JPS6123947B2 - - Google Patents

Info

Publication number
JPS6123947B2
JPS6123947B2 JP56029091A JP2909181A JPS6123947B2 JP S6123947 B2 JPS6123947 B2 JP S6123947B2 JP 56029091 A JP56029091 A JP 56029091A JP 2909181 A JP2909181 A JP 2909181A JP S6123947 B2 JPS6123947 B2 JP S6123947B2
Authority
JP
Japan
Prior art keywords
organic solvent
electrolyte
composition
solid composition
polymer compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56029091A
Other languages
Japanese (ja)
Other versions
JPS57143356A (en
Inventor
Katsuhiro Mizoguchi
Masashi Ooi
Takashi Kizaki
Hidetoshi Tsuchida
Isao Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56029091A priority Critical patent/JPS57143356A/en
Publication of JPS57143356A publication Critical patent/JPS57143356A/en
Publication of JPS6123947B2 publication Critical patent/JPS6123947B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、イオン導電性固形体組成物に関す
る。とくに、高分子が本来具有する任意の形に成
形、成膜できる易加工性などで優れた機械的性質
を有し、さらに周期律表の族および族に属す
る金属のイオン導電性が非常に高い性質を併わせ
有するイオン導電性固形体組成物に関する。 従来、イオン導電性材料としては、おもに(イ)電
解質を水または有機溶媒に溶解した、いわゆる電
解質溶液、(ロ)ベータ・アルミナβ−Al2O3,ヨウ
化リチウム・アルミナLiI−A2O3,ヨウ化銀ル
ビジウムRbAg4I5など無機物からなる固形電解質
材料が知られている。イオン導電性材料の用途分
野としては多種多様の産業分野におよぶが、電子
部品としての用途例について説明すれば、一次電
池、二次電池、電解コンデンサ、センサ、エレク
トロクロミツク表示素子、それに電極上に金属を
析出させ電気量の積分値を検出して時限素子や積
分記憶素子としての利用例など電子部品の素材料
として広く用いられている。 近年、電子工業の分野では、電子機器の高性
能・小型化とともに、電子部品の高性能、小型薄
形化はもちろん、部品としての高い信頼性が要求
される。信頼性の高い電子部品としての必要条件
に、まず部品に使用される材料が固形体、つまり
部品の使用条件下で見掛け上固形状態を呈し、液
体のように流れる物体(以下これを流体と呼称す
る)の状態ではない物体(以下これを固形体と呼
称する)であることが要求される。これは、流体
の材料を電子部品に使用した場合、部品内部から
部品外部へ液漏れが頻出する。このため電子部品
の性能劣化をまねくとともに、その電子部品の近
くにある他の電子部品に悪影響をおよぼしてしま
い、ついには電子機器を故障に至らしめる理由に
よる。したがつて、イオン導電性材料として電子
部品に利用する場合、液体より固形体のイオン導
電性材料を使用した電子部品がより信頼性の高い
電子部品だといえる。一方、流体のイオン導電性
材料を使用し、高い信頼性の部品を得るために、
部品を完全気密にする手段もあるが、結局、高価
な電子部品となつて実用に供し得ない場合が多
い。 前述したイオン導電性材料のうち(イ)の電解質溶
液は、流体であるため上記のような理由から信頼
性が高く、安価な電子部品には利用できない欠点
がある。一方、前述した(ロ)の固体電解質材料は、
固形体であるため信頼性の高い電子部品に適合で
きる利点がある。しかし、高いイオン導電率をも
つ固体電解質材料は極めて少なく、大低の固体電
解質材料はイオン導電率が低い。しかも、無機化
合物を用いて高いイオン導電率の固体電解質を得
るためには極めて困難とされる反応操作を駆使し
なければならないので実用に供されている具体例
は極めて少ない現状である。さらに、大低の固体
電解質材料は無機化合物の組成物であるため、任
意の形に成形、成膜することは極めて難かしい。
すなわち、無機化合物からなる固体電解質は、任
意の形に成形、成膜できる易加工性など機械的性
質に劣る欠点がある。このため、イオン導電性材
料として利用される分野は極端に限定されてしま
う欠点がある。 前述したイオン導電性材料(イ)の電解質溶液と(ロ)
の固体電解質の中間の形態を呈したものとして、
例えば乾電池などに使用されているような電解質
水溶液をデンプンの水溶液で糊状に練り合わせた
イオン導電性材料がある。これらは糊状といえど
も、実用上使用条件下では、流体と同じような形
態を呈するので、例えば、乾電池などでは陽極活
物質と陰極活物質の短絡を防止するためにセパレ
ータとして紙や不織布を使用しなければならな
い。実際には、このセパレータによつて両極の活
物質を隔離し、これに糊状のイオン導電性材料を
含ませた構造なので電解質溶液のような流体と何
ら変わらない利用法になる。 糊状のイオン導電性材料であつても、(a)通常の
乾電池で認められるような、液漏れが頻出し、信
頼性が劣る。(b)また任意の形状に成形、成膜でき
ないため利用できる応用分野が極めて限定されて
しまう欠点がある。液漏れしない程度に水溶媒を
蒸発除去すれば、成形、成膜できないこともない
が、この場合には、イオン電導度が著しく低下し
実用に供しえない。また、溶媒として水を使用し
た場合、次のような欠点がある。(i)水はほとんど
の金属と電気化学的反応し、金属を腐蝕させる。
したがつて、応用に際しては、水を含むイオン導
電性材料と接触する金属材料、例えば、電極部や
電子素子を密封する部分の金属材料は著しく限定
される欠点がある。(ii)水の分解電圧は約1.2Vと
一般に有機溶媒に比較して低く、分解電圧以上の
電圧での使用はできない。(iii)水を含むイオン導電
性材料は、その使用温度が水の凝固点(0℃)と
沸点(100℃)近傍の範囲内に限定され、それ以
外の温度では高く、しかも安定したイオン電導度
を維持することができない。(iv)水を含むイオン導
電性材料では、水のイオン解離によつて生成する
H+やOH-も電導キヤリアとして機能し、金属イ
オンだけを電導キヤリアとしたい場合には、キヤ
リア種が増えるばかりでなく、金属イオンとイオ
ン結合したりして極めて複雑な導電機構となる。
このため、イオン電導度は、不安定となり、例え
ば時限素子や積分記憶素子などへ利用して、電気
容量の積分値を検出する場合には不適当である。 本発明の目的は、かかる従来欠点を解決した新
らしいイオン導電性材料、すなわち高いイオン導
電性と任意の形に成形、成膜できる易加工性など
すぐれた機械的性質を併有するイオン導電性固形
体組成物を提供することにある。 本発明によれば、周期律表の族、および、ま
たは族に属する金属イオンからなる電解質、比
誘電率が4以上の有機高分子化合物、および比誘
電率10以上の有機溶媒を主成分とすることを特徴
とするイオン導電性固形体組成物が得られる。 本発明では、従来欠点、特に水を溶媒として場
合にあらわれる前述した多くの欠点を除くためイ
オン導電性組成物として有機溶媒を含むことに第
1の特徴がある。有機溶媒を適用すれば()各
種金属材料との化合反応が極めて少なく安定であ
る。()有機溶媒の分解電圧は水の分解電圧
1.2Vより高くなる。()適当な溶媒を選択すれ
ば、水の場合より使用温度範囲が広くなる。
()水のようにH+とOH-にイオン解離して悪影
響をおよぼす有機溶媒は極めて少ない。 以上のような理由により、有機溶媒を適用すれ
ば、従来の水溶媒に比較して安定かつ利用範囲の
広いイオン導電性材料を構成できる利点である。
反面、イオン導電率σiは水溶媒使用に比較して
低下する傾向が多い。σiは、一般にキヤリアと
なるイオン種の濃度niとその移動度μiの積に比
例して増大する。したがつて、σi増大に有効な
有機溶媒としては、(A)電解質を高濃度に溶解して
niの増大に寄与するもの、かつ(B)電解質のみなら
ず有機高分子化合物をもよく溶解してイオンの分
布を均一にし、イオンの移動度を増大させる有機
溶媒が望ましい。このため、有機溶媒を一種類に
限定せず二種類以上の混合溶媒を使用する場合も
ある。このように有機溶媒は、電解質や有機高分
子を溶解して固形体組成物を調製する素材として
の機能と、最終的に固形体組成物中に残存してイ
オン導電性の機能発現のためにも重要なイオン導
電性固形体組成物の一構成物である。 以上の観点から、本発明に有効な有機溶媒につ
いて詳細な検討を行なつた結果、有機溶媒の比誘
電率εがイオン導電性発現に非常に大きな影響を
およぼすことが判明した。比誘電率εがそれぞれ
異なる多種類の有機溶媒についてσiとεの関係
を詳細に検討したところ有機溶媒のεが大きくな
る程、σiは増大する傾向にある。とくに、有機
溶媒のεが10以上になると、σiに対する効果は
顕著にあらわれ、少なくとも10-9S・cm-1以上の
実用に供しうるσiが、また固形体組成物の組み
合わせによつては最高10-4S・cm-1程度の非常に
高いσi値が得られた。 以上の結果から、イオン導電性材料としての応
用の可能性を考慮し、σiにおよぼす有機溶媒の
εの有効性から、有機溶媒のεは10以上あれば、
組成物に含まれる有機溶媒としての必要条件を満
たすことが理解できる。有機溶媒のεが大きくな
れば、電解質のイオン解離は促進されて電解質の
溶解能力は増大し、かつ極性の高い有機高分子化
合物に対する溶解性も優れるため大低の有機高分
子化合物を高濃度で溶解するため組成物中のイオ
ンの分布は均一になり、イオンの移動度の増大に
寄与する。結局、有機溶媒のεが大きいほど前述
したσi増大に有効な有機溶媒の必要条件(A)およ
び(B)を満たすようになる。その効果はεが10以上
で発現し、特にεが30以上になると顕著に発現し
て10-5S・cm-1程度の非常に高いσiを示す組成
物も得られた。 εの大きな有機溶媒としては、一般に、炭素原
子Cのほかに、酸素原子O、窒素原子N、イオウ
原子S、およびハロゲン原子などの原子団から構
成された極性の高い結合基(これを極性基と呼称
する)を含み、この極性基が分極しやすい分子構
造に配置されるほどεは大きくなる。実施例の表
中には、その一例として、アルコール類、ケトン
類、アミド類、ニトリル類、カーボネート類の化
合物を示したが、これらの化合物に限定せずεが
10以上の極性の大きな有機溶媒であれば本発明の
効果は得られる。 本発明の第2の特徴は、イオン導電性組成物と
して有機高分子化合物を含む構成にある。これ
は、有機高分子化合物の本来有する優れた機械的
加工性の付与によつて任意の形状に成形、成膜で
きる機能の発現を期待するものである。有機高分
子化合物を単なる結着剤(バインダー)として使
用する方法もあるが、この場合、イオン導電性の
向上には一定の限界がある。つまり、有機高分子
の存在は、イオンが移動する際、立体的な障害と
なつてイオンの移動度μiが低下してしまう傾向
にある。そこで、発明者らは、このイオンの移動
の障害をとり除くため、有機高分子化合物に対し
て優れた膨潤させた状態にすることを考えつい
た。有機高分子の膨潤状態では、有機高分子相互
間の距離は拡張され、イオンは自由に移動できる
ようになる。さらに、イオンと有機高分子間の相
互作用も緩和されてイオンの移動度は極めて向上
する。有機溶媒の組成比が増大すると、有機高分
子相互間の距離は、一層広がり完全に溶解して溶
液状態に到達する。溶液状態では、流体となるの
で、一定の形に成形することはできない。したが
つて、一定の固形体の状態を維持するためには、
固形体組成物に含まれる有機溶媒の最大組成比を
規定することが必要であるが、この最大組成比
は、有機溶媒の有機高分子化合物に対する溶解
性、さらに有機高分子化合物の分子量と分子量分
布によつて異なる。 種々の有機高分子化合物について、本発明に有
効な化合物を検討した結果、イオン導電率σiは
有機高分子化合物の比誘電率εに著しく影響する
ことが判明した。そこで比誘電率εの異なる有機
高分子化合物を種々使用し、組成物のイオン導電
率σiと比誘電率εとの関係を検討した結果、有
機高分子化合物のεが4以上の場合が、実用に供
しうるσiを発現し有効である結論に達した。有
機高分子化合物の比誘電率εは、電解質のイオン
解離を促進する結果、伝導に際してはイオンキヤ
リアの濃度niの増大、さらにイオンの移動度μi
