JP2009211910A - All-solid lithium secondary battery - Google Patents
All-solid lithium secondary battery Download PDFInfo
- Publication number
- JP2009211910A JP2009211910A JP2008053017A JP2008053017A JP2009211910A JP 2009211910 A JP2009211910 A JP 2009211910A JP 2008053017 A JP2008053017 A JP 2008053017A JP 2008053017 A JP2008053017 A JP 2008053017A JP 2009211910 A JP2009211910 A JP 2009211910A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- solid
- secondary battery
- lithium secondary
- electrolyte layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
本発明は、固体電解質を用いた全固体リチウム二次電池に関する。特に、安全性が高く、充放電サイクル特性に優れた全固体リチウム二次電池に関する。 The present invention relates to an all-solid lithium secondary battery using a solid electrolyte. In particular, the present invention relates to an all solid lithium secondary battery having high safety and excellent charge / discharge cycle characteristics.
リチウム二次電池は、長寿命・高効率・高容量であり、携帯電話、ノートパソコン、デジタルカメラなどの電源に利用されている。 Lithium secondary batteries have a long life, high efficiency, and high capacity, and are used as power sources for mobile phones, notebook computers, digital cameras, and the like.
リチウム二次電池は、正極と負極の間で電解質層を介してリチウムイオンをやり取りすることによって、充放電が行なわれる。最近では、有機溶媒電解質に代えて不燃性の固体電解質を用いた全固体リチウム二次電池の研究開発が活発に行なわれている(例えば特許文献1、2を参照)。 The lithium secondary battery is charged and discharged by exchanging lithium ions between the positive electrode and the negative electrode through the electrolyte layer. Recently, research and development of all-solid-state lithium secondary batteries using non-flammable solid electrolytes instead of organic solvent electrolytes have been actively conducted (see, for example, Patent Documents 1 and 2).
特許文献1、2に記載の全固体リチウム二次電池では、固体電解質層として、Li2Sを含むガラス固体電解質を粉砕して得られた粉末を加圧成形したものを用いている。また、特許文献2には、金属リチウムのデンドライトの成長による電池の内部短絡を防止するため、固体電解質層の厚みを5μm以上とすることが記載されている。 In the all-solid-state lithium secondary batteries described in Patent Documents 1 and 2, a powder obtained by pressure-molding a powder obtained by pulverizing a glass solid electrolyte containing Li 2 S is used as the solid electrolyte layer. Patent Document 2 describes that the thickness of the solid electrolyte layer is 5 μm or more in order to prevent an internal short circuit of the battery due to the growth of dendrites of metallic lithium.
しかし、本発明者らが、鋭意研究した結果、特許文献1、2に記載するような粉末成形体の固体電解質層であっても、充放電の繰り返しに伴い、金属リチウムのデンドライトが成長して、電池の内部短絡が生じることが分かった。これは、固体電解質層に存在する粉末間の隙間(空隙)を通って金属リチウムのデンドライトが成長することが原因と考えられ、特に、負極に金属リチウムを用いた場合に、デンドライトの発生・成長が起こり易い傾向が見られた。また、負極に金属リチウムを用いない場合であっても、高電流密度の充放電条件で充放電を繰り返し行なった場合などは、デンドライトの発生・成長が起こり易い。 However, as a result of diligent research by the present inventors, even in the case of a solid electrolyte layer of a powder molded body as described in Patent Documents 1 and 2, dendrites of metallic lithium grow with repeated charge and discharge. It was found that an internal short circuit of the battery occurred. This is thought to be caused by the growth of metallic lithium dendrites through the gaps (voids) between the powders present in the solid electrolyte layer, especially when metallic lithium is used for the negative electrode. There was a tendency to occur easily. Even when metallic lithium is not used for the negative electrode, dendrites are likely to be generated / grown when charging / discharging is repeated under high current density charging / discharging conditions.
また、固体電解質層の厚みを5μm以上としても、充放電条件や使用環境などによって内部短絡発生率が変化するため、内部短絡を確実に防止できるとは限らず、検討の余地がある。 Even if the thickness of the solid electrolyte layer is 5 μm or more, the internal short-circuit occurrence rate changes depending on the charge / discharge conditions and the use environment, and therefore it is not always possible to prevent the internal short-circuit, and there is room for examination.
本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、安全性が高く、充放電サイクル特性に優れた全固体リチウム二次電池を提供することにある。 The present invention has been made in view of the above circumstances, and one of its purposes is to provide an all solid lithium secondary battery having high safety and excellent charge / discharge cycle characteristics.
