JPS60216463A - Cell - Google Patents

Cell

Info

Publication number
JPS60216463A
JPS60216463A JP7042684A JP7042684A JPS60216463A JP S60216463 A JPS60216463 A JP S60216463A JP 7042684 A JP7042684 A JP 7042684A JP 7042684 A JP7042684 A JP 7042684A JP S60216463 A JPS60216463 A JP S60216463A
Authority
JP
Japan
Prior art keywords
cell
batteries
ion conductive
group
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7042684A
Other languages
Japanese (ja)
Inventor
Masashi Oi
大井 正史
Tetsuo Suzuki
哲雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP7042684A priority Critical patent/JPS60216463A/en
Publication of JPS60216463A publication Critical patent/JPS60216463A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To decrease the aging change of a cell, extend its life, and improve the reliability by using a specific copolymer made of dimethyl siloxane and polyethylene oxide and metal ions of I or II group as the main constituent of an ion conductive material. CONSTITUTION:An ion conductive compound containing a bridge-solidified copolymer made of dimethyl siloxane and polyethylene oxide as expressed by a constitutional formula and an electrolyte made of metal ions of I or II group is used as the main constituent of the ion conductive material of a cell. Accordingly, the solid cell having no danger of leakage and high reliability can be formed. Furthermore, the cell has little aging deterioration and can be stored and used at a high temperature.

Description

【発明の詳細な説明】 (技術分野) 本発明は電波に関し、とくに高分子化合物を主成分とす
るイオン導電性化合物を含有する電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to radio waves, and particularly to a battery containing an ionically conductive compound whose main component is a polymer compound.

(従来技術) 近年、小型あるいは携帯用の電子機器のめずましい普及
に伴い、その電源として小型で高性能な電池の需要が急
速に伸びている。これらの電池には高エネルギー密度や
高率放電など高性能化はむろんのこと、長寿命、高信頼
性など様々な要求が課せられている。
(Prior Art) In recent years, with the rapid spread of small or portable electronic devices, the demand for small, high-performance batteries as their power sources is rapidly increasing. These batteries are required not only to have high performance such as high energy density and high rate discharge, but also to have a long life and high reliability.

一般に電池は使用される材料によって湿式電池と固体電
池とに大別されるが、現状では湿式電池と称される電池
が良好な特性を有し、かつ低価格であるため広く実用化
されている。
Batteries are generally classified into wet type batteries and solid-state batteries depending on the materials used, but at present, batteries called wet type batteries have good characteristics and are low in price, so they are widely put into practical use. .

しかし、湿式電池はイオン導電性材料として電解質溶液
、すなわち材料に水または有機溶媒などの液体を含有す
る材料を用いているため、電池外部への漏液という問題
が常に存在し、との漏液により電池の性能劣化や周辺部
品の損傷を引き起す場合がある。湿式電池ではこの漏液
の改良のために多大の努力が払われているが、未だに漏
液の危険性を完全に払拭することはできず高信頼性の面
で不十分である欠点を有する。
However, since wet-type batteries use an electrolyte solution as an ion-conductive material, that is, a material containing a liquid such as water or an organic solvent, there is always the problem of liquid leaking to the outside of the battery. This may cause deterioration of battery performance and damage to peripheral components. Although great efforts have been made to improve the leakage of wet batteries, the risk of leakage still cannot be completely eliminated and the batteries have the disadvantage of being insufficient in terms of high reliability.

一方、固体電池は、本質的に高信頼性の長寿命な電池と
なりうるものであるが、主にそのイオン導電性材料とな
る固体電解質の特性2価格および加工性などの欠点によ
って広く実用化されるに至っていない。
On the other hand, solid-state batteries inherently have the potential to be highly reliable and long-lasting batteries, but they have not been widely put into practical use mainly due to the characteristics of the solid electrolyte that is the ionic conductive material, and drawbacks such as price and processability. This has not yet been achieved.

発明者らは、以上のような従来の電池の欠点を改善すべ
く、一連の高分子化合物を主成分とする固形体のイオン
導電性材料を開発している。すなわち、特願昭56−0
22570.56−022571 。
In order to improve the above-mentioned drawbacks of conventional batteries, the inventors have developed solid ion-conductive materials containing a series of polymer compounds as main components. In other words, the patent application 1986-0
22570.56-022571.

56−029090,56−029091号明細書に示
すところのイオン導電性円形体組成物がそれである。
The ionically conductive circular body compositions disclosed in Patent No. 56-029090 and No. 56-029091 are examples of such compositions.

イオン導電性円形体組成物は有機高分子化合物。The ionic conductive circular body composition is an organic polymer compound.