の増大に寄与してイオン導電率σiを増大させた
ものと思われる。結局、本発明で用いる有機高分
子化合物は、比誘電率εが4以上でかつ種々の有
機溶媒に可溶なものが良好な結果をもたらした。 本発明の第3の特徴は、電解質として周期律表
の族および、または族に属する金属のイオン
からなる塩を含むイオン導電性固形体組成物の構
成にある。高いイオン導電性を示すためには、金
属塩のイオン解離エネルギーが小さいこと、さら
に、有機溶媒に対する溶解性に優れていることが
必要である。この観点から本発明に有効な電解質
を検討した結果、周期律表の族および、または
族に属する金属のイオンからなる塩が特に有効
であるとの結論に達した。 本発明の第4の特徴は、イオン導電性固形体組
成物としてεが10以上の有機溶媒とεが4以上の
有機高分子化合物とを組わせることにある。εが
10以上の有機溶媒とεが4以下の有機高分子化合
物、またはεが4以上の有機高分子化合物とεが
10以下の有機溶媒との組み合わせによる固形体組
成物系の場合では、およそ10-8〜10-7S・cm-1
σiしか得られない。これに対して、εが4以上
の有機高分子化合物とεが10以上の有機溶媒とを
組み合わせた固形体組成物系では、最高10-5
10-4S・cm-1の非常に高いσiが得られた。これ
は、有機溶媒と有機高分子化合物のεによる効果
が相乗的に顕著に発現して非常に高いイオン導電
性が得られたものと思われる。これが、本発明の
最も意義のある特徴である。 固形体組成物中の電解質の組成比は、多くなる
程電導度増大に寄与するが、多量に存在すると組
成物は堅く、もろくなり機械的加工性は低下して
くる。また固形体組成物中に含有される溶媒量が
多い程イオンの移動度を増大し電導度は増大する
が、多量に存在すると組成物は軟化し、最終的に
は流体になつてしまう。したがつて、電解質およ
び溶媒の組成比には、実用に供しうる最大値が存
在する。また、この最大値は固形体組成物を構成
する化合物の種類、物性によつて一様に規定でき
ないが、種々の実験を蓄積した結果、電解質組成
比の最大値は有機高分子化合物の繰り返し単位に
対しておよそ70〜90mo%、有機溶媒組成比の
最大値はおよそ50〜90wt%であつた。 以下に、本発明の実施例を説明する。 なお、イオン導電性固形体組成物中の電解質お
よび有機溶媒の含有量は、前述した最大値をこえ
ない範囲の試料について実施した。 〔実施例 1〕 電解質を有機溶媒に溶解した電解質溶液と有機
高分子化合物を有機溶媒に溶解した高分子溶液と
を調製した。調製した電解質溶液と高分子溶液と
を混合し、均一になるまで充分撹拌した。均一に
なりにくい場合には、混合溶液を加熱しながら撹
拌すれば所定の均一な溶液が得られる。その後、
混合溶液をロータリーポンプを用いて減圧にし脱
泡した。次に、あらかじめ準備したテフロン製の
容器中にこの混合溶液の一定量を注ぎ込み、室温
から有機溶媒の沸点以下の温度中で窒素ガスを流
しながら有機溶媒を徐々に蒸発させた。この操作
は、テフロン容器内の試料が溶液状態からゲル状
態になるまで続けた。試料がゲル状態になつたの
ち、試料の入つたテフロン容器を真空加熱乾燥機
中に移し入れ、使用した有機溶媒の沸点以下の温
度の常圧下で窒素ガスを流し込みながら加熱乾燥
した。なお、有機溶媒の沸点が温度100℃以上の
場合には、減圧下で加熱乾燥した。加熱乾燥は、
試料状態が、ゲル状態から容器を傾けても変形し
ない状態、すなわち固形体になるまで続けた。加
熱乾燥後、試料の入つたテフロン容器を窒素ガス
で充満したグローブボツクス内に移し入れ、試料
をテフロン容器から剥離したのち一定形状に切断
した。切断した試料片を白金黒電極でサンドイツ
チ状にはさみ込み交流二端子法で試料片の抵抗値
を測定した。測定は窒素ガス雰囲気中、測定時の
周波数は1KHzを用い、試料片の抵抗値、厚さお
よび白金黒電極の面積から試料の導電率σを算出
した。 以上のような試料調製の手順と測定法によつて
実施したイオン導電性固形体組成物試料を構成す
る化合物、すなわち有機高分子化合物、有機溶媒
および電解質の組合わせと、この組み合わせによ
つて形成された固形体組成物のイオン導電率σi
を第1表に示した。 なお、第1表中の組成物の組み合わせのなかに
は有機高分子化合物が有機溶媒に完全に溶解せず
一部溶解、一部不溶解のものや有機高分子化合物
が膨潤するものまたは電解質の金属塩が有機溶媒
に完全溶解せず一部溶解、一部不溶解のものもあ
つたが、試料調製や成形性、導電性などの本発明
の効果には支障がなかつたので本実施例として適
用した。また、全試料の電子導電率を測定した結
果10-14S・cm-1以下の電子導電率であつたので前
述した測定法による導電率σをイオン導電率σi
として第4表に示した。
The present invention relates to an ionically conductive solid composition. In particular, it has excellent mechanical properties such as ease of processing and forming films into arbitrary shapes, which is inherent to polymers, and also has extremely high ionic conductivity of metals belonging to groups and groups of the periodic table. The present invention relates to an ionically conductive solid composition having the following properties. Conventionally, ion conductive materials have mainly been (a) so-called electrolyte solutions in which electrolytes are dissolved in water or organic solvents, (b) beta alumina β-Al 2 O 3 , lithium iodide alumina LiI-A 2 O 3 , Solid electrolyte materials made of inorganic substances such as silver rubidium iodide, RbAg 4 I 5 are known. Ion-conductive materials are used in a wide variety of industrial fields, but examples of their use as electronic components include primary batteries, secondary batteries, electrolytic capacitors, sensors, electrochromic display elements, and electrodes. It is widely used as a material for electronic parts, such as by depositing metal and detecting the integral value of electrical quantity, and using it as a time-limiting element or an integral memory element. In recent years, in the field of electronics industry, not only high performance and miniaturization of electronic devices, but also high performance, small size and thinness of electronic components, as well as high reliability as components are required. The first requirement for highly reliable electronic components is that the material used in the component must be a solid body, that is, an object that appears solid under the conditions in which the component is used, and that flows like a liquid (hereinafter referred to as a fluid). (hereinafter referred to as a solid body). This is because when a fluid material is used in an electronic component, fluid often leaks from the inside of the component to the outside of the component. This leads to a deterioration in the performance of the electronic component and has an adverse effect on other electronic components near the electronic component, which ultimately causes the electronic device to malfunction. Therefore, when used as an ion conductive material in an electronic component, it can be said that an electronic component using a solid ion conductive material is more reliable than a liquid one. Meanwhile, in order to obtain highly reliable parts using fluid ionically conductive materials,
Although there are ways to make the component completely airtight, the result is often an expensive electronic component that cannot be put to practical use. Among the above-mentioned ion conductive materials, the electrolyte solution (a) is a fluid and has high reliability for the reasons mentioned above, but has the disadvantage that it cannot be used for inexpensive electronic components. On the other hand, the solid electrolyte material (b) mentioned above is
Since it is a solid body, it has the advantage of being compatible with highly reliable electronic components. However, there are very few solid electrolyte materials that have high ionic conductivity, and most solid electrolyte materials have low ionic conductivity. Moreover, in order to obtain a solid electrolyte with high ionic conductivity using an inorganic compound, it is necessary to make full use of reaction operations that are considered extremely difficult, so there are currently very few practical examples. Furthermore, since the solid electrolyte material of Olowa is a composition of inorganic compounds, it is extremely difficult to mold it into an arbitrary shape or form it into a film.
