JPH0482166A - Manufacture of solid electrolytic sheet - Google Patents

Manufacture of solid electrolytic sheet

Info

Publication number
JPH0482166A
JPH0482166A JP2196831A JP19683190A JPH0482166A JP H0482166 A JPH0482166 A JP H0482166A JP 2196831 A JP2196831 A JP 2196831A JP 19683190 A JP19683190 A JP 19683190A JP H0482166 A JPH0482166 A JP H0482166A
Authority
JP
Japan
Prior art keywords
solid electrolyte
sulfide
sheet
electrolyte powder
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2196831A
Other languages
Japanese (ja)
Inventor
Takeo Hara
武生 原
Tadashi Yasuda
直史 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP2196831A priority Critical patent/JPH0482166A/en
Publication of JPH0482166A publication Critical patent/JPH0482166A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve workability, productivity, shelf stability, flexibility and adhesiveness to an electrode active material by charging a mixed solution containing a multicomponent amorphous solid electrolyte powder composed of a specified compound, lithium iodide and lithium sulfide and a high polymer elastic body into an opening of non-conductive netting body, and thereafter drying them. CONSTITUTION:A multicomponent amorphous solid electrolytic powder is composed of at least one kind compound selected from a group consisting of boron sulfide, phosphorus sulfide and silicon sulfide, lithium iodide and lithium sulfide. The electrolyte powder is dried and accommodated in a quartz tube, subsequently being sealed in vacuum, and is heated and quenched, to form a massive product. The product is pulverized with a ball mill. The electrolytic sheet is obtained by charging a mixed solution of the solid electrolyte powder, high polymer elastic body and a solution in an opening of a non-conductive netting body, and drying it.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体電解質シートの製造方法に関し、さらに詳
しくは例えば固体マイクロ電池に用いられる、イオン導
電性に優れ、かつ分解電圧の高い固体電解質シートの製
造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a solid electrolyte sheet, and more specifically to a solid electrolyte sheet with excellent ionic conductivity and high decomposition voltage, used for example in solid micro batteries. Relating to a manufacturing method.

〔従来の技術〕[Conventional technology]

電子産業における近年の技術的進歩は著しく、あらゆる
分野にIC,LSI等の電子部品が多く用いられている
。電池技術の分野においても例外ではなく、小型化、薄
型化が図られ、カード型電卓用電源、カメラ用電源、腕
時計用電源等として多量に使用されている。
Technological advances in the electronics industry have been remarkable in recent years, and electronic components such as ICs and LSIs are now widely used in all fields. The field of battery technology is no exception, as batteries are becoming smaller and thinner, and are used in large quantities as power sources for card-type calculators, cameras, wristwatches, and the like.

これらの用途に用いられる電池は、アルカリ電池または
リチウム電池がほとんどであり、使用される電解質はい
ずれも液体電解質である。これら液体電解質を使用した
電池は、電池の封口方法に高度の加工技術を要し、現状
ではガスケットを介したクリンプシールを用いた封口技
術が主に用いられているが、電池が薄(なるほど封口部
材の電池容積に占める割合が増大し、要求される電池容
量の提供が難しくなり、電池の薄型化にも限界がある。
Most of the batteries used in these applications are alkaline batteries or lithium batteries, and the electrolytes used are liquid electrolytes. Batteries that use these liquid electrolytes require advanced processing technology to seal the battery, and currently the sealing technology that uses crimp seals via gaskets is mainly used, As the ratio of the components to the battery volume increases, it becomes difficult to provide the required battery capacity, and there is a limit to how thin the battery can be made.

以上のことから、電池の薄型化および軽量化を図るため
に、新しい電解質材料の開発が試みられており、−例と
して、易加工性、柔軟性等の長所を生かした高分子電解
質の電池等への応用が知られている。その代表的なもの
として、ポリ(メタクリル酸オリゴオキシエチレン)−
アルカリ土属塩基が挙げられるが、該高分子電解質のイ
オン伝導度は最も優れたものでも室温で1O−5s/c
m程度であり、また移動イオンの選択性が悪く、カチオ
ン(例えばLi”)だけでなくアニオン(例えばCj2
04−)の移動を生ずる等の問題があり、実用段階に到
っていない。
Based on the above, attempts are being made to develop new electrolyte materials to make batteries thinner and lighter. Examples include polymer electrolyte batteries that take advantage of their advantages such as ease of processing and flexibility. It is known to be applied to A typical example is poly(oligooxyethylene methacrylate)-
Examples include alkaline earth bases, but the ionic conductivity of the polymer electrolyte is 1O-5s/c at room temperature even if it is the best.
In addition, the selectivity of mobile ions is poor, and it is difficult to select not only cations (e.g. Li'') but also anions (e.g. Cj2
There are problems such as movement of 04-), and it has not reached the stage of practical use.

またイオン導電率の大きい、例えば銀イオンや銅イオン
のイオン伝導性固体電解質などを利用する試みがなされ
ており、その代表的なものとして、RbAgn1sやA
g614 Wo4などの銀イオン伝導性固体電解質、R
bCu4 I、、5CI2..5等の銅イオン伝導性固
体電解質などが挙げられる。
In addition, attempts have been made to use ion-conductive solid electrolytes with high ionic conductivity, such as silver ions and copper ions, and representative examples include RbAgn1s and A
Silver ion conductive solid electrolyte such as g614 Wo4, R
bCu4 I, 5CI2. .. Examples include copper ion conductive solid electrolytes such as No. 5 and the like.

しかル、これらは分解電圧が0,5〜0,6■と低いた
め、その電圧以上の電池を得ることができず、応用範囲
が限定されるという問題がある。
However, since these have a low decomposition voltage of 0.5 to 0.6 sq., it is impossible to obtain a battery with a voltage higher than that voltage, and the range of application is limited.

