JPS6123946B2 - - Google Patents

Info

Publication number
JPS6123946B2
JPS6123946B2 JP56029090A JP2909081A JPS6123946B2 JP S6123946 B2 JPS6123946 B2 JP S6123946B2 JP 56029090 A JP56029090 A JP 56029090A JP 2909081 A JP2909081 A JP 2909081A JP S6123946 B2 JPS6123946 B2 JP S6123946B2
Authority
JP
Japan
Prior art keywords
organic solvent
electrolyte
organic
ion
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56029090A
Other languages
Japanese (ja)
Other versions
JPS57143355A (en
Inventor
Katsuhiro Mizoguchi
Masashi Ooi
Takashi Kizaki
Hidetoshi Tsuchida
Isao Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56029090A priority Critical patent/JPS57143355A/en
Publication of JPS57143355A publication Critical patent/JPS57143355A/en
Publication of JPS6123946B2 publication Critical patent/JPS6123946B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、イオン導電性固形体組成物に関す
る。とくに、高分子が本来有する任意の形に成
形、成膜できる易加工性など優れた機械的性質を
有し、さらに周期律表の族および族に属する
金属のイオン導電性が非常に高い性質を併わせ有
するイオン導電性固形体組成物に関する。 従来、イオン導電性材料としては、おもに
(イ)電解質を水または有機溶媒に溶解した、い
わゆる電解質溶液、(ロ)ベータ・アルミナβ−
Al2O3,ヨウ化リチウム・アルミナLiI−Al2O3
ヨウ化銀ルビジウムRbAg4I5など無機物からなる
固体電解質材料が知られている。イオン導電性材
料の用途分野としては多種多様の産業分野におよ
ぶが、電子部品としての用途例について説明すれ
ば、一次電池、二次電池、電解コンデンサ、セン
サ、エレクトロミツク表示素子、それに電極上に
金属を析出させ電気量の積分値を検出して時限素
子や積分記憶素子としての利用例など電子部品の
素材料として広く用いられている。 近年、電子工業の分野では、電子機器の高性
能・小型化とともに、電子部品の高性能、小型薄
形化はもちろん、部品としての高い信頼性が要求
されている。信頼性の高い電子部品としての必要
条件に、まず部品に使用される材料が固形体、つ
まり部品の使用条件下で見掛け上固形状態を呈
し、液体のように流れる物体(以下これを流体と
呼称する)の状態ではない物体(以下これを固形
体と呼称する)であることが要求される。これ
は、流体の材料を電子部品に使用した場合、部品
内部から部品外部へ液漏れが頻出する。このため
電子部品の性能劣化をまねくとともに、その電子
部品の近くにある他の電子部品に悪影響をおよぼ
してしまい、ついには電子機器を故障に至らしめ
る理由による。したがつて、イオン導電性材料と
して電子部品に利用する場合、流体より固形体の
イオン導電性材料を使用した電子部品がより信頼
性の高い電子部品だといえる。一方、流体のイオ
ン導電性材料を使用し、高い信頼性の部品を得る
ために、部品を完全気密にする手段もあるが、結
局、高価な電子部品となつて実用に供し得ない場
合が多い。 前述したイオン導電性材料のうち(イ)の電解溶液
は、流体であるため上記のような理由から信頼性
が高く、安価な電子部品には利用できない欠点が
ある。一方、前述した(ロ)の固体電解質材料は、固
形体であるため信頼性の高い電子部品に適合でき
る利点はある。しかし、高いイオン導電率をもつ
固体電解質材料は極めて少なく、大低の固体電解
質材料はイオン導電率が低い。しかも、無機化合
物を用いて高いイオン導電率の固体電解質を得る
ためには極めて困難とされる反応操作を駆使しな
ければならないので実用に供されでる具体例は極
めて少ない現状である。さらに、大低の固体電解
質材料は無機化合物の組成物であるため、任意の
形に成形、成膜することは極めて難かしい。すな
わち、無機化合物からなる固体電解質は、任意の
形に成形、成膜できる易加工性など機械的性質の
劣る欠点がある。このため、イオン導電性材料と
して利用される分野は極端に限定されてしまう欠
点がある。 前述したイオン導電性材料(イ)の電解質溶液と(ロ)
の固体電解質の中間の形態を呈したものとして、
例えば乾電池などに使用されているような電解質
水溶液をデンプンの水溶液で糊状に練り合わせた
イオン導電性材料がある。糊状といえども、実用
上使用条件では、流体と同じような形態を呈する
ので、これらは例えば、乾電池などでは陽極活物
質と陰極活物質の短絡を防止するためにセパレー
ターとして紙や不織布を使用しなければならな
い。実際には、このセパレーターによつて両極の
活物質を隔離し、これに糊状のイオン導電性材料
を含ませた構造なので電解質溶液のような流体と
何ら変わらない利用法になる。糊状のイオン導電
性材料であつても、(a)通常の乾電池で認められる
ような液漏れが頻出し、信頼性が劣る。(ロ)任意の
形状に成形、成膜できないため利用できる応用分
野が極めて限定されてしまう欠点がある。液漏れ
しない程度に水溶媒を蒸発除去すれば、成形、成
膜できないこともないが、この場合には、イオン
導電率が著しく低下し、実用に供しえない。ま
た、溶媒として水を使用した場合、次のような欠
点がある。(i)水はほとんどの金属と電気化学的に
反応し、金属を腐蝕させる。したがつて、応用に
際しては、水を含むイオン導電性材料と接触する
金属材料、例えば電極部や電子素子を密封する部
分の金属材料は著しく限定される欠点がある。(ii)
水の分解電圧は約1.2Vと一般に有機溶媒に比較
して低く、分解電圧以上の電圧での使用はできな
い。(iii)水を含むイオン導電性材料は、その使用温
度が水の凝固点(0℃)と沸点(100℃)近傍の
範囲内に限定され、それ以外の温度では高く、し
かも安定したイオン電導度を維持することができ
ない。(iv)水を含むイオン導電性材料では、水のイ
オン解離によつて生成するH+やOH-も電導キヤ
リアとして機能し、金属イオンだけを電導キヤリ
アとしたい場合には、キヤリア種が増えるばかり
でなく、金属イオンとイオン結合したりして極め
て複雑な導電機構となる。このため、イオン電導
度は不安定となり、例えば時限素子や積分記憶素
子などへ利用して電気容量の積分値を検出する場
合には、不適当である。 本発明の目的は、かかる従来欠点を解決した新
しいイオン導電性材料、すなわち高いイオン導電
性と任意の形に成形、成膜できる易加工性などす
ぐれた機械的性質を併有するイオン導電性固形体
組成物を提供することにある。 本発明によれば周期律表の族、および、また
は族に属する金属イオンからなる電解質、有機
高分子化合物および比誘電率10以上の有電性機溶
媒からなるイオン導固形体組成物が得られる。 本発明では、従来欠点、特に水を溶媒として場
合にあらわれる前述した多くの欠点を除くためイ
オン導電性固形体組成物として有機溶媒を含むこ
とに第1の特徴がある。有機溶媒を適用すれば、
()各種金属材料との化学反応が極めて少なく
安定である。()有機溶媒の分解電圧は水の分
解電圧1.2Vより高くなる。()適当な溶媒を選
択すれば、水の場合より使用温度範囲が広くな
る。()水のようにH+とOH-にイオン解離して
悪影響をおよぼす有機溶媒は極めて少ない。以上
のような理由により、有機溶媒を適用すれば、従
来の水溶媒に比較して安定かつ利用範囲の広いイ
オン導電性材料を構成できる利点がある。反面、
イオン導電率σiは水溶媒使用に比較して低下す
る傾向にある。σiは、一般にキヤリアとなるイ
オン種の濃度niとその移動度μiの積に比例して
増大する。したがつて、σi増大に有効な有機溶
媒としては、(A)電解質を高濃度に溶解してni
の増大に寄与するもの、かつ(B)電解質のみな
らず有機高分子化合物をもよく溶解してイオンの
分布を均一にし、イオンの移動度を増大させる有
機溶媒が望ましい。このため、有機溶媒を一種類
に限定せず二種類以上の混合溶媒を使用する場合
もある。このように、有機溶媒は、電解質や有機
高分子を溶解して固形体組成物を調製する素材と
しての機能と、最終的に固形体組成物中に残存し
てイオン導電性の機能発現のためにも重要なイオ
ン導電性固形体組成物の一構成物である。 以上の観点から、本発明に有効な有機溶媒につ
いて詳細な検討を行なつた結果、有機溶媒の比誘
電率εがイオン導電性発現に非常大きな影響を及
ぼすことが判明した。比誘電率εがそれぞれ異な
る多種類の有機溶媒についてσiとεの関係を詳
細に検討したところ表に示したような結果が得ら
れた。表から明らかなように有機溶媒のεが大き
くなるほどσiは増大する傾向にある。ここで、
イオン導電性材料として種々の応用分野を考える
と、σiが大きい程広い分野に使用できるが、σ
iの最小値として少なくともおよび10-10S・cm-1
以上のσiがあれば、応用し供しうる範囲に入つ
てくる。そこで、σiがおよそ10-1S・cm-1以上
のイオン導電性を発現する有機溶媒のεを求める
と、εが約10以上の有機溶媒系でσiが10-9S・
cm-1以上、εが約20以上の有機溶媒系でσiがお
よそ10-8S・cm-1以上、とくにεが約30以上の有
機溶媒系になるとσiがおよそ10-7〜10-6S・cm
-1の高いイオン導電性が認められた。 以上の結果から、イオン導電性材料としての応
用の可能性を考慮し、σiに及ぼす有機溶媒のε
の有効性をみると、εが10以上であれば、組成物
に含まれる有機溶媒としての必要条件を満たすこ
とが理解できる。有機溶媒のεが大きくなれば、
電解質のイオン解離は促進されて電解質の溶解能
力は増大し、かつ極性の高い有機高分子化合物に
対する溶解性も優れるために大低の有機高分子化
合物を高濃度で溶解するため組成物中のイオンの
分布は均一になり、イオンの移動度の増大に寄与
する。結局、有機溶媒のεが大きいほど前述した
σi増大に有効な有機溶媒の必要条件(A)およ
び(B)を満たすようになる。その効果はεが10
以上で発現し、特にεが30以上になると顕著に発
現して10-6S・cm-1程度の非常に高いσiを示す
組成物も得られた。 εの大きな有機溶媒としては、一般に、炭素原
子Cのほかに、酸素原子O、窒素原子N、イオウ
