WO2013146792A1 - Hybrid capacitor - Google Patents

Hybrid capacitor Download PDF

Info

Publication number
WO2013146792A1
WO2013146792A1 PCT/JP2013/058817 JP2013058817W WO2013146792A1 WO 2013146792 A1 WO2013146792 A1 WO 2013146792A1 JP 2013058817 W JP2013058817 W JP 2013058817W WO 2013146792 A1 WO2013146792 A1 WO 2013146792A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
lithium
hybrid capacitor
positive electrode
oxide
Prior art date
Application number
PCT/JP2013/058817
Other languages
French (fr)
Japanese (ja)
Inventor
渉 杉本
航 清水
翔 牧野
Original Assignee
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人信州大学 filed Critical 国立大学法人信州大学
Priority to JP2014507921A priority Critical patent/JP6109153B2/en
Publication of WO2013146792A1 publication Critical patent/WO2013146792A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a hybrid capacitor, and more particularly to a hybrid capacitor capable of obtaining a high energy density at a high cell voltage.
  • An electrochemical capacitor is a device that uses a physical electric double layer or a pseudo double layer (a fast redox reaction on the electrode surface) with a Faraday reaction for charge accumulation.
  • the former is a charge accumulation mechanism when an activated carbon electrode is used as an active material
  • the latter is a charge accumulation mechanism when a metal oxide electrode such as RuO 2 or MnO 2 is used as an active material.
  • Electrolytic solutions used in such electrochemical capacitors can be broadly divided into two types: aqueous electrolytic solutions and nonaqueous electrolytic solutions.
  • Non-aqueous electrolytes represented by organic electrolytes are inferior in ionic conductivity compared to aqueous electrolytes.
  • the electrochemical capacitor using the non-aqueous electrolyte is advantageous in that a high cell voltage and a high energy density can be obtained because the electrolytic voltage of the electrolyte can be 3 V or higher.
  • the energy density is improved by the amount of the cell voltage being higher. Since the energy density is proportional to the square of the cell voltage, the energy density can be dramatically improved by increasing the cell voltage by 1V.
  • an ionic liquid having a wide potential window is used as the electrolyte, a cell voltage exceeding 3 V and a high energy density can be obtained.
  • the aqueous electrolyte has better ion conductivity than the non-aqueous electrolyte, and an electrochemical capacitor using the aqueous electrolyte is advantageous in terms of output density.
  • Non-Patent Document 1 proposes an asymmetric hybrid capacitor in which different types of electrodes are used for the positive electrode and the negative electrode, respectively, and the cell voltage and energy density are increased in the aqueous electrolyte.
  • a cell voltage on the positive electrode side exceeding the theoretical oxygen generation voltage can be obtained by using MnO 2 having a relatively high oxygen generation overvoltage for the positive electrode.
  • a maximum cell voltage of 2.2 V is obtained, and an energy density (19 Wh / kg) comparable to that of an electrochemical capacitor using an organic electrolyte is obtained.
  • Patent Document 1 proposes a technology that can charge and discharge at a working voltage exceeding the theoretical voltage of water electrolysis in a pseudo-capacitor capacitor using both an aqueous electrolyte and a non-aqueous electrolyte.
  • the pseudo-capacitor has a resin case disposed between a positive current collector and a negative current collector, and a capacitor structure is provided in the center hole of the case.
  • the capacitor structure includes a positive electrode disposed at the upper part of the central hole, a negative electrode disposed at the lower part of the central hole, a solid electrolyte plate disposed at the step of the central hole, and an aqueous electrolyte containing Li ions.
  • a first liquid chamber filled and a second liquid chamber filled with a non-aqueous electrolyte containing Li ions are provided.
  • the positive electrode is an electrode containing a metal oxide capable of redox change
  • the negative electrode is an electrode capable of inserting and extracting Li ions
  • the solid electrolyte plate has Li ion conductivity
  • the contact between the aqueous electrolyte and the negative electrode Plays a role in hindering.
