, cyclohexane, 4-methylcyclohexane, 4-tert-butylcyclohexane, n-heptane, 1-methylheptane, 2,2-dimethylheptane, 2-ethylheptane, 2-butylheptane, n- Octane, tert-octane, 2-ethyloctane, 2-butyloctane, 2-hexyloctane, 3,7-dimethyloctane, cyclooctane, n-nonane, n-decane, adamantane, 2-ethyldecane, 2-butyldecane, 2 -hexyldecane, 2-octyldecane, n-undecane, n-dodecane, 2-ethyldodecane, 2-butyldodecane, 2-hexyldodecane, 2-octyldecane, n-tridecane, n-tetradecane, n-pentadecane, n- Dihalides of aliphatic compounds such as hexadecane, 2-ethylhexadecane, 2-butylhexadecane, 2-hexylhexadecane, 2-octylhexadecane, n-heptadecane, n-octadecane and n-nonadecane can be mentioned. The dihalide of the aliphatic compound may have a heteroatom, a substituent or an alicyclic structure. Examples of halogen atoms include chlorine, bromine and iodine atoms.
 前記ヘテロ原子の例としては、ホウ素原子、酸素原子、窒素原子、リン原子、ケイ素原子、硫黄原子などが挙げられる。前記置換基の例としては、シアノ基、ジアルキルアミノ基、アルコキシ基、ニトロ基、シクロアルキル基、環状エーテル基、ヘテロ原子、水酸基、カルボキシル基、カルボニル基、メルカプト基、スルホニル基、スルフィニル基、シリル基、シロキサニル基、アルケニル基、アルコキシ基などが挙げられる。置換基のなかでは、シアノ基、ジアルキルアミノ基、アルコキシ基、ニトロ基、シクロアルキル基および環状エーテル基が好ましい。前記ヘテロ原子の例としては、ホウ素原子、酸素原子、窒素原子、リン原子、ケイ素原子、硫黄原子などが挙げられる。 Examples of the heteroatom include boron atom, oxygen atom, nitrogen atom, phosphorus atom, silicon atom, sulfur atom and the like. Examples of the substituents include cyano group, dialkylamino group, alkoxy group, nitro group, cycloalkyl group, cyclic ether group, hetero atom, hydroxyl group, carboxyl group, carbonyl group, mercapto group, sulfonyl group, sulfinyl group, and silyl. groups, siloxanyl groups, alkenyl groups, alkoxy groups, and the like. Among the substituents, cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups and cyclic ether groups are preferred. Examples of the heteroatom include boron atom, oxygen atom, nitrogen atom, phosphorus atom, silicon atom, sulfur atom and the like.
 連結基Yを形成する芳香族化合物の代表例としては、ベンゼン、ナフタレン基、フルオレン、アントラセン、フェナントレン、ビフェニレンなどの芳香族化合物のジハロゲン化物が挙げられる。 Representative examples of aromatic compounds that form the linking group Y include dihalides of aromatic compounds such as benzene, naphthalene groups, fluorene, anthracene, phenanthrene, and biphenylene.
 芳香族化合物のジハロゲン化物は、シアノ基、ジアルキルアミノ基、アルコキシ基、ニトロ基、シクロアルキル基、環状エーテル基、ヘテロ原子、水酸基、カルボキシル基、カルボニル基、メルカプト基、スルホニル基、スルフィニル基、シリル基、シロキサニル基、アルケニル基、アルコキシ基などの置換基を有していてもよい。前記置換基のなかでは、シアノ基、ジアルキルアミノ基、アルコキシ基、ニトロ基、シクロアルキル基および環状エーテル基が好ましい。前記ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。前記ヘテロ原子の例としては、ホウ素原子、酸素原子、窒素原子、リン原子、ケイ素原子、硫黄原子などが挙げられる。 Dihalides of aromatic compounds include cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups, cyclic ether groups, heteroatoms, hydroxyl groups, carboxyl groups, carbonyl groups, mercapto groups, sulfonyl groups, sulfinyl groups, and silyl groups. may have substituents such as groups, siloxanyl groups, alkenyl groups and alkoxy groups. Among the substituents, cyano groups, dialkylamino groups, alkoxy groups, nitro groups, cycloalkyl groups and cyclic ether groups are preferred. Examples of the halogen atoms include fluorine, chlorine, bromine and iodine atoms. Examples of the heteroatom include boron atom, oxygen atom, nitrogen atom, phosphorus atom, silicon atom, sulfur atom and the like.
 置換基および/またはヘテロ原子を有していてもよい脂肪族化合物のジハロゲン化物、ならびに置換基および/またはヘテロ原子を有していてもよい芳香族化合物のジハロゲン化物のなかでは、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、置換基を有していてもよい脂肪族化合物のジハロゲン化物、置換基を有していてもよいオキシアルキレンのジハロゲン化物および置換基を有していてもよい芳香族化合物のジハロゲン化物が好ましく、炭素数1~12の脂肪族化合物のジハロゲン化物、炭素数が2~4のオキシアルキレンのジハロゲン化物および炭素数6~12の芳香族化合物のジハロゲン化物がより好ましく、炭素数1~12の脂肪族化合物のジハロゲン化物、オリゴオキシエチレンのジハロゲン化物およびオリゴオキシプロピレンのジハロゲン化物がさらに好ましく、炭素数4~12の脂肪族化合物のジハロゲン化物がさらに一層好ましい。前記置換基のなかでは、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、シアノ基、ジアルキルアミノ基、アルコキシ基、ニトロ基、シクロアルキル基および環状エーテル基が好ましい。 Among the dihalides of aliphatic compounds, which may have substituents and/or heteroatoms, and the dihalides of aromatic compounds, which may have substituents and/or heteroatoms, lithium ion secondary From the viewpoint of increasing the discharge capacity of the battery and improving the durability against charging and discharging of the lithium ion secondary battery, a dihalide of an aliphatic compound which may have a substituent, an oxy which may have a substituent Alkylene dihalides and dihalides of optionally substituted aromatic compounds are preferred, dihalides of aliphatic compounds having 1 to 12 carbon atoms, dihalides of oxyalkylene having 2 to 4 carbon atoms and carbon More preferred are dihalides of aromatic compounds having 6 to 12 carbon atoms, more preferred are dihalides of aliphatic compounds having 1 to 12 carbon atoms, dihalides of oligooxyethylene and dihalides of oligooxypropylene, and 4 to 12 carbon atoms. is even more preferred. Among the substituents, cyano group, dialkylamino group, alkoxy group, nitro group, cycloalkyl group, from the viewpoint of increasing the discharge capacity of the lithium ion secondary battery and improving the durability against charge and discharge of the lithium ion secondary battery. groups and cyclic ether groups are preferred.
 式(IX)で表わされる化合物のなかでは、リチウムイオン二次電池の放電容量を高め、リチウムイオン二次電池の充放電に対する耐久性を向上させる観点から、式(X):
   X3-Y1-X4                       (X)
(式中、X3およびX4は、それぞれ独立してハロゲン原子、Y1は、炭素数が1~12のアルキレン基または炭素数が6~12のアリーレン基を示す)
で表わされる化合物が好ましい。
Among the compounds represented by formula (IX), formula (X):
X 3 -Y 1 -X 4 (X)
(Wherein, X 3 and X 4 are each independently a halogen atom, and Y 1 is an alkylene group having 1 to 12 carbon atoms or an arylene group having 6 to 12 carbon atoms.)
A compound represented by is preferred.
 好適な式(IX)で表わされる化合物として、ジクロロメタン、ジクロロエタン、ジクロロプロパン、ジクロロブタン、ジクロロペンタン、ジクロロヘキサン、ジクロロへプタン、ジクロロオクタン、ジブロモメタン、ジブロモエタン、ジブロモプロパン、ジブロモブタン、ジブロモペンタン、ジブロモヘキサン、ジブロモへプタン、ジブロモオクタン、ジヨードメタン、ジヨードエタン、ジヨードプロパン、ジヨードブタン、ジヨードペンタン、ジヨードヘキサン、ジヨードへプタン、ジヨードクタンなどのハロゲン原子2個を有し、炭素数が1~12の脂肪族化合物、ハロゲン原子2個を有し、炭素数が2~4のオキシアルキレン化合物およびハロゲン原子2個を有し、炭素数が6~12の芳香族化合物(芳香族炭化水素化合物)がより好ましく、ハロゲン原子2個を有し、炭素数1~12の脂肪族化合物がさらに好ましく、ハロゲン原子2個を有し、炭素数4~12の脂肪族化合物がさらに一層好ましい。 Suitable compounds of formula (IX) include dichloromethane, dichloroethane, dichloropropane, dichlorobutane, dichloropentane, dichlorohexane, dichloroheptane, dichlorooctane, dibromomethane, dibromoethane, dibromopropane, dibromobutane, dibromopentane, Dibromohexane, dibromoheptane, dibromooctane, diiodomethane, diiodoethane, diiodopropane, diiodobutane, diiodopentane, diiodohexane, diiodoheptane, diiodoctane, etc. having two halogen atoms and having 1 to 12 carbon atoms Aliphatic compounds, oxyalkylene compounds having 2 to 4 carbon atoms having 2 halogen atoms and aromatic compounds having 6 to 12 carbon atoms (aromatic hydrocarbon compounds) having 2 halogen atoms are more More preferred are aliphatic compounds having 1 to 12 carbon atoms and having 2 halogen atoms, and even more preferred are aliphatic compounds having 4 to 12 carbon atoms and having 2 halogen atoms.
 ビスイミノアセナフテンポリマーと連結基Yを形成する化合物とを反応させる際の反応温度は、特に限定されないが、反応効率を高める観点から60~180℃程度であることが好ましい。また、ビスイミノアセナフテンポリマーと連結基Yを形成する化合物との反応時間は、使用される有機溶媒の量、反応温度などによって異なるので一概には決定することができないが、通常、10~50時間程度である。 Although the reaction temperature for reacting the bisiminoacenaphthene polymer and the compound forming the linking group Y is not particularly limited, it is preferably about 60 to 180°C from the viewpoint of enhancing the reaction efficiency. In addition, the reaction time between the bisiminoacenaphthene polymer and the compound forming the linking group Y varies depending on the amount of the organic solvent used, the reaction temperature, etc., and cannot be generally determined, but is usually 10 to 50. about an hour.
 以上のようにしてビスイミノアセナフテンポリマーと連結基Yを形成する化合物とを反応させることにより、式(I)で表わされる繰り返し単位と他の式(I)で表わされる繰り返し単位とが連結基Yを介して架橋されているビスイミノアセナフテン架橋ポリマーを含む反応混合物が得られる。 By reacting the bisiminoacenaphthene polymer with the compound forming the linking group Y as described above, the repeating unit represented by the formula (I) and the other repeating unit represented by the formula (I) form a linking group. A reaction mixture containing the bisiminoacenaphthene crosslinked polymer crosslinked via Y is obtained.
 反応終了後、得られた反応混合物を減圧乾燥することにより、ビスイミノアセナフテン架橋ポリマーを回収してもよい。 After completion of the reaction, the bisiminoacenaphthene crosslinked polymer may be recovered by drying the resulting reaction mixture under reduced pressure.
 以上のようにして得られるビスイミノアセナフテン架橋ポリマーは、式(I)で表わされるように、連結基Yを有しており、式(I)で表わされる繰り返し単位と当該式(I)で表わされる繰り返し単位とは異なる他の式(I)で表わされる繰り返し単位とが連結基Yを介して架橋されているので、屈強な構造を有する。したがって、ビスイミノアセナフテン架橋ポリマーは、シリコンの脆性を改善し、負極の内部抵抗を低減し、電解液の分解を抑制するものと考えられる。 The bisiminoacenaphthene crosslinked polymer obtained as described above has a linking group Y as represented by formula (I), and the repeating unit represented by formula (I) and the repeating unit represented by formula (I) Since the repeating unit represented by the formula (I) and the repeating unit represented by the other formula (I) are crosslinked via the linking group Y, it has a strong structure. Therefore, it is considered that the bisiminoacenaphthene crosslinked polymer improves the brittleness of silicon, reduces the internal resistance of the negative electrode, and suppresses the decomposition of the electrolyte.