原子Sおよびハロゲン原子などの原子団から構成
された極性の高い結合基(これを極性基と呼称す
る)を含み、この極性基が分極しやすい分子構造
に配置されるほどεは大きくなる。実施例の表中
には、その一例として、アルコール類、ケトン
類、アミド類、ニトリル類、カーボネート類の化
合物を示したが、これらの化合物に限定せずεが
10以上の極性の大きな有機溶媒であれば本発明の
効果は得られる。 本発明の第2の特徴は、イオン導電性組成物と
して有機高分子化合物を含む構成にある。これ
は、有機高分子化合物の本来有する優れた機械的
加工性の付与によつて任意の形状に成形、成膜で
きる機能の発現を期待するものである。有機高分
子化合物を単なる結着剤(バインダー)として使
用する方法もあるが、この場合、イオン導電性の
向上には一定の限界がある。つまり、有機高分子
に存在は、イオンが移動する際、立体的な障害と
なつてイオンの移動度μiが低下してしまう傾向
にある。そこで、発明者らは、このイオンの移動
の障害をとり除くため、有機高分子化合物に対し
て優れた溶解性をもつ有機溶媒を含ませて有機高
分子を膨潤させた状態にすることを考えついた。
有機高分子の膨潤状態では、有機高分子相互間の
距離は比較的拡張され、イオンは自由に移動でき
るようになる。さらに、イオンと有機高分子間の
相互作用も緩和されてイオンの移動度は極めて向
上する。有機溶媒の含有量が増大すると、有機高
分子相互間の距離は、一層広がり完全に溶解して
溶液状態に到達する。流液状態では、液体となる
ので、一定の形に成形することはできない。した
がつて、一定の固形体の状態を維持するために
は、固形体組成物に含まれる有機溶媒の最大含有
量を規定することが必要であるが、この最大含有
量は、有機溶媒の有機高分子化合物に対する溶解
性、さらに有機高分子化合物の分子量と分子量分
布によつて異なる。 種々の有機高分子化合物について、本発明の有
効な化合物を検討した結果、σが10以上の有機溶
媒を使用した場合には、熱可塑性樹脂は勿論のこ
と、フエノール系、尿素メラミン系、ポリエステ
ル系、ポリウレタン系、エポキシ系などの熱硬化
性樹脂、さらにはポリブタジエン、ポリイソブチ
レン、クロロプレンなどのジエン系、アクリルゴ
ム系、ウレタンゴム系、チオコールゴムなどの多
硫化系、シリコーンゴム系および弗素系などのゴ
ム弾性体も比較的良好な結果をもたらした。これ
は、εが10以上の高誘電率の有機溶媒を用いる
と、有機溶媒の高い極性のために極性の高い有機
高分子化合物、それに熱硬化性樹脂やゴム弾性体
にみられるような網目状構造の有機高分子化合物
をも容易に膨潤、溶解させることができることに
よる。特に効果的なものは、熱可塑性樹脂であつ
た。例えば、ポリ塩化ビニルやポリ酢酸ビニルな
どのビニル系樹脂、ホルマール樹脂やブチラール
樹脂などのアセタール樹脂、アクリル樹脂やメタ
アクリル樹脂などのアクリル系樹脂、ポリスチレ
ンやABS樹脂などのスチロール系樹脂、ポリエ
チレンやポリブデンなどのオレフイン系樹脂、さ
らにポリアミド系樹脂などが比較的良好な結果を
もたらした。したがつて、後述する実施例には、
有機高分子化合物の一実施例として熱可塑性樹脂
を中心に検討したが、ほかの熱硬化性樹脂やゴム
弾性体でも本発明の効果は認められる。 本発明の第3の特徴は、電解質として周期律表
の族および、または族に属する金属のイオン
からなる塩を含むイオン導電性固形体組成物の構
成にある。高いイオン導電性を示すためには、金
属塩のイオン解離エネルギーが小さいこと、さら
に、有機溶媒に対する溶解性に優れていることが
必要である。この観点から本発明に有効な電解質
を検討した結果、周期律表の族および、または
族に属する金属のイオンからなる塩が特に有効
であるとの結論に達した。 固形体組成物の電解質の含有量は、多くなる程
電導度増大に寄与するが、多量に存在すると組成
物は堅くもろくなり機械的加工性は低下してく
る。また固形体組成物中に含有される溶媒量が多
い程イオンの移動度を増大し電導度は増大するが
多量に存在すると組成物は軟化し、最終的には流
体になつてしまう。したがつて、電解質および溶
媒の含有量には、実用に供しうる最大値が存在す
る。また、この最大値は固形体組成物を構成する
化合物の種類、物性によつて一様に規定はできな
いが、種々の実験を蓄積した結果、電解質含有量
の最大値は有機高分子化合物の繰り返し単位に対
しておよそ70〜90mo%、有機溶媒含有量の最
大値は固形体組成分のおよそ50〜90wt%であつ
た。 以下、本発明の実施例を説明する。 なお、イオン導電性固形体組成物中の、電解質
および溶媒の含有量は、前述した最大値をこえな
い範囲の試料について実施した。 〔実施例〕 電解質を有機溶媒に溶解した電解質溶液と有機
高分子化合物を有機溶媒に溶解した高分子溶液と
を調製した。調製した電解質溶液と高分子溶液と
を混合し、均一になるまで充分撹拌した。均一に
なりにくい場合には、混合溶液を加熱しながら撹
拌すれば所定の均一な溶液が得られる。その後、
混合溶液をロータリーポンプを用いて減圧にし脱
泡した。次に、あらかじめ準備したテフロン製の
容器中にこの混合溶液の一定量を注ぎ込み、室温
から有機溶媒の沸点以下の温度中で窒素ガスを流
しながら有機溶媒を徐々に蒸発させた。この操作
は、テフロン容器内の試料が溶液状態からゲル状
態になるまで続けた。試料がゲル状態になつたの
ち、試料の入つたテフロン容器を真空加熱乾燥機
中に移し入れ、使用した有機溶媒の沸点以下の温
度の常圧下で窒素ガスを流し込みながら加熱乾燥
した。なお、有機溶媒の沸点が温度100℃以上の
場合は、減圧下で加熱乾燥した。加熱乾燥は、試
料状態が、ゲル状態から容器を傾けても変形しな
い状態、すなわち固形体になるまで続けた。加熱
乾燥後、試料の入つたテフロン容器を窒素ガスで
充満したグローブボツクス内に移し入れ、試料を
テフロン容器から剥離したのち一定形状に切断し
た。切断した試料片を白金黒電極でサンドイツチ
状に挾み込み交流二端子法で試料片の抵抗値を測
定した。測定は窒素ガス雰囲気中で測定時の周波
数は1KHzを用い、試料片の抵抗値、厚みおよび
白金黒電極の面積から試料の導電率σを算出し
た。 以上のような試料調製の手順と測定法によつて
実施したイオン導電性固形体組成物試料を構成す
る化合物、すなわち有機高分子化合物、比誘電率
σの異なる有機溶媒、および電解質の組わせと、
この組み合わせによつて形成された固形体組成物
のイオン導電率σiを表にした。 なお、表中の組成物の組み合わせのほかには有
機高分子化合物が有機溶媒に完全に溶解せず一部
溶解、一部不溶解のものや有機高分子化合物が膨
潤するもの、また電解質の金属塩が有機溶媒に完
全溶解せず一部溶解、一部不溶解のものもあつた
が、試料調製や成形性、導電性などの本発明の効
果には支障がなかつたので本実施例として適用し
た。また、全試料の電子導電率を測定した結果お
よそ10-14S・cm-1以下の電子導電率であつたので
前述した測定法による導電率σをイオン導電率σ
iとして表に示した。
The present invention relates to an ionically conductive solid composition. In particular, polymers have excellent mechanical properties such as ease of molding and forming films into arbitrary shapes, which are inherent to polymers, and also have extremely high ionic conductivity of metals belonging to groups and groups of the periodic table. The present invention also relates to an ionically conductive solid composition. Conventionally, ion conductive materials have mainly been (a) so-called electrolyte solutions in which electrolytes are dissolved in water or organic solvents, and (b) beta alumina β-.
Al 2 O 3 , lithium iodide/alumina LiI−Al 2 O 3 ,
Solid electrolyte materials made of inorganic substances such as silver rubidium iodide RbAg 4 I 5 are known. Ionic conductive materials are used in a wide variety of industrial fields, but examples of their use as electronic components include primary batteries, secondary batteries, electrolytic capacitors, sensors, electromic display elements, and on electrodes. It is widely used as a material for electronic components, such as by depositing metal and detecting the integral value of electrical quantity, such as as a time-limiting element or an integral memory element. In recent years, in the field of electronics industry, not only high performance and miniaturization of electronic devices, but also high performance, small and thin electronic components, and high reliability as components are required. The first requirement for highly reliable electronic components is that the material used in the component must be a solid body, that is, an object that appears solid under the conditions in which the component is used, and that flows like a liquid (hereinafter