  • Patent Document 1 can obtain a relatively high cell voltage because the second liquid chamber is filled with the nonaqueous electrolytic solution, but there is a problem in safety. Further, since the first liquid chamber is filled with an alkaline aqueous electrolyte, the durability of the solid electrolyte and the positive electrode may be reduced.
  • Electrochemical capacitors using aqueous electrolytes and non-aqueous electrolytes aim to improve cell voltage and energy density using various technologies, but the energy density will be further improved in the future compared to lithium ion batteries. is necessary.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a hybrid capacitor that is safe and durable and that can obtain a high energy density at a high cell voltage. .
  • a hybrid capacitor according to the present invention includes a positive electrode having one or both of a carbon material and a metal oxide, a negative electrode composed of a lithium composite electrode, and a gap between the positive electrode and the negative electrode.
  • the lithium composite electrode is a laminated electrode of a lithium ion conductive solid electrolyte, a polymer electrolyte, and an active material layer containing lithium.
  • a neutral aqueous electrolyte is used and a water-stable lithium composite electrode is used as the negative electrode
  • a safe and durable new aqueous hybrid capacitor can be obtained.
  • a high cell voltage can be obtained by utilizing a standard electrode potential of M / M + (M is a metal). I was able to.
  • the neutral aqueous electrolyte is pH 5 or more and pH 8.5 or less
  • the metal oxide is any one selected from manganese oxide, ruthenium oxide and lead oxide.
  • the positive electrode includes a sheet containing one or both of a carbon material and a metal oxide, and a metal oxide film provided on at least the surface of the sheet.
  • the sheet is a paper-like body having carbon fibers.
  • the active material layer containing lithium includes lithium, a lithium alloy, or a carbon material doped with lithium.
  • the hybrid capacitor according to the present invention has safety and durability, and can obtain a high energy density at a high cell voltage.
  • the hybrid capacitor 1 includes a positive electrode 11 having one or both of a carbon material and a metal oxide, a negative electrode 12 composed of a lithium composite electrode, and a positive electrode 11 and a negative electrode 12. And at least a neutral aqueous electrolyte 13 filled therebetween.
  • the lithium composite electrode which is the negative electrode 12 is a laminated electrode of the lithium ion conductive solid electrolyte 23, the polymer electrolyte 22, and the active material layer 21 containing lithium.
  • the neutral aqueous electrolyte solution 13 has a pH of 5 or more and a pH of 8.5 or less, and preferably has a pH of 5 or more and pH 8.
  • symbol 18 is a container in FIG.
  • the neutral aqueous electrolyte 13 is an electrolyte filled between the positive electrode 11 and the negative electrode 12.
  • an aqueous neutral electrolyte is used.
  • the neutral aqueous electrolyte include an aqueous electrolyte in which an alkali metal salt is dissolved.
  • the alkali metal salts include LiCl, LiNO 3 , Li 2 SO 4 , Li 2 CO 3 , Li 2 HPO 4 , LiH 2 PO 4 , LiCOOCH 3 , LiCOO (OH) CHCH 3 , Li 2 C 2 O 2 , NaCl.
  • a water-based electrolytic solution in which a plurality of alkali metal salts are mixed and adjusted to neutrality may be used, or a water-based electrolytic solution in which an alkali metal salt and an acid or base are mixed to provide a buffering action. Also good.
  • the aqueous electrolyte having a buffering action has a stable pH during the charge / discharge process, and can improve the safety and durability of the hybrid capacitor 1.
  • Examples of the neutral aqueous electrolyte solution 13 having a buffering action include lithium dihydrogen phosphate-lithium hydroxide (LiH 2 PO 4 -LiOH) solution (pH 6.87), lithium acetate-acetic acid (CH 3 COOLi-CH 3 COOH). Liquid (pH 5.41).
  • the aqueous electrolytic solution 13 is neutral, the electrolytic solution does not damage the negative electrode 12 and the positive electrode 11, and a stable hybrid capacitor can be configured.
  • the hybrid capacitor 1 does not use a non-aqueous electrolyte using a solvent other than water as described in Patent Document 1, it is easy to handle, safe, and low cost.
