JPS6123945B2 - - Google Patents

Info

Publication number
JPS6123945B2
JPS6123945B2 JP56022571A JP2257181A JPS6123945B2 JP S6123945 B2 JPS6123945 B2 JP S6123945B2 JP 56022571 A JP56022571 A JP 56022571A JP 2257181 A JP2257181 A JP 2257181A JP S6123945 B2 JPS6123945 B2 JP S6123945B2
Authority
JP
Japan
Prior art keywords
electrolyte
organic polymer
ion
polymer compound
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56022571A
Other languages
Japanese (ja)
Other versions
JPS57137360A (en
Inventor
Katsuhiro Mizoguchi
Takashi Kizaki
Masashi Ooi
Hidetoshi Tsuchida
Isao Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56022571A priority Critical patent/JPS57137360A/en
Publication of JPS57137360A publication Critical patent/JPS57137360A/en
Publication of JPS6123945B2 publication Critical patent/JPS6123945B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、イオン導電性の高い材料の組成物に
関する。とくに、高分子が本来有する任意の形に
成形、成膜できる易加工性など優れた機械的性質
を持ち、さらに周期律表の族および族に属す
る金属のイオン導電性が非常に高い性質を併わせ
有するイオン導電性固形体組成物に関する。 従来、イオン導電性材料としては、おもに
(イ)電解質を水または有機溶媒に溶解した、い
わゆる電解質溶液、(ロ)ベータ・アルミナβ−
Al2O3,ヨウ化リチウム・アルミナLiI−Al2O3
ヨウ化銀ルビジウムRbAg4I5など無機物からなる
固体電解質材料が知られている。イオン導電性材
料の用途分野としては多種多様の産業分野におよ
ぶが、電子部品としての用途例について説明すれ
ば、一次電池、二次電池、電解コンデンサ、セン
サ、エレクトロクロミツク表示素子、それに電極
上に金属を折出させ電気量の積分値を検出して時
限素子や積分記憶素子としての利用例など電子部
品の素材料として広く用いられている。 近年、電子工業の分野では、電子機器の高性
能・小型化とともに、電子部品の高性能、小型薄
形化はもちろん、部品としての高い信頼性が要求
されている。信頼性の高い電子部品としての必要
条件に、まず部品に使用される材料が固形化、つ
まり部品の使用条件下で見かけ上固形状態を呈
し、液体のように流れる物体(以下これを流体と
呼称する)の状態ではない物体(以下これを固形
体と呼称する)であることが要求される。これ
は、流体の材料を電子部品に使用した場合、部品
内部から部品外部へ液漏れが頻出する。このため
電子部品の性能劣化をまねくとともに、その電子
部品の近くにある他の電子部品に悪影響をおよぼ
してしまい、ついには電子機器を故障に至らしめ
る理由による。したがつて、イオン導電性材料と
して電子部品に利用する場合、流体より固形体の
イオン導電性材料を使用した電子部品がより信頼
性の高い電子部品だといえる。一方、流体のイオ
ン導電性材料を使用し、高い信頼性の部品を得る
ために、部品を完全気密にする手段もあるが、結
局、高価な電子部品となつて実用に供し得ない場
合が多い。 前述したイオン導電性材料のうち(イ)の電解
質溶液は、流体であるため上記のような理由から
信頼性が高く、安価な電子部品には利用できない
欠点がある。一方、前述した(ロ)の固体電解質
材料は、固形体であるため信頼性の高い電子部品
に適合できる利点はある。しかし、高いイオン導
電率をもつ固体電解質材料は極めて少なく、大抵
の固体電解質材料はイオン導電率が低い。しか
も、無機化合物を用いて高イオン導電率の固体電
解質を得るためには極めて困難とされる反応操作
を駆使しなければならないので、実用に供されて
いる具体例は極めて少ない現状である。さらに、
大抵の固体電解質材料は無機化合物の組成物であ
るため、任意の形に成形、成膜することは極めて
難しい。すなわち、無機化合物からなる固体電解
質は、任意の形に成形、成模できる易加工性など
機械的性質に劣る欠点がある。このため、イオン
導電性材料として利用される分野は極端に限定さ
れてしまう欠点がある。 前述したイオン導電性材料(イ)の電解質溶液
と(ロ)の固体電解質の中間の形態を呈したもの
として、例えば乾電池などに使用されているよう
な電解質水溶液をデンプンの水溶液で糊状に練り
合わせたイオン導電性材料がある。これらは糊状
といえども、実用上使用条件下では、流体と同じ
ような形態を呈するので、例えば、乾電池などで
は陽極活物質と陰極活物質の短絡を防止するため
にセパレータとして紙や不織布を使用しなければ
ならない。実際には、このセパレータによつて両
極の活物質を隔離し、これに糊状のイオン導電性
材料を含ませる構造なので電解質溶液のような流
体と何ら変らない利用法になる。 糊状のイオン導電性材料であつても、(a)通
常の乾電池で認められるような、液漏れが頻出
し、信頼性が劣る。(b)また、任意の形状に成
形、成膜できないため利用できる応用分野が極め
て限定されてしまう欠点がある。液漏れしない程
度に水溶媒を蒸発除去すれば、成形、成膜できな
いこともないが、この場合には、イオン導電度が
著しく低下し、実用に供しえい。また、溶媒とし
て水を使用した場合、以下のような欠点がある。
(i)水はほとんどの金属と電気化学的に反応し、金
属を腐蝕させる。したがつて、応用に際しては、
水を含むイオン導電性材料と接触する金属材料、
例えば、電極部や電子素子を密封する部分の金属
材料は著しく限定される欠点がある。(ii)水の分解
電圧は約1.2Vと一般に有機溶媒に比較して低
く、分解電圧以上の電圧での使用はできない。(iii)
水を含むイオン導電性材料は、その使用温度が水
の凝固点(0℃)と沸点(100℃)近傍の範囲内
に限定され、それ以外の温度では高く、しかも安
定したイオン電導度を維持することができない。
(iv)水を含むイオン導電性材料では、水のイオン解
離によつて生成するH+やOH-も電導キヤリアと
して機能し、金属イオンだけを電導キヤリアとし
たい場合には、キヤリア種が増えるばかりでな
く、金属イオンとイオン結合したりして極めて複
雑な導電機構となる。このため、イオン導電度は
不安定となり、例えば時限素子や積分記憶素子な
どへ利用して電気容量の積分値を検出する場合に
は、不適当である。 本発明の目的は、かかる従来欠点を解決した新
しいイオン導電性材料、すなわち高いイオン導電
性と任意の形に成形、成膜できる易加工性などに
すぐれた機械的性質を併有するイオン導電性固形
体組成物を提供することにある。 本発明によれば、周期律表族および、または
族に属する金属イオンからなる電解質、比誘電
率4以上の有機高分子化合物、および電解質と有
機高分子化合物とを溶解する有機溶媒から構成さ
れることを特徴とするイオン導電性固形体組成物
が得られる。 本発明では、従来欠点特に水を溶媒とした場合
にあらわれる前述した多くの欠点を除くためイオ
ン導電性固形体組成物として有機溶媒を含むこと
に第1の特徴がある。有機溶媒を適用すれば、
()各種金属材料との化合反応が極めて少なく
安定である。()有機溶媒の分解電圧は水の分
解電圧1.2Vより高くなる。()適当な溶媒を選
択すれば、水の場合より使用温度範囲が広くな
る。()水のようにH+とOH-にイオン解離して
悪影響をおよぼす有機溶媒は極めて少ない。 以上のような理由により、有機溶媒を適用すれ
ば、従来の水溶媒に比較して安定かつ利用範囲の
広いイオン導電性材料を構成できる利点である。
反面、イオン導電率τiは水溶媒使用に比較して
低下する傾向にある。イオン導電率σiは、一般
にキヤリアとなるイオン種の濃度niとその移動度
μiの積に比例して増大する。したがつてσi増
大に有効な有機溶媒としては、(A)電解質を高
濃度に溶解してniの増大に寄与するもの、かつ
(B)電解質のみならず有機高分子化合物をもよ
く溶解してイオンの分布を均一にし、イオンの移
動度を増大させる有機溶媒が望ましい。このため
有機溶媒を一種類に限定せず二種類以上の混合溶
媒を使用する場合もある。 このように、有機溶媒は電解質や有機高分子化
合物を溶解して固形体組成物を調製する素材とし
ての機能と、最終的に固形体組成物中に残存して
イオン導電性の機能発現のためにも重要なイオン