 また、ビスイミノアセナフテン架橋ポリマーは、4級化されている窒素原子を有するので、アニオンを強固に捕捉する性質を有することから、非プロトン性極性有機溶媒に可溶である。 In addition, since the bisiminoacenaphthene crosslinked polymer has a quaternized nitrogen atom, it has the property of firmly trapping anions, and is soluble in an aprotic polar organic solvent.
 ビスイミノアセナフテン架橋ポリマーの代表例としては、式(XI): A representative example of the bisiminoacenaphthene crosslinked polymer is the formula (XI):
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式中、X-およびYは前記と同じ)
で表わされる繰り返し単位を有するポリマーが挙げられる。
(Wherein, X - and Y are the same as above)
A polymer having a repeating unit represented by is mentioned.
 なお、本発明のビスイミノアセナフテン架橋ポリマーには、本発明の目的が阻害されない範囲内で、式(I)で表わされる繰り返し単位以外の繰り返し単位が含まれていてもよい。 It should be noted that the bisiminoacenaphthene crosslinked polymer of the present invention may contain repeating units other than the repeating unit represented by formula (I) as long as the object of the present invention is not hindered.
 前記非プロトン性極性有機溶媒としては、例えば、アセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル系有機溶媒、アセトン、アセチルアセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系有機溶媒、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド系有機溶媒などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Examples of the aprotic polar organic solvent include nitrile organic solvents such as acetonitrile, propionitrile and benzonitrile; ketone organic solvents such as acetone, acetylacetone, methyl ethyl ketone and methyl isobutyl ketone; formamide; Examples include amide organic solvents such as formamide and N,N-dimethylacetamide, but the present invention is not limited to such examples.
〔リチウムイオン二次電池のシリコン負極用バインダー〕
 本発明のリチウムイオン二次電池のシリコン負極用バインダーは、前記ビスイミノアセナフテン架橋ポリマーを含有する。本発明のリチウムイオン二次電池のシリコン負極用バインダーは、前記ビスイミノアセナフテン架橋ポリマーを含有していることから、当該ビスイミノアセナフテン架橋ポリマーをリチウムイオン二次電池のシリコン負極に用いることにより、リチウムイオン二次電池の充放電に対する耐久性を向上させ、放電容量を高めることができる。また、本発明のシリコン負極用バインダーは、非プロトン性極性有機溶媒に溶解させて使用することができるという利点も有する。非プロトン性極性有機溶媒としては、前記例示したものを挙げることができる。
[Binder for silicon negative electrode of lithium ion secondary battery]
The binder for the silicon negative electrode of the lithium ion secondary battery of the present invention contains the bisiminoacenaphthene crosslinked polymer. Since the binder for a silicon negative electrode of a lithium ion secondary battery of the present invention contains the above-mentioned bisiminoacenaphthene crosslinked polymer, by using the bisiminoacenaphthene crosslinked polymer in a silicon negative electrode of a lithium ion secondary battery, , it is possible to improve the durability against charge and discharge of the lithium ion secondary battery and increase the discharge capacity. In addition, the binder for a silicon negative electrode of the present invention also has the advantage that it can be used by being dissolved in an aprotic polar organic solvent. Examples of the aprotic polar organic solvent include those exemplified above.
 本発明のシリコン負極用バインダーは、前記ビスイミノアセナフテン架橋ポリマーのみで構成されていてもよく、本発明の目的を阻害しない範囲内で、例えば、ポリフッ化ビニリデン(PVDF)、1-メチル-2-ピロリドン(NMP)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴムなどの他の負極用バインダーが含まれていてもよく、有機溶媒などの成分が含まれていてもよい。 The binder for a silicon negative electrode of the present invention may be composed only of the above-mentioned bisiminoacenaphthene crosslinked polymer, and may include, for example, polyvinylidene fluoride (PVDF), 1-methyl-2 - Other negative electrode binders such as pyrrolidone (NMP), polytetrafluoroethylene (PTFE), fluororubber, and ethylene propylene diene rubber may be included, and components such as organic solvents may also be included.
〔シリコン負極〕
 シリコン負極には、本発明のシリコン負極用バインダーが用いられる。シリコン負極は、例えば、負極活物質と本発明のシリコン負極用バインダーとを適量で混合し、得られた混合物に有機溶媒を添加することにより、ペースト状の負極合材を調製し、当該負極合材を銅などの金属箔集電体の表面に塗布し、乾燥させ、必要により熱ロールプレス成形し、乾燥させることにより、作製することができる。
[Silicon negative electrode]
The binder for silicon negative electrodes of this invention is used for a silicon negative electrode. For the silicon negative electrode, for example, a negative electrode active material and the binder for a silicon negative electrode of the present invention are mixed in appropriate amounts, and an organic solvent is added to the resulting mixture to prepare a paste-like negative electrode mixture. It can be produced by applying the material to the surface of a metal foil current collector such as copper, drying, hot roll press molding if necessary, and drying.
 負極活物質には、リチウムイオン二次電池の容量を高める観点から、リチウムイオン二次電池の充放電時の膨張および収縮が大きいシリコンが用いられる。シリコンは、アモルファスシリコンであってもよく、シリコン結晶子であってもよい。シリコンとしてシリコンナノ粒子を用いることができる。シリコンナノ粒子は、商業的に容易に入手することができるが、以下のようにして調製することができる。 For the negative electrode active material, from the viewpoint of increasing the capacity of the lithium-ion secondary battery, silicon is used, which expands and contracts significantly during charging and discharging of the lithium-ion secondary battery. The silicon may be amorphous silicon or silicon crystallites. Silicon nanoparticles can be used as silicon. Silicon nanoparticles, which are readily available commercially, can be prepared as follows.
 シリコンナノ粒子の原料として、アルコキシシラン化合物を用いることができる。アルコキシシラン化合物としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-アミノプロピルジメチルエトキシシラン、N-(2-アミノエチル)アミノメチルトリメトキシシランなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのアルコキシシラン化合物は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。アルコキシシラン化合物は、水との混合物として用いることができる。 An alkoxysilane compound can be used as a raw material for silicon nanoparticles. Examples of alkoxysilane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethylethoxysilane, N-(2-aminoethyl)amino Examples include methyltrimethoxysilane and the like, but the present invention is not limited only to such examples. These alkoxysilane compounds may be used alone or in combination of two or more. Alkoxysilane compounds can be used as a mixture with water.
 アルコキシシラン化合物は、あらかじめ還元させておくことが好ましい。アルコキシシラン化合物の還元は、例えば、アルコキシシラン化合物と水との混合物に還元剤を添加することによって行なうことができる。アルコキシシラン化合物を還元させる際の温度は、特に限定されないが、通常、5~80℃程度である。アルコキシシラン化合物を還元させる際の雰囲気は、特に限定されず、大気であってもよく、窒素ガス、アルゴンガスなどの不活性ガスであってもよい。 The alkoxysilane compound is preferably reduced in advance. Reduction of the alkoxysilane compound can be performed, for example, by adding a reducing agent to a mixture of the alkoxysilane compound and water. Although the temperature at which the alkoxysilane compound is reduced is not particularly limited, it is usually about 5 to 80.degree. The atmosphere in which the alkoxysilane compound is reduced is not particularly limited, and may be air or an inert gas such as nitrogen gas or argon gas.
 還元剤としては、例えば、アスコルビン酸、アスコルビン酸ナトリウム、アスコルビン酸カリウムなどのアスコルビン酸およびその塩、亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸水素ナトリウム、アルデヒド亜硫酸水素ナトリウム、亜硫酸水素カリウムなどの亜硫酸塩、ピロ亜硫酸ナトリウム、ピロ亜硫酸カリウム、ピロ亜硫酸水素ナトリウム、ピロ亜硫酸水素カリウムなどのピロ亜硫酸塩などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの還元剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 Examples of reducing agents include ascorbic acid, ascorbic acid such as sodium ascorbate and potassium ascorbate and salts thereof, sulfites such as sodium sulfite, potassium sulfite, sodium hydrogen sulfite, aldehyde sodium hydrogen sulfite and potassium hydrogen sulfite, and pyrosulfite. Pyrosulfites such as sodium, potassium pyrosulfite, sodium pyrosulfite, and potassium pyrosulfite are included, but the present invention is not limited to these examples. These reducing agents may be used alone or in combination of two or more.
 還元剤の量は、当該還元剤の種類によって異なるので一概には決定することができない。還元剤は、通常、アルコキシシラン化合物を中和させるのに必要な量で使用することが好ましい。 The amount of reducing agent varies depending on the type of reducing agent, so it cannot be determined unconditionally. The reducing agent is generally preferably used in an amount necessary to neutralize the alkoxysilane compound.
 アルコキシシラン化合物と水との混合物に還元剤を添加する際の温度は、特に限定されないが、通常、5~80℃程度である。アルコキシシラン化合物と水との混合物に還元剤を添加した後、均一な粒子径を有するシリコンナノ粒子を得る観点から、当該混合物を均一な組成となるまで攪拌することが好ましい。 Although the temperature at which the reducing agent is added to the mixture of the alkoxysilane compound and water is not particularly limited, it is usually about 5 to 80°C. After adding the reducing agent to the mixture of the alkoxysilane compound and water, the mixture is preferably stirred until it has a uniform composition, from the viewpoint of obtaining silicon nanoparticles having a uniform particle size.
 以上のようにしてアルコキシシラン化合物を還元剤で還元させることにより、シリコンナノ粒子の水分散体を得ることができる。 By reducing the alkoxysilane compound with a reducing agent as described above, an aqueous dispersion of silicon nanoparticles can be obtained.
 前記で得られたシリコンナノ粒子の平均粒子径は、分散安定性およびリチウムイオン二次電池の充放電に対する耐久性を向上させ、放電容量を高める観点から、1~300nmであることが好ましく、2~250nmであることがより好ましく、3~200nmであることがさらに好ましい。なお、シリコンナノ粒子の平均粒子径は、走査型電子顕微鏡で撮影された画像から任意に100個のシリコンナノ粒子を選択し、各シリコンナノ粒子の縦軸と横軸との平均値を求め、100個のシリコンナノ粒子について当該平均値を合計し、その合計値を100で除した値を意味する。 The average particle size of the silicon nanoparticles obtained above is preferably 1 to 300 nm from the viewpoint of improving the dispersion stability and the durability of the lithium ion secondary battery to charging and discharging and increasing the discharge capacity. It is more preferably up to 250 nm, and even more preferably 3 to 200 nm. In addition, the average particle size of the silicon nanoparticles is obtained by selecting arbitrarily 100 silicon nanoparticles from an image taken with a scanning electron microscope, obtaining the average value of the vertical axis and the horizontal axis of each silicon nanoparticle, It means a value obtained by summing the average values of 100 silicon nanoparticles and dividing the total value by 100.
 本発明においては、負極活物質としてシリコンのみを用いてもよく、本発明の目的を阻害しない範囲内で他の負極活物質を用いてもよい。他の負極活物質は、リチウムイオンを挿入・脱離することができる活物質であればよく、特に限定されない。他の負極活物質としては、例えば、金属リチウム、リチウム合金、ケイ素含有化合物、ケイ素含有合金、スズ、スズ含有合金、金属酸化物、金属硫化物、金属窒化物、グラファイトなどの炭素系材料などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 In the present invention, only silicon may be used as the negative electrode active material, or other negative electrode active materials may be used as long as the object of the present invention is not hindered. The other negative electrode active material is not particularly limited as long as it is an active material capable of intercalating and deintercalating lithium ions. Examples of other negative electrode active materials include metallic lithium, lithium alloys, silicon-containing compounds, silicon-containing alloys, tin, tin-containing alloys, metal oxides, metal sulfides, metal nitrides, carbon-based materials such as graphite, and the like. However, the present invention is not limited only to such examples.