That is, solid electrolytes made of inorganic compounds have the drawback of poor mechanical properties, such as ease of processing and the ability to form films into arbitrary shapes. For this reason, it has the disadvantage that the fields in which it can be used as an ion-conductive material are extremely limited. Electrolyte solution of the above-mentioned ion conductive material (a) and (b)
As an intermediate form of solid electrolyte,
For example, there is an ion conductive material that is used in dry batteries and is made by kneading an aqueous electrolyte solution with an aqueous starch solution to form a paste. Even though they are glue-like, they take on a form similar to that of a fluid under conditions of practical use. For example, in dry batteries, paper or non-woven fabric is used as a separator to prevent short circuits between the anode active material and the cathode active material. must be used. In reality, this separator separates the active materials of both electrodes, and since it contains a glue-like ion conductive material, its usage is no different from that of a fluid such as an electrolyte solution. Even with glue-like ion-conductive materials, (a) fluid leakage occurs frequently, as seen in normal dry batteries, and reliability is poor. (b) Furthermore, since it cannot be molded into any shape or formed into a film, it has the disadvantage that its applicable fields are extremely limited. If the water solvent is removed by evaporation to an extent that does not cause liquid leakage, molding and film formation will not be impossible, but in this case, the ionic conductivity will drop significantly and it cannot be put to practical use. Furthermore, when water is used as a solvent, there are the following drawbacks. (i) Water reacts electrochemically with most metals and corrodes them.
Therefore, when applied, there is a drawback that the metal materials that come into contact with the ion conductive material containing water, for example, the metal materials for the parts that seal electrode parts and electronic devices, are extremely limited. (ii) The decomposition voltage of water is approximately 1.2V, which is generally lower than that of organic solvents, and cannot be used at voltages higher than the decomposition voltage. (iii) Ion conductive materials containing water have a high and stable ionic conductivity whose use temperature is limited to a range near the freezing point (0°C) and boiling point (100°C) of water, and at other temperatures. unable to maintain. (iv)For ionic conductive materials containing water, it is generated by ion dissociation of water.
H + and OH - also function as conductive carriers, and if it is desired to use only metal ions as conductive carriers, not only will the number of carrier species increase, but they will also ionically bond with metal ions, resulting in an extremely complex conductive mechanism.
For this reason, the ionic conductivity becomes unstable, making it unsuitable for use in, for example, a timing element or an integral memory element to detect an integral value of capacitance. The object of the present invention is to create a new ion-conductive material that solves these conventional drawbacks, namely, an ion-conductive solid material that has both high ion conductivity and excellent mechanical properties such as ease of processing and forming films into arbitrary shapes. The objective is to provide body compositions. According to the present invention, the main components are an electrolyte made of metal ions belonging to a group of the periodic table and/or a group, an organic polymer compound with a dielectric constant of 4 or more, and an organic solvent with a dielectric constant of 10 or more. An ionically conductive solid composition is obtained. The first feature of the present invention is that the ionically conductive composition contains an organic solvent in order to eliminate the conventional drawbacks, particularly the many drawbacks mentioned above that appear when water is used as a solvent. If an organic solvent is used (), it will be stable as there will be very little chemical reaction with various metal materials. () The decomposition voltage of organic solvent is the decomposition voltage of water.
Higher than 1.2V. () If an appropriate solvent is selected, the usable temperature range will be wider than in the case of water.
() Very few organic solvents, like water, dissociate into H + and OH - ions and have a negative effect. For the above-mentioned reasons, the use of organic solvents has the advantage of making it possible to construct ion-conductive materials that are more stable and have a wider range of applications than conventional aqueous solvents.
On the other hand, the ionic conductivity σi tends to be lower than when a water solvent is used. Generally, σi increases in proportion to the product of the concentration ni of the carrier ion species and its mobility μi. Therefore, as an effective organic solvent for increasing σi, (A) is an organic solvent that dissolves electrolyte in high concentration.