導電性固形体組成物の一構成物である。 本発明の第2の特徴は、イオン導電性固形体組
成物として有機高分子化合物を含む構成にある。
これは、有機高分子化合物の本来具存する優れた
機械的加工性の付与によつて任意の形状に成形、
成膜できる機能の発現を期待するものである。有
機高分子化合物を単なる結着剤(バインダー)と
して使用する方法もあるが、この場合、イオン導
電性の向上には一定の限界がある。つまり、有機
高分子の存在は、イオンが移動する際、立体的な
障害となつてイオンの移動度μiが低下してしま
う傾向をもたらす。そこで、発明者らは、このイ
オンの移動の障害をとり除くため、有機高分子化
合物に対して優れた溶解性をもつ有機溶媒を含ま
せて有機高分子を膨潤させた状態にすることを考
えた。有機高分子の膨潤状態では、有機高分子相
互間の距離は拡張され、イオンは自由に移動でき
るようになる。さらに、イオンと有機高分子間の
相互作用も緩和されてイオンの移動度は極めて向
上する。有機溶媒の含有量が増大すると、有機高
分子相互間の距離は、一層広がり、完全に溶解し
て溶液状態に到達する。溶液状態では、流体とな
るので、一定の形に成形することはできない。し
たがつて、一定の固形体の状態を維持するために
は、組成物に含まれる有機溶媒の最大含有量を規
定することが必要であるが、この最大含有量は、
有機溶媒の有機高分子化合物に対する溶解性、さ
らに有機高分子化合物の分子量と分子量分布によ
つて異なる。 種々の有機高分子化合物について、本発明の有
効な化合物を検討した結果、イオン導電率σiは
有機高分子化合物の比誘電率εに著しく影響する
ことが判明した。そこで比誘電率εの異なる有機
高分子化合物を種々使用し、組成物のイオン導電
率σiと比誘電率εとの関係を検討した結果、有
機高分子化合物のεが4以上の場合が、それ以下
のものに比べ高いσiを発現し有効であるという
結論に達した。有機高分子化合物の比誘電率ε
は、電解質のイオン解離を促進する結果、伝導に
際してはイオンキヤリアの濃度niの増大、さらに
イオン移動度μiの増大に寄与してイオン導電率
σiを増大させたものと思われる。結局、本発明
で用いる有機高分子化合物は、比誘電率εが4以
上でかつ種々の有機溶媒に可溶なものが良好な結
果をもたらした。 本発明の第3の特徴は、電解質として周期律表
族および族に属する金属のイオンからなる塩
を含む固形体組成物の構成にある。高いイオン導
電性を示すためには、金属塩のイオン解離エネル
ギーが小さいこと、さらに、有機溶媒に対する溶
解性に優れていることが必要である。この観点か
ら本発明に有効な電解質をを検討した結果、周期
律表族および族に属する金属のイオンからな
る塩が特に有効であるとの結論に達した。 固形体組成物中の電解質の含有量は、多くなる
程電導度増大に寄与するが、多量に存在すると組
成物は堅く、もろくなり機械的加工性は低下して
くる。また固形体組成物中に含有される有機溶媒
量が、多い程イオンの移動度を増大し電導度は増
大するが、多量に存在すると組成物は軟化し、最
終的には流体になつてしまう。したがつて、電解
質および溶媒の含有量には、実用に供しうる最大
値が存在する。また、この最大値は固形体組成物
を構成する化合物の種類、物性によつて一様に規
定できないが、種々の実験を蓄積した結果、電解
質含有量の最大値はおよそ70〜90mol%、溶媒含
有量の最大値はおよび50〜90wt%であつた。 以下に、本発明の実施例を説明する。 なお、測定試料の調製にイオン導電性固形体組
成物中の電解質および有機溶媒の含有量は、前述
した最大値をこえない範囲の試料について実施し
た。 〔実施例〕 電解質を有機溶媒に溶解した電解質溶液と有機
高分子化合物を有機溶媒に溶解した高分子溶液と
を調製した。調製した電解質溶液と高分子溶液と
を混合し、均一になるまで充分撹拌した。均一に
なりにくい場合には、混合溶液を加熱しながら撹
拌すれば所定の均一な溶液が得られる。その後、
混合溶液をロータリーポンプを用いて減圧にし脱
泡した。次に、あらかじめ準備したテフロン製の
容器中にこの混合溶液の一定量を注ぎ込み、室温
から有機溶媒の沸点以下の温度中で窒素ガスを流
しながら有機溶媒を徐々に蒸発させた、この操作
は、テフロン容器内の試料が溶液状態からゲル状
態になるまで続けた。試料がゲル状態になつたの
ち、試料の入つたテフロン容器を真空加熱乾燥機
中に移し入れ、使用した有機溶媒の沸点以下の温
度の常圧下、窒素ガスを流し込みながら加熱乾燥
した。なお、有機溶媒の沸点が温度100℃以上の
場合には、減圧下で加熱乾燥した。加熱乾燥は、
試料状態が、ゲル状態から容器を傾けても変形し
ない状態、すなわち固形体になるまで続けた。加
熱乾燥後、試料の入つたテフロン容器を窒素ガス
で充満したグローブボツクス内に移し入れ、試料
をテフロン容器から剥離したのち一定形状に切断
した。切断した試料片を白金黒電極でサンドイツ
チ状にはさみ込み交流二端子法で試料片の抵抗値
を測定した。測定は窒素ガス雰囲気中、測定時の
周波数は1KHzを用い、試料片の抵抗値、厚さお
よび白金黒電極の面積から試料の導電率σを算出
した。 以上のような試料調製の手順と測定法によつて
実施した固形体組成物試料を構成する化合物、す
なわち比誘電率の異なる種々の有機高分子化合
物、有機溶媒、および電解質の組み合わせと、こ
の組み合わせによつて形成された固形体組成物の
イオン導電率σiを表に示した。 なお、表中の固形体組成物の組み合わせのなか
には有機高分子化合物が有機溶媒に完全に溶解せ
ずに一部溶解、一部不溶解のものや有機高分子化
合物が膨潤するものまたは電解質の金属塩が有機
溶媒に完全溶解せず一部溶解、一部不溶解のもの
もあつたが、試料調製や成形性、導電性などの本
発明の効果には支障がなかつたので本実施例とし
て適用した。また、全試料の電子導電率を測定し
た結果、10-14S・cm-1以下の電子導電率であつた
ので前述した測定法による導電率σをイオン導電
率σiとして表に示した。
The present invention relates to compositions of materials with high ionic conductivity. In particular, it has excellent mechanical properties, such as the ease of forming and forming films into arbitrary shapes, which are inherent to polymers, and also has the properties of extremely high ionic conductivity of metals belonging to groups and groups of the periodic table. The present invention relates to an ionically conductive solid composition having an ion conductive solid composition. Conventionally, ion conductive materials have mainly been (a) so-called electrolyte solutions in which electrolytes are dissolved in water or organic solvents, and (b) beta alumina β-.
Al 2 O 3 , lithium iodide/alumina LiI−Al 2 O 3 ,
Solid electrolyte materials made of inorganic substances such as silver rubidium iodide RbAg 4 I 5 are known. Ion-conductive materials are used in a wide variety of industrial fields, but examples of their use as electronic components include primary batteries, secondary batteries, electrolytic capacitors, sensors, electrochromic display elements, and electrodes. It is widely used as a material for electronic components such as time-limiting elements and integral memory elements by detecting the integral value of electricity by precipitating metal. In recent years, in the field of electronics industry, not only high performance and miniaturization of electronic devices, but also high