JPS6123944B2 - - Google Patents

Info

Publication number
JPS6123944B2
JPS6123944B2 JP56022570A JP2257081A JPS6123944B2 JP S6123944 B2 JPS6123944 B2 JP S6123944B2 JP 56022570 A JP56022570 A JP 56022570A JP 2257081 A JP2257081 A JP 2257081A JP S6123944 B2 JPS6123944 B2 JP S6123944B2
Authority
JP
Japan
Prior art keywords
electrolyte
organic
organic solvent
ion
solid composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56022570A
Other languages
Japanese (ja)
Other versions
JPS57137359A (en
Inventor
Katsuhiro Mizoguchi
Takashi Kizaki
Masashi Ooi
Hidetoshi Tsuchida
Isao Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56022570A priority Critical patent/JPS57137359A/en
Publication of JPS57137359A publication Critical patent/JPS57137359A/en
Publication of JPS6123944B2 publication Critical patent/JPS6123944B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、イオン導電性固形体組成物に関す
る。とくに、高分子が本来有する任意の形に成
形、成膜できる易加工性など優れた機械的性質を
有し、さらに周期律表の族および族に属する
金属のイオン導電性が非常に高い性質を併わせ有
するイオン導電性固形体組成物に関する。 従来、イオン導電性材料としては、おもに(イ)電
解質を水または有機溶媒に溶解した、いわゆる電
解質溶液、(ロ)ベータ・アルミナβ−Al2O3,ヨウ
化リチウム・アルミナLiI−Al2O3,ヨウ化銀ルビ
ジウムRbAg4I5など無機物からなる固体電解質材
料が知られている。イオン導電性材料の用途分野
としては多種多様の産業分野におよぶが、電子部
品としての用途例について説明すれば、一次電
池、二次電池、電解コンデンサ、センサ、エレク
トロミツク表示素子、それに電極上に金属を折出
させ電気量の積分値を検出して時限素子や積分記
憶素子としての利用例など電子部品の素材料とし
て広く用いられている。 近年、電子工業の分野では、電子機器の高性
能・小型化とともに、電子部品の高性能、小型薄
形化はもちろん、部品としての高い信頼性が要求
されている。信頼性の高い電子部品としての必要
条件に、まず部品に使用される材料が固形化、つ
まり部品の使用条件下で見かけ上固形状態を呈
し、液体のように流れる物体(以下これを液体と
呼称する)の状態ではない物体(以下これを固形
体と呼称する)であることが要求される。これ
は、流体の材料を電子部品に使用した場合、部品
内部から部品外部へ液漏れが頻出する。このため
電子部品の性能劣化をまねくとともに、その電子
部品の近くにある他の電子部品に悪影響をおよぼ
してしまい、ついには電子機器を故障に至らしめ
る理由による。したがつて、イオン導電性材料と
して電子部品に利用する場合、液体より固形体の
イオン導電性材料を使用した電子部品がより信頼
性の高い電子部品だといえる。一方、流体のイオ
ン導電性材料を使用し、高い信頼性の部品を得る
ために、部品を完全気密にする手段もあるが、結
局、高価な電子部品となつて実用に供し得ない場
合が多い。 前述したイオン導電性材料のうち、(イ)の電解質
溶液は、流体であるため上記のような理由から信
頼性が高く、安価な電子部品には利用できない欠
点がある。一方、前述した(ロ)の固体電解質材料
は、固形体であるため信頼性の高い電子部品に適
合できる利点はある。しかし、高いイオン導電率
をもつ固体電解質材料は極めて少なく、大低の固
体電解質材料はイオン導電率が低い。しかも、無
機化合物を用いて高イオン導電率の固体電解質を
得るためには極めて困難とされる反応操作を駆使
しなければならないので実用に供されている具体
例は極めて少ない現状である。さらに、大低の固
体電解質材料は無機化合物の組成物であるため、
任意の形に成形、成模することは極めて難しい。
すなわち、無機化合物からなる固体電解質は、任
意の形に成形、成膜できる易加工法など機械的性
質の劣る欠点がある。このため、イオン導電性材
量として利用される分野は極端に限定されてしま
う欠点がある。 前述したイオン導電性材料(イ)の電解質溶液と(ロ)
の固体電解質の中間の形態を呈したものとして、
例えば乾電池などに使用されているような電解質
水溶液をデンプンの水溶液で糊状に練り合わせた
イオン導電性材料がある。これらは糊状といえど
も、実用上使用条件下では、流体と同じような形
態を呈するので、例えば、乾電池などでは陽極活
物質と陰極活物質の短絡を防止するためにセパレ
ータとして紙や不織布を使用しなければならな
い。実際には、このセパレータによつて両極の活
物質を隔離し、これに糊状のイオン導電性材料を
含ませた構造なので電解質溶液のような流体と何
ら変らない利用法になる。 糊状のイオン導電性材料であつても、(a)通常の
乾電池で認められるような、液漏れが頻出し、信
頼性が劣る。(b)また、任意の形状に成形、成膜で
きないため利用できる応用分野が極めて限定され
てしまう欠点がある。液漏れしない程度に水溶媒
を蒸発除去すれば、成形、成膜できないこともな
いが、この場合には、イオン導電度が著しく低下
し、実用に供しえない。また、溶媒として水を使
用した場合、以下のような欠点がある。(i)水はほ
とんどの金属と電気化学的に反応し、金属を腐蝕
させる。したがつて、応用に際しては、水を含む
イオン導電性材料と接触する金属材料、例えば、
電極部や電子素子を密封する部分の金属材料は著
しく限定される欠点がある。(ii)水の分解電圧は約
1.2Vと一般に有機溶媒に比較して低く、分解電
圧以上の電圧での使用はできない。(iii)水を含むイ
オン導電性材料は、その使用温度が水の凝固点
(0℃)と沸点(100℃)近傍の範囲内に限定さ
れ、それ以外の温度では高く、しかも安定したイ
オン導電度を維持することができない。(iv)水を含
むイオン導電性材料では、水のイオン解離によつ
て生成するH+やOH-も電導キヤリアとして機能
し、金属イオンだけを電導キヤリアとしたい場合
には、キヤリア種が増えるばかりでなく、金属イ
オンとイオン結合したりして極めて複雑な導電機
構となる。このため、イオン導電度は不安定とな
り、例えば時限素子や積分記憶素子などへ利用し
て電気容量の積分値を検出する場合には、不適当
である。 本発明の目的は、かかる従来欠点を解決した新
しいイオン導電性材料、すなわち高いイオン導電
性と任意の形に成形、成膜できる易加工性などに
すぐれた機械的性質を併有するイオン導電性固形
体組成物を提供することにある。 本発明によれば周期律表族および族に属す
る金属イオンからなる電解質、有機高分子化合
物、および電解質と有機高分子化合物とを溶解す
る有機溶媒から構成されることを特徴とするイオ
ン導電性固形体組成物が得られる。 本発明では、従来欠点特に水を溶媒とした場合
にあらわれる前述した多くの欠点を除くためイオ
ン導電性固形体組成物として有機溶媒を含むこと
に第1の特徴がある。有機溶媒を適用すれば、
()各種金属材料との化合反応が極めて少なく
安定である。()有機溶媒の分解電圧は水の分
解電圧1.2Vより高くなる。()適当な溶媒を選
択すれば、水の場合より使用温度範囲が広くな
る。()水のようにH+とOH-にイオン解離して
悪影響をおよぼす有機溶媒は極めて少ない。 以上のような理由により、有機溶媒を適用すれ
ば、従来の水溶媒に比較して安定かつ利用範囲の
広いイオン導電性材料を構成できる利点がある。
反面、イオン導電率τiは水溶媒使用に比較して
低下する傾向にある。イオン導電率σiは、一般
にキヤリアとなるイオン種の濃度niとその移動度
μiの積に比例して増大する。したがつてσi増
大に有効な有機溶媒としては、(A)電解質を高濃度
に溶解してniの増大に寄与するもの、かつ(B)電解
質のみならず有機高分子化合物もよく溶解してイ
オンの分布を均一にし、イオンの移動度を増大さ
せる有機溶媒が望ましい。このため有機溶媒を一
種類に限定せず二種類以上の混合溶媒を使用する
場合もある。 このように、有機溶媒は電解質や有機高分子化
合物を溶解して固形体組成物を調製する素材とし
ての機能と、最終的に固形体組成物中に残存して