 前記有機溶媒としては、例えば、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Examples of the organic solvent include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methylethylketone, cyclohexanone, methyl acetate, diethyltriamine, N,N-dimethylaminopropylamine, ethylene oxide and tetrahydrofuran. , is not limited to such examples.
 負極合材には、必要により、導電助剤が含まれていてもよい。導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック、炭素繊維、金属繊維などの導電性繊維、フッ化カーボン、銅、ニッケルなどの金属粉末、ポリフェニレン誘導体などの有機導電性材料などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。負極合材における導電助剤の含有率は、通常、10質量%以下であることが好ましい。 The negative electrode mixture may contain a conductive aid if necessary. Conductive agents include, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; conductive fibers such as carbon fiber and metal fiber; carbon fluoride; copper; and organic conductive materials such as polyphenylene derivatives, etc., but the present invention is not limited to these examples. The content of the conductive aid in the negative electrode mixture is generally preferably 10% by mass or less.
 また、負極合材には、必要により、包接化合物が適量で含まれていてもよい。包接化合物は、電池内で発生したガスを吸収する性質を有する。包接化合物としては、例えば、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリンなどのシクロデキストリン、12-クラウン-4、15-クラウン-5、18-クラウン-6などのクラウンエーテルなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。負極合材における包接化合物の含有率は、通常、3~10質量%程度であることが好ましい。 In addition, the negative electrode mixture may contain an appropriate amount of a clathrate compound, if necessary. The inclusion compound has the property of absorbing gas generated within the battery. Examples of the clathrate compound include cyclodextrins such as α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin, and crown ethers such as 12-crown-4, 15-crown-5 and 18-crown-6. However, the present invention is not limited only to such examples. The content of the clathrate compound in the negative electrode mixture is generally preferably about 3 to 10% by mass.
 シリコン負極における負極用バインダーの含有率は、好ましくは0.3~30質量%、より好ましくは0.5~25質量%であり、負極活物質の含有率は、好ましくは65~98.7質量%、より好ましくは70~98質量%であり、導電助剤の含有率は、好ましくは1~20質量%、より好ましくは1.5~10質量%であり、他の成分の含有率は、好ましくは0~15質量%、より好ましくは0~10質量%である。 The content of the negative electrode binder in the silicon negative electrode is preferably 0.3 to 30% by mass, more preferably 0.5 to 25% by mass, and the content of the negative electrode active material is preferably 65 to 98.7% by mass. %, more preferably 70 to 98% by mass, the content of the conductive aid is preferably 1 to 20% by mass, more preferably 1.5 to 10% by mass, and the content of other components is It is preferably 0 to 15% by mass, more preferably 0 to 10% by mass.
 集電体としては、例えば、銅、アルミニウム、ニッケル、銀、錫、インジウム、マグネシウム、鉄、クロム、モリブデンおよびそれらの合金などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Examples of current collectors include copper, aluminum, nickel, silver, tin, indium, magnesium, iron, chromium, molybdenum, and alloys thereof, but the present invention is not limited to these examples. do not have.
〔リチウムイオン二次電池〕
 本発明のリチウムイオン二次電池は、一般に用いられているリチウムイオン二次電池と同様の構造を有する。
[Lithium ion secondary battery]
The lithium ion secondary battery of the present invention has the same structure as commonly used lithium ion secondary batteries.
 本発明のリチウムイオン二次電池は、通常、正極、負極、セパレータおよび非水電解質を有する。リチウムイオン二次電池の形状としては、例えば、円筒型、積層型などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 A lithium ion secondary battery of the present invention usually has a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte. Examples of the shape of the lithium ion secondary battery include a cylindrical shape and a laminated shape, but the present invention is not limited to these examples.
 コイン電池は、例えば、ケース、活物質、電解液が吸収されている多孔質セパレータ、リチウム箔、スペーサー、スプリングおよび蓋部をこの順に積層することによって構成することができる。 A coin battery can be constructed by laminating, for example, a case, an active material, a porous separator in which an electrolytic solution is absorbed, a lithium foil, a spacer, a spring, and a lid in this order.
 本発明のリチウムイオン二次電池が、例えば、CR2025型のコイン電池である場合、負極、セパレータおよび非水電解質は、ケース内に収容されている。以下においては、リチウムイオン二次電池がCR2025型のコイン電池である場合の実施態様について説明するが、本発明は、かかる実施態様のみに限定されるものではない。 When the lithium ion secondary battery of the present invention is, for example, a CR2025 type coin battery, the negative electrode, separator and non-aqueous electrolyte are housed in a case. An embodiment in which the lithium ion secondary battery is a CR2025 type coin battery will be described below, but the present invention is not limited to such an embodiment.
 CR2025型のコイン電池に使用されるケースは、その内部が中空であり、開口部を有し、正極容器を兼ねている。ケースの開口部には、蓋部が設けられており、蓋部は、負極蓋を兼ねている。ケースと蓋部との間には、ケースと蓋部との絶縁状態および密封状態を維持するために、ガスケットが設けられている。ケースと蓋部との間の空間には、電極および非水電解質が収容されている。 The case used for the CR2025 type coin battery is hollow inside, has an opening, and also serves as a positive electrode container. A cover is provided in the opening of the case, and the cover also serves as a negative electrode cover. A gasket is provided between the case and the lid in order to maintain an insulated state and a sealed state between the case and the lid. The space between the case and the lid accommodates an electrode and a non-aqueous electrolyte.
(1)電極
 電極は、正極、セパレータおよび負極を有し、この順序で配列されている。正極は、ケースの内面に接触し、負極は、蓋部の内面と接触している。
(1) Electrode The electrode has a positive electrode, a separator and a negative electrode, which are arranged in this order. The positive electrode is in contact with the inner surface of the case, and the negative electrode is in contact with the inner surface of the lid.
[正極]
 正極は、一般に用いられているリチウムイオン二次電池に用いられている正極と同様であればよく、本発明は、当該正極の組成および構造によって限定されるものではない。
[Positive electrode]
The positive electrode may be the same as the positive electrode used in commonly used lithium ion secondary batteries, and the present invention is not limited by the composition and structure of the positive electrode.
 正極は、例えば、正極活物質、導電材および結着剤を所定の比率で混合し、得られた混合物に溶媒、必要により活性炭、粘度調整用添加剤などを適量で添加し、得られた混合物を混練し、正極合材ペーストを調製した後、集電体の表面に塗布し、必要によりプレス成形し、乾燥させることにより、作製することができる。 The positive electrode is prepared by, for example, mixing a positive electrode active material, a conductive material, and a binder in a predetermined ratio, adding a solvent to the resulting mixture, optionally activated carbon, a viscosity adjusting additive, etc. in appropriate amounts, and are kneaded to prepare a positive electrode mixture paste, which is then applied to the surface of a current collector, press-molded if necessary, and dried.
 正極活物質の代表例としては、リチウム、リチウム-マンガン系複合酸化物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。導電材としては、例えば、アセチレンブラックなどのカーボンブラック、天然黒鉛、人造黒鉛、膨張黒鉛などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴムなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。溶媒としては、例えば、N-メチル-2-ピロリドンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。集電体としては、例えば、銅、アルミニウム、ニッケル、銀、錫、インジウム、マグネシウム、鉄、クロム、モリブデンおよびそれらの合金などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Representative examples of positive electrode active materials include lithium and lithium-manganese composite oxides, but the present invention is not limited to these examples. Examples of conductive materials include carbon black such as acetylene black, natural graphite, artificial graphite, and expanded graphite, but the present invention is not limited to these examples. Examples of binders include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluororubber, ethylene propylene diene rubber, etc., but the present invention is not limited to these examples. . Examples of solvents include N-methyl-2-pyrrolidone and the like, but the present invention is not limited to such examples. Examples of current collectors include copper, aluminum, nickel, silver, tin, indium, magnesium, iron, chromium, molybdenum, and alloys thereof, but the present invention is not limited to these examples. do not have.
[セパレータ]
 セパレータは、正極と負極との間に用いられる。セパレータは、正極と負極とを分離し、電解質を保持するとともに、正極と負極と間のリチウムイオンの移動経路を形成する。セパレータには、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、セルロース、ガラスなどの箔膜を用いることができる。当該薄膜には、多数の微細孔が形成されていることが好ましい。
[Separator]
A separator is used between the positive electrode and the negative electrode. The separator separates the positive electrode and the negative electrode, holds the electrolyte, and forms a lithium ion transfer path between the positive electrode and the negative electrode. Polyolefin-based resins such as polyethylene and polypropylene, cellulose, and glass foil films can be used as separators. It is preferable that the thin film has a large number of micropores formed therein.
[負極]
 負極には、前記シリコン負極が用いられる。前記シリコン負極の半電池の開放電位は、通常、2.0V(対Li/Li+)以上である。
[Negative electrode]
The aforementioned silicon negative electrode is used for the negative electrode. The open-circuit potential of the silicon anode half-cell is usually 2.0 V (versus Li/Li + ) or higher.
(2)非水電解質
 非水電解質としては、例えば、エチレンカーボネート、ジエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネートなどの環状カーボネート;ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート;テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタンなどのエーテル化合物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの非水電解質は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
(2) Non-aqueous electrolyte Examples of non-aqueous electrolytes include cyclic carbonates such as ethylene carbonate, diethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate; chain carbonates; ether compounds such as tetrahydrofuran, 2-methyltetrahydrofuran, and dimethoxyethane; however, the present invention is not limited to these examples. Each of these non-aqueous electrolytes may be used alone, or two or more of them may be used in combination.
 本発明のリチウムイオン二次電池は、シリコン負極に本発明のシリコン負極用バインダーが用いられているので、放電容量が高く、さらに充放電に対する耐久性に優れるという優れた性質を有する。 Since the lithium ion secondary battery of the present invention uses the binder for a silicon negative electrode of the present invention in the silicon negative electrode, it has excellent properties such as high discharge capacity and excellent durability against charging and discharging.
 本発明のリチウムイオン二次電池が、例えば、コイン型電池である場合、初期放電容量がシリコン1gあたり2500mAh以上であり、充放電を1000サイクル行なった後の充放電効率が約100%に維持されるので、放電容量の維持性および充放電に対する耐久性に顕著に優れている。 When the lithium ion secondary battery of the present invention is, for example, a coin battery, the initial discharge capacity is 2500 mAh or more per 1 g of silicon, and the charge/discharge efficiency after 1000 charge/discharge cycles is maintained at about 100%. Therefore, it is remarkably excellent in maintaining the discharge capacity and durability against charge and discharge.
 次に、本発明を実施例に基づいて詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。
 なお、以下の各実施例で得られた化合物の物性は、以下の方法に基づいて調べた。
EXAMPLES Next, the present invention will be described in detail based on examples, but the present invention is not limited only to these examples.
The physical properties of the compounds obtained in the following examples were examined based on the following methods.
1H-NMR〕
 核磁気共鳴(1H-NMR)は、核磁気共鳴分光装置〔ブルカー(Bruker)社製、製品名:AVANCE III HD NMR Spectrometer 400MHz〕を用い、サンプルポリマー5mgを0.5mLのジメチルスルホキシド-d6に溶解させ、得られた溶液をガラス製サンプルチューブに移し、25℃の条件で積算回数を16回として核磁気共鳴を調べた。
[ 1 H-NMR]
Nuclear magnetic resonance ( 1 H-NMR) was performed using a nuclear magnetic resonance spectrometer [manufactured by Bruker, product name: AVANCE III HD NMR Spectrometer 400 MHz]. , the resulting solution was transferred to a glass sample tube, and nuclear magnetic resonance was examined at 25° C. with 16 accumulations.
〔フーリエ変換赤外分光(FT-IR)スペクトル〕
 測定装置としてパーキン・エルマー(Perkin Elmer)社製、製品名:Spectrum 100 (ATR法)を用い、測定波数領域を400~4000cm-1とし、積算回数を4回としてフーリエ変換赤外分光(FT-IR)を測定した。
[Fourier transform infrared spectroscopy (FT-IR) spectrum]
As a measurement device, a product name: Spectrum 100 (ATR method) manufactured by Perkin Elmer was used, the measurement wavenumber region was 400 to 4000 cm -1 , and Fourier transform infrared spectroscopy (FT- IR) was measured.
