【発明の詳細な説明】[Detailed description of the invention]
本発明は非水電解液、とくに高温使用に耐えう
る非水電解液に関する。
リチウム、マグネシウムなどの軽金属を負極活
物質とし、フツ化炭素、硫化銅クロム酸銀、二酸
化マンガンなどを正極活物質とし、非水系の有機
電解液を用いる有機電解質電池は、高エネルギー
密度を有する電池として知られ、なかでもリチウ
ム電池は小型あるいは携帯用電子機器のめざまし
い普及に伴つて急速にその需要をのばしている。
電子機器の普及に伴い、その使用環境や条件も
多岐にわたり、特殊な環境においても使用可能な
電池も必要となつている。高温環境もそのひとつ
であり、エンジンやモーター、あるいは熱源など
の付近で使用される電子機器が増え、これに使用
される高い信頼性を有する電池が必要となつてい
る。
従来の有機電解質電池は他の水溶液系の電池に
比べて使用温度範囲の広いものであるが、使用さ
れる有機溶剤の沸点の関係で一般的に温度60〜80
℃が高温側の使用限界になつている。このため従
来の電池はこの限界温度以上で使用した場合に
は、電池の内圧が上昇し漏液を生じたり、電池性
能の劣化を招く。さらには電池が破烈するなど
様々な障害を起し、信頼性に欠けるものであつ
た。また、使用温度範囲内ではあつても、高い温
度側での長期保存や長期使用は電池性能を劣化さ
せるため、そのような使用にはあまり適していな
かつた。
高温で使用する電池として溶隔塩を電解質とす
る一連の固体電解質電池が開発されているが、こ
れらは高温でしか使用することができないうえ
に、その使用温度が高すぎるため、大規模な発電
システムを要し、特殊用途以外に広く実用化され
るに至つていない。
本発明の目的は、かかる従来の有機電解液およ
び電解質の欠点に対処する非水電解液を提供する
ことにある。
本発明の非水電解液は、周期律表の族または
族の少くとも一方に属する金属のイオンからな
る電解質とシロキサンを主鎖あるいは主成分とす
る液状の高分子化合物からなることを特徴とす
る。
本発明は非水電解液(以下電解液と略称する)
の溶剤としてシロキサン
The present invention relates to a non-aqueous electrolyte, particularly a non-aqueous electrolyte that can withstand high-temperature use. Organic electrolyte batteries, which use light metals such as lithium and magnesium as negative electrode active materials and carbon fluoride, copper sulfide silver chromate, manganese dioxide, etc. as positive electrode active materials, and use a non-aqueous organic electrolyte, are batteries with high energy density. Among them, demand for lithium batteries is rapidly increasing due to the remarkable spread of small and portable electronic devices. BACKGROUND ART With the spread of electronic devices, the environments and conditions in which they are used are becoming more diverse, and there is a need for batteries that can be used even in special environments. High-temperature environments are one such environment, and as more electronic devices are used near engines, motors, or heat sources, there is a need for highly reliable batteries for use in these devices. Conventional organic electrolyte batteries have a wider operating temperature range than other aqueous batteries, but due to the boiling point of the organic solvent used, they generally have a temperature range of 60 to 80°C.
℃ has become the upper limit for use on the high temperature side. For this reason, when conventional batteries are used at temperatures above this limit temperature, the internal pressure of the battery increases, causing leakage and deterioration of battery performance. Furthermore, they suffered from various problems such as batteries exploding, and were unreliable. Further, even if the temperature is within the operating temperature range, long-term storage or long-term use at high temperatures deteriorates battery performance, so it is not very suitable for such uses. A series of solid electrolyte batteries that use solvation salt as an electrolyte have been developed as batteries for use at high temperatures, but these can only be used at high temperatures, and the operating temperature is too high for large-scale power generation. system, and it has not been widely put into practical use other than for special purposes. It is an object of the present invention to provide a nonaqueous electrolyte that addresses the drawbacks of such conventional organic electrolytes and electrolytes. The non-aqueous electrolyte of the present invention is characterized by comprising an electrolyte comprising ions of a metal belonging to a group or at least one of the groups of the periodic table, and a liquid polymer compound having siloxane as its main chain or main component. . The present invention is a non-aqueous electrolyte (hereinafter abbreviated as electrolyte).