有機溶媒および電解質の3成分を主体とするものであり
、比較的高いイオン導電率と良好な機械的加工性を有す
る。このイオン導電性材料を用いた電池は、信頼性の面
で湿式電池より優れ、実用性の面で固体電池より優れる
ものである。
It mainly consists of three components: an organic solvent and an electrolyte, and has relatively high ionic conductivity and good mechanical workability. Batteries using this ion conductive material are superior to wet batteries in terms of reliability and superior to solid batteries in terms of practicality.

しかしながら、従来のイオン導電性円形体組成物は有機
溶媒を含有するため、保存環境、とくに高温環境におい
ては有機溶媒が微量ながら気化する傾向があり、このた
めにイオン導電率が経時劣化する場合がある。このよう
な経時劣化はたとえその程度が非常に小さいものであっ
ても、長寿命。
However, since conventional ionically conductive circular body compositions contain organic solvents, the organic solvents tend to vaporize in small amounts in storage environments, particularly in high-temperature environments, and as a result, ionic conductivity may deteriorate over time. be. Even if the degree of deterioration over time is very small, it will affect the product's lifespan.

高信頼性が要求される電池においては大きな欠点となっ
ている。
This is a major drawback in batteries that require high reliability.

(発明の目的) 本発明の目的はかかる従来欠点を除去した電池を提供す
ることにある。
(Object of the Invention) An object of the present invention is to provide a battery that eliminates such conventional drawbacks.

(発明の構成) 本発明によれば電池のイオン導電性材料として、表わさ
れるジメチルシロキサンとポリ(エチレンオキサイド)
との共重合体と、周期律表の■族または■族の金属イオ
ンから成る電解質とを含むイオン導電性化合物を主成分
として用いることを特徴とする電池が得られる。
(Structure of the Invention) According to the present invention, dimethylsiloxane and poly(ethylene oxide) are used as ionically conductive materials for batteries.
A battery is obtained which is characterized in that it uses as a main component an ionically conductive compound containing a copolymer with a metal ion of Group 1 or Group 2 of the periodic table, and an electrolyte comprising a metal ion of Group 1 or Group 2 of the periodic table.

ジメチルシロキサンとポリ(エチレンオキサイド)の共
重合体は、一般的にはジメチルジクロルシランとポリ(
エチレングリコール)とを反応させ、脱塩酸重縮合反応
で交互共1合体として得られる。ジ(エチレングリコー
ル)、トリ(エチレングリコール)あるいはテトラ(エ
チレングリコール)など繰返し単位の比較的小さいポリ
(エチレングリコール)を使用した共重合体は液状であ
る。この共重合体は、エチレンオキサイド基を主鎖中に
有するところから、容易に過塩素酸リチウムやチオシア
ン酸ナトリウム々どの電解質を溶解・解離することがで
きる。また、ジメチルシロキサン基は共重合体のガラス
転移点を下げ、イオンの易動度を増す働きをするもので
ある。
Copolymers of dimethylsiloxane and poly(ethylene oxide) are generally copolymers of dimethyldichlorosilane and poly(ethylene oxide).
(ethylene glycol), and is obtained as an alternating comonomer by dehydrochloric acid polycondensation reaction. Copolymers using poly(ethylene glycol) with relatively small repeating units, such as di(ethylene glycol), tri(ethylene glycol), or tetra(ethylene glycol), are liquid. Since this copolymer has an ethylene oxide group in its main chain, it can easily dissolve and dissociate electrolytes such as lithium perchlorate and sodium thiocyanate. Furthermore, the dimethylsiloxane group functions to lower the glass transition point of the copolymer and increase the mobility of ions.

このような性質を有する共重合体を架橋固化し、さらに
電解質を分散させることにより、固体のイオン導電性化
合物が得られる。したがって、リチウム電池などを形成
する場合には、固体の正極活物質を用いることにより、
完全な固体電池が得られる。また、このイオン導電性化
合物は、高分子化合物の有する優れた機械的性質を具現
できる材料であり、積層型、巻き型あるいはシート状な
ど様々な電池形状にも容易に加工できるものである。
By crosslinking and solidifying a copolymer having such properties and further dispersing an electrolyte, a solid ionically conductive compound can be obtained. Therefore, when forming a lithium battery etc., by using a solid positive electrode active material,
A complete solid state battery is obtained. Further, this ion conductive compound is a material that can realize the excellent mechanical properties of a polymer compound, and can be easily processed into various battery shapes such as a stacked type, a rolled type, or a sheet type.