イオン導電性の機能発現のためにも重要なイオン
導電性固形体組成物の一構成物である。 本発明の第2の特徴は、イオン導電性固形体組
成物として有機高分子化合物を含む構成にある。
これは、有機高分子化合物の本来具有する優れた
機械的加工性の付与によつて任意の形状に成形、
成膜できる機能の発現を期待するものである。有
機高分子化合物を単なる結着剤(バインダー)と
して使用する方法もあるが、この場合、イオン導
電性の向上には一定の限界がある。つまり、有機
高分子に存在は、イオンが移動する際、立体的な
障害となつてイオンの移動度μiが低下してしま
う傾向をもたらす。そこで、発明者らは、このイ
オンの移動の障害をとり除くため、有機高分子化
合物に対して優れた溶解性をもつ有機溶媒を含ま
せて有機高分子を膨潤させた状態にすることを考
えついた。有機高分子の膨潤状態では、有機高分
子相互間の距離は拡張され、イオンは自由に移動
できるようになる。さらに、イオンと有機高分子
間の相互作用も緩和されてイオンの移動度は極め
て向上する。有機溶媒の含有量が増大すると、有
機高分子相互間の距離は、一層広がり完全に溶解
して溶液状態に到達する。溶液状態では、流体と
なるので、一定の形に成形することはできない。
したがつて、一定の固形体の状態を維持するため
には、組成物に含まれる有機溶媒の最大含有量を
規定することが必要であるが、この最大含有量
は、有機溶媒の有機高分子化合物に対する溶解
性、さらに有機高分子化合物の分子量と分子量分
布によつて異なる。 種々の有機高分子化合物について、本発明に有
効な化合物を検討した結果、熱硬化性樹脂を除く
有機高分子化合物の方が熱硬化性樹脂に比べてよ
り良好な結果をもたらした。これは、熱硬化性樹
脂が、三次元網目構造をとるため一般の有機溶媒
に対して比較的溶解しにくいことによる。特に、
効果的なものは、一次元構造の熱可塑性樹脂、例
えば、ポリ塩化ビニルやポリ酢酸ビニルなどのビ
ニル系樹脂、ホルマール樹脂やブチラール樹脂な
どのアセタール系樹脂、アクリル樹脂やメタルア
クリルなどのアクリル系樹脂、ポリスチレンや
ABS樹脂などのスチロール系樹脂、ポリエチレ
ンやポリブテンなどのオレフイン系樹脂、さらに
ポリアミド系樹脂などが良好な結果をもたらし
た。また、ゴム弾性体でもある種の有機溶媒に膨
潤するものは本発明で良好な結果をもたらした。 本発明の第3の特徴は、電解質として周期律表
族および族に属する金属のイオンからなる塩
を含むイオン導電性固形体組成物の構成にある。
高いイオン導電性を示すためには、金属塩のイオ
ン解離エネルギーが小さいこと、さらに、有機溶
媒に対する溶解性に優れていることが必要であ
る。この観点から本発明に有効な電解質を検討し
た結果、周期律表の族および族に属する金属
のイオンからなる塩が特に有効であるとの結論に
達した。 イオン導電性固形体組成物中の電解質の含有量
は、多い程電導度増大に寄与するが、多量に存在
すると組成物は堅く、もろくなり機械的加工性は
低下してくる。固形体組成物中に含有される有機
溶媒量は、多い程イオンの移動度を増大して電導
度は増大するが、多量に存在すると組成物は軟化
し、最終的には流体になつてしまう。したがつ
て、電解質および溶媒の含有量には、実用に供し
うる最大値が存在する。また、この最大値は固形
体組成物を構成する化合物の種類、物性によつて
一様に規定できないが、種々の実験を蓄積した結
果、電解質含有量の最大値はおよび70〜90mol
%、溶媒含有量の最大値はおよび50〜90wt%で
あつた。 以下に、本発明の実施例を説明する。 なお、イオン導電性固形体組成物中の電解質お
よび有機溶媒の含有量は、前述した最大値をこえ
ない範囲の試料について実施した。 〔実施例〕 電解質を有機溶媒に溶解した電解質溶液と有機
高分子化合物を有機溶媒に溶解した高分子溶液と
を調製した。調製した電解質溶液と高分子溶液と
を混合し、均一になるまで充分撹拌した。均一に
なりにくい場合には、混合溶液を加熱しながら撹
拌すれば所定の均一な溶液が得られる。その後、
混合溶液をロータリーポンプを用いて減圧にし脱
泡した。次に、あらかじめ準備したテフロン製の
容器中にこの混合溶液の一定量を注ぎ込み、室温
から有機溶媒の沸点以下の温度中で窒素ガスを流
しながら有機溶媒を徐々に蒸発させた、この操作
は、テフロン容器内の試料が溶液状態からゲル状
態になるまで続けた。試料がゲル状態になつたの
ち、試料の入つたテフロン容器を真空加熱乾燥機
中に移し入れ、使用した有機溶媒の沸点以下の温
度の常圧下で窒素ガスを流し込みながら加熱乾燥
した。なお、有機溶媒の沸点が温度100℃以上の
場合には、減圧下で加熱乾燥した。加熱乾燥は、
試料状態が、ゲル状態から容器を傾けても変形し
ない状態、すなわち固形体になるまで続けた。加
熱乾燥後、試料の入つたテフロン容器を窒素ガス
で充満したグローブボツクス内に移し入れ、試料
をテフロン容器から剥離したのち一定形状に切断
した。切断した試料片を白金黒電極でサンドイツ
チ状にはさみ込み交流二端子法で試料片の抵抗値
を測定した。測定は窒素ガス雰囲気中で測定時の
周波数は1KHzを用い、試料片の抵抗値、厚さお
よび白金黒電極の面積から試料の導電率σを算出
した。 以上のような試料調製の手順と測定によつて実
施したイオン導電性固形体組成物を構成する化合
物、すなわち有機高分子化合物、有機溶媒、およ
び電解質の組合わせと、この組み合わせによつて
形成された固形体組成物のイオン導電率σiを表
に示した。 なお、表中のイオン導電性固形体組成物の組み
合わせのなかには有機高分子化合物が有機溶媒に
完全に溶解せず一部溶解、一部不溶解のものや有
機高分子化合物が膨潤するものまたは電解質の金
属塩が有機溶媒に完全溶解せず一部溶解、一部不
溶解のものもあつたが、試料調製や成形性、導電
性などの本発明の効果には支障がなかつたので本
実施例として適用した。また、全試料の電子導電
率を測定した結果、10-14S・cm-1以下の電子導電
率であつたので前述した測定法による導電性σを
イオン導電率σiとして表に示した。
The present invention relates to an ionically conductive solid composition. In particular, polymers have excellent mechanical properties such as ease of molding and forming films into arbitrary shapes, which are inherent to polymers, and also have extremely high ionic conductivity of metals belonging to groups and groups of the periodic table. The present invention also relates to an ionically conductive solid composition. Conventionally, ion conductive materials have mainly been (a) so-called electrolyte solutions in which electrolytes are dissolved in water or organic solvents, (b) beta alumina β-Al 2 O 3 , lithium iodide alumina LiI-Al 2 O 3 , Solid electrolyte materials made of inorganic substances such as silver rubidium iodide, RbAg 4 I 5 are known. Ionic conductive materials are used in a wide variety of industrial fields, but examples of their use as electronic components include primary batteries, secondary batteries, electrolytic capacitors, sensors, electromic display elements, and on electrodes. It is widely used as a material for electronic components such as time-limiting elements and integral memory elements by detecting the integral value of electricity by precipitating metal. In recent years, in the field of electronics industry, not only high performance and miniaturization of electronic