  • the neutrality of the neutral aqueous electrolyte solution 13 means a range of pH 5 or more and pH 8.5 or less, preferably a pH of 5 or more and pH 8 or less. Moreover, it is preferable that the salt concentration in the neutral aqueous electrolyte solution 13 is 0.01 mol / L or more and 5 mol / L or less.
  • the positive electrode 11 has one or both of a carbon material and a metal oxide, and causes a reversible redox reaction in contact with the neutral aqueous electrolyte solution 13 described above.
  • the positive electrode 11 may be composed of a single metal oxide or a metal. It may be composed of an oxide and a binder material, or may be composed of a metal oxide, a binder material, and a conductive material.
  • the positive electrode 11 may be comprised with the carbon material single-piece
  • carbon material various carbon materials can be exemplified, and preferably, activated carbon, acetylene black, carbon nanotube, graphite, conductive diamond, graphene and the like can be exemplified. These carbon materials may be used alone or in combination of two or more.
  • Various metal oxides can be used as long as they can cause a reversible redox reaction, such as manganese oxide, ruthenium oxide, lead oxide, tungsten oxide, cobalt oxide, tin oxide, and oxide. Examples thereof include nickel, molybdenum oxide, titanium oxide, iridium oxide, vanadium oxide, indium oxide, and the like, and hydrates thereof. These metal oxides may be used alone or in combination of two or more.
  • Preferable examples include manganese oxide, ruthenium oxide, lead oxide and the like.
  • binder materials and conductive materials can be applied.
  • binder material for example, a fluorine-based resin, a thermoplastic resin, ethylene-propylene-dienemer, natural butyl rubber and the like can be arbitrarily used.
  • conductive material for example, natural graphite, artificial graphite, acetylene black, carbon black, ketjen black, carbon whisker, needle coke, carbon fiber, metal powder or fiber can be used. These binder materials and conductive materials may be used alone or in combination of two or more.
  • the positive electrode 11 may have a sheet containing one or both of a carbon material and a metal oxide, and a metal oxide film provided on at least the surface of the sheet.
  • the sheet may be composed of a single metal oxide, may be composed of a metal oxide and an additive such as a binder material, or may be composed of a single carbon material. Alternatively, it may be composed of a carbon material and an additive such as a binder material.
  • the sheet may contain both a metal oxide and a carbon material.
  • seat containing a carbon material As a sheet
  • the sheet containing both the metal oxide and the carbon material include a sheet obtained by molding a material obtained by kneading the metal oxide and the carbon material into a sheet shape.
  • binder contained in the sheet examples include fluororesin materials such as Fluon (manufactured by Asahi Glass Co., Ltd., registered trademark) and Lubron (manufactured by Daikin Industries, Ltd., registered trademark), and styrene butadiene rubbers such as TRD2001 (manufactured by JSR Corporation) Examples thereof include system materials.
  • the metal oxide film may be provided on at least the surface of the sheet.
  • the metal oxide film may be provided only on the surface of the sheet, or may be provided on the surface of the sheet and enter the inside of the sheet.
  • the metal oxide film may be provided so as to cover the surface of each carbon fiber.
  • the hybrid capacitor 1 using the positive electrode 11 in which the metal oxide film is provided on the surface of each carbon fiber can obtain characteristics that greatly reflect the characteristics of the metal oxide of the positive electrode 11.
  • Examples of the method for forming the metal oxide film include thin film formation methods such as electrodeposition, electrophoresis, CVD (chemical vapor deposition), sputtering, and vacuum deposition.
  • the electrodeposition method is advantageous in increasing the production efficiency of the hybrid capacitor because the metal oxide film can be formed in a relatively short time.
  • the shape of the positive electrode 11 is not particularly limited, but is usually preferably a sheet shape or a plate shape.
  • the thickness of the positive electrode 11 is not particularly limited, but is, for example, in the range of 1 nm or more and 10 mm or less.
  • the positive electrode 11 is usually provided on the positive electrode current collector 16.
  • a conventionally known positive electrode current collector 16 can be arbitrarily applied.