〔ゲル透過クロマトグラフィー(GPC)〕
 ゲル浸透クロマトグラフィー(GPC)の測定装置として、送液ポンプユニット〔日本分光(株)製、品番:PU-2080〕、カラムオーブン〔ジーエル・サイエンス(GL Science)社製、品番:CO 631A、設定温度:40 ℃〕、紫外可視検出器〔日本分光(株)製、品番:UV-2075〕、示差屈折計〔日本分光(株)製、品番:RI-2031〕、カラム〔昭和電工(株)製、製品名:Shodex SB-806 MHQ、2本〕、標準物質(ポリメチルメタクリレートスタンダ-ド、分子量:30701、7360、18500、68800、211000、569000、1050000)、移動相(0.01mol/LのLiBrのヘキサン溶液)を用い、溶液の流速を1.0mL/minに調節してビスイミノアセナフテン架橋ポリマーの数平均分子量を測定した。
[Gel Permeation Chromatography (GPC)]
As a measurement device for gel permeation chromatography (GPC), a liquid pump unit [manufactured by JASCO Corporation, product number: PU-2080], a column oven [manufactured by GL Science, product number: CO 631A, setting Temperature: 40 ° C.], UV-visible detector [manufactured by JASCO Corporation, product number: UV-2075], differential refractometer [manufactured by JASCO Corporation, product number: RI-2031], column [manufactured by Showa Denko Co., Ltd. manufactured, product name: Shodex SB-806 MHQ, 2], standard substance (polymethyl methacrylate standard, molecular weight: 30701, 7360, 18500, 68800, 211000, 569000, 1050000), mobile phase (0.01 mol / L LiBr in hexane) was used, and the flow rate of the solution was adjusted to 1.0 mL/min to measure the number average molecular weight of the bisiminoacenaphthene crosslinked polymer.
〔X線光電子分光(XPS)分析〕
 X線光電子分光分析装置(フィソン・インストルメント社製、製品名:S-PROBE 2803)を用いてX線光電子分光分析を行なった。
[X-ray photoelectron spectroscopy (XPS) analysis]
X-ray photoelectron spectroscopic analysis was carried out using an X-ray photoelectron spectroscopic analyzer (product name: S-PROBE 2803, manufactured by Whison Instrument Co., Ltd.).
〔電気化学的特性〕
 電気化学的特性は、周波数応答アナライザーを備えたVSP電気化学測定システム(バイオロジック社製)を用いて調べた。
[Electrochemical properties]
Electrochemical properties were investigated using a VSP electrochemical measurement system (manufactured by Biologic) equipped with a frequency response analyzer.
〔サイクリックボルタンメトリー〕
 ポテンシオスタット(バイオロジック社製、品番:VSM)を用い、室温で負極半電池を用いてサイクリックボルタンメトリーを測定した。なお、サイクリックボルタンメトリーの測定時の電位範囲を0.01~1.2Vに調整し、スキャン速度を0.1mV/sに調整した。
[Cyclic voltammetry]
Cyclic voltammetry was measured using a potentiostat (manufactured by Biologic, product number: VSM) at room temperature using a negative electrode half-cell. The potential range during cyclic voltammetry measurement was adjusted to 0.01 to 1.2 V, and the scan speed was adjusted to 0.1 mV/s.
〔充放電サイクル特性〕
 電池の充放電サイクル特性は、バッテリーサイクラー〔(株)エレクトロフィールド製、品番:EFT-001〕を用いて25℃で調べた。
[Charge-discharge cycle characteristics]
The charge-discharge cycle characteristics of the battery were examined at 25° C. using a battery cycler (manufactured by Electrofield Co., Ltd., product number: EFT-001).
〔インピーダンス(EIS)および動的インピーダンス(DEIS)〕
 インピーダンスアナライザー(ソーラートロン社製、品番:1260)を用い、周波数10MHz~0.1Hz、振幅10mVでインピーダンス(EIS)および動的インピーダンス(DEIS)を調べた。
[Impedance (EIS) and Dynamic Impedance (DEIS)]
Impedance (EIS) and dynamic impedance (DEIS) were examined at a frequency of 10 MHz to 0.1 Hz and an amplitude of 10 mV using an impedance analyzer (manufactured by Solartron, product number: 1260).
調製例1〔ビスイミノアセナフテンポリマーの調製〕 Preparation Example 1 [Preparation of Bisiminoacenaphthene Polymer]
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 アセナフテキノン3.28mmol(0.6g)をアセトニトリル30mLに室温下で大気中にて添加し、得られた懸濁液に酢酸1.1mLを滴下し、固形分が溶解するまで懸濁液を還流することにより、混合物を得た。 3.28 mmol (0.6 g) of acenaphthequinone is added to 30 mL of acetonitrile at room temperature in air, 1.1 mL of acetic acid is added dropwise to the resulting suspension, and the suspension is refluxed until the solids are dissolved. A mixture was thus obtained.
 次に、p-フェニレンジアミン3.30mmol(0.356g)のアセトニトリル溶液を前記で得られた混合物に滴下し、薄層クロマトグラフィー(TLC)(溶媒:酢酸エチルとヘキサンとの容量比が1:4の混合溶媒)で各モノマーの消費を定期的に監視しながら還流温度で16時間撹拌を続けることにより、アセナフテキノンとp-フェニレンジアミンとを重縮合させて反応混合物を得た。 Next, an acetonitrile solution of 3.30 mmol (0.356 g) of p-phenylenediamine was added dropwise to the mixture obtained above, followed by thin-layer chromatography (TLC) (solvent: ethyl acetate and hexane at a volume ratio of 1:1). 4 mixed solvent), while periodically monitoring the consumption of each monomer, stirring was continued at the reflux temperature for 16 hours to polycondense acenaphthequinone and p-phenylenediamine to obtain a reaction mixture.
 前記で得られた反応混合物を0℃に冷却し、生成したビスイミノアセナフテンポリマーを沈殿させた後、当該ビスイミノアセナフテンポリマーをアセトニトリルで数回洗浄し、p-フェニレンジアミンを除去し、ビスイミノアセナフテンポリマーを回収した。 After the reaction mixture obtained above was cooled to 0° C. to precipitate the bisiminoacenaphthene polymer formed, the bisiminoacenaphthene polymer was washed several times with acetonitrile to remove p-phenylenediamine, An iminoacenaphthene polymer was recovered.
 前記で得られたビスイミノアセナフテンポリマーの収率は約70%であった。ビスイミノアセナフテンポリマーは、暗褐色の粉末であり、加熱することにより、ジメチルホルムアミド、N-メチルピロリドンなどの極性非プロトン性溶媒に可溶であった。 The yield of the bisiminoacenaphthene polymer obtained above was about 70%. The bisiminoacenaphthene polymer was a dark brown powder and was soluble in polar aprotic solvents such as dimethylformamide and N-methylpyrrolidone by heating.
 前記で得られたビスイミノアセナフテンポリマーの1H-NMRスペクトルを図1に、当該ビスイミノアセナフテンポリマーのフーリエ変換赤外分光(FT-IR)スペクトルを図2に示す。図1および図2に示された結果から、前記で得られたビスイミノアセナフテンポリマーを特定することができた。 The 1 H-NMR spectrum of the bisiminoacenaphthene polymer obtained above is shown in FIG. 1, and the Fourier transform infrared (FT-IR) spectrum of the bisiminoacenaphthene polymer is shown in FIG. From the results shown in FIGS. 1 and 2, the bisiminoacenaphthene polymer obtained above could be identified.
 前記で得られたビスイミノアセナフテンポリマーの数平均分子量をゲル透過クロマトグラフィー(GPC)によって調べたところ、ビスイミノアセナフテンポリマーの数平均分子量は、17000であった。 When the number average molecular weight of the bisiminoacenaphthene polymer obtained above was examined by gel permeation chromatography (GPC), the number average molecular weight of the bisiminoacenaphthene polymer was 17,000.
実施例1〔ビスイミノアセナフテン架橋ポリマーAの調製〕 Example 1 [Preparation of Bisiminoacenaphthene Crosslinked Polymer A]
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 N-メチルピロリドン(NMP)150mLに前記で得られたビスイミノアセナフテンポリマー1.497gを溶解させ、得られた溶液を窒素ガス雰囲気中にて還流下で撹拌しながら、当該溶液に1,6-ジブロヘキサン5mmol(0.77mL)を滴下することにより、混合溶液を得た。 1.497 g of the bisiminoacenaphthene polymer obtained above was dissolved in 150 mL of N-methylpyrrolidone (NMP), and the resulting solution was stirred under reflux in a nitrogen gas atmosphere while 1,6 A mixed solution was obtained by dropping 5 mmol (0.77 mL) of -dibrohexane.
 前記で得られた混合溶液を撹拌しながら150℃で24時間還流した後、3時間放冷し、N-メチルピロリドンを減圧下で蒸発させ、120℃で12時間減圧乾燥させることにより、ビスイミノアセナフテン架橋ポリマーAを得た。前記で得られたビスイミノアセナフテン架橋ポリマーAは、黒色であり、粘着性を有していた。 The mixed solution obtained above was refluxed at 150° C. for 24 hours with stirring, allowed to cool for 3 hours, N-methylpyrrolidone was evaporated under reduced pressure, and dried under reduced pressure at 120° C. for 12 hours to obtain bisimino. An acenaphthene crosslinked polymer A was obtained. The bisiminoacenaphthene crosslinked polymer A obtained above was black and had stickiness.
 前記で得られたビスイミノアセナフテン架橋ポリマーAの1H-NMRを図3および以下に示す。なお、図3中のArPは芳香族プロトンに基づくピーク、NMPは溶媒のN-メチルピロリドンに基づくピークを示す。 1 H-NMR of the bisiminoacenaphthene crosslinked polymer A obtained above is shown in FIG. 3 and below. In FIG. 3, ArP indicates a peak based on aromatic protons, and NMP indicates a peak based on N-methylpyrrolidone of the solvent.
1H-NMR (δ, ppm): 1.95(-CH2, m, 4H), 2.31(-CH2, m, 4H), 3.32(-CH2, t, 4H), 7.79-8.21(芳香族プロトン)] 1 H-NMR (δ, ppm): 1.95( -CH2 , m, 4H), 2.31( -CH2 , m, 4H), 3.32( -CH2 , t, 4H), 7.79-8.21(aromatic proton )]
 また、前記で得られたビスイミノアセナフテンポリマーおよびビスイミノアセナフテン架橋ポリマーAのフーリエ変換赤外分光(FT-IR)スペクトルを図4に示す。図4において、符号Aはビスイミノアセナフテン架橋ポリマーAのフーリエ変換赤外分光(FT-IR)スペクトル、符号Bはビスイミノアセナフテンポリマーのフーリエ変換赤外分光(FT-IR)スペクトルを示す。また、ビスイミノアセナフテンポリマーおよびビスイミノアセナフテン架橋ポリマーAのフーリエ変換赤外分光(FT-IR)スペクトルの測定結果を表1に示す。 FIG. 4 shows the Fourier transform infrared (FT-IR) spectra of the bisiminoacenaphthene polymer and the bisiminoacenaphthene crosslinked polymer A obtained above. In FIG. 4, symbol A indicates the Fourier transform infrared (FT-IR) spectrum of the bisiminoacenaphthene crosslinked polymer A, and symbol B indicates the Fourier transform infrared (FT-IR) spectrum of the bisiminoacenaphthene polymer. Table 1 shows the measurement results of Fourier transform infrared (FT-IR) spectra of the bisiminoacenaphthene polymer and the bisiminoacenaphthene crosslinked polymer A.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 以上の結果から、ビスイミノアセナフテン架橋ポリマーAは、4級窒素原子に基づくピークおよび炭素-水素結合に基づくピークが存在することがわかる。 From the above results, it can be seen that the bisiminoacenaphthene crosslinked polymer A has a peak based on a quaternary nitrogen atom and a peak based on a carbon-hydrogen bond.