An organic solvent that contributes to an increase in ni and (B) dissolves not only the electrolyte but also the organic polymer compound well, making the distribution of ions uniform and increasing the mobility of the ions is desirable. Therefore, the organic solvent is not limited to one type, and a mixed solvent of two or more types may be used. In this way, the organic solvent functions as a material that dissolves electrolytes and organic polymers to prepare the solid composition, and ultimately remains in the solid composition to express the function of ionic conductivity. is also an important constituent of ionically conductive solid compositions. From the above viewpoint, as a result of detailed study on organic solvents that are effective in the present invention, it was found that the dielectric constant ε of the organic solvent has a very large influence on the expression of ionic conductivity. A detailed study of the relationship between σi and ε for many types of organic solvents having different dielectric constants ε shows that σi tends to increase as the ε of the organic solvent increases. In particular, when the ε of the organic solvent is 10 or more, the effect on σi becomes remarkable, and the practical σi of at least 10 -9 S cm -1 or more may be reached, and depending on the combination of solid compositions, the effect on σi becomes remarkable. A very high σi value of about 10 −4 S·cm −1 was obtained. From the above results, considering the possibility of application as an ion conductive material, and from the effectiveness of ε of the organic solvent on σi, if ε of the organic solvent is 10 or more,
It can be understood that the requirements for the organic solvent contained in the composition are met. If the ε of the organic solvent increases, the ionic dissociation of the electrolyte will be promoted and the dissolution ability of the electrolyte will increase, and the solubility for highly polar organic polymer compounds will also be excellent. Due to the dissolution, the distribution of ions in the composition becomes uniform, contributing to an increase in the mobility of ions. As a result, the larger the ε of the organic solvent, the more it satisfies the above-mentioned requirements (A) and (B) for the organic solvent to be effective in increasing σi. This effect is manifested when ε is 10 or more, particularly when ε is 30 or more, and compositions exhibiting extremely high σi of about 10 −5 S·cm −1 were also obtained. Organic solvents with a large ε are generally used for highly polar bonding groups (which are called polar groups ), and the more this polar group is arranged in a molecular structure that is more easily polarized, the larger ε becomes. In the table of examples, compounds such as alcohols, ketones, amides, nitriles, and carbonates are shown as examples, but the compounds are not limited to these compounds, and ε
The effects of the present invention can be obtained with any organic solvent having a high polarity of 10 or more. The second feature of the present invention is that the ionically conductive composition contains an organic polymer compound. This is expected to result in the ability to form into arbitrary shapes and form films by imparting excellent mechanical processability inherent to organic polymer compounds. There is also a method of using an organic polymer compound simply as a binder, but in this case there is a certain limit to the improvement of ionic conductivity. In other words, the presence of an organic polymer acts as a steric hindrance when ions move, and tends to reduce the ion mobility μi. Therefore, in order to remove this obstacle to the movement of ions, the inventors came up with the idea of creating an excellent swollen state for organic polymer compounds. When organic polymers are in a swollen state, the distance between them is expanded, allowing ions to move freely. Furthermore, the interaction between ions and organic polymers is relaxed, and the mobility of ions is greatly improved. As the composition ratio of the organic solvent increases, the distance between the organic polymers becomes wider and the organic polymers are completely dissolved to reach a solution state. In a solution state, it becomes a fluid and cannot be molded into a certain shape. Therefore, in order to maintain a constant solid state,
It is necessary to specify the maximum composition ratio of the organic solvent contained in the solid body composition, but this maximum composition ratio depends on the solubility of the organic solvent to the organic polymer compound, as well as the molecular weight and molecular weight distribution of the organic polymer compound. It depends. As a result of examining various organic polymer compounds that are effective in the present invention, it was found that the ionic conductivity σi significantly influences the dielectric constant ε of the organic polymer compound. Therefore, as a result of using various organic polymer compounds with different dielectric constants ε and examining the relationship between the ionic conductivity σi and the dielectric constant ε of the composition, it was found that when the organic polymer compound has ε of 4 or more, it is practical. We have reached the conclusion that the method is effective as it expresses σi that can be used for. The dielectric constant ε of an organic polymer compound promotes ion dissociation in the electrolyte, and as a result, during conduction, the concentration of ion carriers ni increases, and the ion mobility μi increases.
It is thought that this contributes to an increase in the ionic conductivity σi. In the end, the organic polymer compound used in the present invention that has a dielectric constant ε of 4 or more and is soluble in various organic solvents gave good results. A third feature of the present invention resides in the composition of an ionically conductive solid composition containing, as an electrolyte, a salt consisting of ions of metals belonging to groups and/or groups of the periodic table. In order to exhibit high ionic conductivity, it is necessary for the metal salt to have low ionic dissociation energy and to have excellent solubility in organic solvents. As a result of examining effective electrolytes for the present invention from this point of view, it was concluded that salts consisting of ions of metals belonging to groups and/or groups of the periodic table are particularly effective. The fourth feature of the present invention is that an organic solvent having an ε of 10 or more and an organic polymer compound having an ε of 4 or more are combined as an ion-conductive solid composition. ε is