  • the negative electrode 12 is composed of a lithium composite electrode (represented by reference numeral 12). Such a negative electrode 12 is in contact with the aqueous electrolyte solution 13 described above, and acts to occlude and release metal ions that cause a redox reaction. As shown in FIG. 1, the lithium composite electrode 12 is a laminated electrode having a lithium ion conductive solid electrolyte 23, a polymer electrolyte 22, and an active material layer 21 containing lithium.
  • the active material layer 21 containing lithium metallic lithium, a lithium alloy, or a carbon material doped with lithium is used.
  • the lithium alloy may be any lithium alloy or lithium compound mainly composed of lithium, and examples thereof include a lithium-aluminum alloy, a lithium-zinc alloy, a lithium-tin alloy, and a lithium-silicon alloy.
  • Examples of the carbon material doped with lithium include graphitizable carbon, non-graphitizable carbon, and graphite.
  • Examples of the graphitizable carbon include pyrolytic carbons, and cokes such as pitch coke, needle coke, and petroleum coke.
  • Examples of the non-graphitizable carbon include glassy carbon fibers, organic polymer compound fired bodies, activated carbon, and carbon blacks.
  • the organic polymer compound fired body is obtained by firing and carbonizing a phenol resin, a furan resin, or the like at an appropriate temperature.
  • the amount of lithium doped into the carbon material is suitably 1 ⁇ g / cm 2 or more and 1 g / cm 2 or less.
  • a lithium-doped carbon material releases lithium ions from the carbon material when a discharge voltage is applied to the hybrid capacitor, and stores lithium ions in the carbon material when a charge voltage is applied. It functions as a negative electrode active material.
  • the active material layer 21 made of such a carbon material is unlikely to deposit lithium dendritic crystals (dendrites) upon charging, and the polymer electrolyte 22 and the like provided on the active material layer 21 are caused by the lithium dendritic crystals. It is possible to avoid damage or short circuit. As a result, the durability and safety of the hybrid capacitor can be further increased. Moreover, since the amount of lithium used can be reduced by using a carbon material as the material of the active material layer 21 compared to the case of using metallic lithium or the like, it is possible to improve the safety of the hybrid capacitor and reduce the cost. Can be planned.
  • Examples of the shape of the active material layer 21 containing lithium include a sheet shape or a film shape.
  • the thickness of the active material layer 21 is not specifically limited, For example, it exists in the range of 0.1 mm or more and 3 mm or less.
  • the lithium ion conductive solid electrolyte 23 has lithium ion conductivity and water impermeability, and acts to isolate the aqueous electrolyte solution 13 and the negative electrode 12.
  • the polymer electrolyte 22 contains a solid polymer and a lithium salt.
  • polyethylene oxide (PEO), polypropylene oxide (PPO) or the like can be used as the solid polymer constituting the polymer electrolyte 22.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • These have polyalkylene oxide chains that are molecular chains in which alkylene groups and ether oxygens are alternately arranged, and have a large number of ether oxygens that solvate lithium ions, so that lithium salts can be dissolved.
  • lithium salt constituting the polymer electrolyte 22 examples include LiPF 6 , LiClO 4 , LiBF 4 , LiTFSI (Li (SO 2 CF 3 ) 2 N), Li (SO 2 C 2 F 5 ) 2 N, LiBOB ( Lithium bisoxalatoborate) and the like. These lithium salts may be used alone or in combination of two or more.
  • the polymer electrolyte 22 may be blended with a ceramic material such as barium titanate in consideration of mechanical characteristics and electrical characteristics, or other materials that do not hinder the function of the polymer electrolyte 22. You may mix
  • the amount of these materials constituting the polymer electrolyte 22 is set in consideration of the desired function of the polymer electrolyte 22.
  • the polymer electrolyte 22 can be produced by a conventionally known method. For example, a solution in which various constituent materials are dispersed in an organic solvent can be dried to be molded into a predetermined shape.
  • the thickness of the polymer electrolyte 22 is not particularly limited, but is usually in the range of 0.05 mm or more and 0.5 mm or less.