 前記で得られたビスイミノアセナフテン架橋ポリマーAのX線光電子分光(XPS)スペクトルを図5に示す。図5において、Pは4級化されている窒素原子に基づくピーク、Qはピペリジン骨格に基づくピークを示す。図5に示された結果から、ビスイミノアセナフテン架橋ポリマーAの全窒素原子における4級化されている窒素原子の含有率は57.3%であり、4級化されていない窒素原子の含有率が42.7%であることがわかった。 FIG. 5 shows the X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene crosslinked polymer A obtained above. In FIG. 5, P indicates a peak based on a quaternized nitrogen atom, and Q indicates a peak based on a piperidine skeleton. From the results shown in FIG. 5, the content of quaternized nitrogen atoms in the total nitrogen atoms of the bisiminoacenaphthene crosslinked polymer A was 57.3%, and the content of non-quaternized nitrogen atoms was 57.3%. The rate was found to be 42.7%.
 また、ビスイミノアセナフテン架橋ポリマーAのフーリエ変換赤外分光(FT-IR)スペクトルおよびX線光電子分光(XPS)スペクトルから、ビスイミノアセナフテン架橋ポリマーAは、架橋構造を有することが確認された。 Further, from the Fourier transform infrared spectroscopy (FT-IR) spectrum and X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene crosslinked polymer A, it was confirmed that the bisiminoacenaphthene crosslinked polymer A has a crosslinked structure. .
実施例2〔ビスイミノアセナフテン架橋ポリマーBの調製〕 Example 2 [Preparation of Bisiminoacenaphthene Crosslinked Polymer B]
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 N-メチルピロリドン(NMP)100mLに前記と同様にして得られたビスイミノアセナフテンポリマー1.27gを溶解させ、得られた溶液を窒素ガス雰囲気中にて還流下で撹拌しながら、当該溶液に1,4-ジブロブタン5mmol(1.11mL)を滴下することにより、混合溶液を得た。 In 100 mL of N-methylpyrrolidone (NMP), 1.27 g of the bisiminoacenaphthene polymer obtained in the same manner as described above was dissolved, and the resulting solution was stirred under reflux in a nitrogen gas atmosphere. A mixed solution was obtained by dropping 5 mmol (1.11 mL) of 1,4-dibrobutane.
 前記で得られた混合溶液を撹拌しながら150℃で36時間還流した後、3時間放冷し、N-メチルピロリドンを減圧下で蒸発させ、120℃で12時間減圧乾燥させることにより、ビスイミノアセナフテン架橋ポリマーBを得た。前記で得られたビスイミノアセナフテン架橋ポリマーBは、黒色であり、粘着性を有していた。 The mixed solution obtained above was refluxed at 150° C. for 36 hours with stirring, allowed to cool for 3 hours, N-methylpyrrolidone was evaporated under reduced pressure, and dried under reduced pressure at 120° C. for 12 hours to obtain bisimino. An acenaphthene crosslinked polymer B was obtained. The bisiminoacenaphthene crosslinked polymer B obtained above was black and had stickiness.
 前記で得られたビスイミノアセナフテン架橋ポリマーBのビスイミノアセナフテンポリマーのX線光電子分光(XPS)スペクトルを図6に示す。図6において、Pは4級化されている窒素原子に基づくピーク、Qはピペリジン骨格に基づくピークを示す。図6に示された結果から、ビスイミノアセナフテン架橋ポリマーBは、実施例1で得られたビスイミノアセナフテン架橋ポリマーAと同様に、4級窒素原子に基づくピークおよび炭素-水素結合に基づくピークが存在していることが確認された。 FIG. 6 shows the X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene polymer of the bisiminoacenaphthene crosslinked polymer B obtained above. In FIG. 6, P indicates a peak based on a quaternized nitrogen atom, and Q indicates a peak based on a piperidine skeleton. From the results shown in FIG. 6, the bisiminoacenaphthene crosslinked polymer B, like the bisiminoacenaphthene crosslinked polymer A obtained in Example 1, has peaks based on quaternary nitrogen atoms and carbon-hydrogen bonds. It was confirmed that a peak was present.
実施例3〔ビスイミノアセナフテン架橋ポリマーCの調製〕 Example 3 [Preparation of Bisiminoacenaphthene Crosslinked Polymer C]
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 N-メチルピロリドン(NMP)100mLに前記と同様にして得られたビスイミノアセナフテンポリマー1.27gを溶解させ、得られた溶液を窒素ガス雰囲気中にて還流下で撹拌しながら、当該溶液に1,10-ジブロモデカン5mmol(1.11mL)を滴下することにより、混合溶液を得た。 In 100 mL of N-methylpyrrolidone (NMP), 1.27 g of the bisiminoacenaphthene polymer obtained in the same manner as described above was dissolved, and the resulting solution was stirred under reflux in a nitrogen gas atmosphere. A mixed solution was obtained by dropping 5 mmol (1.11 mL) of 1,10-dibromodecane.
 前記で得られた混合溶液を撹拌しながら150℃で25時間還流した後、3時間放冷し、N-メチルピロリドンを減圧下で蒸発させ、120℃で12時間減圧乾燥させることにより、ビスイミノアセナフテン架橋ポリマーCを得た。前記で得られたビスイミノアセナフテン架橋ポリマーCは、黒色であり、粘着性を有していた。 The mixed solution obtained above was refluxed at 150° C. for 25 hours with stirring, allowed to cool for 3 hours, N-methylpyrrolidone was evaporated under reduced pressure, and dried under reduced pressure at 120° C. for 12 hours to obtain bisimino. Acenaphthene crosslinked polymer C was obtained. The bisiminoacenaphthene crosslinked polymer C obtained above was black and had stickiness.
 前記で得られたビスイミノアセナフテン架橋ポリマーCのX線光電子分光(XPS)スペクトルを図7に示す。図7において、Pは4級化されている窒素原子に基づくピーク、Qはピペリジン骨格に基づくピークを示す。図7に示された結果から、ビスイミノアセナフテン架橋ポリマーCは、実施例1で得られたビスイミノアセナフテン架橋ポリマーAと同様に、4級窒素原子に基づくピークおよび炭素-水素結合に基づくピークが存在していることが確認された。 FIG. 7 shows the X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene crosslinked polymer C obtained above. In FIG. 7, P indicates a peak based on a quaternized nitrogen atom, and Q indicates a peak based on a piperidine skeleton. From the results shown in FIG. 7, the bisiminoacenaphthene crosslinked polymer C, like the bisiminoacenaphthene crosslinked polymer A obtained in Example 1, has peaks based on quaternary nitrogen atoms and carbon-hydrogen bonds. It was confirmed that a peak was present.
実施例4〔ビスイミノアセナフテン架橋ポリマーDの調製〕 Example 4 [Preparation of Bisiminoacenaphthene Crosslinked Polymer D]
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 N-メチルピロリドン(NMP)100mLに前記と同様にして得られたビスイミノアセナフテンポリマー1.27gを溶解させ、得られた溶液を窒素ガス雰囲気中にて還流下で撹拌しながら、当該溶液に1,8-ジブロモオクタン5mmol(0.97mL)を滴下することにより、混合溶液を得た。 In 100 mL of N-methylpyrrolidone (NMP), 1.27 g of the bisiminoacenaphthene polymer obtained in the same manner as described above was dissolved, and the resulting solution was stirred under reflux in a nitrogen gas atmosphere. A mixed solution was obtained by dropping 5 mmol (0.97 mL) of 1,8-dibromooctane.
 前記で得られた混合溶液を撹拌しながら150℃で20時間還流した後、3時間放冷し、N-メチルピロリドンを減圧下で蒸発させ、120℃で12時間減圧乾燥させることにより、ビスイミノアセナフテン架橋ポリマーDを得た。前記で得られたビスイミノアセナフテン架橋ポリマーDは、黒色であり、粘着性を有していた。 The mixed solution obtained above was refluxed at 150° C. for 20 hours with stirring, allowed to cool for 3 hours, N-methylpyrrolidone was evaporated under reduced pressure, and dried under reduced pressure at 120° C. for 12 hours to obtain bisimino. An acenaphthene crosslinked polymer D was obtained. The bisiminoacenaphthene crosslinked polymer D obtained above was black and had stickiness.
 前記で得られたビスイミノアセナフテン架橋ポリマーDのX線光電子分光(XPS)スペクトルを図8に示す。図8において、Pは4級化されている窒素原子に基づくピーク、Qはピペリジン骨格に基づくピークを示す。図8に示された結果から、ビスイミノアセナフテン架橋ポリマーDは、実施例1で得られたビスイミノアセナフテン架橋ポリマーAと同様に、4級窒素原子に基づくピークおよび炭素-水素結合に基づくピークが存在していることが確認された。 FIG. 8 shows the X-ray photoelectron spectroscopy (XPS) spectrum of the bisiminoacenaphthene crosslinked polymer D obtained above. In FIG. 8, P indicates a peak based on the quaternary nitrogen atom, and Q indicates a peak based on the piperidine skeleton. From the results shown in FIG. 8, the bisiminoacenaphthene crosslinked polymer D, like the bisiminoacenaphthene crosslinked polymer A obtained in Example 1, has peaks based on quaternary nitrogen atoms and carbon-hydrogen bonds. It was confirmed that a peak was present.
〔電極の作製〕
 負極用バインダーとしてビスイミノアセナフテン架橋ポリマーA、ビスイミノアセナフテン架橋ポリマーB、ビスイミノアセナフテン架橋ポリマーCまたはビスイミノアセナフテン架橋ポリマーDを用いて電極を作製した。
[Preparation of electrode]
Using the bisiminoacenaphthene crosslinked polymer A, the bisiminoacenaphthene crosslinked polymer B, the bisiminoacenaphthene crosslinked polymer C, or the bisiminoacenaphthene crosslinked polymer D as the binder for the negative electrode, electrodes were produced.
 ビスイミノアセナフテン架橋ポリマーA、ビスイミノアセナフテン架橋ポリマーB、ビスイミノアセナフテン架橋ポリマーCおよびビスイミノアセナフテン架橋ポリマーDのうち、いずれを用いて電極を作製した場合であっても同様の性能を有する電極および負極半電池を得ることができた。 The performance is the same regardless of which of the bisiminoacenaphthene crosslinked polymer A, the bisiminoacenaphthene crosslinked polymer B, the bisiminoacenaphthene crosslinked polymer C, and the bisiminoacenaphthene crosslinked polymer D is used to prepare the electrode. It was possible to obtain an electrode and a negative half-cell having
 以下においては、ビスイミノアセナフテン架橋ポリマーの代表例としてビスイミノアセナフテン架橋ポリマーAを用いて電極を作製したときの実施例を記載する。 In the following, an example of producing an electrode using the bisiminoacenaphthene crosslinked polymer A as a representative example of the bisiminoacenaphthene crosslinked polymer will be described.
 ビスイミノアセナフテン架橋ポリマーA20mg、グラファイト25mg、アセチレンブラック(平均粒子径:40nm)20mgおよびシリコン粉末(平均粒子径:100nm)35mgの混合物およびN-メチルピロリドン2mLをボールミル(フリッチュ社製、製品名:パルベライゼッテ7)で混練することにより、スラリーを得た。前記で得られたスラリーをドクターブレードで銅箔(縦:20mm、横:100mm、厚さ:20μm)に塗布し、90℃の温度で約12時間減圧乾燥させた後、ローラー間に80℃の温度で通過させることによってロールプレスし、塗膜の厚さが約39μmである電極Aを作製した。 A mixture of 20 mg of bisiminoacenaphthene crosslinked polymer A, 25 mg of graphite, 20 mg of acetylene black (average particle size: 40 nm) and 35 mg of silicon powder (average particle size: 100 nm) and 2 mL of N-methylpyrrolidone were ball milled (manufactured by Fritsch, product name: A slurry was obtained by kneading with a palverizer 7). The slurry obtained above was applied to a copper foil (vertical: 20 mm, horizontal: 100 mm, thickness: 20 μm) with a doctor blade, dried under reduced pressure at a temperature of 90 ° C. for about 12 hours, and then dried at 80 ° C. between rollers. Roll-pressed by passing at temperature to produce Electrode A with a coating thickness of about 39 μm.