Siloxane as a solvent for
【式】を主鎖あ
るいは主成分とする液状の高分子化合物を用いて
いることを特徴とする。
この高分子化合物の代表的なものにシリコーン
オイルやシリコーンワニスなどのシリコーン化合
物があるが、耐熱性、耐薬品性、絶縁性などに優
れるものとして知られている。そこで発明者ら
は、このシロキサンを主鎖あるいは主成分とする
液状の高分子化合物の中に電池の電解液の溶剤と
しての適用を試みた。電池の電解液の溶媒として
の必要条件は種々あるが、とくにイオン伝導のキ
ヤリアーを生成するために電解質を良く溶解する
こととイオンの移動度が高いことが必要である。
したがつて、いくら耐熱性、耐薬品性、絶縁性に
優れていても、電解質に対する溶解度が低かつた
り、イオンの移動度が低かつたりすると、高いイ
オン導電率は得られず電解液の溶剤には適さない
ことになる。発明者らはこの高分子化合物の分子
量、末端基、および官能基などを適当に変えた
り、あるいは他の高分子化合物と共重合体を形成
させたりすることによつて、この高分子化合物が
電解液の溶剤として適用可能であることを見出し
た。
以下、本発明を実施例にて説明する。
実施例 1
末端基が水酸基で分子量が約2000である市販の
ポリジメチルシロキサンを温度約190℃、圧力
10-2torr以下で20時間脱水処理を施した。このポ
リジメチルシロキサン10c.c.に過塩素酸リチウムを
適量加え、温度約120℃で5〜10時間撹拌し、溶
解した。これによつて電解質濃度が0.1〜2.0m
ol/の電解液を調製した。これらの電解液のイ
オン導電率を白金電極を有する電導度計で測定
し、その結果を第1図のAに示した。この電解液
は電解質濃度が0.7〜1.3mol/のあたりでイオ
ン導電率の最大値を示し、その値は約1.7×
10-3U/cmであつた。
次に、これらの電解液を温度150℃の恒温槽に
20時間入れ、重量、粘度、およびイオン導電率な
どの変化を調べた。その結果、これらの値にはほ
とんど変化がなく、電解液は加熱による変化をほ
とんど受けなかつた。このことより、この電解液
は150℃という高温環境においても安定であり高
い信頼性を有することが確認された。
実施例 2
分子量が約1200で約40重量部のエチレンオキサ
イドを含有するポリジメチルシロキサンとエチレ
ンオキサイドの共重合体(以下PS−EOと記述す
る)を温度約200℃、圧力10-2torr以下で48時間
減圧加熱し、さらに吸水性の強いモレキユラシー
ブによつて十分に脱水処理を施した。このPS−
EO 10c.c.にチオシアン酸リチウムを適量加え、温
度120℃で5〜10時間撹拌して溶解し、電解質濃
度が0.1〜2.0mol/の電解液を調製した。これ
らの電解液のイオン導電率を白金電極を有する電
導度計で測定し、その結果を第1図のBに示し
た。この電解液は電解質濃度が1.0〜1.5mol/
のあたりでイオン導電率の最大値を示し、その値
は約7.0×10-4U/cmであつた。
次に実施例1同様に、温度150℃での安定性を
調べたところ、本実施例の電解液も信頼性が高い
ことが確認された。
実施例 3
本実施例では、本発明による電解液を用いた電
池について記述する。
実施例2と同様に脱水処理されたPS−EO 20
c.c.に過塩素酸リチウム2.1grを入れ、温度約120℃
で8時間撹拌し溶解させ、電解質濃度が約1.0m
ol/の電解液を調製した。
次に、正極活物質の二酸化マンガン10重量部と
導電剤のアセチレンブラツク1重量部と結着剤の
テフロン粉末1重量部と結着剤のテフロン粉末1
重量部を十分に混合し、この混合物0.5grを圧力
2000Kg/cm2で加圧成形し、直径16mm厚さ約1.0mm
のペレツトを形成した。このペレツトを上記の電
解液10c.c.の中に浸し48時間放置し、電解液をペレ
ツト中に浸み込ませたものを正極体1とした。
隔膜2は、厚さ0.25mmのポリプロピレン製不織
布を直径18mmで切り抜き、これを残りの電解液中
に浸し24時間放置し、十分に電解液を浸み込ませ
て準備した。
負極体3は厚さ0.5mmのリチウムシートを直径
14mmに打ち抜いて準備した。
次に内側にステンレスメツシユ4を溶接した外
装ケース5,6と絶縁リング7の中に正極体1、
セパレータ2、負極体3の順に積層し、外装ケー
ス6の端部をカシメて密封し、第2図のような直
径20mm、厚さ2.8mmのコイン型電池を作製した。
この電池を温度20℃、80℃、140℃の各恒温槽
に入れ、負荷抵抗25kΩを取り付けて放置させた。
各々の放電特性を第3図のC、D、Eに示す。ま
た、温度140℃の恒温槽に10日間保存した後、室
温で負荷抵抗25kΩを取り付けて放電させた電池
の放電特性を第3図のFに示す。
これらの全ての電池は、保存中も放電中にも破
烈や漏液がなく良好な特性を示した。特に高温に
なるほど電解液のイオン導電率が高くなり特性が
向上した。また、高温で保存した場合も放電特性
の劣化がほとんど見られなかつた。
本実施例では、絶縁リング7にポリプロピレン
製のものを用いたので、高温での実験の際にあま