referred to as a fluid). (hereinafter referred to as a solid body). This is because when a fluid material is used in an electronic component, fluid often leaks from the inside of the component to the outside of the component. This leads to a deterioration in the performance of the electronic component and has an adverse effect on other electronic components near the electronic component, which ultimately causes the electronic device to malfunction. Therefore, when used as an ion conductive material in an electronic component, it can be said that an electronic component using a solid ion conductive material is more reliable than a fluid one. On the other hand, in order to obtain highly reliable parts using fluid ion-conductive materials, there are ways to make the parts completely airtight, but these end up resulting in expensive electronic parts that are often impractical. . Among the above-mentioned ion conductive materials, the electrolyte solution (a) is a fluid and therefore has high reliability for the reasons mentioned above, but has the disadvantage that it cannot be used for inexpensive electronic components. On the other hand, the above-mentioned solid electrolyte material (b) has the advantage of being compatible with highly reliable electronic components because it is a solid body. However, there are very few solid electrolyte materials that have high ionic conductivity, and most solid electrolyte materials have low ionic conductivity. Moreover, in order to obtain a solid electrolyte with high ionic conductivity using an inorganic compound, it is necessary to make full use of reaction operations that are considered extremely difficult, so there are currently very few practical examples. Furthermore, since the solid electrolyte material of Olowa is a composition of inorganic compounds, it is extremely difficult to mold it into an arbitrary shape or form it into a film. That is, solid electrolytes made of inorganic compounds have the disadvantage of poor mechanical properties such as ease of processing and forming films into arbitrary shapes. For this reason, it has the disadvantage that the fields in which it can be used as an ion-conductive material are extremely limited. Electrolyte solution of the above-mentioned ion conductive material (a) and (b)
As an intermediate form of solid electrolyte,
For example, there is an ion conductive material that is used in dry batteries and is made by kneading an aqueous electrolyte solution with an aqueous starch solution to form a paste. Even though they are glue-like, under practical usage conditions they take on a form similar to that of a fluid, so in dry batteries, for example, paper or non-woven fabric is used as a separator to prevent short circuits between the anode active material and the cathode active material. Must. In reality, the separator separates the active materials of both electrodes and contains a glue-like ion-conductive material, so it can be used in the same way as a fluid such as an electrolyte solution. Even with glue-like ion-conductive materials, (a) fluid leakage occurs frequently, as seen in normal dry batteries, and reliability is poor. (b) Since it cannot be molded into any shape or formed into a film, it has the disadvantage that its applicable fields are extremely limited. If the aqueous solvent is removed by evaporation to an extent that does not cause liquid leakage, molding and film formation will not be impossible, but in this case, the ionic conductivity will drop significantly and it cannot be put to practical use. Furthermore, when water is used as a solvent, there are the following drawbacks. (i) Water reacts electrochemically with most metals and corrodes them. Therefore, when applied, there is a drawback that the metal materials that come into contact with the water-containing ion conductive material, such as the metal materials for the electrode parts and the parts that seal the electronic elements, are extremely limited. (ii)
The decomposition voltage of water is approximately 1.2V, which is generally lower than that of organic solvents, and cannot be used at voltages higher than the decomposition voltage. (iii) Ion conductive materials containing water have a high and stable ionic conductivity whose use temperature is limited to a range near the freezing point (0°C) and boiling point (100°C) of water, and at other temperatures. unable to maintain. (iv) In ionic conductive materials containing water, H + and OH - generated by ion dissociation of water also function as conductive carriers, and if you want to use only metal ions as conductive carriers, the number of carrier species will continue to increase. Instead, it forms an extremely complex conductive mechanism by ionically bonding with metal ions. For this reason, the ionic conductivity becomes