devices, but also high performance, small and thin electronic components, and high reliability as components are required. One of the requirements for highly reliable electronic components is that the materials used in the component first solidify, that is, they appear to be in a solid state under the conditions in which the component is used, and the material flows like a liquid (hereinafter referred to as a liquid). (hereinafter referred to as a solid body). This is because when a fluid material is used in an electronic component, fluid often leaks from the inside of the component to the outside of the component. This leads to a deterioration in the performance of the electronic component and has an adverse effect on other electronic components near the electronic component, which ultimately causes the electronic device to malfunction. Therefore, when used as an ion conductive material in an electronic component, it can be said that an electronic component using a solid ion conductive material is more reliable than a liquid one. On the other hand, in order to obtain highly reliable parts using fluid ion-conductive materials, there are ways to make the parts completely airtight, but these end up resulting in expensive electronic parts that are often impractical. . Among the above-mentioned ion conductive materials, the electrolyte solution (a) is a fluid and has high reliability for the reasons mentioned above, but has the disadvantage that it cannot be used for inexpensive electronic components. On the other hand, the above-mentioned solid electrolyte material (b) has the advantage of being compatible with highly reliable electronic components because it is a solid body. However, there are very few solid electrolyte materials that have high ionic conductivity, and most solid electrolyte materials have low ionic conductivity. Moreover, in order to obtain a solid electrolyte with high ionic conductivity using an inorganic compound, it is necessary to make full use of reaction operations that are considered extremely difficult, so there are currently very few practical examples. Furthermore, since Dailow's solid electrolyte material is a composition of inorganic compounds,
It is extremely difficult to mold or imitate it into any desired shape.
That is, solid electrolytes made of inorganic compounds have the disadvantage of poor mechanical properties, such as easy processing that allows them to be formed into arbitrary shapes and formed into films. For this reason, there is a drawback that the fields in which it can be used as an ion conductive material are extremely limited. Electrolyte solution of the above-mentioned ion conductive material (a) and (b)
As an intermediate form of solid electrolyte,
For example, there is an ion conductive material that is used in dry batteries and is made by kneading an aqueous electrolyte solution with an aqueous starch solution to form a paste. Even though they are glue-like, they take on a form similar to that of a fluid under conditions of practical use. For example, in dry batteries, paper or non-woven fabric is used as a separator to prevent short circuits between the anode active material and the cathode active material. must be used. In reality, the separator separates the active materials of both electrodes and contains a glue-like ion-conductive material, so it can be used in the same way as a fluid such as an electrolyte solution. Even with glue-like ion-conductive materials, (a) fluid leakage occurs frequently, as seen in normal dry batteries, and reliability is poor. (b) Furthermore, since it cannot be molded into any shape or formed into a film, it has the disadvantage that the applicable fields of application are extremely limited. If the aqueous solvent is removed by evaporation to an extent that does not cause liquid leakage, molding and film formation will not be impossible, but in this case, the ionic conductivity will drop significantly and it cannot be put to practical use. Furthermore, when water is used as a solvent, there are the following drawbacks. (i) Water reacts electrochemically with most metals and corrodes them. Therefore, in applications, metallic materials that come into contact with ionically conductive materials containing water, e.g.