り高温にしすぎると絶縁リング7が軟化し電池の
特性を劣化させることが考えられた。そのため、
本実施例では温度140℃までの評価を行なつたが、
絶縁リング7にもつと高耐熱の材料のものを使用
することにより、温度140℃以上でも使用可能な
電池が得られるものと考えられる。
実施例1および2における電解液の調製から評
価までの工程と、実施例3における電池作製まで
の工程は、アルゴン不活性ガス雰囲気下でなされ
た。
() 実施例1では電解質に過塩素酸リチウムを
用いた場合について述たが、本実施例の溶剤は
チオシアン酸リチウム、ホウ弗化リチウム、チ
オシアン酸ナトリウムなどの電解質も可溶であ
り、その電解液は良好なイオン導電率を示し
た。
() 同様に、実施例2における溶剤も上述の電
解質を可溶であり、その電解液は良好なイオン
導電率を示した。
() また、実施例1および2の溶剤が難溶の電
解質であつても、各々の溶剤の分子量や末端
基、あるいは共重合の組成比を変えることによ
り、その電解質が可溶な溶剤を得ることがで
き、その電解液は良好なイオン導電率を示し
た。
() 実施例1〜3で用いられた溶剤はいずれも
絶縁性に優れるものであり、その電解液はほと
んど電子伝導性が非常に小さかつた。同様に他
の溶剤を用いた電解液も電子伝導性が非常に小
さかつた。
() 実施例3では、負極活物質にリチウムを、
正極活物質に二酸化マンガンを用いた電池につ
いて記述したが、前述した他の活物質を用いた
場合にも良好な特性を示した。
本発明によれば、イオン導電性が高く、高温使
用が可能であり高温環境でも高信頼性の電池が得
られる非水電解液が得られる。It is characterized by using a liquid polymer compound whose main chain or main component is [Formula]. Silicone compounds such as silicone oil and silicone varnish are typical of these polymer compounds, and are known to have excellent heat resistance, chemical resistance, insulation properties, and the like. Therefore, the inventors attempted to apply this liquid polymer compound having siloxane as a main chain or main component as a solvent for battery electrolyte solution. There are various requirements for a battery electrolyte to be used as a solvent, but in particular it must be able to dissolve the electrolyte well and have high ion mobility in order to generate a carrier for ion conduction.
Therefore, no matter how good the heat resistance, chemical resistance, and insulation properties are, if the solubility in the electrolyte is low or the ion mobility is low, high ionic conductivity cannot be obtained and the electrolyte solvent It will not be suitable for The inventors discovered that this polymer compound can be electrolyzed by appropriately changing its molecular weight, terminal groups, functional groups, etc., or by forming a copolymer with other polymer compounds. It has been found that it can be used as a solvent for liquids. The present invention will be explained below with reference to Examples. Example 1 A commercially available polydimethylsiloxane with a hydroxyl group at the end and a molecular weight of about 2000 was heated at a temperature of about 190°C and under pressure.