本発明の全固体リチウム二次電池は、正極と負極、及びこれら正負極間に介在される固体電解質層を有し、前記固体電解質層が、固体電解質の粉末を成形した粉末成形体である。そして、この粉末成形体の粉末間の隙間に、金属リチウムと反応して電子絶縁体となるものを生じる液状物質が存在することを特徴とする。 The all solid lithium secondary battery of the present invention has a positive electrode, a negative electrode, and a solid electrolyte layer interposed between the positive and negative electrodes, and the solid electrolyte layer is a powder molded body obtained by molding a solid electrolyte powder. And the liquid substance which reacts with metallic lithium and produces what becomes an electronic insulator exists in the space between the powders of this powder compact.
この構成によれば、固体電解質層の粉末間の隙間を通って金属リチウムのデンドライトが成長したとしても、金属リチウムと上記液状物質とが反応して、金属リチウムが電子絶縁体化するので、電池の内部短絡を確実に防止できる。そのため、安全性が高く、充放電サイクル特性に優れた全固体リチウム二次電池とすることができる。 According to this configuration, even if dendrites of metallic lithium grow through the gaps between the powders of the solid electrolyte layer, the metallic lithium reacts with the liquid material and the metallic lithium becomes an electronic insulator. Can be reliably prevented. Therefore, it is possible to obtain an all-solid lithium secondary battery having high safety and excellent charge / discharge cycle characteristics.
上記液状物質としては、例えば公知のイオン液体を用いることができる。また、液状物質の粘度は、液状物質を固体電解質層の粉末間の隙間に存在させ易くするため、0.5mPa・s以上1Pa・s以下であることが好ましい。液状物質の粘度を0.5mPa・s以上とすることで、粉末間の隙間からの液状物質の流出を十分に抑制することができ、1Pa・s以下とすることで、液状物質を分散させ易く、電池作製時に固体電解質層の隙間全体に均一に行き渡らせ易い。液状物質の粘度は、1mPa・s以上100mPa・s以下であることがより好ましい。 As the liquid substance, for example, a known ionic liquid can be used. The viscosity of the liquid substance is preferably 0.5 mPa · s or more and 1 Pa · s or less in order to make the liquid substance easily exist in the gaps between the powders of the solid electrolyte layer. By setting the viscosity of the liquid substance to 0.5 mPa · s or more, the outflow of the liquid substance from the gaps between the powders can be sufficiently suppressed, and by setting it to 1 Pa · s or less, the liquid substance can be easily dispersed. It is easy to spread uniformly over the entire gap of the solid electrolyte layer during battery production. The viscosity of the liquid substance is more preferably 1 mPa · s or more and 100 mPa · s or less.
上記固体電解質層は、リチウムイオン伝導度の高い硫化物系固体電解質で構成することが好ましい。このような硫化物系固体電解質としては、Li-P-S系やLi-P-S-O系のものが挙げられる。その他、Li-P-O系やLi-P-O-N系の酸化物系固体電解質を用いてもよい。また、固体電解質層は、固体電解質の粉末をそのまま、或いは固体電解質を粉砕して粉末状としたもの、を加圧成形することにより得ることができる。このような粉末成形体の固体電解質層は、厚さが通常50μm以上である。本発明において、固体電解質層の厚さは特に限定されないが、500μm未満であることが好ましく、より好ましくは300μm以下である。固体電解質層の厚さを500μm未満とすることで、電池の薄型化を図ることができる。 The solid electrolyte layer is preferably composed of a sulfide-based solid electrolyte having a high lithium ion conductivity. Examples of such sulfide-based solid electrolytes include Li-P-S and Li-P-S-O types. In addition, a Li-P-O-based or Li-P-O-N-based oxide-based solid electrolyte may be used. The solid electrolyte layer can be obtained by pressure molding a solid electrolyte powder as it is or by pulverizing the solid electrolyte into a powder. The solid electrolyte layer of such a powder molded body usually has a thickness of 50 μm or more. In the present invention, the thickness of the solid electrolyte layer is not particularly limited, but is preferably less than 500 μm, more preferably 300 μm or less. By making the thickness of the solid electrolyte layer less than 500 μm, the battery can be thinned.