There is a drawback that the metal material used for the electrode portion and the portion that seals the electronic device is extremely limited. (ii) Water decomposition voltage is approximately
At 1.2V, it is generally lower than organic solvents, and cannot be used at voltages higher than the decomposition voltage. (iii) Ion conductive materials containing water have a high and stable ionic conductivity whose use temperature is limited to a range near the freezing point (0°C) and boiling point (100°C) of water, and at other temperatures. unable to maintain. (iv) In ionic conductive materials containing water, H + and OH - generated by ion dissociation of water also function as conductive carriers, and if you want to use only metal ions as conductive carriers, the number of carrier species will continue to increase. Rather, it forms an extremely complex conductive mechanism by ionic bonding with metal ions. For this reason, the ionic conductivity becomes unstable, making it unsuitable for use in, for example, a timing element or an integral storage element to detect an integral value of capacitance. The object of the present invention is to create a new ion-conductive material that solves these conventional drawbacks, namely, an ion-conductive solid material that has both high ion conductivity and excellent mechanical properties such as ease of processing and forming films into arbitrary shapes. The objective is to provide body compositions. According to the present invention, an ionically conductive solid is composed of an electrolyte made of a metal ion belonging to a group of the periodic table, an organic polymer compound, and an organic solvent that dissolves the electrolyte and the organic polymer compound. A body composition is obtained. The first feature of the present invention is that the ionically conductive solid composition contains an organic solvent in order to eliminate the conventional drawbacks, particularly the many drawbacks that appear when water is used as a solvent. If an organic solvent is applied,
() It is stable with very little chemical reaction with various metal materials. () The decomposition voltage of organic solvent is higher than the decomposition voltage of water, which is 1.2V. () If an appropriate solvent is selected, the usable temperature range will be wider than in the case of water. () Very few organic solvents, like water, dissociate into H + and OH - ions and have a negative effect. For the reasons mentioned above, the use of organic solvents has the advantage of being able to construct ion conductive materials that are more stable and can be used in a wider range of applications than conventional aqueous solvents.
On the other hand, the ionic conductivity τi tends to decrease compared to when a water solvent is used. The ionic conductivity σi generally increases in proportion to the product of the concentration ni of the carrier ionic species and its mobility μi. Therefore, effective organic solvents for increasing σi include those that (A) dissolve electrolytes at high concentrations and contribute to an increase in ni, and (B) dissolve not only electrolytes but also organic polymer compounds well and are capable of dissolving ions. An organic solvent that makes the distribution uniform and increases the mobility of ions is desirable. For this reason, the organic solvent is not limited to one type, and a mixed solvent of two or more types may be used. In this way, the organic solvent functions as a material for preparing the solid composition by dissolving the electrolyte and organic polymer compound, and ultimately remains in the solid composition to express the ionic conductive function. It is also an important constituent of ionically conductive solid compositions. The second feature of the present invention is that the ionically conductive solid composition contains an organic polymer compound.
