JP2011129258A - Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same - Google Patents

Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP2011129258A
JP2011129258A JP2009283752A JP2009283752A JP2011129258A JP 2011129258 A JP2011129258 A JP 2011129258A JP 2009283752 A JP2009283752 A JP 2009283752A JP 2009283752 A JP2009283752 A JP 2009283752A JP 2011129258 A JP2011129258 A JP 2011129258A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009283752A
Other languages
Japanese (ja)
Inventor
Katsutoshi Takeda
勝利 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009283752A priority Critical patent/JP2011129258A/en
Publication of JP2011129258A publication Critical patent/JP2011129258A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cathode active material for a nonaqueous electrolyte secondary battery solving a problem of a cathode active material mainly composed of lithium-nickel composite oxide, and capable of absorption/releasing of lithium ions having excellent load characteristics while maintaining long life, and a method for producing the same as well as a nonaqueous electrolyte secondary battery using the same. <P>SOLUTION: Oxide containing Zn and Al is coated on a surface of cathode active material particles mainly composed of lithium-nickel composite oxide. The oxide containing Zn and Al preferably has a ratio "a" of Al to Zn to be 0<a≤16 mol%. Moreover, a mass ratio w of the oxide containing Zn and AL to the mass of the cathode active material preferably has a relation of 0<w≤20 mass%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムイオンの吸蔵・放出が可能な非水電解質二次電池用正極活物質、その製造方法及びそれを用いた非水電解質二次電池に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery capable of occluding and releasing lithium ions, a method for producing the same, and a non-aqueous electrolyte secondary battery using the same.

現在、高エネルギー密度の二次電池として、非水電解液を使用し、リチウムイオンを正極と負極との間で移動させて充放電を行うようにした非水電解質二次電池が利用されている。   Currently, non-aqueous electrolyte secondary batteries that use a non-aqueous electrolyte and charge and discharge by moving lithium ions between the positive and negative electrodes are used as secondary batteries with high energy density. .

このような非水電解質二次電池として、一般に正極活物質としてLiCoOを用いると共に、負極活物質としてリチウム金属やリチウム合金、リチウムの吸蔵・放出が可能な炭素材料を用い、また非水電解液として、エチレンカーボネートやジエチルカーボネート等の有機溶媒にLiBFやLiPF等のリチウム塩からなる電解質を溶解させたものが使用されている。 As such a non-aqueous electrolyte secondary battery, LiCoO 2 is generally used as a positive electrode active material, and a lithium metal, a lithium alloy, or a carbon material capable of occluding and releasing lithium is used as a negative electrode active material. For example, an electrolyte made of lithium salt such as LiBF 4 or LiPF 6 dissolved in an organic solvent such as ethylene carbonate or diethyl carbonate is used.

しかしながら、LiCoOに含まれるコバルトは高価であると共に資源としての埋蔵量が限られており、稀少な資源であるため、生産コストが高くなる。このためLiCoOに替わる正極材料として、リチウムニッケル複合酸化物(LiNiO等)やリチウムマンガン複合酸化物(LiMn等)等の利用が検討されている。特にNiを主組成としたリチウムニッケル複合酸化物(LiNi1−x、0<x<1、MはNi以外の遷移金属でCo、Al、Mn、Fe、Ti等)はLiCoOに比べて高容量であり、比較的安価であることから注目されている。 However, cobalt contained in LiCoO 2 is expensive and has a limited reserve as a resource, and is a scarce resource, resulting in high production costs. For this reason, utilization of lithium nickel composite oxide (LiNiO 2 etc.), lithium manganese composite oxide (LiMn 2 O 4 etc.), etc. is examined as a positive electrode material replacing LiCoO 2 . In particular, lithium-nickel composite oxides mainly composed of Ni (LiNi x M 1-x O 2 , 0 <x <1, M is a transition metal other than Ni and Co, Al, Mn, Fe, Ti, etc.) are LiCoO 2. It is attracting attention because of its high capacity and relatively low cost.

しかし、リチウムニッケル複合酸化物からなる正極活物質は低寿命や構造不安定等の短所を有しているため、これらの特性を改善することが求められている。その一手段として、下記特許文献1及び2に示されているような、正極活物質の表面修飾が検討されている。すなわち、下記特許文献1及び2にはリチウムニッケル複合酸化物の寿命特性や構造安定性改善等を目的として、正極活物質表面に亜鉛、スズ、鉛等の両性化合物(特許文献1)、或いは、Mg、Si、Ti、Al等の金属酸化物(特許文献2)からなる表面修飾材をコーティングしている。   However, since the positive electrode active material made of a lithium nickel composite oxide has disadvantages such as a low life and structural instability, it is required to improve these characteristics. As one means for that, surface modification of the positive electrode active material as shown in Patent Documents 1 and 2 below has been studied. That is, in Patent Documents 1 and 2 below, an amphoteric compound such as zinc, tin, or lead on the surface of the positive electrode active material (Patent Document 1), The surface modifying material which consists of metal oxides (patent document 2), such as Mg, Si, Ti, and Al, is coated.

特開2008−277307JP 2008-277307 A 特開2001−028265JP2001-028265

これら表面修飾材によってコーティングされた正極活物質では、正極活物質材料と電解液との直接的な接触が遮断されることにより電池の寿命特性が向上するものと考えられるが、十分な効果を得るためにはある程度の量の表面修飾材によって正極活物質の表面をコーティングする必要がある。しかしながら、上記特許文献1及び2に挙げられる表面修飾材からなるコーティング層は、電子伝導性に優れているとは言えず、正極活物質表面の抵抗を増加させるため、結果として電池の内部抵抗の増加に伴う負荷特性低下を引き起こす虞があるといった問題がある。   In the positive electrode active material coated with these surface modifiers, it is considered that the battery life characteristics are improved by blocking direct contact between the positive electrode active material and the electrolytic solution, but sufficient effects are obtained. Therefore, it is necessary to coat the surface of the positive electrode active material with a certain amount of the surface modifying material. However, the coating layer made of the surface modifying material described in Patent Documents 1 and 2 cannot be said to be excellent in electronic conductivity, and increases the resistance of the surface of the positive electrode active material. There is a problem in that there is a risk of causing a decrease in load characteristics accompanying the increase.

本発明は、このようなリチウムニッケル複合酸化物からなる正極活物質の問題点を解決し、高寿命を維持しながら、優れた負荷特性を有するリチウムイオンの吸蔵・放出が可能な非水電解質二次電池用正極活物質、その製造方法及びそれを用いた非水電解質二次電池を提供することを目的とする。   The present invention solves the problems of the positive electrode active material comprising such a lithium nickel composite oxide, and has a non-aqueous electrolyte capable of occluding and releasing lithium ions having excellent load characteristics while maintaining a long life. It aims at providing the positive electrode active material for secondary batteries, its manufacturing method, and a nonaqueous electrolyte secondary battery using the same.

上記目的を達成するために、本発明の非水電解質二次電池用正極活物質は、リチウムニッケル複合酸化物を主成分とする正極活物質粒子の表面にZnとAlとを含む酸化物を被着させたことを特徴とする。   In order to achieve the above object, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is coated with an oxide containing Zn and Al on the surface of positive electrode active material particles mainly composed of a lithium nickel composite oxide. Characterized by wearing.