上記正極の活物質としては、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)及びオリビン型鉄リン酸リチウム(LiFePO4)から選択される1種のリチウム金属酸化物や、酸化マンガン(MnO2)、或いはこれらの混合物を用いることができる。その他、イオウ(S)や、硫化第二鉄(FeS)、二硫化鉄(FeS2)、硫化リチウム(Li2S)及び硫化チタニウム(TiS2)から選ばれる1種の硫化物や、或いはこれらの混合物を用いてもよい。中でも、リチウム金属酸化物、特にLiCoO2は、電子伝導性に優れており、好適である。 The positive electrode active material is one selected from lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and olivine-type lithium iron phosphate (LiFePO 4 ). Lithium metal oxide, manganese oxide (MnO 2 ), or a mixture thereof can be used. In addition, sulfur (S), ferric sulfide (FeS), iron disulfide (FeS 2 ), one kind of sulfide selected from lithium sulfide (Li 2 S) and titanium sulfide (TiS 2 ), or these A mixture of these may also be used. Among these, lithium metal oxides, particularly LiCoO 2, are excellent because of their excellent electron conductivity.
上記負極の活物質としては、金属リチウム(Li金属単体)又はリチウム合金(Liと添加元素からなるもの)の他、グラファイトなどの炭素(C)やシリコン(Si)、インジウム(In)を用いることができる。中でも、リチウムを含む材料、特に金属リチウムは、電池の高容量化、高電圧化の点で優位であり、好適である。前記リチウム合金の添加元素としては、アルミニウム(Al)、シリコン(Si)、錫(Sn)、ビスマス(Bi)、亜鉛(Zn)及びインジウム(In)などを用いることができる。 As the negative electrode active material, carbon (C) such as graphite, silicon (Si), and indium (In) are used in addition to metallic lithium (Li metal alone) or lithium alloy (comprising Li and an additive element). Can do. Among them, a material containing lithium, particularly metallic lithium, is advantageous in terms of increasing the capacity and voltage of the battery, and is preferable. As the additive element of the lithium alloy, aluminum (Al), silicon (Si), tin (Sn), bismuth (Bi), zinc (Zn), indium (In), or the like can be used.
本発明の全固体リチウム二次電池は、固体電解質層の粉末間の隙間に金属リチウムと反応して電子絶縁体となるものを生じる液状物質が存在することで、電池の内部短絡を確実に防止することができ、安全性が高く、充放電サイクル特性に優れる。 The all-solid-state lithium secondary battery of the present invention reliably prevents an internal short circuit of the battery by the presence of a liquid material that reacts with metallic lithium to form an electronic insulator in the gaps between the powders of the solid electrolyte layer. It is safe and has high charge / discharge cycle characteristics.
以下、本発明の実施の形態を説明する。 Embodiments of the present invention will be described below.
全固体リチウム二次電池の基本構造は、正極、固体電解質層、負極が順に積層された構造である。ここで、本発明の最も特徴とするところは、固体電解質層の粉末間の隙間に、金属リチウムと反応して電子絶縁体となるものを生じる液状物質が存在することである。 The basic structure of an all-solid lithium secondary battery is a structure in which a positive electrode, a solid electrolyte layer, and a negative electrode are stacked in this order. Here, the most characteristic feature of the present invention is that a liquid substance that reacts with metallic lithium to form an electronic insulator exists in the gaps between the powders of the solid electrolyte layer.
本発明における液状物質となる代表的なイオン液体について説明する。なお、イオン液体とは、カチオンとアニオンとを組み合わせたイオン分子のみから成る物質であり、常温において液体である。 The typical ionic liquid used as the liquid substance in the present invention will be described. In addition, an ionic liquid is a substance which consists only of an ionic molecule which combined the cation and the anion, and is a liquid at normal temperature.
イオン液体のカチオン種としては、アルキルイミダゾリウム、アルキルピリジニウム、テトラアルキルアンモニウム、ジアルキルピロリジニウム、テトラアルキルフォスフォニウム、トリアルキルスルフォニウムなどが挙げられる。 Examples of the cation species of the ionic liquid include alkylimidazolium, alkylpyridinium, tetraalkylammonium, dialkylpyrrolidinium, tetraalkylphosphonium, and trialkylsulfonium.