  • the polymer electrolyte 22 produced in this way is disposed between the lithium 21 and the lithium ion conductive solid electrolyte 23, and can prevent both from coming into direct contact and reacting. As a result, the lifetime of the hybrid capacitor 1 can be increased.
  • the lithium ion conductive solid electrolyte 23 is preferably a NASICON (sodium superionic conductor) type lithium ion conductor having water resistance and lithium ion conductivity.
  • the lithium ion conductive solid electrolyte 23 is preferably in the form of a sheet or a plate, and the thickness is usually in the range of 0.05 mm or more and 0.5 mm or less.
  • the negative electrode 12 is usually provided on the negative electrode current collector 17.
  • a conventionally known negative electrode current collector 17 can be arbitrarily applied.
  • the hybrid capacitor 1 composed of at least the positive electrode 11, the negative electrode 12, and the aqueous electrolyte solution 13 may be provided with other constituent materials and constituent members as necessary.
  • the size of the hybrid capacitor 1 is not particularly limited, and the shape thereof is not particularly limited. Examples of the shape include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type.
  • the neutral aqueous electrolyte 13 is used, and the water-stable lithium composite electrode 12 is used as the negative electrode.
  • a hybrid capacitor could be obtained.
  • a high cell voltage could be obtained by utilizing the standard electrode potential of Li / Li + .
  • the positive electrode 11 using activated carbon was produced as follows. First, 20 mg of activated carbon powder (manufactured by Kansai Thermal Chemical Co., Ltd., trade name: MSP-20, BET specific surface area 2200 m 2 / g, average particle size 8 ⁇ m) was added to 10 mL of ultrapure water, and the activated carbon powder was sonicated. An activated carbon dispersion was obtained by uniformly dispersing in ultrapure water.
  • activated carbon powder manufactured by Kansai Thermal Chemical Co., Ltd., trade name: MSP-20, BET specific surface area 2200 m 2 / g, average particle size 8 ⁇ m
  • Manganese oxide (MnO 2 ) powder was synthesized according to Non-Patent Document 1. Specifically, the positive electrode 11 using manganese oxide was produced as follows. First, 0.773 g of fumaric acid [C 2 H 2 (COOH) 2 ] is added to an aqueous potassium permanganate solution in which 3.16 g of potassium permanganate (KMnO 4 ) is dissolved in 100 mL of ultrapure water. After stirring under reduced pressure for minutes, the mixture was allowed to stand at room temperature for 1 day to obtain a slurry.
  • this slurry was washed with 0.1 M sulfuric acid (H 2 SO 4 ), ultrapure water and acetone in this order, dried, pulverized, and average pore diameter was 5 nm, BET specific surface area was A 235 m 2 / g manganese oxide (MnO 2 ) powder was obtained.
  • the obtained manganese oxide powder was mixed with acetylene black, which is a conductive material, in a mass ratio of 7: 3, and used in place of the activated carbon powder in the above-described activated carbon electrode production method, to produce a manganese oxide electrode A.
  • Manganese oxide electrode B was produced by electrodepositing manganese oxide on the surface of carbon fiber of carbon paper. Specifically, an aqueous solution of manganese sulfate hydrate (MnSO 4 .5H 2 O) and an aqueous sulfuric acid solution were mixed to prepare a sulfuric acid solution (electrolytic solution for electrodeposition) containing 0.1M MnSO 4 . Next, carbon paper (manufactured by SGL, trade name: SIGRACET GDL10) is immersed in the electrolytic solution for electrodeposition, the carbon paper is used as an anode electrode, a platinum electrode is used as a cathode electrode, and a current density is 0.
  • SGL trade name: SIGRACET GDL10
  • Electrodeposition was performed under the conditions of 0.5 mA / cm 2 , temperature: 25 ° C., and electrodeposition time: 1800 seconds, and a manganese oxide electrode B was produced.
  • the manganese oxide deposition amount of this manganese oxide electrode B was 0.4 mg / cm 2 .