ZnとAlとを含む酸化物は、ZnO結晶構造内においてZnイオンがAlイオンと置換固溶され、電子が1つ放出されるため、Zn単独、Al単独、Sn、Pb、Mg、Si、Ti等の各酸化物よりも電子伝導性が優れている。そのため、本発明の非水電解質二次電池用正極活物質によれば、リチウムニッケル複合酸化物を主体とする正極活物質粒子の表面に電子伝導性に優れるZnとAlとを含む酸化物を被着させているので、従来例のリチウムニッケル複合酸化物を主体とする正極活物質に比して、高寿命を維持しながら、優れた負荷特性を備える非水電解質二次電池用の正極活物質を得ることができる。なお、本発明の非水電解質二次電池用正極活物質として使用し得るリチウムニッケル複合酸化物としては、Li1+xNi1−y、0≦x<0.5、0.3≦y≦1、MはNi以外の遷移金属でCo、Al、Mn、Fe、Ti、Mg、Cr、Ga、Cu、Znから選択される少なくとも1種を含むものが好ましい。 In an oxide containing Zn and Al, Zn ions are substituted with Al ions in the ZnO crystal structure, and one electron is emitted, so that Zn alone, Al alone, Sn, Pb, Mg, Si, Ti Electron conductivity is superior to each oxide such as. Therefore, according to the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, the surface of the positive electrode active material particle mainly composed of lithium nickel composite oxide is coated with an oxide containing Zn and Al having excellent electron conductivity. The positive electrode active material for a non-aqueous electrolyte secondary battery having excellent load characteristics while maintaining a long life as compared with the positive electrode active material mainly composed of the lithium nickel composite oxide of the conventional example. Can be obtained. The lithium nickel composite oxide that can be used as the positive electrode active material for the non-aqueous electrolyte secondary battery of the present invention includes Li 1 + x Ni y M 1-y O 2 , 0 ≦ x <0.5, 0.3 ≦ y ≦ 1, M is a transition metal other than Ni, and preferably contains at least one selected from Co, Al, Mn, Fe, Ti, Mg, Cr, Ga, Cu, and Zn.

また、本発明の非水電解質二次電池用正極活物質においては、前記ZnとAlとを含む酸化物は、Znに対するAlの割合a(Al/Zn:mol%)が、0<a≦16mol%であることが好ましい。   In the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, the oxide containing Zn and Al has a ratio a of Al to Zn (Al / Zn: mol%) of 0 <a ≦ 16 mol. % Is preferred.

ZnとAlとを含む酸化物は、Znに対するAlの割合を高くすることにより、電子伝導性は良くなっていくが、逆にZnに対するAlの割合を16mol%より高くすると、電子伝導性は低下する。そのためZnに対するAlの割合aは、0<a≦l6mol%とすることが望ましい。   In the oxide containing Zn and Al, the electron conductivity is improved by increasing the ratio of Al to Zn. Conversely, when the ratio of Al to Zn is higher than 16 mol%, the electron conductivity is decreased. To do. Therefore, the Al ratio a to Zn is preferably 0 <a ≦ 16 mol%.

また、本発明の非水電解質二次電池用正極活物質においては、前記正極活物質の質量に対するZnとAlとを含む酸化物の質量比wが0<w≦20質量%であることが好ましい。   In the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, the mass ratio w of the oxide containing Zn and Al with respect to the mass of the positive electrode active material is preferably 0 <w ≦ 20% by mass. .

本発明の非水電解質二次電池用正極活物質によれば、正極活物質の質量に対するZnとAlとを含む酸化物の質量比wを大きくすることにより、ZnとAlとを含む酸化物の表面修飾により正極活物質の抵抗が低下し、結果として電池の放電負荷特性が向上するが、逆に大きくしすぎると正極活物質の質量当たりの放電容量が低下する。そのため、本発明の非水電解質二次電池用正極活物質においては、0<w≦20質量%とすることが好ましい。   According to the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, by increasing the mass ratio w of the oxide containing Zn and Al with respect to the mass of the positive electrode active material, the oxide containing Zn and Al The surface modification reduces the resistance of the positive electrode active material and, as a result, improves the discharge load characteristics of the battery. Conversely, if the surface modification is too large, the discharge capacity per mass of the positive electrode active material decreases. Therefore, in the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, it is preferable that 0 <w ≦ 20% by mass.

さらに、上記目的を達成するため、本発明の非水電解質二次電池用正極活物質の製造方法は、正極活物質焼成時にLi源をリチウムニッケル複合酸化物の化学量論組成に対して過剰に仕込み、Li塩が正極活物質表面に残留した(以下、Li過剰組成と記す)リチウムニッケル複合酸化物を主成分とする正極活物質をZnとAlを含む金属塩が溶解した溶液中へ投入・撹拌し、前記正極活物質の表面に残留しているLi塩を触媒としてZnとAlとを含む酸化物を表面に被着させ、得られた正極活物質粉末を乾燥・熱処理することを特徴とする。   Furthermore, in order to achieve the above object, the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention includes an excessive amount of Li source relative to the stoichiometric composition of the lithium nickel composite oxide during firing of the positive electrode active material. The positive electrode active material mainly composed of a lithium nickel composite oxide in which the Li salt remains on the surface of the positive electrode active material (hereinafter referred to as a Li-excess composition) is charged into a solution in which a metal salt containing Zn and Al is dissolved. Stirring, depositing an oxide containing Zn and Al on the surface using Li salt remaining on the surface of the positive electrode active material as a catalyst, and drying and heat-treating the obtained positive electrode active material powder To do.

ZnとAlを含む金属塩を溶媒中に溶解し、そこへLi過剰組成のリチウムニッケル複合酸化物を主体とする正極活物質を投入することにより、正極活物質表面の残留Li塩が触媒として働き、ZnとAlを含む金属塩を加水分解し、正極活物質表面にZnとAlとを含む酸化物やZnとAlとを含む水酸化物が付着した正極活物質粉末が得られる。得られた正極活物質粉末を乾燥・熱処理すると、容易にZnとAlとを含む水酸化物は、脱水してZnとAlとを含む酸化物に変化する。   A metal salt containing Zn and Al is dissolved in a solvent, and a positive electrode active material mainly composed of a lithium-nickel composite oxide having an excess of Li is added thereto, whereby the residual Li salt on the surface of the positive electrode active material acts as a catalyst. Then, a metal salt containing Zn and Al is hydrolyzed to obtain a positive electrode active material powder in which an oxide containing Zn and Al and a hydroxide containing Zn and Al are attached to the surface of the positive electrode active material. When the obtained positive electrode active material powder is dried and heat-treated, the hydroxide containing Zn and Al is easily dehydrated and changed to an oxide containing Zn and Al.

得られた正極活物質粉末を熱処理する条件としては、正極活物質の焼成温度(700℃程度)より低くすることが望ましい。これより高くすると、正極活物質の結晶構造内のLiとNiの置換(カチオンミキシング)が起こり、放電容量が低下する虞がある。そのため熱処理する条件は700℃以下とすることが望ましい。また熱処理温度が低い場合はZnとAlを含む酸化物において、ZnイオンとAlイオンが結晶内で十分に置換固溶せず、良好な電子伝導性が得られない虞があることから、より望ましくは300〜500℃である。   As conditions for heat-treating the obtained positive electrode active material powder, it is desirable that the temperature be lower than the firing temperature (about 700 ° C.) of the positive electrode active material. If it is higher than this, substitution of Li and Ni in the crystal structure of the positive electrode active material (cation mixing) may occur, and the discharge capacity may be reduced. Therefore, the heat treatment condition is desirably 700 ° C. or lower. Also, when the heat treatment temperature is low, it is more desirable because in the oxide containing Zn and Al, Zn ions and Al ions are not sufficiently substituted and dissolved in the crystal, and good electron conductivity may not be obtained. Is 300-500 ° C.