performance, small and thin electronic components, and high reliability as components are required. One of the requirements for highly reliable electronic components is that the materials used in the component first solidify, meaning that under the conditions in which the component is used, the material appears solid and flows like a liquid (hereinafter referred to as a fluid). (hereinafter referred to as a solid body). This is because when a fluid material is used in an electronic component, fluid often leaks from the inside of the component to the outside of the component. This leads to a deterioration in the performance of the electronic component and has an adverse effect on other electronic components near the electronic component, which ultimately causes the electronic device to malfunction. Therefore, when used as an ion conductive material in an electronic component, it can be said that an electronic component using a solid ion conductive material is more reliable than a fluid one. On the other hand, in order to obtain highly reliable parts using fluid ion-conductive materials, there are ways to make the parts completely airtight, but these end up resulting in expensive electronic parts that are often impractical. . Among the above-mentioned ion conductive materials, the electrolyte solution (a) is a fluid and has high reliability for the reasons mentioned above, but has the disadvantage that it cannot be used for inexpensive electronic components. On the other hand, the above-mentioned solid electrolyte material (b) has the advantage of being compatible with highly reliable electronic components since it is a solid body. However, there are very few solid electrolyte materials with high ionic conductivity, and most solid electrolyte materials have low ionic conductivity. Moreover, in order to obtain a solid electrolyte with high ionic conductivity using an inorganic compound, it is necessary to make full use of reaction operations that are considered extremely difficult, so there are currently very few practical examples. moreover,
Since most solid electrolyte materials are compositions of inorganic compounds, it is extremely difficult to mold them into arbitrary shapes and form them into films. That is, solid electrolytes made of inorganic compounds have the drawback of poor mechanical properties, such as ease of processing, which allows them to be molded and modeled into arbitrary shapes. For this reason, it has the disadvantage that the fields in which it can be used as an ion-conductive material are extremely limited. An intermediate form between the electrolyte solution of the above-mentioned ion conductive material (a) and the solid electrolyte of (b) is obtained by kneading an aqueous electrolyte solution, such as that used in dry batteries, into a paste-like form with an aqueous starch solution. There are other ionically conductive materials. Even though they are glue-like, they take on a form similar to that of a fluid under conditions of practical use. For example, in dry batteries, paper or non-woven fabric is used as a separator to prevent short circuits between the anode active material and the cathode active material. must be used. In reality, this separator separates the active materials of both electrodes and contains a paste-like ion-conductive material, so it can be used in the same way as a fluid such as an electrolyte solution. Even with a paste-like ion-conductive material, (a) liquid leakage occurs frequently, as is observed in ordinary dry batteries, and reliability is poor. (b) Furthermore, since it cannot be molded into any shape or formed into a film, it has the disadvantage that its applicable fields are extremely limited. If the aqueous solvent is removed by evaporation to an extent that does not cause liquid leakage, molding and film formation will not be impossible, but in this case, the ionic conductivity will drop significantly and it cannot be put to practical use. Furthermore, when water is used as a solvent, there are the following drawbacks.