  • Hydrated ruthenium oxide (RuO 2 .nH 2 O) powder was synthesized according to Non-Patent Document 2 described above. Specifically, the positive electrode 11 using ruthenium oxide hydrate was produced as follows. First, an aqueous solution obtained by dissolving 0.638 g of ruthenium chloride (RuCl 3 ) in 50 mL of ultrapure water and dropwise adding an aqueous solution of 0.6 g of sodium hydroxide in 50 mL of ultrapure water with stirring until pH 7 is reached. Thereafter, the slurry was allowed to stand at 25 ° C. for 15 hours to obtain a slurry.
  • RuCl 3 ruthenium chloride
  • this slurry was washed with ultrapure water and filtered, and this washing and filtration was repeated 5 times until the slurry became neutral.
  • the slurry was dried and then pulverized to obtain ruthenium oxide hydrate having an average particle diameter of 2 nm, a specific capacitance of 600 F / g in an H 2 SO 4 electrolyte solution at 25 ° C. and 0.5 mol / L.
  • a powder (RuO 2 ⁇ nH 2 O) was obtained.
  • the obtained ruthenium oxide hydrate powder was used in place of the activated carbon powder in the above-described method for producing an activated carbon electrode to produce a ruthenium oxide hydrate electrode.
  • Ruthenium oxide nanosheet A (Ru 4+ O 2.1 ) was synthesized according to Non-Patent Document 3 described above. Specifically, the positive electrode 11 using the ruthenium oxide nanosheet A was produced as follows. First, 0.60 g of ruthenium oxide (RuO 2 ) and 0.39 g of potassium carbonate (K 2 CO 3 ) were mixed in acetone to form pellets. Next, the pellet was fired at 800 ° C. in an argon gas atmosphere for 12 hours and then washed with ultrapure water to obtain layered potassium ruthenate. This layered potassium ruthenate was added to 100 mL of 1M HCl aqueous solution, stirred at 60 ° C.
  • RuO 2 ruthenium oxide
  • K 2 CO 3 potassium carbonate
  • layered ruthenate was added to 100 mL of an aqueous solution containing 6.88 mL of 10% by weight TBAOH (tetrabutylammonium hydroxide) and the remainder being ultrapure water, stirred at 25 ° C. for 10 days, and then centrifuged (2000 rpm, 30 minutes) to obtain a colloidal solution of ruthenium oxide nanosheet A.
  • TBAOH tetrabutylammonium hydroxide
  • Ruthenium oxide nanosheet B (Ru 3.8+ O 2 ) was synthesized according to Non-Patent Document 4 described above. Specifically, the positive electrode 11 using the ruthenium oxide nanosheet B was produced as follows. First, 0.298 g of ruthenium, 0.560 g of ruthenium oxide (RuO 2 ), and 0.142 g of sodium carbonate (Na 2 CO 3 ) were mixed in acetone to form pellets. Next, the pellet was fired at 700 ° C. for 1 hour and 900 ° C. for 12 hours in order in an argon gas atmosphere to obtain layered sodium ruthenate.
  • RuO 2 0.560 g of ruthenium oxide
  • Na 2 CO 3 sodium carbonate
  • This layered sodium ruthenate is added to a solution obtained by dissolving 1.257 g of Na 2 S 2 O 8 in 420 g of ultrapure water, then washed with ultrapure water, and further added to 200 mL of 1 M HCl aqueous solution at 60 ° C. After stirring for 72 hours, laminar ruthenic acid was obtained by washing with ultrapure water. This layered ruthenic acid was added to 183 mL of an aqueous solution containing 2.8 mL of 10% by mass TBAOH (tetrabutylammonium hydroxide) and the remainder being ultrapure water, stirred at 25 ° C.
  • TBAOH tetrabutylammonium hydroxide
  • the negative electrode 12 using the lithium composite electrode A was synthesized according to Non-Patent Document 5 described above. Specifically, the negative electrode 12 using the lithium composite electrode A was produced as follows. First, metallic lithium (manufactured by Honjo Metal Industry Co., Ltd., 0.2 ⁇ 5 ⁇ 5 mm, active material) at one end of a metallic nickel foil (manufactured by Niraco Co., Ltd., 0.1 ⁇ 5 ⁇ 150 mm, negative electrode current collector 17) Layer 21) was loaded.