An organic solvent with an ε of 10 or more and an organic polymer compound with an ε of 4 or less, or an organic polymer compound with an ε of 4 or more and an ε
In the case of a solid composition system in combination with an organic solvent of 10 or less, a σi of only about 10 −8 to 10 −7 S·cm −1 can be obtained. On the other hand, in a solid composition system that combines an organic polymer compound with ε of 4 or more and an organic solvent with ε of 10 or more, the maximum
A very high σi of 10 −4 S·cm −1 was obtained. This seems to be because the effect of the organic solvent and the ε of the organic polymer compound was significantly synergistically expressed, resulting in extremely high ionic conductivity. This is the most significant feature of the invention. As the composition ratio of the electrolyte in the solid body composition increases, it contributes to an increase in electrical conductivity, but when a large amount is present, the composition becomes hard and brittle, and mechanical workability decreases. Further, the larger the amount of solvent contained in the solid composition, the greater the mobility of ions and the higher the electrical conductivity, but if the solvent is present in a large amount, the composition will soften and eventually become a fluid. Therefore, there is a practical maximum value for the composition ratio of the electrolyte and the solvent. In addition, although this maximum value cannot be uniformly defined depending on the type and physical properties of the compounds that make up the solid body composition, as a result of various experiments, the maximum value of the electrolyte composition ratio is determined by the repeating unit of the organic polymer compound. The maximum value of the organic solvent composition ratio was approximately 50 to 90 wt%. Examples of the present invention will be described below. In addition, the content of the electrolyte and organic solvent in the ion conductive solid composition was carried out on samples within a range that did not exceed the maximum values mentioned above. [Example 1] An electrolyte solution in which an electrolyte was dissolved in an organic solvent and a polymer solution in which an organic polymer compound was dissolved in an organic solvent were prepared. The prepared electrolyte solution and polymer solution were mixed and sufficiently stirred until uniform. If it is difficult to obtain a uniform solution, a predetermined uniform solution can be obtained by stirring the mixed solution while heating it. after that,
The mixed solution was decompressed and degassed using a rotary pump. Next, a certain amount of this mixed solution was poured into a Teflon container prepared in advance, and the organic solvent was gradually evaporated while flowing nitrogen gas at a temperature from room temperature to below the boiling point of the organic solvent. This operation was continued until the sample in the Teflon container changed from a solution state to a gel state. After the sample was in a gel state, the Teflon container containing the sample was transferred to a vacuum heating dryer and heated and dried under normal pressure at a temperature below the boiling point of the organic solvent used while flowing nitrogen gas. In addition, when the boiling point of the organic solvent was 100° C. or higher, it was dried by heating under reduced pressure. Heat drying is
The sample state continued until it changed from a gel state to a state that does not deform even if the container is tilted, that is, a solid state. After heating and drying, the Teflon container containing the sample was transferred into a glove box filled with nitrogen gas, and the sample was peeled from the Teflon container and cut into a certain shape. The cut sample piece was sandwiched between platinum black electrodes in a sandwich pattern, and the resistance value of the sample piece was measured using the AC two-terminal method. The measurement was performed in a nitrogen gas atmosphere using a measurement frequency of 1 KHz, and the conductivity σ of the sample was calculated from the resistance value, thickness, and area of the platinum black electrode of the sample piece. The combination of compounds constituting the ionically conductive solid composition sample, that is, an organic polymer compound, an organic solvent, and an electrolyte, conducted using the sample preparation procedure and measurement method described above, and the combination formed by this combination. The ionic conductivity σi of the solid composition
are shown in Table 1. In addition, among the composition combinations in Table 1, the organic polymer compound does not completely dissolve in the organic solvent, but partially dissolves or is partially insoluble, the organic polymer compound swells, or the metal salt of the electrolyte Although some of the organic solvents were not completely dissolved, some were partially dissolved, and some were not, but there were no problems with the effects of the present invention such as sample preparation, moldability, and conductivity, so they were applied in this example. . In addition, as a result of measuring the electronic conductivity of all samples, the electronic conductivity was less than 10 -14 S cm -1 , so the conductivity σ by the measurement method described above was replaced by the ionic conductivity σi
It is shown in Table 4 as follows.