一方、イオン導電率が大きく、かつ分解電圧も高い固体
電解質としては、リチウムイオン導電性固体電解質が知
られており、その代表的なものとしてB2S3   L
izS  Li1.、P2S5   Liz 5−Li
 I、 Sin、−Li2S−Li T等の多成分系ア
モルファス固体電解質が挙げられる。
On the other hand, lithium ion conductive solid electrolytes are known as solid electrolytes with high ionic conductivity and high decomposition voltage, and B2S3 L is a typical example.
izS Li1. , P2S5 Liz 5-Li
Examples include multi-component amorphous solid electrolytes such as I, Sin, -Li2S-LiT, and the like.

しかし、これらの固体電解質は無機固体粉末であるため
、電池等への加工時に、高圧プレスによるペレ・ント化
が必要となり、生産性、均−性等を得る上で大きな障害
となっている。また得られるベレットは硬く、脆いため
、薄型化に限界があり、大面積のものを得ることが困難
である。さらに電池等に応用する場合、電極活物質との
接合時に、大きな加圧力で電解質−電極間を密着させる
必要があるため、作業性、密着性等のハラつきの問題が
あり、かつ大面積での接合では均一な密着性が得られず
、電解質の破壊を生ずる問題がある。
However, since these solid electrolytes are inorganic solid powders, it is necessary to pelletize them using high-pressure pressing when processing them into batteries, etc., which is a major obstacle in achieving productivity, uniformity, etc. Furthermore, since the resulting pellets are hard and brittle, there is a limit to how thin they can be made, and it is difficult to obtain pellets with a large area. Furthermore, when applied to batteries, etc., it is necessary to apply a large pressure to bring the electrolyte and electrode into close contact when bonding with the electrode active material, resulting in problems with workability, adhesion, etc. There is a problem that uniform adhesion cannot be obtained during bonding, resulting in destruction of the electrolyte.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、イオン導電性に優れ、かつ分解電圧の
高い多成分系アモルファス固体電解質を用いて加工性、
生産性、放置安定性、柔軟性および電極活物質との密着
性に優れた固体電解質シートを得ることができ、薄型化
および大面積化が可能である固体電解質シートの製造方
法を提供することにある。
The purpose of the present invention is to improve processability by using a multi-component amorphous solid electrolyte with excellent ionic conductivity and high decomposition voltage.
To provide a method for manufacturing a solid electrolyte sheet that can obtain a solid electrolyte sheet with excellent productivity, storage stability, flexibility, and adhesion to an electrode active material, and that can be made thinner and larger in area. be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、硫化ホウ素、硫化リンおよび硫化ケイ素から
選ばれる少なくとも18種の化合物、ヨウ化リチウムな
らびに硫化リチウムからなる多成分系アモルファス固体
電解質粉と、高分子弾性体とを含む混合液を、非導電性
網状体の開口部に充填した後、乾燥することを特徴とす
る固体電解質シートの製造方法に関する。
The present invention provides a liquid mixture containing a multi-component amorphous solid electrolyte powder consisting of at least 18 compounds selected from boron sulfide, phosphorus sulfide and silicon sulfide, lithium iodide and lithium sulfide, and an elastomer polymer. The present invention relates to a method for manufacturing a solid electrolyte sheet, which comprises filling openings in a conductive network and then drying the sheet.

本発明に用いられる多成分系アモルファス固体電解質粉
は、硫化ホウ素、硫化リンおよび硫化ケイ素から選ばれ
る少なくとも1種の化合物、ヨウ化リチウムならびに硫
化リチウムからなり、例えば下記一般式(I) χM−yLi1〜(1−x−y ) Li、 S   
(r)(ただし、MはB2 S3 、Pz Ssおよび
SiS。
The multicomponent amorphous solid electrolyte powder used in the present invention is composed of at least one compound selected from boron sulfide, phosphorus sulfide, and silicon sulfide, lithium iodide, and lithium sulfide, and is, for example, represented by the following general formula (I) χM-yLi1 ~(1-x-y) Li, S
(r) (where M is B2 S3 , Pz Ss and SiS.

から選ばれる少なくとも1種の化合物、Xは0.1〜0
.3、好ましくは0.15〜0.25、yは0.2〜0
、5、好ましくは0.3〜0.5を意味する)で表され
る。
at least one compound selected from, X is 0.1 to 0
.. 3, preferably 0.15 to 0.25, y is 0.2 to 0
, 5, preferably 0.3 to 0.5).

例えば、MがB2 S3の場合の多成分系アモルファス
固体電解質粉は、所定量のB、S、LilおよびL+z
Sを混合、乾燥した後、石英管中に収めて真空封印し、
500°Cで12時間、さらに800″Cで3時間加熱
し、その後、氷水でクエンチして塊状の生成物を得、こ
の生成物をボールミル等で粉砕することにより得ること
ができる。
For example, when M is B2 S3, the multicomponent amorphous solid electrolyte powder contains predetermined amounts of B, S, Lil and L+z
After mixing and drying S, place it in a quartz tube and vacuum seal it.
It can be obtained by heating at 500° C. for 12 hours and further at 800″C for 3 hours, then quenching with ice water to obtain a lumpy product, and pulverizing this product with a ball mill or the like.