また、本発明の非水電解質二次電池用正極活物質の製造方法においては、Li過剰組成のリチウムニッケル複合酸化物として、前記Li過剰組成のリチウムニッケル複合酸化物は、ニッケル塩と、Co、Al、Mn、Fe、Ti、Mg、Cr、Ga、Cu、Znから選択される少なくとも1種の塩と、を含む水溶液から共沈させることによってニッケル複合水酸化物を得た後、水酸化リチウムを添加し、次いで焼成することによって得たものを用いることができる。   Further, in the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, as the lithium nickel composite oxide having an excessive Li composition, the lithium nickel composite oxide having an excessive Li composition includes a nickel salt, Co, After obtaining nickel composite hydroxide by coprecipitation from an aqueous solution containing at least one salt selected from Al, Mn, Fe, Ti, Mg, Cr, Ga, Cu, Zn, lithium hydroxide Can be used by adding and then baking.

本発明の非水電解質二次電池用正極活物質の製造方法によれば、容易にLi塩の触媒活性が大きいLi過剰組成のリチウムニッケル複合酸化物を得ることができるようになる。   According to the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, it is possible to easily obtain a lithium-nickel composite oxide having a Li-excess composition having a large Li salt catalytic activity.

また、本発明の非水電解質二次電池用正極活物質の製造方法においては、前記ZnとAlを含む金属塩が溶解した溶液として、酢酸亜鉛と酢酸アルミニウムが溶解したアルコール溶液を用いることが好ましい。   In the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, it is preferable to use an alcohol solution in which zinc acetate and aluminum acetate are dissolved as the solution in which the metal salt containing Zn and Al is dissolved. .

本発明の非水電解質二次電池用正極活物質の製造方法で使用する酢酸亜鉛や酢酸アルミニウムといった金属塩は、比較的安価でそのアルコール溶液は安定である。そのため、本発明の非水電解質二次電池用正極活物質の製造方法によれば、容易にLi過剰組成のリチウムニッケル複合酸化物の表面にZnとAlとを含む酸化物を形成することができる。   Metal salts such as zinc acetate and aluminum acetate used in the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention are relatively inexpensive and the alcohol solution is stable. Therefore, according to the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, an oxide containing Zn and Al can be easily formed on the surface of a lithium nickel composite oxide having a Li-rich composition. .

さらに、上記目的を達成するため、本発明の非水電解質二次電池は、上記いずれかに記載の正極活物質を含有する正極と、負極と、非水電解質とを備えていることを特徴とする。   Furthermore, in order to achieve the above object, the nonaqueous electrolyte secondary battery of the present invention comprises a positive electrode containing any one of the positive electrode active materials described above, a negative electrode, and a nonaqueous electrolyte. To do.

本発明の非水電解質二次電池で用いる正極としては、従来の非水電解二次電池用正極と同様に作製することができる。例えば、上記いずれかの正極活物質の粉末と、導電剤粉末と、バインダーとを有機溶媒中で混合して正極合剤スラリーを調製し、この正極合剤スラリーを一定厚さとなるように正極集電体としてのアルミニウム箔の表面に塗布した後、乾燥後に圧縮して所定の充填密度及び厚さとなるようにすることにより、本発明の非水電解質二次電池で用いる正極を作製できる。   The positive electrode used in the nonaqueous electrolyte secondary battery of the present invention can be produced in the same manner as the conventional positive electrode for nonaqueous electrolytic secondary batteries. For example, any positive electrode active material powder, conductive agent powder, and binder are mixed in an organic solvent to prepare a positive electrode mixture slurry, and the positive electrode mixture slurry is adjusted to have a constant thickness. A positive electrode used in the non-aqueous electrolyte secondary battery of the present invention can be produced by applying it to the surface of an aluminum foil as an electric body and then compressing it after drying so as to have a predetermined packing density and thickness.

正極合剤に添加する導電剤としては、導電性を有する材料であればよく、特に導電性が優れている酸化物、炭化物、窒化物、炭素材料の少なくとも一種を用いることができる。酸化物としては、酸化スズ、酸化インジウム等が挙げられる。炭化物としては、炭化タングステン、炭化ジルコニウム等が挙げられる。窒化物としては、窒化チタン、窒化タンタル等が挙げられる。   The conductive agent added to the positive electrode mixture may be any material having conductivity, and at least one of oxides, carbides, nitrides, and carbon materials that are particularly excellent in conductivity can be used. Examples of the oxide include tin oxide and indium oxide. Examples of the carbide include tungsten carbide and zirconium carbide. Examples of the nitride include titanium nitride and tantalum nitride.

なお、このように導電剤を添加させる場合、その添加量が少ないと、正極における導電性を充分に向上させることができない一方、その添加量が多くなり過ぎると、正極における活物質の割合が少なくなって高いエネルギー密度が得られなくなる。このため、導電剤の量は、正極合剤全体の0質量%以上30質量%以下、好ましくは、0質量%以上20質量%以下、より好ましくは、0質量%以上10質量%以下の範囲になるようにする。   When the conductive agent is added in this way, if the amount added is small, the conductivity in the positive electrode cannot be sufficiently improved. On the other hand, if the amount added is too large, the proportion of the active material in the positive electrode is small. Thus, a high energy density cannot be obtained. For this reason, the amount of the conductive agent is in the range of 0% by mass to 30% by mass, preferably 0% by mass to 20% by mass, more preferably 0% by mass to 10% by mass of the whole positive electrode mixture. To be.

また、正極合剤に添加するバインダーは、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリビニルアセテート、ポリメタクリレート、ポリアクリレート、ポリアクリロニトリル、ポリビニルアルコール、スチレン−ブタジエンゴム、力ルボキシメチルセルロースから選択される少なくとも一種を用いることができる。   The binder to be added to the positive electrode mixture is selected from polytetrafluoroethylene, polyvinylidene fluoride, polyethylene oxide, polyvinyl acetate, polymethacrylate, polyacrylate, polyacrylonitrile, polyvinyl alcohol, styrene-butadiene rubber, and ruboxymethyl cellulose. Can be used.

正極合剤に添加するバインダーの量が多いと、正極合剤に含まれる正極活物質の割合が小さくなるため、高いエネルギー密度が得られなくなる。そのため、バインダーの量は全体の0質量%以上30質量%以下、好ましくは、0質量%以上20質量%以下、より好ましくは、0質量%以上10質量%以下の範囲になるようにする。   When the amount of the binder added to the positive electrode mixture is large, the ratio of the positive electrode active material contained in the positive electrode mixture becomes small, so that a high energy density cannot be obtained. Therefore, the amount of the binder is 0% by mass or more and 30% by mass or less, preferably 0% by mass or more and 20% by mass or less, more preferably 0% by mass or more and 10% by mass or less.

また、本発明の非水電解質二次電池の非水電解質で用いることができる非水溶媒は、環状炭酸エステル、鎖状炭酸エステル、エステル類、環状エーテル類、鎖状エーテル類、ニトリル類、アミド類等が挙げられる。   Nonaqueous solvents that can be used in the nonaqueous electrolyte of the nonaqueous electrolyte secondary battery of the present invention include cyclic carbonates, chain carbonates, esters, cyclic ethers, chain ethers, nitriles, amides. And the like.

環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどが挙げられ、これらの水素基の一部または全部がフッ素化されているものも用いることが可能であり、例えばトリフルオロプロピレンカーボネートやフルオロエチルカーボネートなどを用いることができる。また、鎖状炭酸エステルとしては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネートなどを用いることができ、これらの水素の一部または全部がフッ素化されているものも用いることが可能である。   Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate and the like, and those in which some or all of these hydrogen groups are fluorinated can also be used. Ethyl carbonate or the like can be used. As the chain carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl isopropyl carbonate, etc. can be used, and some or all of these hydrogens are fluorinated. It is also possible to use what is.