〔実施例 2〕[Example 2]

有機高分子化合物がポリビニリデンフロライド
とポリアクリロニトリルの固形体組成物系におい
て電解質LiCO4、および有機溶媒プロピレンカ
ーボネート、ジメチルホルムアミド、エチレンカ
ーボネートの組成比を種々変化させ、その固形体
組成物のイオン導電率σiとの関係を詳細に検討
した。 固形体組成物の試料調製は、実施例1と同様に
実施した。有機高分子化合物がポリビニリデンフ
ロライド、有機溶媒がジメチルホルムアミド(以
下DMFと略称)、電解質がLiCO4の固形体組成
物系を代表例として試料調製法について以下詳細
に述べる。ポリビニリデンフロライドをDMFに
溶解し、1mo/のポリビニリデンフロライド
のDMF溶液を、またDMF中にLiCO4を溶解
し、LiCO4の濃度が異なるLiCO4のDMF溶液
を調整した。ポリビニリデンフロライドのDMF
溶液とLiCO4のDMF溶液を混合し、この混合
溶液をテフロン容器中に注ぎ込み、約10cm四方に
溶液が流延するようにした。これを、窒素ガスま
たはアルゴンガスなどの不活性ガスを流しながら
温度約80℃でおよび12時間乾燥するとテフロン容
器内の試料が溶液状態からゲル状態になつた。試
料がゲル状態ななつたのち約140℃の温度でおよ
そ24時間減圧加熱乾燥した。このような処理によ
つて、テフロン上に厚さ1mm以下の固形体組成物
の薄膜が形成された。この薄膜をテフロンから剥
離した。剥離した膜は可撓性に富んだ比較的弾性
のある膜性を示した。この膜を直径が10mmの円板
に切断して測定試料とした。測定には、直径が10
mmの円板状に成形されたリチウム電極を用い、円
板状のリチウム電極で測定試料を挾み、サンドウ
イツチ形状にして交流二端子法で試料の抵抗値を
測定した。試料の調製および測定は、水分の混入
を防ぐためすべてアルゴンガス雰囲気中で行な
い、イオン導電率σiは試料片の厚さ、面積およ
び抵抗値から算出した。 第2表に得られた、イオン導電性固形体組成物
の構成物の組み合わせ各構成物の組成比、および
σiを示した。電解質LiCO4の組成比は、有機
高分子化合物のくり返し単位に対するモルパーセ
ント(mo%)で示し、LiCO4の仕込み量に
よつて変化させた。また、有機溶媒の組成比は、
固形体組成物中の重量パーセント(wt%)で示
し、形成された固形体組成物を熱分解式ガスクロ
マトグラス分析法によつて分析し求めた。ガスク
ロマトグラス分析法の結果から、処理操作時の留
意にもかかわらず水分の混入が認められた。
In a solid composition system in which the organic polymer compound is polyvinylidene fluoride and polyacrylonitrile, the composition ratios of the electrolyte LiCO 4 and the organic solvents propylene carbonate, dimethylformamide, and ethylene carbonate are varied to improve the ionic conductivity of the solid composition. The relationship with the rate σi was examined in detail. Sample preparation of the solid composition was carried out in the same manner as in Example 1. The sample preparation method will be described in detail below using a representative example of a solid composition system in which the organic polymer compound is polyvinylidene fluoride, the organic solvent is dimethylformamide (hereinafter abbreviated as DMF), and the electrolyte is LiCO 4 . Polyvinylidene fluoride was dissolved in DMF to prepare a 1 mo/DMF solution of polyvinylidene fluoride, and LiCO 4 was dissolved in DMF to prepare LiCO 4 DMF solutions with different concentrations of LiCO 4 . DMF of polyvinylidene fluoride
The solution and the DMF solution of LiCO 4 were mixed, and the mixed solution was poured into a Teflon container so that the solution was cast in an area of approximately 10 cm square. When this was dried at a temperature of approximately 80° C. for 12 hours while flowing an inert gas such as nitrogen gas or argon gas, the sample in the Teflon container changed from a solution state to a gel state. After the sample became a gel, it was dried under reduced pressure at a temperature of about 140°C for about 24 hours. By such treatment, a thin film of the solid composition with a thickness of 1 mm or less was formed on the Teflon. This thin film was peeled off from the Teflon. The peeled film exhibited relatively elastic film properties with high flexibility. This membrane was cut into disks with a diameter of 10 mm and used as measurement samples. For measurements, the diameter is 10
The resistance value of the sample was measured using a sandwich-shaped lithium electrode formed into a disc-shaped lithium electrode with a sandwich shape between the disc-shaped lithium electrodes using the AC two-terminal method. All sample preparation and measurements were performed in an argon gas atmosphere to prevent moisture from entering, and the ionic conductivity σi was calculated from the thickness, area, and resistance value of the sample piece. Table 2 shows the combination of components of the ionically conductive solid composition, the composition ratio of each component, and σi. The composition ratio of the electrolyte LiCO 4 was expressed in mole percent (mo%) with respect to the repeating unit of the organic polymer compound, and was changed depending on the amount of LiCO 4 charged. In addition, the composition ratio of the organic solvent is
It is expressed as a weight percent (wt%) in the solid composition, and was determined by analyzing the formed solid composition using a pyrolysis gas chromatograph analysis method. Based on the results of gas chromatograph analysis, water was found to have been mixed in despite precautions taken during processing.