イオン液体のアニオン種としては、ハロゲンイオン、テトラフルオロボレート、ビストリフルオロメタンスルフォニルイミド、ビストリフルオロスルフォニルイミド、トリフルオロメチルスルフォネート、ジアルキルフォスフェート、ビスオキサレートボレート、アルキルスルフェート、ジシアンアミド、ヘキサフルオロフォスフェート、ラクテート、硝酸イオン、トリフルオロアセテートなどが挙げられる。 The anionic species of the ionic liquid include halogen ions, tetrafluoroborate, bistrifluoromethanesulfonylimide, bistrifluorosulfonylimide, trifluoromethyl sulfonate, dialkyl phosphate, bisoxalate borate, alkyl sulfate, dicyanamide, hexafluoro Examples include phosphate, lactate, nitrate ion, and trifluoroacetate.
さらに、イオン液体には支持塩を溶解させてもよい。支持塩としては、リチウムイオンと上記アニオンとから成る塩、例えばLiPF6、LiBF4、LiClO4、LiTFSI、LiBETIなどが挙げられる。このような支持塩を2種以上組み合わせて用いてもよい。また、イオン液体に対する支持塩の添加量は特に限定されないが、0.1〜1mol/kg程度とすることが好ましい。 Further, a supporting salt may be dissolved in the ionic liquid. Examples of the supporting salt include salts composed of lithium ions and the above anions, such as LiPF 6 , LiBF 4 , LiClO 4 , LiTFSI, LiBETI, and the like. Two or more such supporting salts may be used in combination. The amount of the supporting salt added to the ionic liquid is not particularly limited, but is preferably about 0.1 to 1 mol / kg.
なお、イオン液体の粘度は、イオン液体の種類により決定される。イオン液体の粘度は、粘度の異なる複数種のイオン液体を混合したり、支持塩の添加量を調節したりすることにより、調整することができる。 The viscosity of the ionic liquid is determined by the type of ionic liquid. The viscosity of the ionic liquid can be adjusted by mixing a plurality of types of ionic liquids having different viscosities or adjusting the addition amount of the supporting salt.
本発明における固体電解質層は、次の方法により得ることができる。 The solid electrolyte layer in the present invention can be obtained by the following method.
まず、固体電解質の粉末を用意する。この固体電解質の粉末は、粉末状の固体電解質をそのまま用いたり、固体電解質を粉砕して粉末状としたものを用いることができる。固体電解質の作製方法としては、例えばメカニカルミリング法や溶融急冷法を用いることができる。例えば、Li-P-S系の固体電解質を作製する場合は、出発原料となるLi2SとP2S5とを所定の割合で秤量し、遊星型ボールミルを用いてメカニカルミリング処理することにより作製することができる。 First, a solid electrolyte powder is prepared. As the solid electrolyte powder, a powdered solid electrolyte can be used as it is, or a powder obtained by pulverizing a solid electrolyte can be used. As a method for producing the solid electrolyte, for example, a mechanical milling method or a melt quenching method can be used. For example, when producing a Li-PS solid electrolyte, Li 2 S and P 2 S 5 as starting materials are weighed at a predetermined ratio, and are produced by mechanical milling using a planetary ball mill. be able to.
次に、この固体電解質の粉末に液状物質(例えばイオン液体)を加え、混合した後、この混合物を加圧成形することにより、固体電解質層の粉末間の隙間に液状物質が存在する固体電解質層を得ることができる。固体電解質の粉末に対する液状物質の配合比率は特に限定されないが、重量比で0.1〜5%程度とすることが好ましい。ここで、混合する際に、例えばメカニカルミリング法を用いて高い機械的エネルギーを与えた場合は、固体電解質の粉末と液状物質とが反応し複合化してしまうので、混合する際は、固体電解質の粉末と液状物質とが複合化しないような方法で混合する必要がある。 Next, a liquid substance (for example, an ionic liquid) is added to the solid electrolyte powder, mixed, and then the mixture is subjected to pressure molding, whereby the solid electrolyte layer in which the liquid substance exists in the gaps between the powders of the solid electrolyte layer. Can be obtained. The mixing ratio of the liquid substance to the solid electrolyte powder is not particularly limited, but is preferably about 0.1 to 5% by weight. Here, when mixing, for example, when high mechanical energy is applied using a mechanical milling method, the solid electrolyte powder and the liquid substance react and complex, so when mixing, the solid electrolyte It is necessary to mix in such a way that the powder and the liquid substance are not combined.