(i) Water reacts electrochemically with most metals and corrodes them. Therefore, in application,
metallic materials in contact with ionically conductive materials containing water;
For example, there is a drawback in that the metal materials used for the electrode parts and the parts that seal the electronic elements are extremely limited. (ii) The decomposition voltage of water is approximately 1.2V, which is generally lower than that of organic solvents, and cannot be used at voltages higher than the decomposition voltage. (iii)
Ion conductive materials containing water are limited to operating temperatures close to the freezing point (0°C) and boiling point (100°C) of water, and maintain high and stable ionic conductivity at other temperatures. I can't.
(iv) In ionic conductive materials containing water, H + and OH - generated by ion dissociation of water also function as conductive carriers, and if you want to use only metal ions as conductive carriers, the number of carrier species will continue to increase. Instead, it forms an extremely complex conductive mechanism by ionically bonding with metal ions. For this reason, the ionic conductivity becomes unstable, making it unsuitable for use in, for example, a timing element or an integral storage element to detect an integral value of capacitance. The object of the present invention is to create a new ion-conductive material that solves these conventional drawbacks, namely, an ion-conductive solid material that has both high ion conductivity and excellent mechanical properties such as ease of processing and forming films into arbitrary shapes. The objective is to provide body compositions. According to the present invention, the electrolyte is composed of an electrolyte made of metal ions belonging to a group and/or group of the periodic table, an organic polymer compound having a dielectric constant of 4 or more, and an organic solvent that dissolves the electrolyte and the organic polymer compound. An ionically conductive solid composition is obtained. The first feature of the present invention is that the ionically conductive solid composition contains an organic solvent in order to eliminate the conventional drawbacks, particularly the many drawbacks that appear when water is used as a solvent. If an organic solvent is applied,
() It is stable with very little chemical reaction with various metal materials. () The decomposition voltage of organic solvent is higher than the decomposition voltage of water, which is 1.2V. () If an appropriate solvent is selected, the usable temperature range will be wider than in the case of water. () Very few organic solvents, like water, dissociate into H + and OH - ions and have a negative effect. For the above-mentioned reasons, the use of organic solvents has the advantage of making it possible to construct ion-conductive materials that are more stable and have a wider range of applications than conventional aqueous solvents.
On the other hand, the ionic conductivity τi tends to decrease compared to when a water solvent is used. The ionic conductivity σi generally increases in proportion to the product of the concentration ni of the carrier ionic species and its mobility μi. Therefore, effective organic solvents for increasing σi include those that (A) dissolve electrolytes at high concentrations and contribute to an increase in ni, and (B) dissolve not only electrolytes but also organic polymer compounds well. Organic solvents that provide uniform ion distribution and increase ion mobility are desirable. For this reason, the organic solvent is not limited to one type, and a mixed solvent of two or more types may be used. In this way, the organic solvent functions as a material for preparing the solid composition by dissolving the electrolyte and organic polymer compound, and ultimately remains in the solid composition to express the ionic conductive function. It is also an important constituent of ionically conductive solid compositions. The second feature of the present invention is that the ionically conductive solid composition contains an organic polymer compound.