比較例1
 従来の電極として、電極Aを作製する際にビスイミノアセナフテン架橋ポリマーA20mgを用いる代わりにポリアクリル酸20mgを用いたこと以外は、電極Aを作製する操作と同様の操作で塗膜の厚さが約27μmである電極Bを作製した。
Comparative example 1
As a conventional electrode, except that 20 mg of polyacrylic acid was used instead of 20 mg of bisiminoacenaphthene crosslinked polymer A when preparing electrode A, the same operation as that for preparing electrode A was performed to obtain a coating film thickness. was about 27 μm.
比較例2
 従来の電極として、電極Aを作製する際にビスイミノアセナフテン架橋ポリマーA20mgを用いる代わりにカルボキシメチルセルロースナトリウム塩20mgを用いたこと以外は、電極Aを作製する操作と同様の操作で塗膜の厚さが約31μmである電極Cを作製した。
Comparative example 2
As a conventional electrode, the coating film thickness was obtained in the same manner as the operation for producing electrode A, except that 20 mg of bisiminoacenaphthene crosslinked polymer A was used in producing electrode A, and 20 mg of carboxymethylcellulose sodium salt was used. Electrode C was fabricated with a thickness of about 31 μm.
〔リチウムイオン二次電池の負極半電池の作製〕
 前記で得られた各電極を直径が13mmの円盤に打ち抜くことにより、シリコン負極を作製した。
[Preparation of negative electrode half-cell of lithium-ion secondary battery]
A silicon negative electrode was produced by punching each electrode obtained above into a disk having a diameter of 13 mm.
 負極として前記で得られた電極A、電極Bまたは電極Cを用い、対極および参照電極としてリチウム箔を用い、セパレータとしてポリプロピレンセパレータ〔旭化成(株)製、製品名:セルガード2500、厚さ:25μm〕を用い、電解質としてエチレンカーボネートとジエチレンカーボネートとを1:1の質量比で混合した溶媒に濃度が1MとなるようにLiPF6を溶解させた電解質を用いてアルゴンガス雰囲気中で負極半電池を作製し、当該負極半電池を安定化のために室温中で12時間放置した。 Using the electrode A, electrode B or electrode C obtained above as the negative electrode, using lithium foil as the counter electrode and the reference electrode, and using a polypropylene separator [manufactured by Asahi Kasei Corp., product name: Celgard 2500, thickness: 25 μm] as the separator. A negative electrode half-cell was fabricated in an argon gas atmosphere using an electrolyte obtained by dissolving LiPF6 to a concentration of 1M in a solvent obtained by mixing ethylene carbonate and diethylene carbonate at a mass ratio of 1:1 as an electrolyte. The negative half-cell was left at room temperature for 12 hours for stabilization.
 負極として電極Aが使用されている負極半電池の開放電位を測定したところ、当該開放電位は、2.0~2.1V(対Li/Li+)であった。 When the open-circuit potential of the negative electrode half-cell using electrode A as the negative electrode was measured, the open-circuit potential was 2.0 to 2.1 V (vs. Li/Li + ).
(1)電気伝導率
 電極A、電極Bまたは電極Cが使用されている負極半電池を用いて電気伝導率を調べた。電気伝導率の測定結果を図9に示す。
(1) Electrical conductivity A negative electrode half-cell in which electrode A, electrode B or electrode C is used was used to examine electrical conductivity. FIG. 9 shows the measurement results of electrical conductivity.
 図9(a)は、電極Aが使用されている負極半電池を用いて電気伝導率を測定した結果を示す。図9(b)は、電極Bが使用されている負極半電池を用いて電気伝導率を測定した結果および電極Cが使用されている負極半電池を用いて電気伝導率を測定した結果を示す。図9(b)において、Pは、電極Bが使用されている負極半電池を用いて電気伝導率を調べた結果を示し、Qは、電極Cが使用されている負極半電池を用いて電気伝導率を調べた結果を示す。 FIG. 9(a) shows the results of measuring electrical conductivity using a negative electrode half-cell in which electrode A is used. FIG. 9(b) shows the result of measuring the electrical conductivity using the negative half-cell using the electrode B and the result of measuring the electrical conductivity using the negative half-cell using the electrode C. . In FIG. 9(b), P indicates the result of examining the electrical conductivity using the negative half-cell using the electrode B, and Q indicates the electrical conductivity using the negative half-cell using the electrode C. The result of having investigated conductivity is shown.
 図9に示された結果から、電極Aの内部抵抗が120Ωであるのに対し、電極Bの内部抵抗が476Ωであることがわかる。電極Cの内部抵抗は、図(b)の横軸では誤差により約2260Ωであったが、実測値では2010Ωであることが確認された。これらのことから、電極Aの内部抵抗は、電極Bおよび電極Cの内部抵抗と対比して格段に小さいことが確認された。 From the results shown in FIG. 9, it can be seen that the internal resistance of electrode A is 120Ω, while the internal resistance of electrode B is 476Ω. The internal resistance of the electrode C was approximately 2260 Ω due to an error on the horizontal axis of FIG. From these results, it was confirmed that the internal resistance of the electrode A was significantly smaller than the internal resistances of the electrodes B and C.
 また、電極Aの電気伝導率が2.16×10-3Ω-1-1であるのに対し、電極Bの電気伝導率が0.682×10-3Ω-1-1であり、電極Cの電気伝導率が0.132×10-3Ω-1-1であることから、電極Aの電気伝導性が電極Bおよび電極Cの電気伝導性と対比して格段に優れていることが確認された。 Electrode A has an electrical conductivity of 2.16×10 −3 Ω −1 m −1 , while Electrode B has an electrical conductivity of 0.682×10 −3 Ω −1 m −1 . Since the electric conductivity of electrode C is 0.132×10 −3 Ω −1 m −1 , the electric conductivity of electrode A is significantly superior to the electric conductivity of electrodes B and C. It was confirmed that
(2)サイクリックボルタンメトリー
 電極A、電極Bまたは電極Cが使用されている負極半電池を用いてサイクリックボルタンメトリーを調べた。サイクリックボルタンメトリーの測定結果を図10に示す。図10において、(a)は電極Aが使用されている負極半電池を用いてサイクリックボルタンメトリーを測定した結果、(b)は電極Bが使用されている負極半電池を用いてサイクリックボルタンメトリーを測定した結果、(c)は電極Cが使用されている負極半電池を用いてサイクリックボルタンメトリーを測定した結果を示す。図10中の符号1~4は、それぞれ順に1~4サイクル目のデータを示す。なお、図10(a)および(b)において、1サイクル目のリチウム化のデータは、電解液およびバインダーの分解反応が生じているため、不安定となっている。
(2) Cyclic voltammetry Cyclic voltammetry was investigated using negative half-cells in which electrode A, electrode B or electrode C was used. FIG. 10 shows the measurement results of cyclic voltammetry. In FIG. 10, (a) is the result of cyclic voltammetry using the negative half-cell using electrode A, and (b) is the result of cyclic voltammetry using the negative half-cell using electrode B. As a result of measurement, (c) shows the result of cyclic voltammetry measurement using a negative half-cell in which electrode C is used. Reference numerals 1 to 4 in FIG. 10 indicate the data of the 1st to 4th cycles, respectively. In addition, in FIGS. 10A and 10B, the lithiation data in the first cycle is unstable due to the decomposition reaction of the electrolyte and the binder.
 図10に示された結果から、電極Aが使用されている負極半電池では、最初の逆方向のスキャンにより、電解質の分解に対応する約0.66Vと結晶シリコン相(Li15Si4)の合金化に対応する0.0052Vに2つの顕著なピークが存在することがわかる。2回目の逆方向のスキャン以降では約0.21Vで非晶質シリコン相(Li12Si7)の合金化に対応するピークが現れることが確認された。また、0.005~1.2Vでの順方向のスキャンでは、2段階のリチウム脱合金プロセスに帰属する2つのピーク(0.35Vおよび0.51V)が現れることが確認された。 From the results shown in FIG. 10, for the negative half-cell where electrode A is used, the first reverse scan shows a voltage of about 0.66 V, corresponding to decomposition of the electrolyte, and a crystalline silicon phase (Li 15 Si 4 ). It can be seen that there are two prominent peaks at 0.0052 V corresponding to alloying. It was confirmed that a peak corresponding to the alloying of the amorphous silicon phase (Li 12 Si 7 ) appeared at about 0.21 V after the second scan in the reverse direction. A forward scan from 0.005 to 1.2 V also confirmed the appearance of two peaks (0.35 V and 0.51 V) attributed to a two-step lithium dealloying process.
 これに対して、電極Bおよび電極Cが使用されている負極半電池のサイクリックボルタンメトリーでは、有望な脱合金化/合金化のプロファイルが示されていない。順方向のスキャンでは、電極Aが使用されている負極半電池のようなシャープなピークが存在せず、逆方向のスキャンのプロファイルでは、非晶質シリコン相の合金化が示されていない。 In contrast, cyclic voltammetry of the negative half-cells where electrodes B and C are used do not show promising dealloying/alloying profiles. The forward scan does not have sharp peaks like the negative half-cell where electrode A is used, and the reverse scan profile shows no alloying of the amorphous silicon phase.
 また、図10に示された結果から、電極Aが使用されている負極半電池は、電極Bおよび電極Cが使用されている負極半電池と対比して脱合金特性に優れていることが確認された。 Further, from the results shown in FIG. 10, it was confirmed that the negative half-cell using the electrode A has superior dealloying characteristics compared to the negative half-cell using the electrodes B and C. was done.
(3)サイクリックボルタンメトリーによる拡散係数の評価
 電極Aが使用されている負極半電池を用い、走査速度を変更したときのサイクリックボルタンメトリーを調べた。その結果を図11(a)に示す。また、電極Aが使用されている負極半電池を用い、サイクリックボルタンメトリーの走査速度と最大電流値との関係を調べた。その結果を図11(b)に示す。
(3) Evaluation of Diffusion Coefficient by Cyclic Voltammetry Cyclic voltammetry was examined using a negative electrode half-cell in which electrode A was used, while changing the scanning speed. The results are shown in FIG. 11(a). In addition, the relationship between the scanning speed of cyclic voltammetry and the maximum current value was examined using a negative half-cell in which electrode A was used. The results are shown in FIG. 11(b).
 図11に示された結果から、電極Aが使用されている負極半電池のリチウムイオンの拡散係数は、9.94×10-7であり、例えば、X, Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B. W. Sheldon, J. Wu, Advanced Energy Materials 2014, 4, 1300882の文献で報告されているシリコン負極半電池のリチウムイオンの拡散係数よりも2桁程度高いことから、電極Aは、その内部におけるリチウムイオンの拡散性に非常に優れていることが確認された。 From the results shown in FIG. 11, the diffusion coefficient of lithium ions in the negative half-cell in which electrode A is used is 9.94×10 −7 , for example, X, Su, Q. Wu, J. Li , X. Xiao, A. Lott, W. Lu, B. W. Sheldon, J. Wu, Advanced Energy Materials 2014, 4, 1300882. From the high value, it was confirmed that the electrode A is extremely excellent in diffusibility of lithium ions therein.