Dehydration treatment was performed for 20 hours at 10 -2 torr or less. An appropriate amount of lithium perchlorate was added to 10 c.c. of this polydimethylsiloxane, and the mixture was stirred at a temperature of about 120° C. for 5 to 10 hours to dissolve. This results in an electrolyte concentration of 0.1 to 2.0 m
An electrolyte solution of 1 ol/l was prepared. The ionic conductivity of these electrolytes was measured using a conductivity meter equipped with a platinum electrode, and the results are shown in A of FIG. This electrolyte shows the maximum value of ionic conductivity when the electrolyte concentration is around 0.7 to 1.3 mol/, and the value is about 1.7×
It was 10 -3 U/cm. Next, these electrolytes are placed in a constant temperature bath at a temperature of 150℃.
After 20 hours of storage, changes in weight, viscosity, ionic conductivity, etc. were examined. As a result, there was almost no change in these values, and the electrolyte was hardly changed by heating. From this, it was confirmed that this electrolyte is stable and highly reliable even in a high temperature environment of 150°C. Example 2 A copolymer of polydimethylsiloxane and ethylene oxide (hereinafter referred to as PS-EO) having a molecular weight of about 1200 and containing about 40 parts by weight of ethylene oxide was heated at a temperature of about 200°C and a pressure of 10 -2 torr or less. The mixture was heated under reduced pressure for 48 hours, and then thoroughly dehydrated using a highly water-absorbing molecular sieve. This PS-
An appropriate amount of lithium thiocyanate was added to EO 10 c.c. and dissolved by stirring at a temperature of 120° C. for 5 to 10 hours to prepare an electrolyte solution having an electrolyte concentration of 0.1 to 2.0 mol/. The ionic conductivities of these electrolytic solutions were measured using a conductivity meter equipped with a platinum electrode, and the results are shown in FIG. 1B. This electrolyte has an electrolyte concentration of 1.0 to 1.5 mol/
The ionic conductivity reached its maximum value around 7.0×10 -4 U/cm. Next, as in Example 1, stability at a temperature of 150° C. was investigated, and it was confirmed that the electrolytic solution of this example also had high reliability. Example 3 This example describes a battery using the electrolyte according to the present invention. PS-EO 20 dehydrated in the same manner as Example 2
Put 2.1gr of lithium perchlorate in cc and the temperature is about 120℃
Stir for 8 hours to dissolve the electrolyte, and the electrolyte concentration is approximately 1.0 m
An electrolyte solution of 1 ol/l was prepared. Next, 10 parts by weight of manganese dioxide as a positive electrode active material, 1 part by weight of acetylene black as a conductive agent, 1 part by weight of Teflon powder as a binder, and 1 part by weight of Teflon powder as a binder.
Mix the parts by weight thoroughly and pressurize 0.5gr of this mixture.
Pressure molded at 2000Kg/ cm2 , diameter 16mm, thickness approx. 1.0mm
pellets were formed. The pellets were immersed in 10 c.c. of the above electrolytic solution and left to stand for 48 hours to allow the electrolytic solution to soak into the pellets to form a positive electrode body 1. Diaphragm 2 was prepared by cutting out a 0.25 mm thick polypropylene nonwoven fabric with a diameter of 18 mm, immersing it in the remaining electrolyte solution, and leaving it for 24 hours to allow the electrolyte solution to fully penetrate. Negative electrode body 3 is a lithium sheet with a thickness of 0.5 mm.
I punched it out to 14mm and prepared it. Next, the positive electrode body 1 is placed inside the outer cases 5 and 6 with the stainless mesh 4 welded inside, and the insulating ring 7.
The separator 2 and the negative electrode body 3 were laminated in this order, and the ends of the outer case 6 were caulked and sealed to produce a coin-type battery having a diameter of 20 mm and a thickness of 2.8 mm as shown in FIG. 2. This battery was placed in thermostatic chambers at temperatures of 20°C, 80°C, and 140°C, and a load resistance of 25 kΩ was attached and allowed to stand.