This material can be molded into any shape by providing excellent mechanical processability inherent to organic polymer compounds.
It is hoped that this material will develop the ability to form a film. There is also a method of using an organic polymer compound simply as a binder, but in this case there is a certain limit to the improvement of ionic conductivity. In other words, the presence of an organic polymer acts as a steric hindrance when ions move, resulting in a tendency for the ion mobility μi to decrease. Therefore, in order to remove this obstacle to the movement of ions, the inventors thought of making the organic polymer swollen by impregnating it with an organic solvent that has excellent solubility for organic polymer compounds. . When organic polymers are in a swollen state, the distance between them is expanded, allowing ions to move freely. Furthermore, the interaction between ions and organic polymers is relaxed, and ion mobility is greatly improved. As the content of the organic solvent increases, the distance between the organic polymers becomes wider, and the organic polymers are completely dissolved to reach a solution state. In a solution state, it becomes a fluid and cannot be molded into a certain shape. Therefore, in order to maintain a certain solid state, it is necessary to specify the maximum content of organic solvent contained in the composition, and this maximum content is
It varies depending on the solubility of the organic polymer compound in the organic solvent, as well as the molecular weight and molecular weight distribution of the organic polymer compound. As a result of examining various organic polymer compounds that are effective in the present invention, it was found that the ionic conductivity σi significantly influences the dielectric constant ε of the organic polymer compound. Therefore, as a result of using various organic polymer compounds with different dielectric constants ε and examining the relationship between the ionic conductivity σi and the dielectric constant ε of the composition, it was found that when the organic polymer compound has ε of 4 or more, We have reached the conclusion that it is effective and exhibits a higher σi than the following. Relative permittivity ε of organic polymer compounds
It is thought that as a result of promoting ion dissociation in the electrolyte, during conduction, the ion carrier concentration ni increases and the ion mobility μi increases, thereby contributing to an increase in the ionic conductivity σi. In the end, the organic polymer compound used in the present invention that has a dielectric constant ε of 4 or more and is soluble in various organic solvents gave good results. A third feature of the present invention resides in the configuration of a solid composition containing a salt consisting of ions of metals belonging to groups and groups of the periodic table as an electrolyte. In order to exhibit high ionic conductivity, it is necessary for the metal salt to have low ionic dissociation energy and to have excellent solubility in organic solvents. As a result of examining electrolytes that are effective in the present invention from this point of view, it was concluded that salts consisting of ions of metals belonging to groups and groups of the periodic table are particularly effective. The larger the content of electrolyte in the solid composition, the more it contributes to increasing the electrical conductivity, but if it is present in a large amount, the composition becomes hard and brittle, and mechanical workability decreases. Furthermore, the larger the amount of organic solvent contained in the solid composition, the greater the mobility of ions and the higher the electrical conductivity, but if it is present in a large amount, the composition will soften and eventually become a fluid. . Therefore, there