unstable, making it unsuitable for use in, for example, a timing element or an integral memory element to detect an integral value of capacitance. The object of the present invention is to create a new ion-conductive material that solves these conventional drawbacks, that is, an ion-conductive solid material that has both high ion conductivity and excellent mechanical properties such as ease of processing and forming films into arbitrary shapes. An object of the present invention is to provide a composition. According to the present invention, it is possible to obtain an ion-conducting solid composition comprising an electrolyte comprising a metal ion belonging to a group of the periodic table and/or a group, an organic polymer compound, and an electrolytic organic solvent having a dielectric constant of 10 or more. . The first feature of the present invention is that the ionically conductive solid composition contains an organic solvent in order to eliminate the conventional drawbacks, particularly the many drawbacks mentioned above that appear when water is used as a solvent. If an organic solvent is applied,
() It is stable with very little chemical reaction with various metal materials. () The decomposition voltage of organic solvent is higher than the decomposition voltage of water, which is 1.2V. () If an appropriate solvent is selected, the usable temperature range will be wider than in the case of water. () Very few organic solvents, like water, dissociate into H + and OH - ions and have a negative effect. For the reasons mentioned above, the use of organic solvents has the advantage of being able to construct ion conductive materials that are more stable and can be used in a wider range of applications than conventional aqueous solvents. On the other hand,
The ionic conductivity σi tends to be lower than when a water solvent is used. Generally, σi increases in proportion to the product of the concentration ni of the carrier ion species and its mobility μi. Therefore, as an organic solvent effective for increasing σi, (A) dissolves the electrolyte in high concentration and
It is desirable to use an organic solvent that contributes to an increase in (B) the electrolyte and also dissolves not only the electrolyte but also the organic polymer compound well to make the distribution of ions uniform and increase the mobility of the ions. Therefore, the organic solvent is not limited to one type, and a mixed solvent of two or more types may be used. In this way, the organic solvent functions as a material for preparing a solid composition by dissolving electrolytes and organic polymers, and ultimately remains in the solid composition to express ionic conductive function. It is also an important constituent of ionically conductive solid compositions. From the above viewpoint, as a result of detailed study on organic solvents that are effective in the present invention, it was found that the dielectric constant ε of the organic solvent has a very large effect on the expression of ionic conductivity. When the relationship between σi and ε was investigated in detail for many types of organic solvents having different dielectric constants ε, the results shown in the table were obtained. As is clear from the table, σi tends to increase as the ε of the organic solvent increases. here,
Considering various application fields as an ion conductive material, the larger σi is, the wider the field it can be used.
as the minimum value of i and at least 10 -10 S cm -1
If the above σi is within the range that can be applied and provided. Therefore, when determining ε of an organic solvent that exhibits ionic conductivity with σi of approximately 10 -1 S cm -1 or more, we find that in an organic solvent system with ε of approximately 10 or more, σi is 10 -9 S cm -1 or more.
For organic solvent systems with cm -1 or more and ε of about 20 or more, σi is about 10 -8 S・cm -1 or more, especially for organic solvent systems with ε of about 30 or more, σi is about 10 -7 to 10 -6 S・cm
-1 high ionic conductivity was observed. From the above results, considering the possibility of application as an ion conductive material, the effect of organic solvent on σi is ε.
Looking at the effectiveness of , it can be seen that if ε is 10 or more, it satisfies the requirements for an organic solvent included in the composition. If the ε of the organic solvent increases,
The dissociation of ions in the electrolyte is promoted, increasing the solubility of the electrolyte, and the solubility of highly polar organic polymer compounds is also excellent. distribution becomes uniform, contributing to an increase in ion mobility. As a result, the larger the ε of the organic solvent, the more it satisfies the above-mentioned requirements (A) and (B) for the organic solvent to be effective in increasing σi. The effect is ε10