本発明に用いられる高分子弾性体としては、例えば1,
4−ポリブタジェン、天然ゴム、ポリイソプレン、SB
R,NBR,EPDM、EPM、ウレタンゴム、ポリエ
ステル系ゴム、クロロプレンゴム、エピクロルヒドリン
ゴム、シリコーンゴム、スチレン−ブタジェン−スチレ
ンブロック共重合体(SBS)、スチレン−イソプレン
−スチレンブロック共1i合体(SIS)、スチレン−
エチレン−ブチレン−スチレン共fi合体(sEBS)
、スチレン−エチレン−プロピレンブロック共重合体(
SEP) 、ブチルゴム、ホスファゼンゴム、ポリエチ
レン、ポリプロピレン、ポリエチレンオキシド、ポリプ
ロピレンオキシド、ポリスチレン、塩化ビニル、エチレ
ン−酢酸エチル共重合体、1.2−ポリブタジェン、エ
ポキシ樹脂、フェノール樹脂、環化ポリブタジェン、環
化ポリイソプレン、ポリメタクリル酸メチルおよびこれ
らの混合物等が挙げられる。これらのうち電極活物質と
の接着性の点から、SBS、STS、5EBS、12−
ポリブタジェン等の熱可塑性を有するものが好ましく、
さらに柔軟性の点からAsTM−A硬度で90以下のも
のが好ましい。また固体電解質粉の耐熱性の点から15
0°C以下での成型加工性を有するものが好ましい。
Examples of the elastic polymer used in the present invention include 1,
4-Polybutadiene, natural rubber, polyisoprene, SB
R, NBR, EPDM, EPM, urethane rubber, polyester rubber, chloroprene rubber, epichlorohydrin rubber, silicone rubber, styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), Styrene
Ethylene-butylene-styrene cofi combination (sEBS)
, styrene-ethylene-propylene block copolymer (
SEP), butyl rubber, phosphazene rubber, polyethylene, polypropylene, polyethylene oxide, polypropylene oxide, polystyrene, vinyl chloride, ethylene-ethyl acetate copolymer, 1,2-polybutadiene, epoxy resin, phenol resin, cyclized polybutadiene, cyclized poly Examples include isoprene, polymethyl methacrylate, and mixtures thereof. Among these, SBS, STS, 5EBS, 12-
Thermoplastic materials such as polybutadiene are preferred;
Furthermore, from the viewpoint of flexibility, the AsTM-A hardness is preferably 90 or less. In addition, from the viewpoint of heat resistance of solid electrolyte powder,
Those having moldability at temperatures below 0°C are preferred.

本発明において、多成分系アモルファス固体電解質粉は
、通常高分子弾性体中における体積分率が30〜95%
、好ましくは55〜92%となるように用いる。固体電
解質粉の体積分率が30%未満では混合物の導電率がI
 X 10−”s /crs以下となり実用に適さない
場合があり、また体積分率が95%を超えると得られる
固体電解質シートが■危くなることがある。
In the present invention, the multicomponent amorphous solid electrolyte powder usually has a volume fraction of 30 to 95% in the elastomer polymer.
, preferably 55 to 92%. When the volume fraction of solid electrolyte powder is less than 30%, the conductivity of the mixture is I
If the volume fraction exceeds 95%, the obtained solid electrolyte sheet may become dangerous.

なお、固体電解質粉と高分子弾性体との混合物の硬度は
、好ましくはASTM−A硬度で65〜9Gである。該
混合物の硬度が65未満では、混合物の導電率I X 
10−hs / cm以下となり、実用に適さず、また
硬度が96を超えると得られる固体電解質シートの可撓
性が悪くなり脆くなることがある。
The hardness of the mixture of the solid electrolyte powder and the polymeric elastomer is preferably 65 to 9G in terms of ASTM-A hardness. When the hardness of the mixture is less than 65, the conductivity of the mixture I
If the hardness is less than 10-hs/cm, it is not suitable for practical use, and if the hardness exceeds 96, the resulting solid electrolyte sheet may have poor flexibility and become brittle.

また本発明においては、多成分系アモルファス固体電解
質粉を高分子弾性体中に均一に分散させるために、体積
分率30〜95%の固体電解質粉と、溶剤に溶解させた
体積分率5〜70%の高分子弾性体溶液とを混合して用
いられる。この際の固体電解質粉および高分子弾性体溶
液の添加順序には特に限定されない。また混合物の均一
性を高め、高充填可能な混合物とするために、混合中の
固体電解質粉を粉砕して細粒化することが好ましく、ボ
ールミル、ホモジナイザー等の剪断力の加わった混合方
法とすることが好ましい。
In addition, in the present invention, in order to uniformly disperse the multi-component amorphous solid electrolyte powder in the polymeric elastomer, solid electrolyte powder with a volume fraction of 30 to 95% and a volume fraction of 5 to 95% dissolved in a solvent are used. It is used by mixing it with a 70% polymer elastomer solution. At this time, the order of addition of the solid electrolyte powder and the polymer elastomer solution is not particularly limited. In addition, in order to improve the uniformity of the mixture and make it a highly filling mixture, it is preferable to crush the solid electrolyte powder being mixed into fine particles, and use a mixing method that applies shearing force such as a ball mill or homogenizer. It is preferable.