このような固体電解質層は、例え固体電解質層の厚さが500μm未満の場合であっても、特定の液状物質が固体電解質層の粉末間の隙間に存在することで、電池の内部短絡を効果的に防止することができる。特に、負極に金属リチウムを用いた場合であっても、電池の内部短絡を防止することができるので、安全性が高く、充放電サイクル特性に優れた全固体リチウム二次電池とすることができる。また、高電流密度で充放電を行なった場合などであっても、電池の内部短絡を防止することができるので、安全性が高く、充放電サイクル特性に優れた全固体リチウム二次電池とすることができる。 Such a solid electrolyte layer is effective even when the thickness of the solid electrolyte layer is less than 500 μm, because the specific liquid substance exists in the gaps between the powders of the solid electrolyte layer, thereby preventing the internal short circuit of the battery. Can be prevented. In particular, even when metallic lithium is used for the negative electrode, the internal short circuit of the battery can be prevented, so that an all-solid lithium secondary battery having high safety and excellent charge / discharge cycle characteristics can be obtained. . In addition, even when charging / discharging at a high current density, etc., the internal short circuit of the battery can be prevented, so that an all-solid lithium secondary battery having high safety and excellent charge / discharge cycle characteristics is obtained. be able to.
[実施例1]
図1に示すような、正極1、固体電解質層3、負極2を順に積層した構造の本発明の全固体リチウム二次電池を作製し、充放電サイクル試験を実施した。
[Example 1]
As shown in FIG. 1, an all solid lithium secondary battery of the present invention having a structure in which a positive electrode 1, a solid electrolyte layer 3, and a negative electrode 2 were laminated in this order was produced, and a charge / discharge cycle test was performed.
(固体電解質層の材料)
Li2SとP2S5とをモル比で4:1の割合で秤量し、この混合物をメカニカルミリング処理して、硫化物系固体電解質(Li-P-S系)の粉末を得た。その後、得られた粉末を230℃の条件でアニール処理した。この固体電解質のリチウムイオン伝導度を測定したところ、リチウムイオン伝導度は5×10-4S/cmであった。
(Material of solid electrolyte layer)
Li 2 S and P 2 S 5 were weighed at a molar ratio of 4: 1, and the mixture was mechanically milled to obtain a sulfide-based solid electrolyte (Li-PS-based) powder. Thereafter, the obtained powder was annealed at 230 ° C. When the lithium ion conductivity of this solid electrolyte was measured, the lithium ion conductivity was 5 × 10 −4 S / cm.
次に、この固体電解質粉末80mgにイオン液体1mgを加え、乳鉢で混合して、混合固体電解質粉末を作製した。なお、イオン液体には、EMI‐TFSI(1‐エチル‐3‐メチルイミダゾリウム‐ビストリフルオロメタンスルフォニルイミド)を用い、更に、支持塩としてLiTFSIを0.1mol/kgの割合で溶解させた。このイオン液体の粘度をCBC株式会社製VM-10Aを用いて測定したところ、イオン液体の粘度は、48mPa・sであった。 Next, 1 mg of ionic liquid was added to 80 mg of this solid electrolyte powder and mixed in a mortar to produce a mixed solid electrolyte powder. As the ionic liquid, EMI-TFSI (1-ethyl-3-methylimidazolium-bistrifluoromethanesulfonylimide) was used, and LiTFSI was dissolved as a supporting salt at a rate of 0.1 mol / kg. When the viscosity of this ionic liquid was measured using VM-10A manufactured by CBC Corporation, the viscosity of the ionic liquid was 48 mPa · s.
(正極材料及び負極材料)
LiCoO2と上記固体電解質とを重量比で7:3となるように配合し、これを乳鉢で混合して、これを正極材料とした。また、負極材料として、厚さ300μmの金属リチウム箔を用意した。
(Positive electrode material and negative electrode material)
LiCoO 2 and the above solid electrolyte were blended at a weight ratio of 7: 3 and mixed in a mortar to obtain a positive electrode material. In addition, a metal lithium foil having a thickness of 300 μm was prepared as a negative electrode material.
<電池の作製>
上記の正極材料を20mg、混合固体電解質粉末を50mg、負極材料の金属リチウム箔を、10mmΦの金型に順に配置し、プレスすることにより本発明の全固体リチウム二次電池を作製した。この電池の固体電解質層の厚さは300μmであった。また、固体電解質層の断面を走査型電子顕微鏡(SEM)により観察したところ、固体電解質層を構成する固体電解質粉末の隙間にイオン液体が存在していることが確認された。この電池を試料1とした。
<Production of battery>
20 mg of the above positive electrode material, 50 mg of the mixed solid electrolyte powder, and metal lithium foil of the negative electrode material were sequentially arranged in a 10 mmφ mold and pressed to prepare an all solid lithium secondary battery of the present invention. The thickness of the solid electrolyte layer of this battery was 300 μm. Moreover, when the cross section of the solid electrolyte layer was observed with a scanning electron microscope (SEM), it was confirmed that the ionic liquid was present in the gaps between the solid electrolyte powders constituting the solid electrolyte layer. This battery was designated as Sample 1.