It was expressed above, and particularly when ε was 30 or more, it was expressed markedly, and a composition was also obtained which exhibited a very high σi of about 10 −6 S·cm −1 . Organic solvents with large ε are generally used with highly polar bonding groups (which are called polar groups) that are composed of atomic groups such as oxygen atoms O, nitrogen atoms N, sulfur atoms S, and halogen atoms in addition to carbon atoms C. ), and the more this polar group is arranged in a molecular structure that is more easily polarized, the larger ε becomes. In the table of examples, compounds such as alcohols, ketones, amides, nitriles, and carbonates are shown as examples, but the compounds are not limited to these compounds, and ε
The effects of the present invention can be obtained with any organic solvent having a high polarity of 10 or more. The second feature of the present invention is that the ionically conductive composition contains an organic polymer compound. This is expected to result in the ability to form into arbitrary shapes and form films by imparting excellent mechanical processability inherent to organic polymer compounds. There is also a method of using an organic polymer compound simply as a binder, but in this case there is a certain limit to the improvement of ionic conductivity. That is, the presence of organic polymers tends to act as a steric hindrance when ions move, resulting in a decrease in the ion mobility μi. Therefore, in order to remove this obstacle to the movement of ions, the inventors came up with the idea of impregnating organic polymers with an organic solvent that has excellent solubility for organic polymers, thereby making them swollen. .
When the organic polymer is in a swollen state, the distance between the organic polymers is relatively expanded, allowing ions to move freely. Furthermore, the interaction between ions and organic polymers is relaxed, and ion mobility is greatly improved. As the content of the organic solvent increases, the distance between the organic polymers becomes wider and the organic polymers are completely dissolved to reach a solution state. In a flowing state, it becomes a liquid and cannot be molded into a certain shape. Therefore, in order to maintain a constant solid state, it is necessary to specify the maximum content of organic solvent contained in the solid composition; It varies depending on the solubility of the polymer compound, as well as the molecular weight and molecular weight distribution of the organic polymer compound. As a result of examining the effective compounds of the present invention for various organic polymer compounds, we found that when using an organic solvent with σ of 10 or more, not only thermoplastic resins but also phenolic, urea-melamine, and polyester-based , thermosetting resins such as polyurethane-based, epoxy-based, diene-based such as polybutadiene, polyisobutylene, and chloroprene, polysulfide-based such as acrylic rubber, urethane rubber, thiol rubber, silicone rubber-based, and fluorine-based rubber. Elastic bodies also gave relatively good results. This is because when an organic solvent with a high dielectric constant with ε of 10 or more is used, the high polarity of the organic solvent causes the formation of highly polar organic polymer compounds, as well as network formations such as those found in thermosetting resins and rubber elastic materials. This is due to the fact that it can easily swell and dissolve even organic polymer compounds with this structure. Particularly effective were thermoplastic resins. For example, vinyl resins such as polyvinyl chloride and polyvinyl acetate, acetal resins such as formal resin and butyral resin, acrylic resins such as acrylic resin and methacrylic resin, styrene resins such as polystyrene and ABS resin, polyethylene and polybutene. Olefin resins such as olefin resins, as well as polyamide resins, gave relatively good results. Therefore, in the examples described below,
Although thermoplastic resins were mainly studied as an example of the organic polymer compound, the effects of the present invention are also recognized with other thermosetting resins and rubber elastic bodies. A third feature of the present invention resides in the composition of an ionically conductive solid composition containing, as an electrolyte, a salt consisting of ions of metals belonging to groups and/or groups of the periodic table. In order to exhibit high ionic conductivity, it is necessary for the metal salt to have low ionic dissociation energy and to have excellent solubility in organic solvents. As a result of examining effective electrolytes for the present invention from this point of view, it was concluded that salts consisting of ions of metals belonging to groups