  • PEO manufactured by Sigma-Aldrich Co., Ltd.
  • LiTFSI lithium bistrifluoromethanesulfonylimide, Li (CF 3 SO 2 ) 2 N, manufactured by Wako Pure Chemical Industries, Ltd.
  • LTAP lithium ion conductive glass ceramics, OHARA, Inc., thickness 0.15 mm, lithium ion conductive solid electrolyte 23
  • This laminate was sandwiched between two laminate films (produced by Nihon Co., Ltd., trade name: Rami Zip AL-15, made of aluminum) cut into 100 mm squares, and laminator (vacuum packaging machine made by Bonmac Co., Ltd.). (Trade name: BMV-281).
  • a 5 mm square hole was made in the laminate film in contact with LTAP, and a measurement window in which LTAP was in contact with the aqueous electrolyte was used.
  • a nickel foil drawn from one side of the four sides of the lithium composite electrode was used for collecting the lithium composite negative electrode.
  • the cell resistance of the produced lithium composite electrode A was 185 Wcm 2 .
  • the negative electrode 12 using the lithium composite electrode B was produced as follows. First, a laminate (hereinafter, also referred to as “lithium pre-doped graphite electrode”) of a copper foil (current collector 17 for negative electrode) and a graphite layer (active material layer 21) doped with lithium was prepared.
  • a laminate hereinafter, also referred to as “lithium pre-doped graphite electrode” of a copper foil (current collector 17 for negative electrode) and a graphite layer (active material layer 21) doped with lithium was prepared.
  • the copper foil on which the coating film was formed was punched into a 1 cm 2 circle and pressed at a pressure of 700 kg / cm 2 for 1 minute. Thereafter, the coating film was vacuum-dried at 150 ° C. for 16 hours to obtain a graphite electrode having a graphite layer formed on the surface of the copper foil.
  • lithium was doped into the graphite layer using a galvano / potentiostat (trade name: HZ3000 manufactured by Hokuto Denko Co., Ltd.) to obtain a lithium pre-doped graphite electrode.
  • a galvano / potentiostat trade name: HZ3000 manufactured by Hokuto Denko Co., Ltd.
  • Li foil manufactured by Honjo Metal Co., Ltd.
  • 1M LiPF 6 is a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (1: 1 by volume) as the electrolyte.
  • the Li foil and the graphite electrode were short-circuited for 72 hours to dope the graphite layer with lithium .
  • the natural potential of the graphite electrode was 3.0 V (vs. Li / Li + ) at the start of the short circuit and 0 V (vs. Li / Li + ) at the end of the short circuit.
  • the obtained lithium pre-doped graphite electrode was used in place of the metal nickel foil and metal lithium in the above-described method for producing the lithium composite electrode A to produce a lithium composite electrode B.
  • aqueous electrolyte Lithium chloride aqueous solution / lithium sulfate aqueous solution
  • an aqueous lithium chloride solution and an aqueous lithium sulfate solution were prepared.
  • the lithium chloride aqueous solution lithium chloride was dissolved in ultrapure water to prepare a 1M aqueous solution.
  • lithium sulfate was dissolved in ultrapure water to prepare a 1M aqueous solution.
  • Lithium acetate aqueous solution As an aqueous electrolyte, 33 g of lithium acetate (CH 3 COOLi) was dissolved in 250 mL of ultrapure water to prepare a 2M aqueous solution (pH 8.30).
  • Lithium dihydrogen phosphate-lithium hydroxide solution A lithium dihydrogen phosphate-lithium hydroxide solution was prepared as an aqueous electrolyte. First, 4.7786 g of lithium dihydrogen phosphate (LiH 2 PO 4 ) was dissolved in 500 mL of ultrapure water to prepare a 0.1 M lithium dihydrogen phosphate aqueous solution. Further, 2.098 g of lithium hydroxide (LiOH) was dissolved in 500 mL of ultrapure water to prepare a 0.1 M lithium hydroxide aqueous solution.