is a practical maximum value for the electrolyte and solvent contents. Furthermore, although this maximum value cannot be uniformly defined depending on the type and physical properties of the compounds constituting the solid body composition, as a result of various experiments, the maximum value of the electrolyte content is approximately 70 to 90 mol%, and the solvent The maximum content was between 50 and 90 wt%. Examples of the present invention will be described below. The measurement samples were prepared in such a way that the contents of the electrolyte and organic solvent in the ionically conductive solid composition did not exceed the maximum values mentioned above. [Example] An electrolyte solution in which an electrolyte was dissolved in an organic solvent and a polymer solution in which an organic polymer compound was dissolved in an organic solvent were prepared. The prepared electrolyte solution and polymer solution were mixed and sufficiently stirred until uniform. If it is difficult to obtain a uniform solution, a predetermined uniform solution can be obtained by stirring the mixed solution while heating it. after that,
The mixed solution was decompressed and degassed using a rotary pump. Next, a certain amount of this mixed solution was poured into a Teflon container prepared in advance, and the organic solvent was gradually evaporated while flowing nitrogen gas at a temperature from room temperature to below the boiling point of the organic solvent. This continued until the sample in the Teflon container changed from a solution state to a gel state. After the sample was in a gel state, the Teflon container containing the sample was transferred to a vacuum heating dryer and heated and dried under normal pressure at a temperature below the boiling point of the organic solvent used while flowing nitrogen gas. In addition, when the boiling point of the organic solvent was 100° C. or higher, it was dried by heating under reduced pressure. Heat drying is
The sample state continued until it changed from a gel state to a state that does not deform even if the container is tilted, that is, a solid state. After heating and drying, the Teflon container containing the sample was transferred into a glove box filled with nitrogen gas, and the sample was peeled from the Teflon container and cut into a certain shape. The cut sample piece was sandwiched between platinum black electrodes in a sandwich pattern, and the resistance value of the sample piece was measured using the AC two-terminal method. The measurement was performed in a nitrogen gas atmosphere using a measurement frequency of 1 KHz, and the conductivity σ of the sample was calculated from the resistance value, thickness, and area of the platinum black electrode of the sample piece. Combinations of the compounds constituting the solid composition sample, that is, various organic polymer compounds with different dielectric constants, organic solvents, and electrolytes, conducted using the sample preparation procedure and measurement method as described above, and the combinations thereof. The ionic conductivity σi of the solid body composition formed by is shown in the table. In addition, among the combinations of solid compositions in the table, the organic polymer compound does not completely dissolve in the organic solvent, but is partially dissolved or partially insoluble, or the organic polymer compound swells, or the electrolyte metal Although some of the salts were not completely dissolved in the organic solvent, some were dissolved, and others were not dissolved, but this did not affect the effects of the present invention such as sample preparation, moldability, and conductivity, so it was applied in this example. did. Further, as a result of measuring the electronic conductivity of all the samples, the electronic conductivity was 10 -14 S·cm -1 or less, so the conductivity σ measured by the above-mentioned measurement method is shown in the table as the ionic conductivity σi.