また、エステル類としては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトンなどが挙げられる。環状エーテル類としては、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、プロピレンオキシド、1,2−ブチレンオキシド、1,4−ジオキサン、1,3,5−トリオキサン、フラン、2−メチルフラン、1,8−シネオール、クラウンエーテルなどが挙げられる。   Examples of the esters include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and γ-butyrolactone. As cyclic ethers, 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,4-dioxane, 1,3,5 -Trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether and the like.

鎖状エーテル類としては、1,2−ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o−ジメトキシベンゼン、1,2−ジエトキシエタン、1,2−ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1−ジメトキシメタン、1,1−ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテルなどが挙げられる。   As chain ethers, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl Ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1,1 -Dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether, tetraethy Such as glycol dimethyl ether, and the like.

ニトリル類としては、アセトニトリル等、アミド類としては、ジメチルホルムアミド等が挙げられる。そして、本発明の非水電解質二次電池の非水電解質で用いることができる非水溶媒は、これらの中から選択される少なくとも1種を用いることができる。   Examples of nitriles include acetonitrile, and examples of amides include dimethylformamide. And the nonaqueous solvent which can be used with the nonaqueous electrolyte of the nonaqueous electrolyte secondary battery of this invention can use at least 1 sort (s) selected from these.

また、本発明の非水電解質二次電池の非水電解質で用いることができる電解質塩としては、従来の非水電解質二次電池において電解質として一般に使用されているものを用いることができ、例えば、LiBF、LiPF、LiCFSO、LiCSO、LiN(CFSO、LiN(CSO、LiAsF、ジフルオロ(オキサラト)ホウ酸リチウムから選択される少なくとも1種を用いることができる。 In addition, as an electrolyte salt that can be used in the nonaqueous electrolyte of the nonaqueous electrolyte secondary battery of the present invention, those generally used as an electrolyte in conventional nonaqueous electrolyte secondary batteries can be used, for example, Selected from LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiAsF 6 , lithium difluoro (oxalato) borate At least one of the above can be used.

また、本発明で用いる負極としては、リチウム金属、リチウム合金、黒鉛等の炭素材料、珪素材料、リチウム複合酸化物などのリチウムを吸蔵・放出することができる材料が挙げられる。   Examples of the negative electrode used in the present invention include materials capable of inserting and extracting lithium, such as carbon materials such as lithium metal, lithium alloy, and graphite, silicon materials, and lithium composite oxides.

各実施例及び比較例で使用した単極式試験セルの構成を示す図である。It is a figure which shows the structure of the monopolar test cell used by each Example and the comparative example. 実施例1〜4、比較例l〜3の放電負荷特性とZnとAlとを含む酸化物におけるZnに対するAlの割合aの関係を示すグラフである。It is a graph which shows the relationship between the discharge load characteristic of Examples 1-4 and Comparative Examples 1-3, and the ratio a of Al with respect to Zn in the oxide containing Zn and Al. 実施例1、5、6、比較例3の放電負荷特性と正極活物質の質量に対するZnとAlとを含む酸化物の質量比の関係を示すグラフである。It is a graph which shows the relationship between the discharge load characteristic of Example 1, 5, 6 and the comparative example 3, and the mass ratio of the oxide containing Zn and Al with respect to the mass of a positive electrode active material.

以下、本発明を実施するための形態を実施例及び比較例を用いて詳細に説明する。但し、以下に示す実施例は、本発明の技術思想を具体化するための非水電解質二次電池の一例を示すものであって、本発明をこの実施例に限定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   Hereinafter, the form for implementing this invention is demonstrated in detail using an Example and a comparative example. However, the following examples show one example of a nonaqueous electrolyte secondary battery for embodying the technical idea of the present invention, and are not intended to limit the present invention to this example. The present invention can be equally applied to various modifications without departing from the technical idea shown in the claims.

[実施例1]
最初に、実施例1で使用する、非水電解質二次電池としての単極式試験セルの具体的製造方法について説明する。
[正極活物質の合成]
ニッケルと、コバルトと、アルミニウムとの各硫酸塩を用いて水溶液を調製し、この水溶液中に水酸化リチウム水溶液を滴下することによって共沈させることによりニッケルコバルトアルミニウム水酸化物を得た。これに水酸化リチウムを添加し、Li仕込み量Li/(Ni+Co+Al)=1.12となるようにして、リチウム過剰組成のニッケルコバルトアルミニウム水酸化物の粉末を得た。次いで、このリチウム過剰組成のニッケルコバルトアルミニウム水酸化物の粉末を、酸素雰囲気中にて、700℃で20時間焼成し、コバルト及びアルミニウムを含有するLi過剰組成のリチウムニッケル複合酸化物粉末を合成した。
[Example 1]
First, a specific method for producing a monopolar test cell as a nonaqueous electrolyte secondary battery used in Example 1 will be described.
[Synthesis of positive electrode active material]
An aqueous solution was prepared using sulfates of nickel, cobalt, and aluminum, and nickel cobalt aluminum hydroxide was obtained by coprecipitation by dropping a lithium hydroxide aqueous solution into the aqueous solution. Lithium hydroxide was added thereto, so that the amount of Li charged was Li / (Ni + Co + Al) = 1.12 to obtain a nickel-cobalt aluminum hydroxide powder having an excessive lithium composition. Next, the nickel-cobalt aluminum hydroxide powder having an excessive lithium composition was fired at 700 ° C. for 20 hours in an oxygen atmosphere to synthesize an Li-rich lithium nickel composite oxide powder containing cobalt and aluminum. .

上記Li過剰組成のリチウムニッケル複合酸化物の各元素量をICP−AES(誘導結合プラズマ発光分析)法により分析したところ、Li1.12Ni0.80Co0.15Al0.05であることを確認した。次にエタノール200ml中に酢酸亜鉛と酢酸アルミニウムとをZnに対するAlの割合aがa=8mol%の割合で投入し、75℃にて2時間撹拌して0.1Mの濃度の金属塩溶液を調製した。そこへ合成したLi1.12Ni0.80Co0.15Al0.05を0.33mol投入し、30分間撹拌することにより、残留Li塩(LiOH)を触媒として正極活物質表面にZnとAlとを含む酸化物を表面修飾した。ZnとAlとを含む酸化物の被着量は正極活物質質量に対して5質量%となるようにした。次に得られた正極活物質を乾燥し、300℃で2時間熱処理することにより、本発明の正極活物質の粉末を得た。 The amount of each element of the Li-rich lithium nickel composite oxide was analyzed by ICP-AES (inductively coupled plasma emission analysis) method. As a result, Li 1.12 Ni 0.80 Co 0.15 Al 0.05 O 2 I confirmed that there was. Next, in 200 ml of ethanol, zinc acetate and aluminum acetate are added at a ratio of Al to Zn of a = 8 mol% and stirred at 75 ° C. for 2 hours to prepare a metal salt solution having a concentration of 0.1M. did. Then, 0.33 mol of Li 1.12 Ni 0.80 Co 0.15 Al 0.05 O 2 synthesized therein was added and stirred for 30 minutes, whereby residual Li salt (LiOH) was used as a catalyst on the surface of the positive electrode active material. An oxide containing Zn and Al was surface-modified. The deposition amount of the oxide containing Zn and Al was set to 5% by mass with respect to the mass of the positive electrode active material. Next, the obtained positive electrode active material was dried and heat-treated at 300 ° C. for 2 hours to obtain a powder of the positive electrode active material of the present invention.