This material can be molded into any shape by providing excellent mechanical processability inherent to organic polymer compounds.
It is hoped that this material will develop the ability to form a film. There is also a method of using an organic polymer compound simply as a binder, but in this case there is a certain limit to the improvement of ionic conductivity. In other words, the presence of organic polymers acts as a steric hindrance when ions move, resulting in a tendency for the ion mobility μi to decrease. Therefore, in order to remove this obstacle to the movement of ions, the inventors came up with the idea of impregnating organic polymers with an organic solvent that has excellent solubility for organic polymers, thereby making them swollen. . When organic polymers are in a swollen state, the distance between them is expanded, allowing ions to move freely. Furthermore, the interaction between ions and organic polymers is relaxed, and ion mobility is greatly improved. As the content of the organic solvent increases, the distance between the organic polymers becomes wider and the organic polymers are completely dissolved to reach a solution state. In a solution state, it becomes a fluid and cannot be molded into a certain shape.
Therefore, in order to maintain a certain solid state, it is necessary to specify the maximum content of the organic solvent contained in the composition. It varies depending on the solubility of the compound, as well as the molecular weight and molecular weight distribution of the organic polymer compound. As a result of examining various organic polymer compounds that are effective in the present invention, it was found that organic polymer compounds other than thermosetting resins gave better results than thermosetting resins. This is because thermosetting resins have a three-dimensional network structure and are therefore relatively difficult to dissolve in common organic solvents. especially,
Effective ones are thermoplastic resins with a one-dimensional structure, such as vinyl resins such as polyvinyl chloride and polyvinyl acetate, acetal resins such as formal resins and butyral resins, and acrylic resins such as acrylic resins and metal acrylics. , polystyrene and
Good results were obtained using styrene resins such as ABS resin, olefin resins such as polyethylene and polybutene, and polyamide resins. Furthermore, rubber elastic materials that swell in certain organic solvents have yielded good results in the present invention. A third feature of the present invention resides in the composition of an ionically conductive solid composition containing, as an electrolyte, a salt consisting of ions of metals belonging to groups and groups of the periodic table.
In order to exhibit high ionic conductivity, it is necessary for the metal salt to have low ionic dissociation energy and to have excellent solubility in organic solvents. As a result of examining effective electrolytes for the present invention from this point of view, it was concluded that salts consisting of ions of metals belonging to groups and groups of the periodic table are particularly effective. The larger the content of electrolyte in the ionically conductive solid composition, the more it contributes to increasing the electrical conductivity, but if it is present in a large amount, the composition becomes hard and brittle, and mechanical workability decreases. The larger the amount of organic solvent contained in a solid composition, the higher the mobility of ions and the higher the conductivity; however, if it is present in a large amount, the composition will soften and eventually become a fluid. . Therefore, there is a practical maximum value for the electrolyte and solvent contents. Furthermore, although this maximum value cannot be uniformly defined depending on the type and physical properties of the compounds that make up the solid body composition, as a result of various experiments, the maximum value of the electrolyte content is between 70 and 90 mol.