この場合に用いられる前記溶剤としては、例えばn−ヘ
キサン、n−ヘプタン、n−オクタン、シクロヘキサン
、ベンゼン、トルエン、キシレン、酢酸エチル、トリク
レン等の非吸水性で固体電解質粉と反応しない飽和炭化
水素系溶剤、芳香族炭化水素溶剤、ハロゲン化炭化水素
溶剤またはエステル系溶剤が挙げられるが、これら溶剤
の沸点が70〜150°Cの範囲であることが好ましい
。沸点が70°C未満では、混合物を非導電性網状体の
開口部に充填する際、混合物中の溶剤蒸発速度が速すぎ
るため、均一で大面積のシートが得られないことがあり
、また沸点が150°Cを超えると溶剤1発達度が遅く
なり、生産効率が悪くなることがある。またこれらの溶
剤に含有される混合物の固形分濃度は、好ましくは50
〜80重量%である。
Examples of the solvent used in this case include saturated hydrocarbons that do not absorb water and do not react with the solid electrolyte powder, such as n-hexane, n-heptane, n-octane, cyclohexane, benzene, toluene, xylene, ethyl acetate, trichlene, etc. Examples include solvents, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, and ester solvents, and the boiling point of these solvents is preferably in the range of 70 to 150°C. If the boiling point is less than 70°C, the evaporation rate of the solvent in the mixture may be too fast when filling the mixture into the openings of the non-conductive network, so a uniform large-area sheet may not be obtained; If the temperature exceeds 150°C, the degree of development of the solvent may be slowed down, resulting in poor production efficiency. Further, the solid content concentration of the mixture contained in these solvents is preferably 50
~80% by weight.

本発明の固体電解質シートは、上記のようにして得られ
る固体電解質粉、高分子弾性体および溶液を含む混合液
を非導電性網状体の開口部に充填し、乾燥することによ
り得られる。この非導電性網状体の材質としては、例え
ば、セルロース、ナイロン6、ナイロン66、ポリプロ
ピレン、ポリエチレン、ポリエステル、ガラス繊維等を
挙げることができ、非導電性網状体の具体例としては、
これらの材質からなる織布または不織布を挙げることが
できる。これらの網状体の開口率は35〜65%の範囲
が適当である。ここで開口率は、網状体単位面積当たり
の総開口部面積の割合で定義される。開口率が35%未
満では固体電解質シートの導電率が小さくなり、また開
口率が65%を超えると固体電解質シートの強度が不足
する。またこれらの網状体の比表面積は50〜10,0
00 rrr / gの範囲が適当である。さらに不織
布の場合、日付けは5〜50g/rrfの範囲が適当で
ある。
The solid electrolyte sheet of the present invention is obtained by filling the openings of a non-conductive network with a liquid mixture containing the solid electrolyte powder obtained as described above, an elastic polymer, and a solution, and drying the mixture. Examples of the material of this non-conductive network include cellulose, nylon 6, nylon 66, polypropylene, polyethylene, polyester, glass fiber, etc. Specific examples of the non-conductive network include:
Woven fabrics or nonwoven fabrics made of these materials can be mentioned. The aperture ratio of these net-like bodies is suitably in the range of 35 to 65%. Here, the aperture ratio is defined as the ratio of the total aperture area per unit area of the mesh. If the aperture ratio is less than 35%, the conductivity of the solid electrolyte sheet will be low, and if the aperture ratio exceeds 65%, the strength of the solid electrolyte sheet will be insufficient. In addition, the specific surface area of these networks is 50 to 10,0
A range of 00 rrr/g is suitable. Furthermore, in the case of non-woven fabric, the appropriate date range is 5 to 50 g/rrf.

網状体の厚みは、網状体自身の強度および電池の薄型化
を考慮して10〜150μmの範囲が好ましく、1開口
部当たりの平均面積は1.6XIO−3〜9 X 10
−2mm2および隣接する開口部間の幅は20〜120
μmが好ましい。
The thickness of the mesh body is preferably in the range of 10 to 150 μm in consideration of the strength of the network body itself and the thinning of the battery, and the average area per opening is 1.6XIO-3 to 9X10
-2mm2 and the width between adjacent openings is 20-120
μm is preferred.

前記固体電解質粉、高分子弾性体および溶液を含む混合
液を非導電性網状体の開口部に充填する方法としては、
混合液中に網状体を含浸し、該網状体に混合液を充分付
着させた後、硬質ゴム、プラスチック、金属等からなる
ブレード、ロール等により開口部に充填するとともに、
過剰に付着している混合液を除去する方法が挙げられる
。この際、ブレード、ロール等と混合液の付着した網状
体との間に、テフロンシート、ポリエステルシート等を
介在させ、過剰に付着している混合液を除去してもよい
The method of filling the openings of the non-conductive network with the liquid mixture containing the solid electrolyte powder, the polymeric elastomer, and the solution includes:
After impregnating the net-like body in the mixed liquid and sufficiently adhering the mixed liquid to the net-like body, filling the opening with a blade, roll, etc. made of hard rubber, plastic, metal, etc.,
One example is a method of removing excessively attached mixed liquid. At this time, a Teflon sheet, a polyester sheet, etc. may be interposed between the blade, roll, etc. and the net-like body to which the mixed liquid has adhered, and the excessively adhered mixed liquid may be removed.

このようにして非導電性網状体の開口部に混合液を充填
した後、乾燥することにより本発明の固体電解質シート
が得られるが、混合工程、混合液の網状体への充填工程
および乾燥工程は、相対湿度30%以下の環境で行うこ
とが好ましい。相対湿度が30%を超えると固体電解質
粉の変質が生じることがある。相対湿度を30%以下に
保つ方法は、特に限定されるものではなく、脱湿した乾
燥空気雰囲気、窒素、アルゴン等の不活性ガス雰囲気で
上記工程を行えばよい。
The solid electrolyte sheet of the present invention is obtained by filling the mixed liquid into the openings of the non-conductive network and drying it in this way. is preferably carried out in an environment with a relative humidity of 30% or less. If the relative humidity exceeds 30%, the quality of the solid electrolyte powder may change. The method for maintaining the relative humidity at 30% or less is not particularly limited, and the above steps may be performed in an atmosphere of dehumidified dry air or an inert gas atmosphere such as nitrogen or argon.