(実施例) 5− 以下、本発明を実施例にて第1図、第2図を参照して詳
細に説明する。
(Example) 5- Hereinafter, the present invention will be explained in detail by way of an example with reference to FIGS. 1 and 2.

負極活物質にリチウム、正極活物質に二酸化マンガンを
用い、第1図のようなコイン型電池を作製した場合につ
いて説明する。
A case will be described in which a coin-type battery as shown in FIG. 1 is manufactured using lithium as a negative electrode active material and manganese dioxide as a positive electrode active material.

イオン導電性隔膜1は次のように準備した。The ion conductive diaphragm 1 was prepared as follows.

ジメチルジクロルシラン65.1 gr とテトラ(エ
チレングリコール)55.6gr をベンゼン中で温度
0℃を保持して72時間攪拌反応し、さらにこれを温度
60℃に昇温して72時間反応を促進した後、これを温
度60℃のまま減圧下で48時間反応させて反応を完結
レジメチルシロキサンとテトラ(エチレングリコール)
の共重合体を得た。目的とする反応の進行および完結は
核磁気共鳴スペクトル(NMR,)により確認した。
65.1 gr of dimethyldichlorosilane and 55.6 gr of tetra(ethylene glycol) were reacted in benzene with stirring for 72 hours while maintaining the temperature at 0°C, and the reaction was further heated to 60°C to promote the reaction for 72 hours. After that, the reaction was completed at a temperature of 60°C under reduced pressure for 48 hours to complete the reaction.
A copolymer was obtained. Progress and completion of the desired reaction was confirmed by nuclear magnetic resonance spectroscopy (NMR).

次に、得られた共重合体1.Ogr とトリエチレング
リコールジメタアクレート0.15 gr と過酸化ヘ
ンジイル0.12 gr の王者を混合し、これをテフ
ロン板上に流延した後、温度120℃で24時間加熱し
”C架橋固化させ厚さ60μmの白色膜6− を得た。
Next, the obtained copolymer 1. Mix Ogr, 0.15 gr of triethylene glycol dimethacrylate, and 0.12 gr of hendiyl peroxide, and after casting this on a Teflon plate, heat it at a temperature of 120°C for 24 hours to solidify the "C" crosslinking. A white film 6- with a thickness of 60 μm was obtained.

この膜をアセトンに浸漬し、分解生成物、未架橋物、未
反応モノマーなどを洗浄した後、膜20重量部に対して
31景部の過塩素酸リチウムをアセトンに溶解した溶液
を膜中に膨潤させた後、アセトンを乾燥・除去して固体
化しイオン導電性化合物の薄膜を得た。この操作により
電解質である過塩素酸リチウムは膜中に導入された。な
お、導入された過塩素酸リチウムをハロゲン分析で定量
したところ131i%の組成比となった。この薄膜を直
径20mmで打ち抜いてイオン導電性隔膜1を得た。
After immersing this membrane in acetone to wash away decomposition products, uncrosslinked substances, unreacted monomers, etc., a solution of 31 parts by weight of lithium perchlorate dissolved in acetone per 20 parts by weight of the membrane was added to the membrane. After swelling, the acetone was dried and removed to solidify to obtain a thin film of the ionically conductive compound. Through this operation, lithium perchlorate, which is an electrolyte, was introduced into the membrane. The introduced lithium perchlorate was quantified by halogen analysis and found to have a composition ratio of 131i%. This thin film was punched out to a diameter of 20 mm to obtain an ion conductive diaphragm 1.

上述のイオン導電性化合物の薄膜を直径10mに打ち抜
き、これをリチウム箔ではさみ、周波数l K Hzの
交流でイオン導電率を測定したところ3.2X10 8
/c、mの値が得られた。捷だ、この薄膜は良好な強度
と柔軟性を有するものであり、様々な形状に容易に加工
できるものであった。
A thin film of the above-mentioned ion conductive compound was punched out to a diameter of 10 m, sandwiched between lithium foils, and the ionic conductivity was measured using alternating current at a frequency of 1 K Hz, and the result was 3.2×10 8
The values of /c and m were obtained. Fortunately, this thin film had good strength and flexibility, and could be easily processed into various shapes.

正極体2は次のように準備した。Positive electrode body 2 was prepared as follows.