%, the maximum value of solvent content was 50-90 wt%. Examples of the present invention will be described below. In addition, the content of the electrolyte and organic solvent in the ion conductive solid composition was carried out on samples within a range that did not exceed the maximum values mentioned above. [Example] An electrolyte solution in which an electrolyte was dissolved in an organic solvent and a polymer solution in which an organic polymer compound was dissolved in an organic solvent were prepared. The prepared electrolyte solution and polymer solution were mixed and sufficiently stirred until uniform. If it is difficult to obtain a uniform solution, a predetermined uniform solution can be obtained by stirring the mixed solution while heating it. after that,
The mixed solution was decompressed and degassed using a rotary pump. Next, a certain amount of this mixed solution was poured into a Teflon container prepared in advance, and the organic solvent was gradually evaporated while flowing nitrogen gas at a temperature from room temperature to below the boiling point of the organic solvent. This continued until the sample in the Teflon container changed from a solution state to a gel state. After the sample was in a gel state, the Teflon container containing the sample was transferred to a vacuum heating dryer and heated and dried under normal pressure at a temperature below the boiling point of the organic solvent used while flowing nitrogen gas. In addition, when the boiling point of the organic solvent was 100° C. or higher, it was dried by heating under reduced pressure. Heat drying is
The sample state continued until it changed from a gel state to a state that does not deform even if the container is tilted, that is, a solid state. After heating and drying, the Teflon container containing the sample was transferred into a glove box filled with nitrogen gas, and the sample was peeled from the Teflon container and cut into a certain shape. The cut sample piece was sandwiched between platinum black electrodes in a sandwich pattern, and the resistance value of the sample piece was measured using the AC two-terminal method. The measurement was performed in a nitrogen gas atmosphere at a frequency of 1 KHz, and the conductivity σ of the sample was calculated from the resistance value, thickness, and area of the platinum black electrode of the sample piece. The above sample preparation procedures and measurements were conducted to determine the combination of the compounds constituting the ionically conductive solid composition, i.e., the organic polymer compound, organic solvent, and electrolyte, and the combination of the compounds formed by this combination. The ionic conductivity σi of the solid composition obtained is shown in the table. In addition, among the combinations of ion-conductive solid compositions in the table, the organic polymer compound does not completely dissolve in the organic solvent, but is partially dissolved or partially insoluble, and the organic polymer compound swells or is mixed with the electrolyte. Although some of the metal salts were not completely dissolved in the organic solvent and some were partially dissolved and some were not, this did not affect the effects of the present invention such as sample preparation, moldability, and conductivity, so this example was used. It was applied as Further, as a result of measuring the electronic conductivity of all the samples, the electronic conductivity was 10 -14 S·cm -1 or less, so the conductivity σ measured by the above-mentioned measurement method is shown in the table as the ionic conductivity σi.