なお、本発明の固体電解質シートは、非導電性網状体の
開口部に、固体電解質粉と高分子弾性体との混合物を充
填してなるものであるが、電極との密着性および導電率
を向上させるためには、該網状体の上下に各5〜25μ
mの該混合物層を有することが好ましい。
The solid electrolyte sheet of the present invention is made by filling the openings of a non-conductive network with a mixture of solid electrolyte powder and an elastomer polymer. In order to improve the
It is preferred to have m said mixture layers.

また、本発明の固体電解質シートの厚みは、好ましくは
10〜250μmである。該シートの厚みが10μm未
満では、裂は易く強度が保てなくなる。また、厚みが2
50μmを超えると、導電率I X 10−”s 7c
m以下となり易い。
Moreover, the thickness of the solid electrolyte sheet of the present invention is preferably 10 to 250 μm. If the thickness of the sheet is less than 10 μm, it will easily tear and will not maintain its strength. Also, the thickness is 2
If it exceeds 50 μm, the conductivity I x 10-”s 7c
It is likely to be less than m.

上記方法によれば、非導電性網状体を母材とするために
、極めて厚み精度の優れた固体電解質シートが得られ、
また連続的に製造することができるために、大面積の固
体電解質シートも容易に得られる利点がある。
According to the above method, since the non-conductive network is used as the base material, a solid electrolyte sheet with extremely excellent thickness accuracy can be obtained.
Furthermore, since it can be manufactured continuously, it has the advantage that a large-area solid electrolyte sheet can be easily obtained.

〔実施例〕〔Example〕

以下、本発明を実施例により詳細に説明するが、本発明
はこれら実施例に限定されもでははない。
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1 (1)B、S、L iz SおよびLiIを、B:S 
: L iz S : L i I = 0.46 :
 0.69 : 0.30:0.47(モル比)の割合
となるように秤量した。これらの原料を混合した後、6
0゛Cで真空乾燥して石英管に収め、真空封印した。こ
れを500°Cで12時間、続いて800°Cで3時間
加熱した後、氷水でクエンチして塊状の生成物を得た。
Example 1 (1) B, S, Liz S and LiI, B:S
: L iz S : L i I = 0.46 :
They were weighed so that the ratio was 0.69:0.30:0.47 (molar ratio). After mixing these raw materials, 6
It was vacuum dried at 0°C, placed in a quartz tube, and vacuum sealed. This was heated at 500°C for 12 hours, followed by 800°C for 3 hours, then quenched with ice water to give a lumpy product.

この生成物をボールミルで粉砕し、粒径200メツシユ
以下の0.238z 33−0.30 L iz S 
−0,47LiIで示される多成分系アモルファス固体
電解質粉(比重2.6)を得た。
This product is pulverized with a ball mill to give a particle size of 0.238z33-0.30LizS with a particle size of 200 mesh or less.
A multi-component amorphous solid electrolyte powder (specific gravity 2.6) represented by -0.47LiI was obtained.

(2)次に、スチレン−ブタジェン−スチレンブロック
共重合体(日本合成ゴム社製、TR−2000)をトル
エン中に溶解させて高分子溶液を得、これに前記(1)
で得られた粒径200メツシユ以下の0.23B、33
−0.30Liz S−0,47Lilで示される固体
電解質粉を、その体積分率が前記共重合体に対して90
%になるように混合し、ボールミルで2時間混練し、得
られた混合物を容器に移して固形分濃度60重量%に調
製した。
(2) Next, a styrene-butadiene-styrene block copolymer (manufactured by Japan Synthetic Rubber Co., Ltd., TR-2000) was dissolved in toluene to obtain a polymer solution, and the above-mentioned (1)
0.23B, 33 with a particle size of 200 mesh or less obtained in
-0.30Liz S-A solid electrolyte powder represented by 0.47Lil was added at a volume fraction of 90 to the copolymer.
% and kneaded in a ball mill for 2 hours, the resulting mixture was transferred to a container and adjusted to a solid content concentration of 60% by weight.

(3)織布として、厚み50μm、1開口部当たりの平
均面積5.5 X 10−”tan”および隣接する開
口部間の幅50μmのポリエステル製織布を用い、この
織布を容器内の混合溶液に浸漬し、織布表面に混合溶液
を充分に付着させた後、ブレードで織布を挾み、充分な
挟持力を加えつつ、織布をブレードから引張り出して混
合溶液を織布の開口部に充填させた。得られたシートを
窒素気流中で充分に乾燥させてトルエンを除去し、厚み
70μmの固体電解質シートを得た。
(3) As the woven fabric, use a polyester woven fabric with a thickness of 50 μm, an average area of 5.5 x 10-"tan" per opening, and a width of 50 μm between adjacent openings, and place this woven fabric inside the container. After soaking in the mixed solution and sufficiently adhering the mixed solution to the surface of the woven fabric, pinch the woven fabric with a blade, and while applying sufficient clamping force, pull the woven fabric from the blade to apply the mixed solution onto the woven fabric. The opening was filled. The obtained sheet was sufficiently dried in a nitrogen stream to remove toluene, and a solid electrolyte sheet with a thickness of 70 μm was obtained.

得られたシートの全導電率、分解電圧および硬度を下記
の方法により測定し、結果を第1表に示した。
The total electrical conductivity, decomposition voltage and hardness of the obtained sheet were measured by the following methods, and the results are shown in Table 1.

全導電率:得られたシートの両面に蒸着により金を電極
として設け、LCRメータ(Y HP社製、YHP4274A)を用い て、常法によりコールコールプロット より全導電率(Sew−’)を求めた。
Total conductivity: Gold was deposited as electrodes on both sides of the obtained sheet by vapor deposition, and the total conductivity (Sew-') was determined from a Cole-Cole plot using an LCR meter (manufactured by YHP Corporation, YHP4274A) using a conventional method. Ta.