【表】 第1図は、有機高分子化合物としてポリビニリ
デンフロライドを用いた場合の電解質LiCO4
組成比(mol%)とイオン導電率σiの関係を示
したものである。有機溶媒がDMF(第1図の
a)の場合は、DMFが存在しない組成物系(第
1図のb)と比較してσiが大きく、σiの増大
にεの大きな有機溶媒DMFの寄与が認められ
る。また、LiCO4の組成比の増大とともに、σ
iは増大してくる。本実施例では、LiCO4の組
成比がほぼ50mo%までしかσiの測定はしな
かつたけれども、LiCO4の組成比が70mo%
以上になると固形体組成物の膜性は、堅くてもろ
くなり、機械的加工性は低下してくる。電解質の
含有量の最大値は、固形体組成物の構成物の種類
や溶解性、組成比などの性質によつて異なる。 第2図および第3図は、有機高分子化合物がそ
れぞれポリビニリデンフロライド、ポリアクリロ
ニトリルで、電解質がLiCO4の場合の固形体組
成物中に含有される有機溶媒の組成比(wt%)
とσiの関係を示したものである。第2図におい
て、有機溶媒がDMF(第2図c)の場合にくら
べて、プロピレンカーボネート(第2図のe)の
σiは大きく、プロピレンカーボネートが35wt
%で、約10-4S・cm-1のσiを示す弾性、可撓性
ともに優れた薄膜が得られた。第3図の結果か
ら、電解質はLiO4、有機高分子化合物はポリ
アクリロニトリルと同一構成物であるにもかかわ
らず、有機溶媒がプロピレンカーボネート(第3
図のh)の場合、約10-3S・cm-1のσiを、また
DMF(第3図のf)やエチレンカーボネート
(第3図のg)では約10-4S・cm-1の最高のσiを
示した。いずれの組成物系でも、得られた膜は可
撓性、弾性ともに優れた機械的な加工性を示し
た。有機溶媒がDMFの場合、組成比が約50wt%
以上になると組成物は軟化しはじめるが、プロピ
レンカーボネートの場合には約80wt%まで固形
体として形状維持でき、約90wt%以上になると
組成物は軟化しはじめ、固形体として一定の形状
を維持できなくなる。このように、有機溶媒の固
形体としての最大の組成比も、電解質と同様、有
機溶媒、有機高分子化合物、電解質の種類や分子
量、相互溶解性などの種々の性質によつて異な
る。 本発明によつて得られるイオン導電性固形体組
成物系は、調製する溶液の容量や濃度、溶液を注
入する容器の形状によつて任意の形状に成形した
り、成膜したりする溶液量を減少して、厚さ100
μm以下の可撓性に富んだ広い面積の薄膜を形成
することができた。薄膜にすることができれば、
膜の断面方向の抵抗は膜厚に比例し、かつ面積に
反比例して低下するために広い用途分野に利用で
きる。なお表中のσiから、膜厚および面積を制
御すれば、本発明によるイオン導電性固形体組成
物は、電池、電解コンデンサ、センサ、エレクト
ロクロミツク素子、それに時限素子や積分記憶素
子などのイオン導電性材料を用いた電子部品への
利用は充分実用に供し得ることは勿論である。
[Table] Figure 1 shows the relationship between the composition ratio (mol%) of the electrolyte LiCO 4 and the ionic conductivity σi when polyvinylidene fluoride is used as the organic polymer compound. When the organic solvent is DMF (a in Figure 1), σi is larger than in a composition system without DMF (b in Figure 1), and the organic solvent DMF with a large ε contributes to the increase in σi. Is recognized. In addition, as the composition ratio of LiCO 4 increases, σ
i is increasing. In this example, although σi was measured only up to a LiCO 4 composition ratio of approximately 50mo%, when the LiCO 4 composition ratio was 70mo%,
If it exceeds the above range, the film properties of the solid composition will become hard and brittle, and the mechanical processability will decrease. The maximum value of the electrolyte content varies depending on properties such as the type, solubility, and composition ratio of the components of the solid body composition. Figures 2 and 3 show the composition ratio (wt%) of the organic solvent contained in the solid composition when the organic polymer compound is polyvinylidene fluoride and polyacrylonitrile, respectively, and the electrolyte is LiCO 4 .
This shows the relationship between σi and σi. In Figure 2, the σi of propylene carbonate (e in Figure 2) is larger than that in the case where the organic solvent is DMF (Figure 2 c), and when propylene carbonate is 35 wt.
%, a thin film with excellent elasticity and flexibility was obtained, exhibiting a σi of approximately 10 −4 S·cm −1 . From the results shown in Figure 3, although the electrolyte is LiO 4 and the organic polymer compound is the same as polyacrylonitrile, the organic solvent is propylene carbonate (tertiary carbonate).
In case h) in the figure, σi of about 10 -3 S cm -1 and
DMF (f in Figure 3) and ethylene carbonate (g in Figure 3) showed the highest σi of about 10 -4 S·cm -1 . In all compositions, the resulting films exhibited excellent mechanical processability in both flexibility and elasticity. When the organic solvent is DMF, the composition ratio is approximately 50wt%
Above this, the composition begins to soften, but in the case of propylene carbonate, it can maintain its shape as a solid up to about 80wt%, and when it reaches about 90wt% or more, the composition begins to soften and cannot maintain a certain shape as a solid. It disappears. As described above, the maximum composition ratio of the organic solvent as a solid body also differs, like the electrolyte, depending on various properties such as the type, molecular weight, mutual solubility, etc. of the organic solvent, organic polymer compound, and electrolyte. The ion conductive solid composition system obtained by the present invention can be formed into any shape or formed into a film depending on the volume and concentration of the solution to be prepared and the shape of the container into which the solution is injected. by decreasing the thickness to 100
It was possible to form a thin film with a wide area and high flexibility of less than μm. If it can be made into a thin film,
The resistance in the cross-sectional direction of the film decreases in proportion to the film thickness and inversely to the area, so it can be used in a wide range of applications. If the film thickness and area are controlled based on σi in the table, the ionically conductive solid composition according to the present invention can be used in batteries, electrolytic capacitors, sensors, electrochromic devices, time devices, integral memory devices, etc. It goes without saying that the electrically conductive material can be used in electronic components for practical purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のポリビニリデンフロライド
を用いたイオン導電性固形体組成物のイオン導電
率σiと電解質LiCO4の組成比(mo%)と
の関係図、第2図は本発明のポリビニリデンフロ
ライドとLiCO4で構成されたイオン導電性固形
体組成物のσiと有機溶媒の組成比(wt%)と
の関係図、第3図は、本発明のポリアクリロニト
リルとLiCO4で構成されたイオン導電性固形体
組成物のσiと有機溶媒を組成比(wt%)との
関係図である。 a……ジメチルホルムアミド(4〜6wt%)、
H2O(3〜5wt%)が含まれた固形体組成物系。
b……H2O(5〜8wt%)、有機溶媒が含まれな
い固形体組成物系。c……ジメチルホルムアミド
が含まれた固形体組成物系。d……ジメチルホル
ムアミドとプロピレンカーボネートが含まれた固
形体組成物系。e……プロピレンカーボネートが
含まれた固形体組成物系。f……ジメチルホルム
アミドが含まれた固形体組成物系。g……エチレ
ンカーボネートが含まれた固形体組成物系。h…
…プロピレンカーボネートが含まれた固形体組成
物系。
FIG. 1 is a diagram showing the relationship between the ionic conductivity σi of the ion conductive solid composition using polyvinylidene fluoride of the present invention and the composition ratio (mo%) of the electrolyte LiCO 4 , and FIG. Figure 3 is a diagram showing the relationship between σi and the composition ratio (wt%) of an organic solvent for an ion-conductive solid composition composed of polyvinylidene fluoride and LiCO 4 . FIG. 2 is a diagram showing the relationship between σi and the organic solvent composition ratio (wt%) of the ionically conductive solid composition obtained. a...Dimethylformamide (4-6wt%),
A solid composition system containing H 2 O (3 to 5 wt%).
b...A solid composition system that does not contain H 2 O (5 to 8 wt%) and an organic solvent. c...A solid composition system containing dimethylformamide. d...A solid composition system containing dimethylformamide and propylene carbonate. e... Solid composition system containing propylene carbonate. f... Solid composition system containing dimethylformamide. g...A solid composition system containing ethylene carbonate. H...
...A solid composition system containing propylene carbonate.