比較として、イオン液体を用いていない点を除いて、試料1と同じ方法で、全固体リチウム二次電池を作製した。この電池の固体電解質層の厚さは300μmであった。この電池を比較例1とした。 For comparison, an all-solid lithium secondary battery was produced in the same manner as Sample 1 except that no ionic liquid was used. The thickness of the solid electrolyte layer of this battery was 300 μm. This battery was referred to as Comparative Example 1.
<電池の評価>
試料1及び比較例1の正負両電極にそれぞれリード端子を取り付け、試料1及び比較例1について、充電上限電圧:3.7V、放電下限電圧:2.0V、充放電電流:0.1mAの条件で、充電・放電を1サイクルとする充放電サイクル試験を実施した。
<Battery evaluation>
Lead terminals are attached to both the positive and negative electrodes of Sample 1 and Comparative Example 1, and charging is performed for Sample 1 and Comparative Example 1 under the conditions of an upper limit charge voltage: 3.7 V, a lower discharge limit voltage: 2.0 V, and a charge / discharge current: 0.1 mA. -A charge / discharge cycle test was conducted with one discharge cycle.
その結果、試料1では、100サイクル後の放電容量が140mAh/gであり、100サイクルを超える充放電が可能であった。これに対し、比較例1では、13サイクル目に電圧挙動が不安定となり、電池に内部短絡が生じた。 As a result, in Sample 1, the discharge capacity after 100 cycles was 140 mAh / g, and charge / discharge exceeding 100 cycles was possible. On the other hand, in Comparative Example 1, the voltage behavior became unstable at the 13th cycle, and an internal short circuit occurred in the battery.
このように、本発明の全固体リチウム二次電池は、高い安全性と優れた充放電サイクル特性を有することが確認できた。 Thus, it was confirmed that the all solid lithium secondary battery of the present invention has high safety and excellent charge / discharge cycle characteristics.
なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、固体電解質層の厚さを適宜変更したり、負極材料として金属リチウム以外の材料を用いてもよい。 Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, the thickness of the solid electrolyte layer may be changed as appropriate, or a material other than metallic lithium may be used as the negative electrode material.
本発明の全固体リチウム二次電池は、高い安全性と優れた充放電サイクル特性が要求されるリチウム二次電池に好適に利用することができる。 The all solid lithium secondary battery of the present invention can be suitably used for a lithium secondary battery that requires high safety and excellent charge / discharge cycle characteristics.
1 正極 2 負極 3 固体電解質層 1 Positive electrode 2 Negative electrode 3 Solid electrolyte layer
Claims (6)
前記固体電解質層は、固体電解質の粉末を成形した粉末成形体であり、
この粉末成形体の粉末間の隙間に、金属リチウムと反応して電子絶縁体となるものを生じる液状物質が存在することを特徴とする全固体リチウム二次電池。 An all-solid lithium secondary battery having a positive electrode and a negative electrode, and a solid electrolyte layer interposed between the positive and negative electrodes,
The solid electrolyte layer is a powder molded body obtained by molding a solid electrolyte powder,
An all-solid lithium secondary battery characterized in that a liquid material that reacts with metallic lithium to form an electronic insulator exists in the gap between powders of the powder compact.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008053017A JP2009211910A (en) | 2008-03-04 | 2008-03-04 | All-solid lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008053017A JP2009211910A (en) | 2008-03-04 | 2008-03-04 | All-solid lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009211910A true JP2009211910A (en) | 2009-09-17 |
Family
ID=41184865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008053017A Pending JP2009211910A (en) | 2008-03-04 | 2008-03-04 | All-solid lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009211910A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011010552A1 (en) * | 2009-07-22 | 2011-01-27 | 住友電気工業株式会社 | Nonaqueous electrolyte battery and solid electrolyte for nonaqueous electrolyte battery |
WO2011102027A1 (en) * | 2010-02-16 | 2011-08-25 | 住友電気工業株式会社 | Non-aqueous electrolyte battery and manufacturing process therefor |
JP2014523626A (en) * | 2011-07-21 | 2014-09-11 | ブレトン・エセ・ペ・ア | Solid electrolytes based on oxides doped with fluorine |