分解電圧:陽極に白金板、陰極にLiMを用い、固体電
解質シートを極板に挾み、13 0℃で10kg/cJの加圧を5分間行って接着したも
ので、直流電圧を徐々に 増加させ、得られる平衡電流値(一定 電圧下で一定となる電流値)を求め、 この電圧−平衡電流値の関係から、平 衡電流値が急上昇する電圧を分解電圧 として求めた。
Decomposition voltage: Using a platinum plate for the anode and LiM for the cathode, a solid electrolyte sheet was sandwiched between the electrode plates and bonded by applying a pressure of 10 kg/cJ at 130°C for 5 minutes.The DC voltage was gradually increased. The resulting equilibrium current value (a current value that is constant under a constant voltage) was determined, and from this voltage-equilibrium current value relationship, the voltage at which the equilibrium current value suddenly increased was determined as the decomposition voltage.

硬  度:固体電解質シートを折り重ね、厚み約1mm
程度にしたものをガラス板上にてASTM  A硬度に
より評価した。
Hardness: Solid electrolyte sheet folded, approximately 1mm thick
The hardness was evaluated by ASTM A hardness on a glass plate.

実施例2 (1)LiIおよびLi、P、S、を、LiI:Li4
P、57=0.45 :0.18 (モル比)の割合と
なるように秤量した。これらの原料を混合した後、60
°Cで真空乾燥して石英管に収め、真空封印した。90
0°Cに一旦加熱し、混合物を融解させた後、700°
Cで30分間保持し、次に110°Cでクエンチして塊
状の生成物を得た。この生成物をボールミルで粉砕し、
粒径200メツシユ以下の0.19Pz Ss  0.
36Liz S  O,45Lilで示される多成分系
アモルファス固体電解質粉(比重2.7)を得た。
Example 2 (1) LiI and Li, P, S, LiI:Li4
P,57=0.45:0.18 (molar ratio). After mixing these raw materials, 60
It was dried under vacuum at °C, placed in a quartz tube, and sealed under vacuum. 90
Once heated to 0°C to melt the mixture, then heated to 700°C.
C for 30 minutes and then quenched at 110°C to obtain a lumpy product. This product is ground in a ball mill,
0.19Pz Ss 0.19Pz Ss with particle size of 200 mesh or less.
A multi-component amorphous solid electrolyte powder (specific gravity 2.7) represented by 36Liz SO, 45Lil was obtained.

(2)実施例1の(2)と同様にして、スチレンブタジ
ェン−スチレンブロック共重合体の高分子溶液を得、こ
れに上記(1)で得られた粒径200メツシユ以下の0
.19P2 S、 0.36LlzS  0.45Li
Iで示される固体電解質粉を、その体積分率が上記共重
合体に対して90%になるように混合し、ボールミルで
2時間混練し、得られた混合物を容器に移して固形分濃
度55重量%に8周製した。
(2) In the same manner as in (2) of Example 1, a polymer solution of styrene-butadiene-styrene block copolymer was obtained, and this was added to
.. 19P2S, 0.36LlzS 0.45Li
The solid electrolyte powder represented by I was mixed so that its volume fraction was 90% of the above copolymer, kneaded in a ball mill for 2 hours, and the resulting mixture was transferred to a container and the solid content concentration was 55%. Eight rounds were made to give a weight percentage.

(3)織布として、厚み50μm、1開口部当たりの平
均面積5.5 X 10−0−2rrおよび隣接する開
口部間の幅50μmのポリエステル製織布を用い、この
織布を容器内の混合溶液中に浸漬し、織布表面に混合溶
液を充分に付着させた後、ブレードで織布を挟み、充分
な挟持力を加えつつ、織布をブレードから引張り出して
混合溶液を織布の開口部に充填させた。得られたシート
を窒素気流中で充分に乾燥させてトルエンを除去し、厚
み60μmの固体電解質シートを得た。
(3) As the woven fabric, use a polyester woven fabric with a thickness of 50 μm, an average area of 5.5 x 10-0-2 rr per opening, and a width of 50 μm between adjacent openings, and use this woven fabric inside the container. After immersing the woven fabric in the mixed solution and sufficiently adhering the mixed solution to the surface of the woven fabric, sandwich the woven fabric with a blade, and while applying sufficient clamping force, pull the woven fabric from the blade to apply the mixed solution onto the woven fabric. The opening was filled. The obtained sheet was sufficiently dried in a nitrogen stream to remove toluene, and a solid electrolyte sheet with a thickness of 60 μm was obtained.

得られたシートの全導電率、分解電圧を下記の方法によ
り測定し、結果を第1表に示した。
The total conductivity and decomposition voltage of the obtained sheet were measured by the following methods, and the results are shown in Table 1.