Claims (1)

【特許請求の範囲】[Claims] 1 周期律表族および、または族に属する金
属のイイオンからなる電解質、比誘電率4以上の
有機高分子化合物、および前記電解質と有機高分
子化合物とに対して優れた溶解性を有する比誘電
率10以上の有機溶媒とからなるイオン導電性固形
体組成物であり、前記固形体組成物に含まれる前
記有機溶媒の含有量は前記有機高分子化合物を膨
潤させた状態とする量以上でかつ前記固形体組成
物の90wt%以下であり、前記電解質の含有量は
約10-8S・cm-1以上のイオン導電率を与える量以
上でかつ前記固形体組成物の90mo%以下に選
ばれていることを特徴とするイオン導電性固形体
組成物。
1. An electrolyte consisting of an ion of a metal belonging to a periodic table group and/or group, an organic polymer compound with a dielectric constant of 4 or more, and a dielectric constant having excellent solubility in the electrolyte and the organic polymer compound. An ion conductive solid composition comprising 10 or more organic solvents, wherein the content of the organic solvent contained in the solid composition is at least an amount that causes the organic polymer compound to be in a swollen state, and 90 wt% or less of the solid composition, and the content of the electrolyte is selected to be at least an amount that provides an ionic conductivity of about 10 -8 S cm -1 or more and not more than 90 mo% of the solid composition. An ionically conductive solid composition comprising:
JP56029091A 1981-02-27 1981-02-27 Ionic conductive solid substace composition Granted JPS57143356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56029091A JPS57143356A (en) 1981-02-27 1981-02-27 Ionic conductive solid substace composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56029091A JPS57143356A (en) 1981-02-27 1981-02-27 Ionic conductive solid substace composition

Publications (2)

Publication Number Publication Date
JPS57143356A JPS57143356A (en) 1982-09-04
JPS6123947B2 true JPS6123947B2 (en) 1986-06-09

Family

ID=12266675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56029091A Granted JPS57143356A (en) 1981-02-27 1981-02-27 Ionic conductive solid substace composition

Country Status (1)

Country Link
JP (1) JPS57143356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105829451A (en) * 2013-12-16 2016-08-03 三菱丽阳株式会社 Resin composition, resin sheet, and resin laminate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8333388D0 (en) * 1983-12-15 1984-01-25 Raychem Ltd Materials for electrical devices
ATE530946T1 (en) 2006-08-22 2011-11-15 Konica Minolta Holdings Inc DISPLAY ITEM
US8052888B2 (en) 2006-09-11 2011-11-08 Asahi Kasei Kabushiki Kaisha Polymeric electrolyte, method for production thereof, and electrochemical element
RU2388088C1 (en) 2006-09-11 2010-04-27 Асахи Касеи Кабусики Кайся New polymer electrolyte and electrochemical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105829451A (en) * 2013-12-16 2016-08-03 三菱丽阳株式会社 Resin composition, resin sheet, and resin laminate

Also Published As

Publication number Publication date
JPS57143356A (en) 1982-09-04

Similar Documents

Publication Publication Date Title
Watanabe et al. Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4
Sun et al. Enhanced lithium‐ion transport in PEO‐based composite polymer electrolytes with ferroelectric BaTiO3
US7248461B2 (en) Conducting polymer composite and solid electrolytic capacitor using the same
TWI413995B (en) Solid electrolytic capacitor and its manufacturing method
US8357470B2 (en) Organic solid electrolyte and secondary battery
JPH01294768A (en) Liquid containing polymer network as a solid electrolyte
Lewandowski et al. Solvent-free double-layer capacitors with polymer electrolytes based on 1-ethyl-3-methyl-imidazolium triflate ionic liquid
Ghosh et al. Networks of electron‐conducting polymer in matrices of ion‐conducting polymers applications to fast electrodes
US5847920A (en) Electrochemical capacitor with hybrid polymer polyacid electrolyte
Croce et al. Properties of mixed polymer and crystalline ionic conductors
Magistris et al. PEO‐based polymer electrolytes
JP3098248B2 (en) Ion conductor or electrolyte for batteries
JPS6123947B2 (en)
JPS6123944B2 (en)
JPS6123946B2 (en)
JP2001200126A (en) Ionically conductive composition
JP2001200125A (en) Ionically conductive composition
JPH04162510A (en) Electric double layer capacitor
JPS6123945B2 (en)
JP3084793B2 (en) Solid electrode composition
JPH03129603A (en) Solid electrolyte
JP2005175513A (en) Electric double-layer capacitor and electrolyte thereof
Hany et al. Studies on AC electrical conductivity, dielectric properties and ion transport in PVA polymeric electrolytes
JPS59230058A (en) Ionic conductive solid composition
KR100231682B1 (en) Solid polymer electrolyte composite