【表】【table】

【表】 比較のために、イオン導電性固形体組成物を構
成する化合物、すなわち有機高分子化合物、有機
溶媒、電解質のいづれか一つ、または二つの構成
物が含まれない試料について試料調製したのち、
イオン導電性率σiを測定した結果、10-14S・cm
-1以下のσiを示し、どの構成物が含まれない場
合でもσi増大に有効な効果をもたらさないこと
が判明した。 本実施例で行なつた三つの構成物からなるイオ
ン導電性固形体組成物系では、表中の有機高分子
化合物の比誘電率が全て4未満でありかつ有機溶
媒の比誘電率が全て10未満であるにもかかわらず
いずれも約10-10〜10-7S・cm-1のσiが得られ
た。また、本発明によつて得られる組成物系は、
調製する溶液の容量や濃度、溶液を注入する容器
の形状によつて任意の形状に成形したり、成膜し
たりすることもできる。例えば、調製溶液の濃度
を薄くし、テフロン容器内に注入する溶液量を減
少させて、厚さ100μm以下の可撓性に富んだ広
い面積の薄膜を形成することができた。薄膜にで
きれば、膜の断面方向の抵抗は膜厚に比例し、か
つ面積に反比例して低下するためには、より広い
用途分野に利用できるようになる。 なお、表中のσiから、膜厚および面積を制御
すれば、本発明によるイオン導電性固形体組成物
は電池、電解コンデンサ、センサ、エレクトロク
ロミツク素子、それに時限素子や積分記憶素子な
どのイオン導電性材料を用いた電子部品への利用
は充分実用に供し得ることは勿論である。
[Table] For comparison, samples were prepared that did not contain any one or two of the compounds constituting the ionically conductive solid composition, i.e., organic polymer compounds, organic solvents, and electrolytes. ,
As a result of measuring the ionic conductivity σi, it is 10 -14 S・cm
It was found that it showed σi of −1 or less, and no effective effect on increasing σi was obtained even when no constituent was included. In the ion conductive solid composition system made in this example, which consists of three components, the dielectric constants of all the organic polymer compounds in the table are less than 4, and the dielectric constants of all the organic solvents are 10. In all cases, σi of approximately 10 −10 to 10 −7 S·cm −1 was obtained, although the value was less than 10 −10 to 10 −7 S·cm −1 . Furthermore, the composition system obtained by the present invention is
It can also be formed into any shape or formed into a film depending on the volume and concentration of the solution to be prepared and the shape of the container into which the solution is poured. For example, by reducing the concentration of the prepared solution and reducing the amount of solution injected into a Teflon container, it was possible to form a highly flexible thin film with a thickness of 100 μm or less over a wide area. If the film can be made thin, the resistance in the cross-sectional direction of the film decreases in proportion to the film thickness and inversely to the area, so it can be used in a wider range of applications. In addition, from σi in the table, if the film thickness and area are controlled, the ionically conductive solid composition according to the present invention can be used in batteries, electrolytic capacitors, sensors, electrochromic devices, time devices, integral memory devices, etc. It goes without saying that the electrically conductive material can be used in electronic components for practical purposes.