イオン導電性材料としては、ポリフッ化ビニリデン、過
塩素酸リチウムおよびプロピレンカーボネイトからなる
イオン導電性向形体組成物を用い、これと二酸化マンガ
ンおよび導電剤であるカーボンを各々重量比で4:15
:1で混合し、さらにこの混合物0.7grを圧力zo
ookg/cdで加圧成型した。これにより、直径18
m、厚さ約1.0mmの正極体2を得た。
As the ion conductive material, an ion conductive composition composed of polyvinylidene fluoride, lithium perchlorate and propylene carbonate was used, and manganese dioxide and carbon as a conductive agent were mixed in a weight ratio of 4:15.
: 1, and then 0.7g of this mixture was heated to
Pressure molding was performed at ookg/cd. This results in a diameter of 18
A positive electrode body 2 having a thickness of about 1.0 mm and a thickness of about 1.0 mm was obtained.

負極体3は厚さ0.4 rrvnのリチウムシートを直
径17wnに打ち抜いて準備した。
The negative electrode body 3 was prepared by punching out a lithium sheet with a thickness of 0.4 rrvn into a diameter of 17wn.

次に正極体2.イオン導電性隔膜1.負極体3を第1図
のように上下の外装ケース4,5内に積層して収容し、
外装ケース5の端部を絶縁リング6を介してカシメて密
封し、外径22叫、厚さ23■のコイン型電池を作製し
た。この電池に100にΩの負荷抵抗を接続して放電特
性を測定し、第2図のAにその結果を示す。さらに、こ
の電池を温度60℃の恒温槽内に20日間保存した後、
同様に放電特性を測定した。その結果を第2図のBに示
す。高温中で保存したにもかかわらず、特性劣化はほと
んどなく良好な特性が得られた。また、この電池は保存
や特性測定中にも漏液や破裂など全くなかった。
Next, positive electrode body 2. Ion conductive diaphragm 1. The negative electrode body 3 is stacked and housed in upper and lower outer cases 4 and 5 as shown in FIG.
The end of the outer case 5 was caulked and sealed via the insulating ring 6 to produce a coin-type battery with an outer diameter of 22mm and a thickness of 23cm. A load resistor of 100Ω to 100Ω was connected to this battery, and the discharge characteristics were measured, and the results are shown in A of FIG. Furthermore, after storing this battery in a constant temperature bath at a temperature of 60°C for 20 days,
The discharge characteristics were measured in the same manner. The results are shown in FIG. 2B. Despite being stored at high temperatures, good properties were obtained with almost no property deterioration. Furthermore, this battery did not leak or burst at all during storage and characteristic measurements.

なお、(イ)本実施例では電池作1!8!までの全ての
工程はアルゴン不活性ガス雰囲気中でなされた。
In addition, (a) In this example, battery production 1!8! All steps up to this point were performed in an argon inert gas atmosphere.

(ロ)本実施例では、イオン導電性隔膜1の材料トシテ
ジメチルシロキサンとテトラ(エチレンオキサイド)と
の共重合体を架橋固化した高分子化合物を用いたが、共
重合体の繰夛返し単位中のエチレンオキサイド基の数を
変えても、すなわちジ(エチレンオキサイド)、トリ(
エチレンオキサイド)など同様の効果が得られた。
(b) In this example, a polymer compound obtained by crosslinking and solidifying a copolymer of dimethylsiloxane and tetra(ethylene oxide) was used as the material for the ion-conductive diaphragm 1. Even if we change the number of ethylene oxide groups, i.e. di(ethylene oxide), tri(
A similar effect was obtained with ethylene oxide).

(ハ)本実施例では、イオン導電性隔膜1の電解質とし
て過塩素酸リチウムを用いたが、イオン導電性化合物中
のエチレンオキサイド基は檀々の電解質に対しても溶解
度を上げる効果を有するものであり、チオシアン酸リチ
ウム、ホウフッ化すチウムやチオシアン酸ナトリウムな
どの電解質を用いても同様の効果が得られた。
(c) In this example, lithium perchlorate was used as the electrolyte for the ion conductive diaphragm 1, but the ethylene oxide group in the ion conductive compound has the effect of increasing solubility in various electrolytes. Similar effects were obtained using electrolytes such as lithium thiocyanate, lithium borofluoride, and sodium thiocyanate.

以上、本発明により次の効果がある。As described above, the present invention has the following effects.

(1)漏液の危険性がなく高信頼性の固体電池ができる
(1) Highly reliable solid-state batteries can be created without the risk of leakage.

9− (II)経時劣化が少なく、高温保存および高温使用が
できる。
9- (II) It has little deterioration over time and can be stored and used at high temperatures.