【表】【table】

【表】 表から明らかなように、有機高分子化合物の比
誘電率εが3.3までの試料系(表中の試料No.1〜
5までの試料)ではイオン導電率σiが約10-12
〜10-10S・cm-1であつたのに対し、有機高分子化
合物の比誘電率εが4以上の試料系(表中の試料
6以上の試料)では有機溶媒の比誘電率が全て10
未満であるにもかかわらずσiが約10-8
10-6S・cm-1になり、比誘電率εが小さな試料系
にくらべてσiが約102〜104倍も増大した結果が
得られた。したがつてσi増大には固形体組成物
を構成する有機高分子化合物のεが非常に大きな
影響をおよぼすこと、さらに固形体組成物を構成
する有機高分子化合物のεが4以上のときσi増
大に大きな効果をもたらすことが判明した。 また、比較のために有機溶媒が含まれない固形
体組成物の構成でσiを測定した結果、10-12S・
cm-1以下の値を示し、イオン導電性がほとんど発
現しなかつた。勿論、電解質が含まれない固形体
組成物の構成ではまつたくの電気絶縁体となつて
イオン導電性は認められない。したがつて、イオ
ン導電性の発現には、電解質、有機溶媒、それに
有機高分子化合物の三つの構成物が存在し、かつ
有機高分子化合物の比誘電率εが4以上のとき本
発明の効果が認められる。 また、本発明によつて得られるイオン導電性固
形体組成物系は、調製する溶液の容量や濃度、溶
液を注入する容器の形状によつて任意の形状に成
形したり、成膜したりすることもできる。例え
ば、調製溶液の濃度を薄くし、テフロン容器内に
注入する溶液量を減少させて、厚さ100μm以下
の可撓性に富んだ広い面積の薄膜を形成すること
ができた。薄膜にすることができれば、膜の断面
方向の抵抗は膜厚に比例し、かつ面積に反比例に
低下するため、より広い用途分野に利用できるよ
うになる。 なお、表中のσiから、膜厚および面積を制御
すれば、本発明によるイオン導電性固形体組成物
は電池、電解コンデンサ、センサ、エレクトロク
ロミツク素子、それに時限素子や積分記憶素子な
どのイオン導電性材料を用いた電子部品への利用
は充分実用に供し得ることは勿論である。
[Table] As is clear from the table, sample systems with relative permittivity ε of organic polymer compounds up to 3.3 (sample Nos. 1 to 3 in the table)
Samples up to 5) have an ionic conductivity σi of approximately 10 -12
~10 -10 S cm -1 , whereas in sample systems where the dielectric constant ε of the organic polymer compound is 4 or more (samples 6 or more in the table), the dielectric constant of the organic solvent is all Ten
Although σi is less than about 10 -8 ~
10 -6 S·cm -1 , and the result was that σi increased by about 10 2 to 10 4 times compared to the sample system with a small relative dielectric constant ε. Therefore, the ε of the organic polymer compound constituting the solid body composition has a very large effect on the increase in σi, and furthermore, when ε of the organic polymer compound constituting the solid body composition is 4 or more, the σi increases. was found to have a significant effect on In addition, for comparison, σi was measured using a solid composition containing no organic solvent, and the results were 10 -12 S.
It showed a value of cm -1 or less, and exhibited almost no ionic conductivity. Of course, if the solid composition does not contain an electrolyte, it will act as an electrical insulator and will not exhibit ionic conductivity. Therefore, for the expression of ionic conductivity, the effect of the present invention is achieved when three components are present: an electrolyte, an organic solvent, and an organic polymer compound, and the dielectric constant ε of the organic polymer compound is 4 or more. is recognized. Further, the ion conductive solid composition system obtained by the present invention can be formed into any shape or formed into a film depending on the volume and concentration of the solution to be prepared and the shape of the container into which the solution is injected. You can also do that. For example, by reducing the concentration of the prepared solution and reducing the amount of solution injected into a Teflon container, it was possible to form a highly flexible thin film with a thickness of 100 μm or less over a wide area. If the film can be made thin, the resistance in the cross-sectional direction of the film decreases in proportion to the film thickness and inversely to the area, so it can be used in a wider range of applications. In addition, from σi in the table, if the film thickness and area are controlled, the ionically conductive solid composition according to the present invention can be used in batteries, electrolytic capacitors, sensors, electrochromic devices, time devices, integral memory devices, etc. It goes without saying that the electrically conductive material can be used in electronic components for practical purposes.