[単極式試験セルの作製]
上記正極活物質を95質量%、導電剤としてアセチレンブラックを正極合剤全体の2.5質量%になるようにし、混合を行った。その後、これに結着剤のポリフッ化ビニリデン(PVdF)を正極合剤全体の2.5質量%となるように加え、さらにN−メチルピロリドン(NMP)を適量加えて混合し、正極合剤スラリーを調製した。この正極合剤スラリーをドクターブレードを用いて15μm厚のAl箔の片面に塗布し、ホットプレートを用いて110℃で乾燥させた。これを2cm×2cmのサイズに切り取り、ローラーを用いて圧延を行った。これを110℃で真空乾燥させ、正極極板として用いた。また、負極には、所定の大きさにカットしたリチウム金属を用いた。また、リチウム金属を所定の大きさにカットし参照極を用意した。
[Production of monopolar test cell]
The positive electrode active material was 95% by mass, and acetylene black as a conductive agent was 2.5% by mass of the total positive electrode mixture, and mixed. Thereafter, polyvinylidene fluoride (PVdF) as a binder is added to this so as to be 2.5% by mass of the entire positive electrode mixture, and an appropriate amount of N-methylpyrrolidone (NMP) is added and mixed, and the positive electrode mixture slurry Was prepared. This positive electrode mixture slurry was applied to one side of a 15 μm thick Al foil using a doctor blade and dried at 110 ° C. using a hot plate. This was cut into a size of 2 cm × 2 cm and rolled using a roller. This was vacuum dried at 110 ° C. and used as a positive electrode plate. Moreover, the lithium metal cut to the predetermined magnitude | size was used for the negative electrode. Moreover, lithium metal was cut into a predetermined size to prepare a reference electrode.

さらに、非水電解質としては、エチレンカーボネートとジエチルカーボネートとを体積比3:7(25℃)の割合で混合した非水溶媒に、六フッ化リン酸リチウム(LiPF)を1.0mol/lの濃度になるように添加したものを用いた。そして、図1に示すように、アルゴン不活性雰囲気下において、作用極2として上記の正極極板を使用し、対極となる負極3及び参照極4とにそれぞれリチウム金属を用い、作用極2と負極3との間及び作用極2と参照極4との間にそれぞれポリエチレン製微多孔膜からなるセパレータ5を挟んで積層し、ラミネート容器6内に上述の非水電解質7を注液させることにより、実施例1の単極式試験セル1を作製した。なお、参照符号8はリード線である。 Furthermore, as the non-aqueous electrolyte, 1.0 mol / l of lithium hexafluorophosphate (LiPF 6 ) was added to a non-aqueous solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 (25 ° C.). What was added so that it might become the density | concentration of was used. Then, as shown in FIG. 1, in the argon inert atmosphere, the positive electrode plate is used as the working electrode 2, lithium metal is used for the negative electrode 3 and the reference electrode 4 as the counter electrode, and the working electrode 2 and By laminating a separator 5 made of a polyethylene microporous membrane between the negative electrode 3 and between the working electrode 2 and the reference electrode 4, and injecting the nonaqueous electrolyte 7 into the laminate container 6. A monopolar test cell 1 of Example 1 was produced. Reference numeral 8 is a lead wire.

得られた単極式試験セル1の理論容量は、1It=3.5mA/cmであり、正極極板の面積は2cm×2cm=4cmであるから、1It=14mAとなる。そして、上述の実施例1の単極式試験セル1を用いて、以下に示す条件でそれぞれ放電負荷特性及びサイクル特性を求めた。 The theoretical capacity of the obtained monopolar test cell 1 is 1 It = 3.5 mA / cm 2 , and the area of the positive electrode plate is 2 cm × 2 cm = 4 cm 2 , so that 1 It = 14 mA. And the discharge load characteristic and the cycle characteristic were calculated | required on the conditions shown below using the monopolar test cell 1 of the above-mentioned Example 1, respectively.

[放電負荷特性の測定]
上述のようにして作製された単極式試験セル1を用い、25℃において、0.2It=2.8mAの定電流で電池電圧がリチウム基準で4.3Vとなるまで充電し、単極式試験セル1の電圧が4.3Vに達した後は4.3Vの定電圧で充電電流が(1/50)It=0.28mAになるまで充電し、満充電状態とした。その後、満充電状態の単極式試験セル1をリチウム基準で2.75Vになるまで0.2It=2.8mAで放電することにより、初期放電容量を求めた。同様にして、それぞれ満充電状態とした満充電状態の単極式試験セル1に対し、リチウム基準で2.75Vになるまで、0.8It=11.2mA、1.2It=16.8mA及び1.6It=22.4mAの定電流で放電し、それぞれの場合の放電容量を求めた。結果を纏めて表1に示した。
[Measurement of discharge load characteristics]
Using the monopolar test cell 1 manufactured as described above, charging is performed at 25 ° C. with a constant current of 0.2 It = 2.8 mA until the battery voltage becomes 4.3 V on the basis of lithium. After the voltage of the test cell 1 reached 4.3 V, the battery was charged at a constant voltage of 4.3 V until the charging current reached (1/50) It = 0.28 mA, and the battery was fully charged. Then, the initial discharge capacity | capacitance was calculated | required by discharging the monopolar test cell 1 of a full charge state by 0.2 It = 2.8 mA until it became 2.75V on the basis of lithium. Similarly, 0.8 It = 1.12 mA, 1.2 It = 16.8 mA, and 1 until the voltage reaches 2.75 V on the basis of the lithium for the fully charged single-pole test cell 1. The battery was discharged at a constant current of .6 It = 22.4 mA, and the discharge capacity in each case was determined. The results are summarized in Table 1.

[サイクル特性の測定]
サイクル特性の測定は、上述のようにして初期放電容量を測定した単極式試験セル1に対し、25℃において、0.2It=2.8mAの定電流で電池電圧がリチウム基準で4.3Vとなるまで充電し、単極式試験セル1の電圧が4.3Vに達した後は4.3Vの定電圧で充電電流が(1/50)It=0.28mAになるまで充電し、満充電状態とした。その後、満充電状態の単極式試験セル1をリチウム基準で2.75Vになるまで0.2It=2.8mAで放電する充放電操作を30サイクル行い、30サイクル目の放電容量を初期放電容量に対する割合として求めた。結果を纏めて表1に示した。
[Measurement of cycle characteristics]
The cycle characteristics were measured at a constant current of 0.2 It = 2.8 mA and a battery voltage of 4.3 V on a lithium basis at 25 ° C. with respect to the monopolar test cell 1 whose initial discharge capacity was measured as described above. Until the voltage of the unipolar test cell 1 reaches 4.3V, the battery is charged at a constant voltage of 4.3V until the charging current reaches (1/50) It = 0.28 mA. Charged. Thereafter, the charge / discharge operation of discharging the fully charged unipolar test cell 1 at 0.2 It = 2.8 mA until the voltage reaches 2.75 V with respect to lithium is performed for 30 cycles, and the discharge capacity at the 30th cycle is set as the initial discharge capacity. As a percentage of The results are summarized in Table 1.