and/or groups of the periodic table are particularly effective. The larger the electrolyte content in the solid composition, the more it contributes to increasing the electrical conductivity, but if it is present in a large amount, the composition becomes hard and brittle, and mechanical workability decreases. Further, the larger the amount of solvent contained in the solid composition, the greater the mobility of ions and the higher the electrical conductivity, but if the solvent is present in a large amount, the composition will soften and eventually become a fluid. Therefore, there is a practical maximum value for the electrolyte and solvent contents. In addition, although this maximum value cannot be uniformly determined depending on the type and physical properties of the compounds that make up the solid body composition, as a result of various experiments, the maximum value of the electrolyte content is determined by the repeated use of organic polymer compounds. The organic solvent content was approximately 70 to 90 mo% relative to the unit, and the maximum organic solvent content was approximately 50 to 90 wt% of the solid composition. Examples of the present invention will be described below. In addition, the content of the electrolyte and solvent in the ion conductive solid composition was carried out on samples within a range that did not exceed the above-mentioned maximum values. [Example] An electrolyte solution in which an electrolyte was dissolved in an organic solvent and a polymer solution in which an organic polymer compound was dissolved in an organic solvent were prepared. The prepared electrolyte solution and polymer solution were mixed and sufficiently stirred until uniform. If it is difficult to obtain a uniform solution, a predetermined uniform solution can be obtained by stirring the mixed solution while heating it. after that,
The mixed solution was decompressed and degassed using a rotary pump. Next, a certain amount of this mixed solution was poured into a Teflon container prepared in advance, and the organic solvent was gradually evaporated while flowing nitrogen gas at a temperature from room temperature to below the boiling point of the organic solvent. This operation was continued until the sample in the Teflon container changed from a solution state to a gel state. After the sample was in a gel state, the Teflon container containing the sample was transferred to a vacuum heating dryer and heated and dried under normal pressure at a temperature below the boiling point of the organic solvent used while flowing nitrogen gas. In addition, when the boiling point of the organic solvent was 100° C. or higher, it was dried by heating under reduced pressure. The heating and drying was continued until the sample changed from a gel state to a state that did not deform even if the container was tilted, that is, a solid state. After heating and drying, the Teflon container containing the sample was transferred into a glove box filled with nitrogen gas, and the sample was peeled from the Teflon container and cut into a certain shape. The cut sample piece was sandwiched between platinum black electrodes in the shape of a sandwich, and the resistance value of the sample piece was measured using the alternating current two terminal method. The measurement was performed in a nitrogen gas atmosphere at a frequency of 1 KHz, and the conductivity σ of the sample was calculated from the resistance value, thickness, and area of the platinum black electrode of the sample piece. Combinations of compounds constituting the ionically conductive solid composition sample, that is, organic polymer compounds, organic solvents with different dielectric constants σ, and electrolytes, were conducted using the sample preparation procedure and measurement method described above. ,
The ionic conductivity σi of the solid composition formed by this combination is shown in the table. In addition to the combinations of compositions listed in the table, there are also combinations in which the organic polymer compound does not completely dissolve in the organic solvent, but partially dissolves or partially dissolves in the organic solvent, and organic polymer compounds that swell. Although some of the salts were not completely dissolved in the organic solvent, some were dissolved, and others were not dissolved, but this did not affect the effects of the present invention such as sample preparation, moldability, and conductivity, so it was applied in this example. did. In addition, as a result of measuring the electronic conductivity of all samples, the electronic conductivity was approximately 10 -14 S cm -1 or less, so the conductivity σ by the measurement method described above was changed to the ionic conductivity σ
It is shown in the table as i.