Claims (1)

【特許請求の範囲】[Claims] 1 周期律表族および、または族に属する金
属のイオンからなる電解質、比誘電率4以上の有
機高分子化合物、および前記電解質と有機高分子
化合物とに対して優れた溶解性を有する比誘電率
10末満の有機溶媒とからなるイオン導電性固形体
組成物であり、前記固形体組成物に含まれる前記
有機溶媒の含有量は前記有機高分子化合物に膨潤
させた状態とする量以上でかつ前記固形体組成物
の90wt%以下であり、前記電解質の含有量は約
10-8S・cm-1以上のイオン導電率を与える量以上
かつ前記固形体組成物の90mo%以下に選ばれ
ていることを特徴とするイオン導電性固形体組成
物。
1. An electrolyte consisting of ions of metals belonging to a periodic table group and/or group, an organic polymer compound having a dielectric constant of 4 or more, and a dielectric constant having excellent solubility in the electrolyte and the organic polymer compound.
an ion-conductive solid composition comprising an organic solvent of less than 10%, and the content of the organic solvent contained in the solid composition is at least an amount that causes the organic polymer compound to be swollen; 90wt% or less of the solid body composition, and the content of the electrolyte is about
An ion conductive solid composition characterized in that the amount is selected to be at least an amount that provides an ionic conductivity of 10 -8 S·cm -1 or more and at most 90 mo% of the solid composition.
JP56022571A 1981-02-18 1981-02-18 Ionic conductive solid composition Granted JPS57137360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56022571A JPS57137360A (en) 1981-02-18 1981-02-18 Ionic conductive solid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56022571A JPS57137360A (en) 1981-02-18 1981-02-18 Ionic conductive solid composition

Publications (2)

Publication Number Publication Date
JPS57137360A JPS57137360A (en) 1982-08-24
JPS6123945B2 true JPS6123945B2 (en) 1986-06-09

Family

ID=12086557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56022571A Granted JPS57137360A (en) 1981-02-18 1981-02-18 Ionic conductive solid composition

Country Status (1)

Country Link
JP (1) JPS57137360A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1321617C (en) * 1988-09-12 1993-08-24 Mhb Joint Venture (A Partnership) Ultrathin polymer electrolyte having high conductivity

Also Published As

Publication number Publication date
JPS57137360A (en) 1982-08-24

Similar Documents

Publication Publication Date Title
Watanabe et al. Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4
Sun et al. Enhanced lithium‐ion transport in PEO‐based composite polymer electrolytes with ferroelectric BaTiO3
Ghosh et al. Self-assembly of a conducting polymer nanostructure by physical crosslinking: applications to conducting blends and modified electrodes
Croce et al. Properties of mixed polymer and crystalline ionic conductors
Yusuf et al. Preparation and electrical characterization of polymer electrolytes: A review
JPH01294768A (en) Liquid containing polymer network as a solid electrolyte
Ghosh et al. Networks of electron‐conducting polymer in matrices of ion‐conducting polymers applications to fast electrodes
Magistris et al. PEO‐based polymer electrolytes
Cameron et al. The mechanism of conductivity of liquid polymer electrolytes
Amudha et al. Silver ion conducting characteristics of a polyethylene oxide-based composite polymer electrolyte and application in solid state batteries
Maitra et al. POSS based electrolytes for rechargeable lithium batteries
Dannoun et al. The study of impedance, ion transport properties, EEC modeling, dielectric and electrochemical characteristics of plasticized proton conducting PVA based electrolytes
JPH0367304B2 (en)
Cyriac et al. Modification in the microstructure of sodium carboxymethylcellulose/polyvinyl alcohol polyblend films through the incorporation of NaNO3 for energy storage applications
Morales et al. Thermal and electrical characterization of plasticized polymer electrolytes based on polyethers and polyphosphazene blends
JPS60195877A (en) Positive electrode for cell
JPS6123944B2 (en)
JPS6123947B2 (en)
US3539881A (en) Electrolytic capacitor containing an organic acid-base azeotropic mixture as the electrolyte
Muhamaruesa et al. Studies of ionic conductivity and AC conduction mechanism of 2-hydroxyethyl cellulose based solid polymer electrolytes
FI96141B (en) Ion-selective electrode and method for manufacturing an ion-selective electrode
JPS6123945B2 (en)
JPS6123946B2 (en)
JP2001200125A (en) Ionically conductive composition
US8120893B2 (en) Tether-containing conducting polymers