[実施例2〜6]
実施例2においては、金属塩溶液調製において、酢酸亜鉛と酢酸アルミニウムとをZnに対するAlの割合aをa=4mol%とした以外は実施例1と同様にして単極式試験セルを作製し、放電負荷特性及びサイクル特性の測定を行った。また、実施例3においては、金属塩溶液調製において、酢酸亜鉛と酢酸アルミニウムとをZnに対するAlの割合aをa=12mol%とした以外は実施例1と同様にして単極式試験セルを作製し、放電負荷特性及びサイクル特性の測定を行った。また、実施例4においては、金属塩溶液調製において、酢酸亜鉛と酢酸アルミニウムとをZnに対するAlの割合aをa=16mol%とした以外は実施例1と同様にして単極式試験セルを作製し、放電負荷特性及びサイクル特性の測定を行った。
[Examples 2 to 6]
In Example 2, a monopolar test cell was prepared in the same manner as in Example 1 except that in the preparation of the metal salt solution, the ratio a of Al to Zn in zinc acetate and aluminum acetate was set to a = 4 mol%. Discharge load characteristics and cycle characteristics were measured. In Example 3, a monopolar test cell was prepared in the same manner as in Example 1 except that in the preparation of the metal salt solution, the ratio a of Al to Zn was set to a = 12 mol%. The discharge load characteristics and the cycle characteristics were measured. Further, in Example 4, a monopolar test cell was prepared in the same manner as in Example 1 except that in the preparation of the metal salt solution, the ratio a of Al to Zn in zinc acetate and aluminum acetate was set to a = 16 mol%. The discharge load characteristics and the cycle characteristics were measured.

また、実施例5においては、触媒となる残留Li塩を多くするために正極活物質合成時のLi仕込み量をLi/(Ni+Co+Al)=1.24とした以外は実施例1と同様にしてLi過剰組成のリチウムニッケル複合酸化物粉末を合成した。また、金属塩溶液調製においては、金属塩溶液濃度を0.2mol/lとし、酢酸亜鉛と酢酸アルミニウムとをZnに対するAlの割合aをa=8mol%とすると共に、ZnとAlとを含む酸化物の被着量を正極活物質質量に対して10質量%となるようにした以外は実施例1と同様にして単極式試験セルを作製し、放電負荷特性及びサイクル特性の測定を行った。さらに、実施例6においては、正極活物質合成時のLi仕込み量をLi/(Ni+Co+Al)=1.48とした以外は実施例1と同様にして、Li過剰組成のリチウムニッケル複合酸化物粉末を合成した。また、金属塩溶液調製においては、金属塩溶液濃度を0.4mol/lとし、酢酸亜鉛と酢酸アルミニウムとをZnに対するAlの割合aをa=8mol%とすると共に、ZnとAlとを含む酸化物の被着量を正極活物質質量に対して20質量%となるようにした以外は実施例1と同様にして単極式試験セルを作製し、放電負荷特性及びサイクル特性の測定を行った。結果を纏めて表1に示した。   Further, in Example 5, Li was increased in the same manner as in Example 1 except that the amount of Li charged during synthesis of the positive electrode active material was set to Li / (Ni + Co + Al) = 1.24 in order to increase the residual Li salt serving as a catalyst. An over-composition lithium nickel composite oxide powder was synthesized. In preparation of the metal salt solution, the concentration of the metal salt solution is 0.2 mol / l, the ratio a of zinc acetate and aluminum acetate is a = 8 mol% with respect to Zn, and the oxidation includes Zn and Al. A monopolar test cell was prepared in the same manner as in Example 1 except that the amount of the deposited material was 10% by mass with respect to the mass of the positive electrode active material, and the discharge load characteristics and the cycle characteristics were measured. . Furthermore, in Example 6, a lithium nickel composite oxide powder having a Li-excess composition was prepared in the same manner as in Example 1 except that the amount of Li charged during synthesis of the positive electrode active material was Li / (Ni + Co + Al) = 1.48. Synthesized. In preparation of the metal salt solution, the concentration of the metal salt solution is 0.4 mol / l, the ratio a of zinc acetate and aluminum acetate is Al = 8 mol% with respect to Zn, and the oxide containing Zn and Al is used. A monopolar test cell was prepared in the same manner as in Example 1 except that the amount of the deposited material was 20% by mass with respect to the mass of the positive electrode active material, and the discharge load characteristics and the cycle characteristics were measured. . The results are summarized in Table 1.

[比較例1〜3]
比較例1においては、金属塩溶液調製において、酢酸亜鉛のみを用いた以外は実施例1と同様にして単極式試験セルを作製し、放電負荷特性及びサイクル特性の測定を行った。また、比較例2においては、金属塩溶液調製において、酢酸アルミニウムのみを用いた以外は実施例1と同様にして単極式試験セルを作製し、放電負荷特性及びサイクル特性の測定を行った。また、比較例3においては、ZnとAlとを含む酸化物を被着させない以外は実施例1と同様にして単極式試験セルを作製し、放電負荷特性及びサイクル特性の測定を行った。結果を纏めて表1に示した。
[Comparative Examples 1-3]
In Comparative Example 1, a monopolar test cell was prepared in the same manner as in Example 1 except that only zinc acetate was used in preparing the metal salt solution, and the discharge load characteristics and the cycle characteristics were measured. In Comparative Example 2, a monopolar test cell was prepared in the same manner as in Example 1 except that only aluminum acetate was used in the preparation of the metal salt solution, and the discharge load characteristics and the cycle characteristics were measured. In Comparative Example 3, a monopolar test cell was prepared in the same manner as in Example 1 except that an oxide containing Zn and Al was not deposited, and the discharge load characteristics and the cycle characteristics were measured. The results are summarized in Table 1.

Figure 2011129258
Figure 2011129258

また、実施例1〜4及び比較例l〜3の1.6ltにおける放電負荷率(vs.0.2It)とZnとAlとを含む酸化物におけるZnに対するAlの割合aの関係を図2に示した。さらに、実施例1、5、6及び比較例3の放電負荷特性と正極活物質の質量に対するZnとAlとを含む酸化物の質量比の関係を図3に示した。   FIG. 2 shows the relationship between the discharge load ratio (vs. 0.2 It) at 1.6 lt of Examples 1 to 4 and Comparative Examples 1 to 3 and the ratio a of Al to Zn in the oxide containing Zn and Al. Indicated. Furthermore, the relationship between the discharge load characteristics of Examples 1, 5, 6 and Comparative Example 3 and the mass ratio of the oxide containing Zn and Al to the mass of the positive electrode active material is shown in FIG.

表1及び図2に示した結果より、以下のことが分かる。すなわち、実施例1〜4に対応するZnとAlとを含む酸化物におけるZnに対するAlの割合aが0<a≦16mol%では、1.6ltにおける放電負荷率(vs.0.2It)が表面修飾なしの比較例3の場合よりも向上し、また、サイクル特性も表面修飾なしの比較例3よりも向上している。これはZnとAlとを含む酸化物中のAl量が増加するにつれて表面修飾されたZnとAlとを含む酸化物の電子伝導性が向上し、また、そのZnとAlとを含む酸化物の表面修飾により正極活物質と非水電解液との反応が抑制されたことによるものと考えられる。   From the results shown in Table 1 and FIG. That is, when the ratio of Al to Zn in the oxide containing Zn and Al corresponding to Examples 1 to 4 is 0 <a ≦ 16 mol%, the discharge load factor (vs. 0.2 It) at 1.6 lt is the surface. Compared with Comparative Example 3 without modification, the cycle characteristics are also improved as compared with Comparative Example 3 without surface modification. This is because as the amount of Al in the oxide containing Zn and Al increases, the electron conductivity of the oxide containing surface-modified Zn and Al is improved, and the oxide containing the Zn and Al is also improved. This is probably because the reaction between the positive electrode active material and the non-aqueous electrolyte was suppressed by the surface modification.

なお、aが0mol%でZnOのみからなる比較例1及びAlのみからなる比較例2では、共に表面修飾なしの比較例3の場合よりもサイクル特性は向上しているが、1.6It放電負荷率が大幅に低下している。これは、ZnO及びAlが電気的に絶縁性であるため、正極活物質の抵抗増加による影響と考えられる。以上の結果からすると、ZnとAlとを含む酸化物におけるZnに対するAlの割合aは、0<a≦16mol%であることが好ましいと考えられる。 In Comparative Example 1 in which a is 0 mol% and composed only of ZnO and Comparative Example 2 composed of only Al 2 O 3 , both cycle characteristics are improved as compared with Comparative Example 3 without surface modification. The 6 It discharge load factor is greatly reduced. This is considered to be due to an increase in resistance of the positive electrode active material because ZnO and Al 2 O 3 are electrically insulating. From the above results, it is considered that the ratio a of Al to Zn in the oxide containing Zn and Al is preferably 0 <a ≦ 16 mol%.