実施例3 (1)StS2およびI、+zSを、5iSz:Li2
5=0.4 : 0.6 (モル比)の割合となるよう
に秤量した。これらの原料を混合した後、60°Cで真
空乾燥し、これをアルゴン雰囲気中、950°Cで1時
間加熱した後、取出し、液体窒素でクエンチし、0.4
SiSz  0.6L12 Sを得た。これをボールミ
ルで粉砕した後、LiIをLid:(0,43i 52
−0.6 L iz S) −〇、4 : 0.6(モ
ル比)の割合となるように添加し、再度加熱した後、ク
エンチして生成物を得た。この生成物をボールミルで粉
砕し、粒径200メソシユ以下の0.24’3+Sz 
 0.36Liz S  O,4Lt Iで示される多
成分系アモルファス固体電解質粉(比重2.6)を得た
Example 3 (1) StS2 and I, +zS, 5iSz:Li2
They were weighed so that the ratio was 5=0.4:0.6 (molar ratio). After mixing these raw materials, they were vacuum dried at 60°C, heated at 950°C for 1 hour in an argon atmosphere, taken out, quenched with liquid nitrogen, and dried at 0.4°C.
SiSz 0.6L12S was obtained. After pulverizing this with a ball mill, LiI is Lid: (0,43i 52
-0.6 Liz S) -〇, 4:0.6 (molar ratio), heated again, and then quenched to obtain a product. This product is pulverized with a ball mill to obtain a particle size of 0.24'3+Sz with a particle size of 200 mesosius or less.
A multi-component amorphous solid electrolyte powder (specific gravity 2.6) represented by 0.36Liz SO, 4LtI was obtained.

(2)実施例1と同様にして、スチレン−ブタジェン−
スチレンブロック共重合体の高分子溶液を得、これに上
記(1)で得られた粒径200メツシユ以下の0.24
 S i 32−0.36 L iz S−0゜4Li
lで示される固体電解質粉を、その体積分率が上記共重
合体に対して90%になるように混合し、ボールミルで
2時間混練し、得られた混合物を容器に移して固形分濃
度57重量%に調製した。
(2) In the same manner as in Example 1, styrene-butadiene-
A polymer solution of the styrene block copolymer is obtained, and a 0.24
S i 32-0.36 L iz S-0゜4Li
The solid electrolyte powder indicated by l was mixed so that its volume fraction was 90% of the above copolymer, kneaded in a ball mill for 2 hours, and the resulting mixture was transferred to a container to give a solid content concentration of 57. It was adjusted to % by weight.

(3)上記で得られた混合溶液を実施例1(3)と同様
にしてポリエステル製織布の開口部に充填し、厚み65
μmの固体電解質シートを得た。
(3) The mixed solution obtained above was filled into the opening of a polyester woven fabric in the same manner as in Example 1 (3), and the thickness was 65 mm.
A solid electrolyte sheet of μm size was obtained.

得られたシートの全導電率、分解電圧を下記の方法によ
り測定し、結果を第1表に示した。
The total conductivity and decomposition voltage of the obtained sheet were measured by the following methods, and the results are shown in Table 1.

比較例1 (1)実施例1と同様にして0.23B2 S3−0.
30Liz S  0.47Li Iで示される多成分
系アモルファス固体電解質粉を得た。
Comparative Example 1 (1) 0.23B2 S3-0.
A multi-component amorphous solid electrolyte powder represented by 30Liz S 0.47Li I was obtained.

(2)次に粉末状のテフロンと、前記(1)で得られた
固体電解質粉をその体積分率が90%になるように乳ば
ちで混合した。
(2) Next, powdered Teflon and the solid electrolyte powder obtained in (1) above were mixed in a mortar so that the volume fraction thereof was 90%.

混合物をプレスを用いて5t/cfflの圧力で直径1
0mm、厚み150μmに加圧成型した。
Using a press, press the mixture to a diameter of 1 at a pressure of 5t/cffl.
It was press-molded to a thickness of 0 mm and a thickness of 150 μm.

得られたベレットの全導電率、分解電圧を実施例1と同
様にして評価し、結果を第1表に記載した。
The total conductivity and decomposition voltage of the obtained pellet were evaluated in the same manner as in Example 1, and the results are listed in Table 1.

第 表 れ、かつ分解電圧の高い多成分系アモルファス固体電解
質を用いて加工性、生産性、放置安定性、柔軟性および
電極活物質との密着性に優れた固体電解質シートを得る
ことができるため、固体電解質シートの薄型化および大
面積化が可能となる。
A solid electrolyte sheet with excellent processability, productivity, storage stability, flexibility, and adhesion with electrode active materials can be obtained by using a multi-component amorphous solid electrolyte with high decomposition voltage and high decomposition voltage. It becomes possible to make the solid electrolyte sheet thinner and larger in area.

本発明で得られる固体電解質シートは、高エネルギー密
度リチウム電池、エレクトロクロミックデイスプレィ素
子等の電気化学素子材料として特に有用である。
The solid electrolyte sheet obtained by the present invention is particularly useful as a material for electrochemical devices such as high energy density lithium batteries and electrochromic display devices.

*1:作製した5個のペレットのうち、4個のベレット
はA u 萎着時に熱による亀裂を生じ、測定不可能で
あった。
*1: Out of the 5 pellets produced, 4 pellets developed cracks due to heat during A u withering, and could not be measured.

*2:作製した5個の試料とも、白金板に接着せず、測
定不可能であった。
*2: None of the five samples produced adhered to the platinum plate and could not be measured.

*3:脆<、破壊したため測定不能であった。*3: Brittle <, could not be measured because it was destroyed.