(iil) イオン導電性隔膜の機械的な加工性が良好
で、種々の形状の電池が得られる。
(iii) The ion conductive diaphragm has good mechanical workability, and batteries of various shapes can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるコイン型電池の断面図であり、第
2図はその放電特性である。 1・・・・・・イオン導電性隔膜、2・・・・・・正極
体、3・・・・・・負極体、4,5・・・・・・外装ケ
ース、6・・・・・°絶縁リング、A・・・・・・放電
特性、B・・・・・・温度60℃で20日間保存後の放
電特性。 10−
FIG. 1 is a sectional view of a coin-type battery according to the present invention, and FIG. 2 shows its discharge characteristics. 1... Ion conductive diaphragm, 2... Positive electrode body, 3... Negative electrode body, 4, 5... Exterior case, 6... °Insulation ring, A...discharge characteristics, B...discharge characteristics after storage at a temperature of 60°C for 20 days. 10-

Claims (1)

【特許請求の範囲】[Claims] 電池のイオン導電性材料として架橋固化したチルシロキ
サンとポリ(エチレンオキサイド)との共重合体と、周
期律表のI族または■族の金属イオンから成る電解質と
を含むイオン導電性化合物を主成分として用いることを
特徴とする電池。
As an ion-conductive material for batteries, the main component is an ion-conductive compound containing a copolymer of cross-linked solidified tilsiloxane and poly(ethylene oxide), and an electrolyte consisting of metal ions from Group I or Group II of the periodic table. A battery characterized by being used as a battery.
JP7042684A 1984-04-09 1984-04-09 Cell Pending JPS60216463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7042684A JPS60216463A (en) 1984-04-09 1984-04-09 Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7042684A JPS60216463A (en) 1984-04-09 1984-04-09 Cell

Publications (1)

Publication Number Publication Date
JPS60216463A true JPS60216463A (en) 1985-10-29

Family

ID=13431137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7042684A Pending JPS60216463A (en) 1984-04-09 1984-04-09 Cell

Country Status (1)

Country Link
JP (1) JPS60216463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112512A (en) * 1989-09-28 1992-05-12 Dow Corning Toray Silicone Company, Ltd. Solid polymer electrolyte of an organopolysiloxane crosslinked with polyalkylene oxide
US5194180A (en) * 1988-09-16 1993-03-16 Toray Silicone Co., Ltd. Ionically conductive material and method for its preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194180A (en) * 1988-09-16 1993-03-16 Toray Silicone Co., Ltd. Ionically conductive material and method for its preparation
US5112512A (en) * 1989-09-28 1992-05-12 Dow Corning Toray Silicone Company, Ltd. Solid polymer electrolyte of an organopolysiloxane crosslinked with polyalkylene oxide

Similar Documents

Publication Publication Date Title
US5110694A (en) Secondary Li battery incorporating 12-Crown-4 ether
EP0616381A1 (en) Lithium-based polymer electrolyte electrochemical cell
JP2002187925A (en) Polymeric electrolyte and lithium cell using the same
JP2003017128A (en) Gelled polymer electrolyte, and lithium cell using the same
KR20020084614A (en) Polymer electrolyte and lithium battery employing the same
KR101458468B1 (en) Gel polymer electrolyte containing new copolymers and lithium-polymer secondary battery using the same
JPS59224072A (en) Nonaqueous electrolyte
JPS60195877A (en) Positive electrode for cell
JP4132912B2 (en) Gel electrolyte, its production method and its use
Sehrawat et al. High‐performance sodium ion conducting gel polymer electrolyte based on a biodegradable polymer polycaprolactone
Hashimoto et al. Design of Polymer Network and Li+ Solvation Enables Thermally and Oxidatively Stable, Mechanically Reliable, and Highly Conductive Polymer Gel Electrolyte for Lithium Batteries
JPS60216463A (en) Cell
JPS60217263A (en) Ionic electrically conductive compound
JPH01169873A (en) Cell
KR100457093B1 (en) Fabrication of a polymer electrolyte for lithium/sulfur battery and room temperature lithium/sulfur battery containing the same with one flat voltage
JP2004247274A (en) Ion conductive electrolyte and battery using it
JP2003109594A (en) Electrode material, manufacturing method of the same, electrode for battery using the same, and battery using the electrode
WO2022004628A1 (en) Electrolyte, secondary cell, and composite material
JP4156495B2 (en) Gel electrolyte, its production method and its use
KR100402109B1 (en) Novel Na/S Battery
KR100408514B1 (en) Polymer solid electrolyte and lithium secondary battery employing the same
JPH0224975A (en) Lithium ion conducting polymer electrolyte
KR100357958B1 (en) Lithium primary battery
KR20020083117A (en) Polymeric gel electrolyte and lithium battery employing the same
JPH0384809A (en) Lithium ion conductive polymer electrolyte