また、表1及び図3に示した実施例1、5、6及び比較例3の放電負荷特性と正極活物質質量に対するZnとAlとを含む酸化物の被着量wの関係から、以下のことが分かる。すなわち、正極活物質質量に対するZnとAlとを含む酸化物の被着量wが増加するに従い、初期放電容量が低下していくことが確認できる。これは正極活物質中における充放電反応に関与するリチウムニッケル複合酸化物の占める割合が低下していくためである。以上の結果から、リチウムニッケル複合酸化物の高容量であるメリット(LiCoOの放電容量約165mAh/gに対して)を十分に活かすためには、ZnとAlとを含む酸化物の被着量を0<w≦20質量%とすることが望ましい。 From the relationship between the discharge load characteristics of Examples 1, 5, 6 and Comparative Example 3 shown in Table 1 and FIG. 3 and the deposition amount w of the oxide containing Zn and Al with respect to the mass of the positive electrode active material, I understand that. That is, it can be confirmed that the initial discharge capacity decreases as the deposition amount w of the oxide containing Zn and Al with respect to the mass of the positive electrode active material increases. This is because the proportion of the lithium nickel composite oxide involved in the charge / discharge reaction in the positive electrode active material decreases. From the above results, in order to fully utilize the merit (high discharge capacity of LiCoO 2 of about 165 mAh / g) of the lithium nickel composite oxide, the deposition amount of the oxide containing Zn and Al is sufficient. Is preferably 0 <w ≦ 20 mass%.

以上説明したように、本発明の非水電解質二次電池用正極活物質を用いることにより、高寿命を維持しながら、優れた負荷特性を有する非水電解質二次電池を得ることができる。   As described above, by using the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, a non-aqueous electrolyte secondary battery having excellent load characteristics can be obtained while maintaining a long life.

なお、上記実施例1〜6及び比較例1〜3においては、それぞれの電池の作用・効果を確認するために、単極式試験セルを形成した例を示したが、これは正極活物質材料の特性そのものを比較するために採用されたものであり、非水電解質二次電池を得るには従来例のものと同様にして作製すればよい。例えば、上述のようにして得られた実施例の正極活物質材料を94質量%、導電剤としての炭素粉末が3質量%、結着剤としてのPVdF粉末が3質量%となるようにNMP溶液と混合してスラリーを調製する。このスラリーを厚さ20μmのアルミニウム製集電体の両面にドクターブレード法により塗布し、正極集電体の両面に活物質層を形成し、その後、乾燥機中を通過させて乾燥した後、圧縮ローラーを用いて厚さ130μmに圧縮し、切断することによって短辺の長さが30mm、長辺の長さが450mmの正極極板を作製する。   In Examples 1 to 6 and Comparative Examples 1 to 3, an example in which a monopolar test cell was formed in order to confirm the operation and effect of each battery was shown. This is a positive electrode active material. In order to obtain the non-aqueous electrolyte secondary battery, it may be produced in the same manner as in the conventional example. For example, the NMP solution is 94% by mass of the positive electrode active material of the example obtained as described above, 3% by mass of carbon powder as a conductive agent, and 3% by mass of PVdF powder as a binder. To prepare a slurry. This slurry was applied to both sides of an aluminum current collector having a thickness of 20 μm by a doctor blade method to form an active material layer on both sides of the positive electrode current collector, and then dried by passing through a dryer. A positive electrode plate having a short side length of 30 mm and a long side length of 450 mm is prepared by compressing to a thickness of 130 μm using a roller and cutting.

負極極板としては、黒鉛粉末からなる負極活物質95質量%と、カルボキシメチルセルロース(CMC)からなる増粘剤3質量%と、スチレンブタジエンゴム(SBR)からなる結着剤2質量%とを、適量の水と混合してスラリーとする。このスラリーを厚さ20μmの銅製集電体の両面にドクターブレード法により塗布して活物質層を形成し、その後、乾燥機中を通過させて乾燥した後、圧縮ローラーを用いて厚さ150μmに圧縮し、切断することによって短辺の長さが32mm、長辺の長さが460mmの負極極板を作製する。   As the negative electrode plate, 95% by mass of a negative electrode active material made of graphite powder, 3% by mass of a thickener made of carboxymethylcellulose (CMC), and 2% by mass of a binder made of styrene butadiene rubber (SBR), Mix with appropriate amount of water to make slurry. This slurry is applied on both sides of a copper current collector having a thickness of 20 μm by a doctor blade method to form an active material layer, then dried by passing through a drier, and then made 150 μm in thickness using a compression roller. By compressing and cutting, a negative electrode plate having a short side length of 32 mm and a long side length of 460 mm is produced.

上述のようにして作製した正極極板と負極極板とを幅34mm、厚さ25μmのポリエチレン製微多孔膜のセパレータを介して相対向するように配置した後、円柱状の巻き芯の周りに巻回し、円筒状の電極体を作製し、次いで、この円筒状電極体をプレスして、偏平渦巻状の電極体を得る。上記のようにして作製した偏平渦巻状の電極体を、外装缶(5.5×35×40mm)内に挿入し、110℃で真空乾燥を行う。その後、上述の非水電解液を2.5g注液し、注液孔にアルミニウム製のプレートを設置してレーザ溶接により密栓することにより、角形の非水電解質二次電池が得られる。   The positive electrode plate and the negative electrode plate produced as described above are arranged so as to face each other with a separator made of a polyethylene microporous film having a width of 34 mm and a thickness of 25 μm, and then around the cylindrical winding core. Winding to produce a cylindrical electrode body, and then pressing the cylindrical electrode body to obtain a flat spiral electrode body. The flat spiral electrode body produced as described above is inserted into an outer can (5.5 × 35 × 40 mm) and vacuum dried at 110 ° C. Thereafter, 2.5 g of the above-described non-aqueous electrolyte is injected, an aluminum plate is placed in the injection hole, and the non-aqueous electrolyte secondary battery is obtained by sealing with laser welding.

1…単極式試験セル
2…作用極
3…負極
4…参照極
5…セパレータ
6…ラミネート容器
7…非水電解質
8…リード線
DESCRIPTION OF SYMBOLS 1 ... Single electrode type test cell 2 ... Working electrode 3 ... Negative electrode 4 ... Reference electrode 5 ... Separator 6 ... Laminate container 7 ... Nonaqueous electrolyte 8 ... Lead wire

Claims (7)