KR20160121951A (en) * | 2015-04-13 | 2016-10-21 | 울산과학기술원 | Solid electrolytes for all solid state rechargeable lithium battery, methods for manufacturing the same, and all solid state rechargeable lithium battery including the same |
KR101766650B1 (en) * | 2014-07-28 | 2017-08-11 | 한국전기연구원 | Secondary Batteries Comprising Solid Electrolyte With Wetted Ionic Liquids |
WO2019022095A1 (en) | 2017-07-24 | 2019-01-31 | 公立大学法人首都大学東京 | Electrolyte composition, electrolyte film, and cell |
US20200099104A1 (en) * | 2018-09-25 | 2020-03-26 | Toyota Jidosha Kabushiki Kaisha | Lithium secondary battery |
EP3654435A1 (en) | 2018-11-15 | 2020-05-20 | Toyota Jidosha Kabushiki Kaisha | All-solid lithium secondary battery, and deterioration determination method of all-solid lithium secondary battery |
US20210020983A1 (en) * | 2018-05-16 | 2021-01-21 | Ngk Spark Plug Co., Ltd. | Ionic conductor and lithium battery |
CN113767499A (en) * | 2019-05-03 | 2021-12-07 | 株式会社Lg新能源 | Solid electrolyte membrane and solid-state battery including the same |
US12119479B2 (en) | 2017-02-07 | 2024-10-15 | Samsung Electronics Co., Ltd. | Anode for all solid-state secondary battery, all solid-state secondary battery including the anode, and method of manufacturing the anode |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08106911A (en) * | 1994-10-05 | 1996-04-23 | Matsushita Electric Ind Co Ltd | All solid lithium battery |
JP2001155777A (en) * | 1999-11-26 | 2001-06-08 | Kyocera Corp | Lithium battery |
JP2005093824A (en) * | 2003-09-18 | 2005-04-07 | Tdk Corp | Method for manufacturing electrochemical device |
JP2005135777A (en) * | 2003-10-30 | 2005-05-26 | Yuasa Corp | Non-aqueous electrolyte and electrochemical device |
JP2007323837A (en) * | 2006-05-30 | 2007-12-13 | Toshiba Corp | Nonaqueous electrolyte battery |
JP2007329107A (en) * | 2006-06-09 | 2007-12-20 | Arisawa Mfg Co Ltd | Lithium ion secondary battery |
JP2008243736A (en) * | 2007-03-28 | 2008-10-09 | Arisawa Mfg Co Ltd | Lithium ion secondary battery and its manufacturing method |
-
2008
- 2008-03-04 JP JP2008053017A patent/JP2009211910A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08106911A (en) * | 1994-10-05 | 1996-04-23 | Matsushita Electric Ind Co Ltd | All solid lithium battery |
JP2001155777A (en) * | 1999-11-26 | 2001-06-08 | Kyocera Corp | Lithium battery |
JP2005093824A (en) * | 2003-09-18 | 2005-04-07 | Tdk Corp | Method for manufacturing electrochemical device |
JP2005135777A (en) * | 2003-10-30 | 2005-05-26 | Yuasa Corp | Non-aqueous electrolyte and electrochemical device |
JP2007323837A (en) * | 2006-05-30 | 2007-12-13 | Toshiba Corp | Nonaqueous electrolyte battery |
JP2007329107A (en) * | 2006-06-09 | 2007-12-20 | Arisawa Mfg Co Ltd | Lithium ion secondary battery |
JP2008243736A (en) * | 2007-03-28 | 2008-10-09 | Arisawa Mfg Co Ltd | Lithium ion secondary battery and its manufacturing method |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011010552A1 (en) * | 2009-07-22 | 2011-01-27 | 住友電気工業株式会社 | Nonaqueous electrolyte battery and solid electrolyte for nonaqueous electrolyte battery |
WO2011102027A1 (en) * | 2010-02-16 | 2011-08-25 | 住友電気工業株式会社 | Non-aqueous electrolyte battery and manufacturing process therefor |
JP2014523626A (en) * | 2011-07-21 | 2014-09-11 | ブレトン・エセ・ペ・ア | Solid electrolytes based on oxides doped with fluorine |
KR101766650B1 (en) * | 2014-07-28 | 2017-08-11 | 한국전기연구원 | Secondary Batteries Comprising Solid Electrolyte With Wetted Ionic Liquids |
KR20160121951A (en) * | 2015-04-13 | 2016-10-21 | 울산과학기술원 | Solid electrolytes for all solid state rechargeable lithium battery, methods for manufacturing the same, and all solid state rechargeable lithium battery including the same |
KR101705267B1 (en) * | 2015-04-13 | 2017-02-22 | 울산과학기술원 | Solid electrolytes for all solid state rechargeable lithium battery, methods for manufacturing the same, and all solid state rechargeable lithium battery including the same |