〔発明の効果〕〔Effect of the invention〕

Claims (1)

【特許請求の範囲】[Claims] (1)硫化ホウ素、硫化リンおよび硫化ケイ素から選ば
れる少なくとも1種の化合物、ヨウ化リチウムならびに
硫化リチウムからなる多成分系アモルファス固体電解質
粉と、高分子弾性体とを含む混合液を、非導電性網状体
の開口部に充填した後、乾燥することを特徴とする固体
電解質シートの製造方法。
(1) A mixed liquid containing a multicomponent amorphous solid electrolyte powder consisting of at least one compound selected from boron sulfide, phosphorus sulfide, and silicon sulfide, lithium iodide, and lithium sulfide, and an elastomer polymer is made into a non-conductive liquid. 1. A method for producing a solid electrolyte sheet, which comprises filling the openings of a solid electrolyte sheet and then drying the sheet.
JP2196831A 1990-07-25 1990-07-25 Manufacture of solid electrolytic sheet Pending JPH0482166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2196831A JPH0482166A (en) 1990-07-25 1990-07-25 Manufacture of solid electrolytic sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2196831A JPH0482166A (en) 1990-07-25 1990-07-25 Manufacture of solid electrolytic sheet

Publications (1)

Publication Number Publication Date
JPH0482166A true JPH0482166A (en) 1992-03-16

Family

ID=16364394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2196831A Pending JPH0482166A (en) 1990-07-25 1990-07-25 Manufacture of solid electrolytic sheet

Country Status (1)

Country Link
JP (1) JPH0482166A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112180A1 (en) * 2004-05-14 2005-11-24 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
WO2007015409A1 (en) * 2005-08-02 2007-02-08 Idemitsu Kosan Co., Ltd. Solid electrolyte sheet
CN100431216C (en) * 2004-05-14 2008-11-05 松下电器产业株式会社 Lithium ion secondary battery
WO2012156795A1 (en) * 2011-05-18 2012-11-22 Toyota Jidosha Kabushiki Kaisha Method of producing solid sulfide electrolyte material and solid sulfide electrolyte material
JP2015153460A (en) * 2014-02-10 2015-08-24 古河機械金属株式会社 Solid electrolyte sheet, all-solid lithium ion battery, and method of manufacturing solid electrolyte sheet
WO2017030154A1 (en) * 2015-08-18 2017-02-23 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for manufacturing all-solid-state secondary battery
JP2020509565A (en) * 2017-05-15 2020-03-26 エルジー・ケム・リミテッド Method for producing solid electrolyte membrane for all-solid-state battery and solid electrolyte membrane produced by the method
JP2021111483A (en) * 2020-01-08 2021-08-02 Jx金属株式会社 Sulfide-based solid electrolyte and all-solid lithium ion battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112180A1 (en) * 2004-05-14 2005-11-24 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
CN100431216C (en) * 2004-05-14 2008-11-05 松下电器产业株式会社 Lithium ion secondary battery
WO2007015409A1 (en) * 2005-08-02 2007-02-08 Idemitsu Kosan Co., Ltd. Solid electrolyte sheet
WO2012156795A1 (en) * 2011-05-18 2012-11-22 Toyota Jidosha Kabushiki Kaisha Method of producing solid sulfide electrolyte material and solid sulfide electrolyte material
CN103534863A (en) * 2011-05-18 2014-01-22 丰田自动车株式会社 Method of producing solid sulfide electrolyte material and solid sulfide electrolyte material
JP2015153460A (en) * 2014-02-10 2015-08-24 古河機械金属株式会社 Solid electrolyte sheet, all-solid lithium ion battery, and method of manufacturing solid electrolyte sheet
WO2017030154A1 (en) * 2015-08-18 2017-02-23 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for manufacturing all-solid-state secondary battery
JPWO2017030154A1 (en) * 2015-08-18 2017-12-28 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JP2020509565A (en) * 2017-05-15 2020-03-26 エルジー・ケム・リミテッド Method for producing solid electrolyte membrane for all-solid-state battery and solid electrolyte membrane produced by the method
US11342578B2 (en) 2017-05-15 2022-05-24 Lg Energy Solution, Ltd. Method for manufacturing solid electrolyte membrane for all solid type battery and solid electrolyte membrane manufactured by the method
JP2021111483A (en) * 2020-01-08 2021-08-02 Jx金属株式会社 Sulfide-based solid electrolyte and all-solid lithium ion battery

Similar Documents

Publication Publication Date Title
US4985317A (en) Lithium ion-conductive solid electrolyte containing lithium titanium phosphate
US4810599A (en) Structure suitable for solid electrochemical elements
Pandey et al. Magnesium ion-conducting gel polymer electrolytes dispersed with nanosized magnesium oxide
EP0977296B1 (en) Solid electrolytic moldings, electrode moldings, and electrochemical elements
Lee et al. Free-standing PEO/LiTFSI/LAGP composite electrolyte membranes for applications to flexible solid-state lithium-based batteries
TWI265652B (en) Lithium ion secondary battery and a method for manufacturing the same
JP2000123874A (en) Solid electrolyte molding body, electrode molding body, and electrochemical element
KR970004136B1 (en) Solid electrolyte sheet and process for producing the same
JPH0896799A (en) Carbon / polymer combination electrode for rechargeable electrochemical lithium battery
JPH0482166A (en) Manufacture of solid electrolytic sheet
JPH0381908A (en) Lithium ion conductive solid electrolyte
JP2000311692A (en) Manufacture of electrochemical element
JP4191260B2 (en) Material for anode based on titanium oxysulfide for electrochemical generator and method for producing the same
JPH0287415A (en) Lithium ion electroconductive solid electrolytic sheet
JPH0329206A (en) Lithium ion conductive solid electrolyte and its manufacture
US4917976A (en) Material structure having positive polarity
JPH067496B2 (en) Solid electrochemical device
JPH01657A (en) solid state electrochemical device
JPH04162306A (en) Lithium ion conductive solid electrolytic sheet
JPH0787045B2 (en) Method for manufacturing solid electrolyte sheet
JPH01122567A (en) Manufacture of solid electrolyte sheet
JPH0576138B2 (en)
JPH02301972A (en) Solid electrolyte sheet and battery thereof
JPH02148655A (en) Lithium ion conductive solid electrolytic sheet and manufacture thereof
JPS63239776A (en) Solid electrolyte sheet and its manufacture