リチウムニッケル複合酸化物を主成分とする正極活物質粒子の表面にZnとAlとを含む酸化物を被着させたことを特徴とする非水電解質二次電池用正極活物質。   A positive electrode active material for a non-aqueous electrolyte secondary battery, wherein an oxide containing Zn and Al is deposited on the surface of positive electrode active material particles mainly composed of a lithium nickel composite oxide. 前記ZnとAlとを含む酸化物は、Znに対するAlの割合aが、0<a≦16mol%であることを特徴とする請求項1に記載の非水電解質二次電池用正極活物質。   2. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the oxide containing Zn and Al has a ratio of Al to Zn of 0 <a ≦ 16 mol%. 前記正極活物質の質量に対するZnとAlとを含む酸化物の質量比wが0<w≦20質量%であることを特徴とする請求項1に記載の非水電解質二次電池用正極活物質。   2. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein a mass ratio w of an oxide containing Zn and Al to a mass of the positive electrode active material is 0 <w ≦ 20 mass%. . Li過剰組成のリチウムニッケル複合酸化物を主成分とする正極活物質をZnとAlを含む金属塩が溶解した溶液中へ投入・撹拌し、前記正極活物質の表面に残留しているLi塩を触媒としてZnとAlとを含む酸化物を表面に被着させ、得られた正極活物質粉末を乾燥・熱処理することを特徴とする非水電解質二次電池用正極活物質の製造方法。   A positive electrode active material mainly composed of a lithium nickel composite oxide having a Li-excess composition is charged into a solution in which a metal salt containing Zn and Al is dissolved, and the Li salt remaining on the surface of the positive electrode active material is stirred. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising depositing an oxide containing Zn and Al as a catalyst on a surface, and drying and heat-treating the obtained positive electrode active material powder. 前記Li過剰組成のリチウムニッケル複合酸化物は、ニッケル塩と、Co、Al、Mn、Fe、Ti、Mg、Cr、Ga、Cu、Znから選択される少なくとも1種の塩と、を含む水溶液から共沈させることによってニッケル複合水酸化物を得た後、水酸化リチウムを添加し、次いで焼成することによって得たものであることを特徴とする請求項4に記載の非水電解質二次電池用正極活物質の製造方法。   The Li-rich lithium-nickel composite oxide is an aqueous solution containing a nickel salt and at least one salt selected from Co, Al, Mn, Fe, Ti, Mg, Cr, Ga, Cu, and Zn. 5. The non-aqueous electrolyte secondary battery according to claim 4, wherein the nickel composite hydroxide is obtained by coprecipitation, lithium hydroxide is added, and then calcined. A method for producing a positive electrode active material. 前記ZnとAlを含む金属塩が溶解した溶液は、酢酸亜鉛と酢酸アルミニウムが溶解したアルコール溶液であることを特徴とする請求項4に記載の非水電解質二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 4, wherein the solution in which the metal salt containing Zn and Al is dissolved is an alcohol solution in which zinc acetate and aluminum acetate are dissolved. . 請求項1〜3のいずれかに記載の正極活物質を含有する正極と、負極と、非水電解質とを備えていることを特徴とする非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising a positive electrode containing the positive electrode active material according to claim 1, a negative electrode, and a nonaqueous electrolyte.
JP2009283752A 2009-12-15 2009-12-15 Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same Pending JP2011129258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009283752A JP2011129258A (en) 2009-12-15 2009-12-15 Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009283752A JP2011129258A (en) 2009-12-15 2009-12-15 Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2011129258A true JP2011129258A (en) 2011-06-30

Family

ID=44291656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009283752A Pending JP2011129258A (en) 2009-12-15 2009-12-15 Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2011129258A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140178760A1 (en) * 2012-12-20 2014-06-26 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
CN104103826A (en) * 2013-04-12 2014-10-15 Sk新技术株式会社 Process for producing layered lithium nickel oxide, and lithium secondary cell employing it
WO2018030199A1 (en) * 2016-08-09 2018-02-15 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
US20180108908A1 (en) * 2013-04-09 2018-04-19 Zenlabs Energy, Inc. Uniform stabilization nanocoatings for lithium rich complex metal oxides and atomic layer deposition for forming the coating
US10193135B2 (en) * 2015-01-15 2019-01-29 Zenlabs Energy, Inc. Positive electrode active materials with composite coatings for high energy density secondary batteries and corresponding processes
US11404693B2 (en) 2017-11-27 2022-08-02 Lg Energy Solution, Ltd. Cathode additive, preparation method thereof, and cathode and lithium secondary battery comprising the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140178760A1 (en) * 2012-12-20 2014-06-26 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
US10115962B2 (en) * 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
US20180108908A1 (en) * 2013-04-09 2018-04-19 Zenlabs Energy, Inc. Uniform stabilization nanocoatings for lithium rich complex metal oxides and atomic layer deposition for forming the coating
US9490481B2 (en) 2013-04-12 2016-11-08 Sk Innovation Co., Ltd. Layered lithium nickel oxide, process for producing the same and lithium secondary cell employing it
EP2789585A1 (en) * 2013-04-12 2014-10-15 SK Innovation Co., Ltd. Layered lithium nickel oxide, process for producing the same and lithium secondary cell employing it
CN104103826A (en) * 2013-04-12 2014-10-15 Sk新技术株式会社 Process for producing layered lithium nickel oxide, and lithium secondary cell employing it
US10193135B2 (en) * 2015-01-15 2019-01-29 Zenlabs Energy, Inc. Positive electrode active materials with composite coatings for high energy density secondary batteries and corresponding processes
USRE49980E1 (en) 2015-01-15 2024-05-21 Ionblox, Inc. Positive electrode active materials with composite coatings for high energy density secondary batteries and corresponding processes
WO2018030199A1 (en) * 2016-08-09 2018-02-15 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
CN109565048A (en) * 2016-08-09 2019-04-02 住友金属矿山株式会社 The manufacturing method of positive active material for non-aqueous electrolyte secondary battery, the positive active material for non-aqueous electrolyte secondary battery
JPWO2018030199A1 (en) * 2016-08-09 2019-06-13 住友金属鉱山株式会社 Method of manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery
JP7024715B2 (en) 2016-08-09 2022-02-24 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery
CN109565048B (en) * 2016-08-09 2022-04-15 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
US11482700B2 (en) 2016-08-09 2022-10-25 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
US11404693B2 (en) 2017-11-27 2022-08-02 Lg Energy Solution, Ltd. Cathode additive, preparation method thereof, and cathode and lithium secondary battery comprising the same

Similar Documents

Publication Publication Date Title
KR101666879B1 (en) Cathode active material for lithium secondary battery, method for preparing cathode active material for lithium secondary battery and lithium secondary battery including cathode active material
EP1391959B1 (en) Non-aqueous electrolyte secondary battery
KR101682502B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN108352525B (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US20110200880A1 (en) Positive electrode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery using the same
US20090011335A1 (en) Positive electrode active material, method of manufacturing the positive electrode active material, and non-aqueous electrolyte secondary battery
JP4853608B2 (en) Lithium secondary battery
KR101553582B1 (en) Cathode active material and cathode and lithium battery comprising same
KR20100105387A (en) Non-aqueous electrolyte secondary battery
JP2007200646A (en) Lithium secondary battery
KR101309149B1 (en) Method for manufacturing positive active material for rechargeable lithium battery and rechargeable lithium battery using the same
JP2009217981A (en) Non-aqueous electrolyte secondary battery
US9979012B2 (en) Lithium ion secondary battery and method for manufacturing the same
JP2019040875A (en) Method for manufacturing positive electrode active material for lithium secondary battery, and lithium secondary battery including the positive electrode active material
KR20130105494A (en) Method for manufacturing positive active material for lithium secondary battery, positive active material for lithium secondary battery and lithium secondary battery
JP2023111960A (en) Positive electrode active substance for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2011129258A (en) Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same
JP5100069B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
KR20180027261A (en) Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP2007242420A (en) Nonaqueous electrolyte secondary battery, and method of manufacturing anode active material for nonaqueous electrolyte secondary battery
JP2008251526A (en) Nonaqueous electrolyte secondary battery, and positive electrode
JP2008166118A (en) Lithium secondary battery and negative electrode active material for same
KR101084080B1 (en) Non-aqueous electrolyte secondary cell
KR101668799B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101493747B1 (en) Method for manufacturing positive active material for lithium secondary battery, positive active material for lithium secondary battery and lithium secondary battery