The discharge characteristics of each are shown in C, D, and E of FIG. Furthermore, F in Figure 3 shows the discharge characteristics of a battery that was stored in a constant temperature bath at a temperature of 140°C for 10 days and then discharged at room temperature with a load resistance of 25 kΩ. All these batteries exhibited good characteristics without bursting or leaking during storage or discharge. In particular, the higher the temperature, the higher the ionic conductivity of the electrolyte and the improved properties. Further, even when stored at high temperatures, almost no deterioration in discharge characteristics was observed. In this example, since the insulating ring 7 was made of polypropylene, it was considered that if the temperature was too high during the experiment at high temperature, the insulating ring 7 would soften and deteriorate the characteristics of the battery. Therefore,
In this example, evaluation was performed at temperatures up to 140°C.
It is believed that by using a highly heat-resistant material for the insulating ring 7, a battery that can be used at temperatures of 140° C. or higher can be obtained. The steps from preparing the electrolyte to evaluation in Examples 1 and 2 and the steps up to battery production in Example 3 were performed under an argon inert gas atmosphere. () In Example 1, the case where lithium perchlorate was used as the electrolyte was described, but the solvent in this example is also soluble in electrolytes such as lithium thiocyanate, lithium borofluoride, and sodium thiocyanate, and the electrolyte The liquid showed good ionic conductivity. () Similarly, the solvent in Example 2 was also able to dissolve the above-mentioned electrolyte, and the electrolyte showed good ionic conductivity. ()Also, even if the solvents in Examples 1 and 2 are poorly soluble electrolytes, by changing the molecular weight, terminal group, or copolymerization composition ratio of each solvent, a solvent in which the electrolyte is soluble can be obtained. The electrolyte showed good ionic conductivity. () All of the solvents used in Examples 1 to 3 had excellent insulating properties, and most of the electrolytes had very low electronic conductivity. Similarly, electrolytes using other solvents also had very low electronic conductivity. () In Example 3, lithium was used as the negative electrode active material,
Although a battery using manganese dioxide as the positive electrode active material has been described, good characteristics were also shown when other active materials mentioned above were used. According to the present invention, a nonaqueous electrolyte is obtained that has high ionic conductivity, can be used at high temperatures, and provides a highly reliable battery even in a high-temperature environment.
【図面の簡単な説明】[Brief explanation of drawings]
第1図は本発明による電解液の電解質濃度とイ
オン導電率の相関図であり、第2図は本発明によ
る電解液を用いたコイン型電池の断面図であり、
第3図は本発明による電解液を用いたコイン型電
池の放電特性である。
A……溶剤がポリジメチルシロキサンで電解質
が過塩素酸リチウムからなるもの、B……溶剤が
ポリジメチルシロキサンとエチレンオキサイドの
共重合体で電解質がチオシアン酸リチウムのも
の、C……温度20℃での放電特性、D……温度80
℃での放電特性、E……温度140℃での放電特性、
F……温度140℃で10日間保存後の温度20℃での
放電特性、1……正極体、2……隔膜、3……負
極体、4……ステンレスメツシユ、5および6…
…外装ケース、7……絶縁リング。
FIG. 1 is a correlation diagram between the electrolyte concentration and ionic conductivity of the electrolytic solution according to the present invention, and FIG. 2 is a cross-sectional view of a coin-type battery using the electrolytic solution according to the present invention.
FIG. 3 shows the discharge characteristics of a coin-type battery using the electrolyte according to the present invention. A... The solvent is polydimethylsiloxane and the electrolyte is lithium perchlorate, B... The solvent is a copolymer of polydimethylsiloxane and ethylene oxide and the electrolyte is lithium thiocyanate, C... At a temperature of 20°C Discharge characteristics, D...temperature 80
Discharge characteristics at ℃, E...Discharge characteristics at a temperature of 140℃,
F... Discharge characteristics at a temperature of 20°C after storage at a temperature of 140°C for 10 days, 1... Positive electrode body, 2... Diaphragm, 3... Negative electrode body, 4... Stainless steel mesh, 5 and 6...
...Exterior case, 7...Insulation ring.