【表】【table】

【表】 表から明らかなように、イオン導電性固形体組
成物に含有される有機溶媒のεが大きくなればな
る程、σiは増大する結果が認められた。すなわ
ち、有機溶媒のεが9.8のフエノール(試料No.
5)までは、およそ10-10S・cm-1の低いσi値を
示す反面、有機溶媒のεが10以上の試料系(試料
No.6以降)では有機高分子化合物の比誘電率が全
て4末満であるにもかかわらずおよそ10-9S・cm
-1以上のσiを示す。とくに、有機溶媒のεが20
以上になるとおよそ10-1・cm-1以上のσiを、さ
らに有機溶媒のεが30以上になるとおよび108
10-6S・cm-1σiを示した。固形体組成物のσi
は、有機溶媒のεのほかに組成物を構成する有機
高分子化合物や電解質の種類によつても影響され
るが、有機高分子化合物と電解質が同一の場合で
あつても、固形体組成物のσiは有機溶媒のεが
大きいほど増大することが表の結果から明らかで
あり、本発明の効果が理解できる。 また、本発明によつて得られるイオン導電性固
形体組成物系は、調製する溶液の容量や濃度、溶
液を注入する容器の形状によつて任意の形状に成
形したり、成膜したりすることもできる。例え
ば、調製溶液の濃度を薄くし、テフロン容器内に
注入する溶液量を減少して、厚さ100μm以下の
可撓性に富んだ広い面積の薄膜を形成することが
できた。薄膜にすることができれば、膜の断面方
向の抵抗は膜厚に比例し、かつ面積に反比例して
低下するため広い用途分野に利用できる。 なお、表中のσiから膜厚および面積を制御す
れば本発明によるイオン導電性組成物は電池、電
解コンデンサ、センサ、エレクトロミツク素子、
それに時限素子や積分記憶素子などのイオン導電
性材料を用いた電子部品への利用は充分実用に供
し得ることは勿論である。
[Table] As is clear from the table, it was observed that as the ε of the organic solvent contained in the ionically conductive solid composition increases, the σi increases. In other words, phenol with an organic solvent ε of 9.8 (sample No.
5) shows a low σi value of approximately 10 -10 S cm -1 , but on the other hand, sample systems with organic solvent ε of 10 or more (sample
No. 6 onwards), the dielectric constant of all organic polymer compounds is approximately 10 -9 S・cm even though the dielectric constant is less than 4.
Indicates σi of -1 or more. In particular, when the ε of the organic solvent is 20
If the value is above, the σi will be approximately 10 -1 cm -1 or more, and if the ε of the organic solvent is 30 or more, the σi will be 10 8 ~
10 -6 S cm -1 σi. σi of solid body composition
In addition to the ε of the organic solvent, it is also affected by the type of organic polymer compound and electrolyte that make up the composition, but even when the organic polymer compound and electrolyte are the same, the solid composition It is clear from the results in the table that σi increases as ε of the organic solvent increases, and the effect of the present invention can be understood. Further, the ion conductive solid composition system obtained by the present invention can be formed into any shape or formed into a film depending on the volume and concentration of the solution to be prepared and the shape of the container into which the solution is injected. You can also do that. For example, by reducing the concentration of the prepared solution and reducing the amount of solution injected into a Teflon container, it was possible to form a highly flexible thin film with a thickness of 100 μm or less over a wide area. If the film can be made thin, the resistance in the cross-sectional direction of the film decreases in proportion to the film thickness and inversely to the area, so it can be used in a wide range of applications. In addition, if the film thickness and area are controlled based on σi in the table, the ion conductive composition according to the present invention can be used for batteries, electrolytic capacitors, sensors, electromic devices,
In addition, it goes without saying that it can be used in electronic components using ion-conductive materials, such as time-limiting elements and integral memory elements.