US12119479B2 (en) | 2017-02-07 | 2024-10-15 | Samsung Electronics Co., Ltd. | Anode for all solid-state secondary battery, all solid-state secondary battery including the anode, and method of manufacturing the anode |
WO2019022095A1 (en) | 2017-07-24 | 2019-01-31 | 公立大学法人首都大学東京 | Electrolyte composition, electrolyte film, and cell |
KR20200032102A (en) | 2017-07-24 | 2020-03-25 | 도쿄 메트로폴리탄 유니버시티 | Electrolyte composition, electrolyte membrane and battery |
US20210020983A1 (en) * | 2018-05-16 | 2021-01-21 | Ngk Spark Plug Co., Ltd. | Ionic conductor and lithium battery |
US20200099104A1 (en) * | 2018-09-25 | 2020-03-26 | Toyota Jidosha Kabushiki Kaisha | Lithium secondary battery |
EP3654435A1 (en) | 2018-11-15 | 2020-05-20 | Toyota Jidosha Kabushiki Kaisha | All-solid lithium secondary battery, and deterioration determination method of all-solid lithium secondary battery |
CN113767499A (en) * | 2019-05-03 | 2021-12-07 | 株式会社Lg新能源 | Solid electrolyte membrane and solid-state battery including the same |
CN113767499B (en) * | 2019-05-03 | 2024-07-16 | 株式会社Lg新能源 | Solid electrolyte membrane and solid battery comprising same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rodrigues et al. | A materials perspective on Li-ion batteries at extreme temperatures | |
JP2009211910A (en) | All-solid lithium secondary battery | |
KR101793168B1 (en) | All solid lithium secondary batterie including llzo solid electrolyte and manufacturing method for the same | |
KR102201126B1 (en) | Lithium-ion battery for automotive applications | |
JP5873533B2 (en) | Sulfide-based solid electrolyte for lithium-ion battery | |
JP6246816B2 (en) | All solid battery | |
KR101847035B1 (en) | All solid lithium secondary batteries including conducting polymer and manufacturing method for the same | |
Li et al. | Developments of electrolyte systems for lithium–sulfur batteries: A review | |
JP5516755B2 (en) | Electrode body and all-solid battery | |
JP5348607B2 (en) | All-solid lithium secondary battery | |
US20120301778A1 (en) | Solid-state multi-layer electrolyte, electrochemical cell and battery including the electrolyte, and method of forming same | |
KR101939142B1 (en) | ALL SOLID LITHIUM SECONDARY BATTERY INCLUDING Ga-DOPED LLZO SOLID ELECTROLYTE AND MANUFACTURING METHOD FOR THE SAME | |
JP2016058250A (en) | Electrode body for lithium battery and lithium battery | |
TW201405911A (en) | Battery system, production method of battery system, and controlling device of battery | |
DE102019111405A1 (en) | SULPHIDE AND OXYSULPHIDE GLASS AND CERAMIC SOLID BODY ELECTROLYTE FOR ELECTROCHEMICAL CELLS | |
KR20180032988A (en) | cathode active material, method of preparing the cathode active material, and all solid state battery comprising the same | |
JP2017157473A (en) | Lithium ion secondary battery | |
US10930972B2 (en) | Metal-phosphorous sulfide additives for solid state batteries | |
EP2789034B1 (en) | A mixture, a slurry for an electrode, a battery electrode, a battery and associated methods | |
Kum et al. | Enhancing electrochemical performances of rechargeable lithium-ion batteries via cathode interfacial engineering | |
JP2012230810A (en) | Lithium titanate, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery | |
Morchhale et al. | Coating materials and processes for cathodes in sulfide-based all solid-state batteries | |
JP2011181495A (en) | Inorganic electrolyte and lithium secondary battery using the same | |
KR20170092264A (en) | All solid lithium secondary batteries including conducting polymer and manufacturing method for the same | |
US20120267566A1 (en) | Lithium ion secondary battery positive electrode material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120918 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130204 |