Claims (1)

【特許請求の範囲】[Claims] 1 周期律表族および、または族に属する金
属のイオンからなる電解質、比誘電率4末満の有
機高分子化合物、および前記電解質と有機高分子
化合物とに対して優れた溶解性を有する比誘電率
10末満の有機溶媒とからなるイオン導電性固形体
組成物であり、前記固形体組成物に含まれる前記
有機溶媒の含有量は前記有機高分子化合物を膨潤
させた状態とする量以上でかつ前記固形体組成物
の90wt%以下であり、前記電解質の含有量は約
10-10S・cm-1以上のイオン導電率を与える量以上
でかつ前記固形体組成物の90mol%以下に選ばれ
ていることを特徴とするイオン導電性固形体組成
物。
1. An electrolyte consisting of ions of metals belonging to a periodic table group and/or group, an organic polymer compound with a dielectric constant of less than 4, and a dielectric material having excellent solubility in the electrolyte and the organic polymer compound. rate
an ion-conductive solid composition comprising an organic solvent of less than 10%, and the content of the organic solvent contained in the solid composition is at least an amount that causes the organic polymer compound to be in a swollen state; 90wt% or less of the solid body composition, and the content of the electrolyte is about
An ion conductive solid composition characterized in that the amount is selected to be at least an amount that provides an ionic conductivity of 10 -10 S·cm -1 or more and at most 90 mol% of the solid composition.
JP56022570A 1981-02-18 1981-02-18 Ionic conductive solid composition Granted JPS57137359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56022570A JPS57137359A (en) 1981-02-18 1981-02-18 Ionic conductive solid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56022570A JPS57137359A (en) 1981-02-18 1981-02-18 Ionic conductive solid composition

Publications (2)

Publication Number Publication Date
JPS57137359A JPS57137359A (en) 1982-08-24
JPS6123944B2 true JPS6123944B2 (en) 1986-06-09

Family

ID=12086528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56022570A Granted JPS57137359A (en) 1981-02-18 1981-02-18 Ionic conductive solid composition

Country Status (1)

Country Link
JP (1) JPS57137359A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593809A (en) * 1982-06-29 1984-01-10 株式会社東芝 Ion conductive composition
CA1321617C (en) * 1988-09-12 1993-08-24 Mhb Joint Venture (A Partnership) Ultrathin polymer electrolyte having high conductivity
DE9017036U1 (en) * 1990-12-18 1991-03-07 Haaf, Dieter, 74924 Neckarbischofsheim Material for chemical sensors, reference electrodes, etc.
JP3277633B2 (en) * 1992-08-26 2002-04-22 株式会社スリーボンド Electrically conductive and ionically conductive network polymer composition and preparation method thereof
US6087426A (en) * 1993-12-06 2000-07-11 Ford Global Technologies, Inc. Thermoplastic ionic conductor
JP3414868B2 (en) * 1994-12-19 2003-06-09 日東電工株式会社 Thermoplastic conductive composition and electrode pad using the same

Also Published As

Publication number Publication date
JPS57137359A (en) 1982-08-24

Similar Documents

Publication Publication Date Title
Watanabe et al. Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4
Osman et al. Conductivity enhancement due to ion dissociation in plasticized chitosan based polymer electrolytes
Sukeshini et al. Transport and electrochemical characterization of plasticized poly (vinyl chloride) solid electrolytes
Ghosh et al. Self-assembly of a conducting polymer nanostructure by physical crosslinking: applications to conducting blends and modified electrodes
EP0152632B1 (en) Electroconductive porous film and process for producing same
Yusuf et al. Preparation and electrical characterization of polymer electrolytes: A review
Aziz et al. Design of potassium ion conducting PVA based polymer electrolyte with improved ion transport properties for EDLC device application
Huang et al. Ionic conductivity of microporous PVDF-HFP/PS polymer blends
US5691080A (en) Method of preparing thin film polymeric gel electrolytes
JPH01294768A (en) Liquid containing polymer network as a solid electrolyte
US2747009A (en) Stable voltaic cells
US5429759A (en) Proton-conducting polymer solid electrolyte
Hamdan et al. Conductivity and dielectric studies of methylcellulose/chitosan-NH4CF3SO3 polymer electrolyte
Croce et al. Properties of mixed polymer and crystalline ionic conductors
Magistris et al. PEO‐based polymer electrolytes
JPS6123944B2 (en)
Amudha et al. Silver ion conducting characteristics of a polyethylene oxide-based composite polymer electrolyte and application in solid state batteries
JPS6123947B2 (en)
JPS6123946B2 (en)
FI96141B (en) Ion-selective electrode and method for manufacturing an ion-selective electrode
US3702426A (en) Dimethylolpropionic acid based electrolytes for electrical capacitors
JP2001200126A (en) Ionically conductive composition
JP2001200125A (en) Ionically conductive composition
JPS6123945B2 (en)
JPH04162510A (en) Electric double layer capacitor