Claims (1)

【特許請求の範囲】[Claims] 1 周期律表族および、または族に属する金
属のイオンからなる電解質、比誘電率4未満の有
機高分子化合物、および前記電解質と有機高分子
化合物とに対して優れた溶解性を有する比誘電率
10以上の有機溶媒とからなるイオン導電性固形体
組成物であり、前記固形体組成物に含まれる前記
有機溶媒の含有量は前記有機高分子化合物を膨潤
させた状態とする量以上でかつ前記固形体組成物
の90wt%以下であり、前記電解質の含有量は約
10-8S・cm-1以上のイオン導電率を与える量以上
でかつ前記固形体組成物の90mo%以下に選ば
れていることを特徴とするイオン導電性固形体組
成物。
1. An electrolyte consisting of ions of metals belonging to a periodic table group and/or group, an organic polymer compound with a dielectric constant of less than 4, and a dielectric constant having excellent solubility in the electrolyte and the organic polymer compound.
An ion conductive solid composition comprising 10 or more organic solvents, wherein the content of the organic solvent contained in the solid composition is at least an amount that causes the organic polymer compound to be in a swollen state, and 90wt% or less of the solid body composition, and the electrolyte content is approximately
An ion conductive solid composition characterized in that the amount is selected to be at least an amount that provides an ionic conductivity of 10 -8 S·cm -1 or more and at most 90 mo% of the solid composition.
JP56029090A 1981-02-27 1981-02-27 Ionic conductive solid substance composition Granted JPS57143355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56029090A JPS57143355A (en) 1981-02-27 1981-02-27 Ionic conductive solid substance composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56029090A JPS57143355A (en) 1981-02-27 1981-02-27 Ionic conductive solid substance composition

Publications (2)

Publication Number Publication Date
JPS57143355A JPS57143355A (en) 1982-09-04
JPS6123946B2 true JPS6123946B2 (en) 1986-06-09

Family

ID=12266646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56029090A Granted JPS57143355A (en) 1981-02-27 1981-02-27 Ionic conductive solid substance composition

Country Status (1)

Country Link
JP (1) JPS57143355A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8333388D0 (en) * 1983-12-15 1984-01-25 Raychem Ltd Materials for electrical devices
JPS6394501A (en) * 1986-10-09 1988-04-25 宇部興産株式会社 Manufacture of ion conducting solid electrolytic shield
CA1321617C (en) * 1988-09-12 1993-08-24 Mhb Joint Venture (A Partnership) Ultrathin polymer electrolyte having high conductivity
JPH0733494B2 (en) * 1990-08-01 1995-04-12 株式会社タジマ Method of making plastic floor materials conductive

Also Published As

Publication number Publication date
JPS57143355A (en) 1982-09-04

Similar Documents

Publication Publication Date Title
Sukeshini et al. Transport and electrochemical characterization of plasticized poly (vinyl chloride) solid electrolytes
Osman et al. Conductivity enhancement due to ion dissociation in plasticized chitosan based polymer electrolytes
Lewandowski et al. Novel poly (vinyl alcohol)–KOH–H2O alkaline polymer electrolyte
Horowitz et al. High-performance, mechanically compliant silica-based ionogels for electrical energy storage applications
CN103776880B (en) A kind of with titanium silk solid reference electrode that is base material and preparation method thereof
WO1997038460A1 (en) Electrochemical cell having a polymer electrolyte
JPH01294768A (en) Liquid containing polymer network as a solid electrolyte
Ogura et al. A Conductive and Humidity‐Sensitive Composite Film Derived from Poly (o‐phenylenediamine) and Polyvinyl Alcohol
US2747009A (en) Stable voltaic cells
Yusuf et al. Preparation and electrical characterization of polymer electrolytes: A review
US2851642A (en) Electrolyte for electrolytic capacitors
Sanginov et al. Lithium-ion conductivity of the Nafion membrane swollen in organic solvents
US5847920A (en) Electrochemical capacitor with hybrid polymer polyacid electrolyte
Gurusiddappa et al. Conductivity and dielectric behavior of polyethylene oxide-lithium perchlorate solid polymer electrolyte films
Sequeira et al. Stability domain of a complexed lithium salt-poly (ethylene oxide) polymer electrolyte
Magistris et al. PEO‐based polymer electrolytes
JPS6123946B2 (en)
JPS6123944B2 (en)
JPS6123947B2 (en)
FI96141B (en) Ion-selective electrode and method for manufacturing an ion-selective electrode
US2882329A (en) Thermogalvanic cell
US3236694A (en) Primary cell with non-aqueous electrolyte
JPS6123945B2 (en)
Al-Saeedi et al. Green biopolymer and plasticizer for solid electrolyte preparation: FTIR, electrochemical properties and EDLC characteristics
US3716410A (en) Lithium battery electrolyte additive and method of improving discharge rate