(4)充放電特性
 電極A、電極Bまたは電極Cが使用されている負極半電池を用いて電流密度500mA/gにおけるサイクル安定性を調べた。その結果を図12(a)に示す。電極A、電極Bまたは電極Cが使用されている負極半電池を用いて容量維持率を調べた。その結果を図12(b)に示す。また、電極A、電極Bまたは電極Cが使用されている負極半電池を用いて充放電効率を調べた。その結果を図12(c)に示す。
(4) Charge-Discharge Characteristics Cycle stability at a current density of 500 mA/g was examined using negative electrode half-cells in which electrode A, electrode B, or electrode C was used. The results are shown in FIG. 12(a). A negative half-cell using electrode A, electrode B, or electrode C was used to examine the capacity retention rate. The results are shown in FIG. 12(b). In addition, the charge-discharge efficiency was examined using a negative electrode half-cell in which electrode A, electrode B, or electrode C was used. The results are shown in FIG. 12(c).
 図12(a)に示された結果から、電極Aが使用されている負極半電池では、充放電が1000サイクル以上であっても放電容量が約2500mAh/g以上と顕著に高くて安定していることが確認された。図12(b)に示された結果から、電極Aが使用されている負極半電池では、充放電が800サイクル以上であっても容量維持率が約99%以上に維持されていることが確認された。また、図12(c)に示された結果から、電極Aが使用されている負極半電池では、充放電効率が100%の近傍で維持されていることが確認された。 From the results shown in FIG. 12( a ), the negative electrode half-cell using the electrode A has a remarkably high and stable discharge capacity of about 2500 mAh/g or more even after 1000 cycles or more of charging and discharging. It was confirmed that From the results shown in FIG. 12(b), it was confirmed that in the negative electrode half-cell using electrode A, the capacity retention rate was maintained at about 99% or more even after 800 charge/discharge cycles. was done. Further, from the results shown in FIG. 12(c), it was confirmed that the negative electrode half-cell using the electrode A maintained the charge-discharge efficiency at around 100%.
 これに対して、従来の電極Bまたは電極Cが使用されている負極半電池では、図12(a)に示されるように350サイクルの時点での放電容量が1000mAh/g以下となり、図12(b)に示されるように50サイクルの時点で容量維持率が既に低下しており、350サイクルの時点での容量維持率が約50%以下となることが確認された。 On the other hand, in the negative half-cell using the conventional electrode B or electrode C, the discharge capacity at 350 cycles is 1000 mAh/g or less as shown in FIG. As shown in b), it was confirmed that the capacity retention rate had already decreased at the point of 50 cycles, and that the capacity retention rate was about 50% or less at the point of 350 cycles.
 したがって、電極Aが使用されている負極半電池は、従来の従来の電極Bまたは電極Cが使用されている負極半電池と対比して、放電容量が大きく、800サイクル以上であっても容量維持率が著しく高いので耐久性に優れており、さらに充放電効率が安定して高いことが確認された。 Therefore, the negative half-cell using electrode A has a larger discharge capacity than the conventional negative half-cell using electrode B or electrode C, and the capacity can be maintained even after 800 cycles or more. It was confirmed that the remarkably high rate is excellent in durability and that the charge/discharge efficiency is stable and high.
(5)電気化学インピーダンス分光分析(EIS)
 電極Aが使用されている負極半電池の製造後のナイキストプロットおよび当該負極半電池の充放電を15サイクル行なった後のナイキストプロットをそれぞれ図13(a)の符号Aおよび符号Bで示す。
(5) Electrochemical Impedance Spectroscopy (EIS)
The Nyquist plot after the manufacture of the negative half-cell using electrode A and the Nyquist plot after 15 charge/discharge cycles of the negative half-cell are indicated by symbols A and B in FIG. 13(a), respectively.
 電極Bが使用されている負極半電池の製造後のナイキストプロットおよび当該負極半電池の充放電を15サイクル行なった後のナイキストプロットをそれぞれ図13(b)の符号Aおよび符号Bで示す。 The Nyquist plot after manufacturing the negative electrode half cell in which electrode B is used and the Nyquist plot after 15 cycles of charge and discharge of the negative electrode half cell are indicated by symbols A and B in FIG. 13(b), respectively.
 電極Cが使用されている負極半電池の製造後のナイキストプロットおよび当該負極半電池の充放電を15サイクル行なった後のナイキストプロットをそれぞれ図13(c)の符号Aおよび符号Bで示す。 The Nyquist plot after manufacturing the negative electrode half cell in which electrode C is used and the Nyquist plot after 15 cycles of charge and discharge of the negative electrode half cell are indicated by symbols A and B in FIG. 13(c), respectively.
 図13に示された結果から、負極半電池の製造後のナイキストプロットによって示される内部抵抗は、電極Aが使用されている負極半電池では415Ωであるのに対し、電極Bが使用されている負極半電池および電極Cが使用されている負極半電池ではそれぞれ620Ωおよび1875Ωであった。このことから、電極Aが使用されている負極半電池の内部抵抗は、初期段階からかなり低いことが確認された。 From the results shown in FIG. 13, the internal resistance indicated by the Nyquist plot after fabrication of the negative half-cell is 415Ω for the negative half-cell using electrode A, whereas electrode B is used. The negative half-cell and the negative half-cell using electrode C were 620Ω and 1875Ω, respectively. From this, it was confirmed that the internal resistance of the negative half-cell in which the electrode A was used was considerably low from the initial stage.
 また、図13に示された結果から、負極半電池の充放電を15サイクル行なった後のナイキストプロットによって示される内部抵抗は、電極Aが使用されている負極半電池では110Ωであるのに対し、電極Bが使用されている負極半電池では360Ωであり、電極Cが使用されている負極半電池では250Ωであった。このことから、電極Aが使用されている負極半電池の内部抵抗は、充放電を繰り返した場合であっても、かなり低いことが確認された。 Further, from the results shown in FIG. 13, the internal resistance indicated by the Nyquist plot after 15 cycles of charging and discharging of the negative electrode half-cell is 110 Ω for the negative electrode half-cell using the electrode A. , 360Ω for the negative half-cell using electrode B and 250Ω for the negative half-cell using electrode C. From this, it was confirmed that the internal resistance of the negative half-cell in which the electrode A was used was considerably low even when charging and discharging were repeated.
(6)動的インピーダンス
 電極Aが使用されている負極半電池を用いて1.2~0.005Vの電位で動的インピーダンスを調べた。1.2Vから0.005Vまでの電位で充放電させる操作を1000サイクル繰り返した後に動的インピーダンスを測定した結果および0.005Vから1.2Vまでの電位で充放電させる操作を1000サイクル繰り返した後に動的インピーダンスを測定した結果をそれぞれ図14(a)および(b)に示す。
(6) Dynamic Impedance Dynamic impedance was examined at potentials of 1.2 to 0.005 V using a negative half-cell in which electrode A was used. After repeating the operation of charging and discharging at a potential from 1.2 V to 0.005 V for 1000 cycles, the dynamic impedance was measured, and after repeating the operation of charging and discharging at a potential from 0.005 V to 1.2 V for 1000 cycles. The results of measuring the dynamic impedance are shown in FIGS. 14(a) and 14(b), respectively.
 電極Bが使用されている負極半電池を用いて1.2~0.005Vの電位で動的インピーダンスを調べた。1.2Vから0.005Vまでの電位で充放電させる操作を300サイクル繰り返した後に動的インピーダンスを測定した結果および0.005Vから1.2Vまでの電位で充放電させる操作を300サイクル繰り返した後に動的インピーダンスを測定した結果をそれぞれ図14(c)および(d)に示す。 The dynamic impedance was examined at potentials of 1.2 to 0.005 V using the negative half-cell in which electrode B was used. After repeating the operation of charging and discharging at a potential from 1.2 V to 0.005 V for 300 cycles, the dynamic impedance was measured, and after repeating the operation of charging and discharging at a potential from 0.005 V to 1.2 V for 300 cycles. The results of measuring the dynamic impedance are shown in FIGS. 14(c) and (d), respectively.
 電極Cが使用されている負極半電池を用いて1.2~0.005Vの電位で動的インピーダンスを調べた。1.2Vから0.005Vまでの電位で充放電させる操作を300サイクル繰り返した後に動的インピーダンスを測定した結果および0.005Vから1.2Vまでの電位で充放電させる操作を300サイクル繰り返した後に動的インピーダンスを測定した結果をそれぞれ図14(e)および(f)に示す。 The dynamic impedance was investigated at potentials of 1.2 to 0.005 V using the negative half-cell in which electrode C was used. After repeating the operation of charging and discharging at a potential from 1.2 V to 0.005 V for 300 cycles, the dynamic impedance was measured, and after repeating the operation of charging and discharging at a potential from 0.005 V to 1.2 V for 300 cycles. The results of measuring the dynamic impedance are shown in FIGS. 14(e) and 14(f), respectively.
 電極A、電極Bまたは電極Cが使用されている負極半電池を用い、固体電解質界面(SEI)インピーダンスと電位との関係を調べた。その結果を図15に示す。図15において、符号A~Cは、それぞれ順に電極A、電極Bまたは電極Cが使用されている負極半電池を用いたときの固体電解質界面(SEI)のインピーダンスと電位との関係を示すグラフである。 Using a negative electrode half-cell in which electrode A, electrode B, or electrode C is used, the relationship between solid electrolyte interface (SEI) impedance and potential was investigated. The results are shown in FIG. In FIG. 15, symbols A to C are graphs showing the relationship between the impedance and the potential at the solid electrolyte interface (SEI) when negative half cells in which electrode A, electrode B, or electrode C are used in order are used. be.
 図15に示された結果から、電極Aが使用されている負極半電池では固体電解質界面(SEI)インピーダンスの最大値が50Ω程度である。これに対して従来の電極Bが使用されている負極半電池の固体電解質界面(SEI)のインピーダンスの最大値が750Ωであり、電極Cが使用されている負極半電池の固体電解質界面(SEI)のインピーダンスの最大値が1200Ωである。このことから、電極Aが使用されている負極半電池は、従来の電極Bまたは電極Cが使用されている負極半電池と対比して固体電解質界面(SEI)のインピーダンスが格段に低く、内部抵抗が印加電圧に依らずに非常に小さく、ほぼ安定していることが確認された。 From the results shown in FIG. 15, the maximum value of the solid electrolyte interface (SEI) impedance in the negative electrode half-cell in which the electrode A is used is about 50Ω. On the other hand, the maximum value of the impedance of the solid electrolyte interface (SEI) of the negative half-cell using the conventional electrode B is 750Ω, and the solid electrolyte interface (SEI) of the negative half-cell using the electrode C is 750 Ω. is 1200Ω. From this, the negative half-cell using the electrode A has a much lower impedance at the solid electrolyte interface (SEI) than the conventional negative half-cell using the electrode B or electrode C, and the internal resistance was very small and almost stable regardless of the applied voltage.
(7)負極の観察
 電極Aの作製後の表面および電極Bの作製後の表面を走査電子顕微鏡(SEM)で観察した。その結果を図16に示す。図16において、(a)は電極Aの表面の走査電子顕微鏡写真であり、(b)は電極Bの表面の走査電子顕微鏡写真である。
(7) Observation of Negative Electrode The surface of the electrode A after preparation and the surface of the electrode B after preparation were observed with a scanning electron microscope (SEM). The results are shown in FIG. In FIG. 16, (a) is a scanning electron micrograph of the surface of electrode A, and (b) is a scanning electron micrograph of the surface of electrode B. FIG.
 図16に示されるように、従来の電極Bでは、その作製後に既に表面にクラックの発生が認められるのに対し、本発明の電極Aでは、その作製後の表面にクラックの発生が認められないことから、品質的に優れていることが確認された。 As shown in FIG. 16, in the conventional electrode B, cracks were already observed on the surface after its production, whereas in the electrode A of the present invention, no cracks were observed on the surface after its production. Therefore, it was confirmed that the product was excellent in terms of quality.
実施例5
 電極Aを円盤に打ち抜いたものを負極として使用した。また、負極と同じ大きさの円盤に打ち抜いた金属リチウムを正極として用いた。
Example 5
A disk obtained by punching the electrode A was used as the negative electrode. Metallic lithium punched into a disk having the same size as the negative electrode was used as the positive electrode.
 電解質としてエチレンカーボネートとジエチレンカーボネートとを1:1の質量比で混合した溶媒に濃度が1MとなるようにLiPF6を溶解させた電解質をアルゴンガス雰囲気中で安定化のために室温中で12時間放置した。 The electrolyte was prepared by dissolving LiPF 6 to a concentration of 1M in a solvent in which ethylene carbonate and diethylene carbonate were mixed at a mass ratio of 1:1. I left it.
 前記で得られた負極、正極電極および電解質、ならびに厚さが30μmのポリプロピレン製の微多孔質フィルムからなるセパレータを用いて性能評価用CR2025型のコイン電池(非水電解質二次電池)を作製した。前記で得られたコイン電池の充放電特性を充放電装置〔(株)エレクトロフィールド製、商品名:ABE1024〕を用いて調べた。 A CR2025 type coin battery (non-aqueous electrolyte secondary battery) for performance evaluation was produced using the negative electrode, positive electrode and electrolyte obtained above, and a separator made of a polypropylene microporous film having a thickness of 30 μm. . The charging/discharging characteristics of the coin battery obtained above were examined using a charging/discharging device [manufactured by Electrofield Co., Ltd., trade name: ABE1024].
 その結果、前記コイン電池の初期放電容量がシリコン1gあたり2500mAh以上であり、充放電を1000サイクル行なった後の充放電効率が約100%に維持されることが確認された。このことから、負極として電極Aが用いられているコイン電池は、放電容量の維持性および充放電に対する耐久性に優れていることが確認された。 As a result, it was confirmed that the coin battery had an initial discharge capacity of 2,500 mAh or more per 1 g of silicon, and maintained a charge-discharge efficiency of about 100% after 1,000 charge-discharge cycles. From this, it was confirmed that the coin battery in which the electrode A was used as the negative electrode was excellent in the maintenance of the discharge capacity and the durability against charging and discharging.
 本発明のリチウムイオン二次電池のシリコン負極用バインダーを含むシリコン負極を有するリチウムイオン二次電池は、放電容量が高く、しかも充放電に対する耐久性に優れている。 A lithium ion secondary battery having a silicon negative electrode containing a binder for a silicon negative electrode of a lithium ion secondary battery of the present invention has a high discharge capacity and excellent durability against charging and discharging.
 したがって、本発明のリチウムイオン二次電池は、実用的であるので、例えば、コイン電池として使用されるのみならず、スマートフォンなどの携帯電話、ノート型パーソナルコンピュータ、タブレット型パーソナルコンピュータ、デジタルカメラ、ハイブリッド自動車、電気自動車などの用途に実使用されることが期待される。

 
Therefore, since the lithium ion secondary battery of the present invention is practical, it can be used not only as a coin battery, but also as a mobile phone such as a smart phone, a notebook personal computer, a tablet personal computer, a digital camera, and a hybrid battery. It is expected to be put to practical use in applications such as automobiles and electric vehicles.

Claims (7)

  1.  式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、X-は1価の陰イオン、Yは連結基、Zは2価の有機基を示す)
    で表わされる繰り返し単位と他の式(I)で表わされる繰り返し単位とが連結基Yを介して架橋されているビスイミノアセナフテン架橋ポリマー。
    Formula (I):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, X - is a monovalent anion, Y is a linking group, and Z is a divalent organic group)
    A bisiminoacenaphthene crosslinked polymer in which a repeating unit represented by the formula (I) is crosslinked via a linking group (Y) with another repeating unit represented by formula (I).
  2.  式(II):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Zは2価の有機基を示す)
    で表わされる繰り返し単位を有するビスイミノアセナフテンポリマーと連結基Yを形成する化合物とを架橋反応させることを特徴とする式(I):
    Figure JPOXMLDOC01-appb-C000003
    (式中、X-は1価の陰イオン、Yは連結基、Zは2価の有機基を示す)
    で表わされる繰り返し単位と他の式(I)で表わされる繰り返し単位とが連結基Yを介して架橋されているビスイミノアセナフテン架橋ポリマーの製造方法。
    Formula (II):
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, Z represents a divalent organic group)
    wherein a bisiminoacenaphthene polymer having a repeating unit represented by the formula (I) is subjected to a cross-linking reaction with a compound forming the linking group Y:
    Figure JPOXMLDOC01-appb-C000003
    (Wherein, X - is a monovalent anion, Y is a linking group, and Z is a divalent organic group)
    A method for producing a bisiminoacenaphthene crosslinked polymer in which a repeating unit represented by is crosslinked via a linking group Y with a repeating unit represented by another formula (I).
  3.  式(I):
    Figure JPOXMLDOC01-appb-C000004
    (式中、X-は1価の陰イオン、Yは連結基、Zは2価の有機基を示す)
    で表わされる繰り返し単位と他の式(I)で表わされる繰り返し単位とが連結基Yを介して架橋されているビスイミノアセナフテン架橋ポリマーを含有してなるリチウムイオン二次電池のシリコン負極用バインダー。
    Formula (I):
    Figure JPOXMLDOC01-appb-C000004
    (Wherein, X - is a monovalent anion, Y is a linking group, and Z is a divalent organic group)
    A binder for a silicon negative electrode of a lithium ion secondary battery comprising a bisiminoacenaphthene crosslinked polymer in which a repeating unit represented by the following is crosslinked with another repeating unit represented by the formula (I) via a linking group Y .
  4.  リチウムイオン二次電池用シリコン負極であって、前記シリコン負極が式(I):
    Figure JPOXMLDOC01-appb-C000005
    (式中、X-は1価の陰イオン、Yは連結基、Zは2価の有機基を示す)
    で表わされる繰り返し単位と他の式(I)で表わされる繰り返し単位とが連結基Yを介して架橋されているビスイミノアセナフテン架橋ポリマーを含有するシリコン負極用バインダーを含有してなるリチウムイオン二次電池用シリコン負極。
    A silicon negative electrode for a lithium ion secondary battery, wherein the silicon negative electrode has the formula (I):
    Figure JPOXMLDOC01-appb-C000005
    (Wherein, X - is a monovalent anion, Y is a linking group, and Z is a divalent organic group)
    and a repeating unit represented by the other formula (I) are crosslinked through a linking group Y, a lithium ion binder for a silicon negative electrode containing a bisiminoacenaphthene crosslinked polymer. Silicon negative electrode for secondary batteries.
  5.  シリコン負極の半電池の開放電位が2.0V以上である請求項4に記載のリチウムイオン二次電池用シリコン負極。 The silicon negative electrode for a lithium ion secondary battery according to claim 4, wherein the half-cell open-circuit potential of the silicon negative electrode is 2.0 V or higher.
  6.  正極と負極と正極および負極の間に配置されたセパレータとを有するリチウムイオン二次電池であって、前記負極が請求項4または5に記載のリチウムイオン二次電池用シリコン負極であるリチウムイオン二次電池。 A lithium ion secondary battery comprising a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, wherein the negative electrode is the silicon negative electrode for a lithium ion secondary battery according to claim 4 or 5. next battery.
  7.  シリコン1gあたりの初期放電容量が2500mAh以上である請求項6に記載のリチウムイオン二次電池。

     
    7. The lithium ion secondary battery according to claim 6, which has an initial discharge capacity of 2500 mAh or more per 1 g of silicon.

PCT/JP2022/019708 2021-05-10 2022-05-09 Binder for silicon negative electrode of lithium ion secondary battery WO2022239746A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023521017A JPWO2022239746A1 (en) 2021-05-10 2022-05-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021079529 2021-05-10
JP2021-079529 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022239746A1 true WO2022239746A1 (en) 2022-11-17

Family

ID=84029606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019708 WO2022239746A1 (en) 2021-05-10 2022-05-09 Binder for silicon negative electrode of lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JPWO2022239746A1 (en)
WO (1) WO2022239746A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020021656A (en) * 2018-08-01 2020-02-06 国立大学法人北陸先端科学技術大学院大学 Electrolyte, lithium ion secondary battery, and compound
JP2021180083A (en) * 2020-05-11 2021-11-18 国立大学法人北陸先端科学技術大学院大学 New polymer binder composition for negative electrode of secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020021656A (en) * 2018-08-01 2020-02-06 国立大学法人北陸先端科学技術大学院大学 Electrolyte, lithium ion secondary battery, and compound
JP2021180083A (en) * 2020-05-11 2021-11-18 国立大学法人北陸先端科学技術大学院大学 New polymer binder composition for negative electrode of secondary battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MHAIDAT, I. ; MERGOS, J.A. ; HAMILAKIS, S. ; KOLLIA, C. ; LOIZOS, Z. ; TSOLOMITIS, A. ; DERVOS, C.T.: "One-stage synthesis of poly[(p-phenylimino)-acenaphthene], a new macromolecular material with interesting electric properties", MATERIALS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 63, no. 29, 15 December 2009 (2009-12-15), AMSTERDAM, NL , pages 2587 - 2590, XP026669103, ISSN: 0167-577X, DOI: 10.1016/j.matlet.2009.09.016 *
PATNAIK SAI GOURANG, VEDARAJAN RAMAN, MATSUMI NORIYOSHI: "BIAN based functional diimine polymer binder for high performance Li ion batteries", JOURNAL OF MATERIALS CHEMISTRY A, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 5, no. 34, 1 January 2017 (2017-01-01), GB , pages 17909 - 17919, XP093004023, ISSN: 2050-7488, DOI: 10.1039/C7TA03843G *

Also Published As

Publication number Publication date
JPWO2022239746A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
Zhang et al. A novel PMA/PEG-based composite polymer electrolyte for all-solid-state sodium ion batteries
JP4467926B2 (en) Electrochemical element
JP7421044B2 (en) Method for manufacturing negative electrode for secondary battery and method for manufacturing secondary battery
JP2016521914A (en) Anode for high energy battery
JP7084587B2 (en) Polymers, electrode active materials and secondary batteries
JPWO2011129103A1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery having the positive electrode
EP2665111A2 (en) Lithium ion secondary battery
JP2013069517A (en) Negative electrode paste, negative electrode and method for manufacturing the same, and nonaqueous electrolyte secondary battery
US20180076458A1 (en) Porous Silicon Materials and Conductive Polymer Binder Electrodes
Huang et al. N-cyanoethyl polyethylenimine as a water-soluble binder for LiFePO 4 cathode in lithium-ion batteries
JPWO2016024594A1 (en) Non-aqueous secondary battery electrolyte and non-aqueous secondary battery using the same
Gao et al. Crosslinked Polyimide and Reduced Graphene Oxide Composites as Long Cycle Life Positive Electrode for Lithium‐Ion Cells
Vauthier et al. High-performance pyrrolidinium-based poly (ionic liquid) binders for Li-ion and Li-air batteries
JP2014070008A (en) Method for producing composite material, and composite material
TWI478415B (en) Lithium ion battery
Xie et al. Organic molecule intercalated multilayer Ti3C2Tx MXene with enhanced electrochemical lithium and sodium storage
Angamuthu et al. Electrochemical performance evaluation of carbon nitride synthesized at different temperatures as an anode material for lithium-ion batteries
WO2020171075A1 (en) Battery material
Hailu et al. The development of super electrically conductive Si material with polymer brush acid and emeraldine base and its auto-switch design for high-safety and high-performance lithium-ion battery
WO2020171072A1 (en) Battery material
US20170309971A1 (en) Electrode for lithium battery, lithium battery and paste for electrochemical cell
WO2022239746A1 (en) Binder for silicon negative electrode of lithium ion secondary battery
JP5425694B2 (en) Positive electrode active material for lithium ion secondary battery obtained by performing overcharge / discharge treatment, positive electrode for lithium ion secondary battery comprising the positive electrode active material, and lithium ion secondary battery comprising the positive electrode as components
Xu et al. Preparation of polyaniline/FeFe (CN) 6 composite and its electrochemical performance as cathode material of lithium ion battery
Su et al. Triphenylamine-contained multiporous polyimide: its preparation and application as anode for lithium-ion storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807447

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023521017

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807447

Country of ref document: EP

Kind code of ref document: A1