  • LiOH lithium hydroxide
  • Lithium acetate-acetic acid solution A lithium acetate-acetic acid solution was prepared as an aqueous electrolyte. First, 33 g of lithium acetate (CH 3 COOLi) was dissolved in 250 mL of ultrapure water to prepare a 2M lithium acetate aqueous solution. Further, 30 g of acetic acid (CH 3 COOH) was dissolved in 250 mL of ultrapure water to prepare a 2M acetic acid aqueous solution.
  • CH 3 COOLi lithium acetate
  • acetic acid CH 3 COOH
  • the prepared 2M lithium acetate aqueous solution 87.5 mL and 2M acetic acid aqueous solution 12.5 mL were mixed, and ultrapure water was added to make the total volume 200 mL, thereby preparing a lithium acetate-acetic acid solution (pH 5.41).
  • any aqueous electrolyte was subjected to nitrogen gas bubbling to remove dissolved oxygen.
  • the pH of the aqueous electrolyte was measured at 60 ° C. using a pH meter (manufactured by Toa DKK Corporation, HM-60E).
  • Example 1 Using the above-mentioned activated carbon electrode as the positive electrode 11, using the above-mentioned lithium composite electrode A as the cathode 12, and using the above-described lithium chloride aqueous solution (pH 7.64) and lithium sulfate aqueous solution (pH 5.15) as the aqueous electrolyte solution 13, Two types of hybrid capacitors 1 were constructed as shown in FIG.
  • Example 2 The above-described manganese oxide electrode is used as the positive electrode 11, the above-described lithium composite electrode A is used as the cathode 12, and the above-described lithium chloride aqueous solution (pH 6.52) and lithium sulfate aqueous solution (pH 5.50) are used as the aqueous electrolyte solution 13.
  • Two types of hybrid capacitors 1 were constructed as shown in FIG.
  • Example 3 The above-described ruthenium oxide hydrate electrode is used as the positive electrode 11, the above-described lithium composite electrode A is used as the cathode 12, and the above-described lithium chloride aqueous solution (pH 6.52) and lithium sulfate aqueous solution (pH 5.50) are used as the aqueous electrolyte solution 13.
  • Two types of hybrid capacitors 1 were constructed as shown in FIG.
  • Example 4 The above-described ruthenium oxide sheet electrode A is used as the positive electrode 11, the above-described lithium composite electrode A is used as the cathode 12, and the above-described lithium chloride aqueous solution (pH 6.54) and lithium sulfate aqueous solution (pH 5.36) are used as the aqueous electrolyte solution 13.
  • the above-described lithium chloride aqueous solution (pH 6.54) and lithium sulfate aqueous solution (pH 5.36) are used as the aqueous electrolyte solution 13.
  • two types of hybrid capacitors 1 were constructed as shown in FIG.
  • Example 5 The above-described ruthenium oxide sheet electrode B is used as the positive electrode 11, the above-described lithium composite electrode A is used as the cathode 12, and the above-described lithium chloride aqueous solution (pH 6.6) and lithium sulfate aqueous solution (pH 5.7) are used as the aqueous electrolyte solution 13.
  • two types of hybrid capacitors 1 were constructed as shown in FIG.
  • Example 6 The above-described manganese oxide electrode B is used as the positive electrode 11, the above-described lithium composite electrode A is used as the cathode 12, and the above-described lithium sulfate aqueous solution (pH 5.7) is used as the aqueous electrolyte solution 13. Configured as shown.
  • Example 7 The above-described activated carbon electrode was used as the positive electrode 11, the above-described lithium composite electrode B was used as the cathode 12, and the above-described lithium chloride aqueous solution was used as the aqueous electrolyte solution 13, so that the hybrid capacitor 1 was configured as shown in FIG.
  • Example 8 The hybrid capacitor 1 is illustrated using the above-described ruthenium oxide hydrate electrode as the positive electrode 11, the above-described lithium composite electrode A as the cathode 12, and the above-described aqueous lithium acetate solution (pH 8.30) as the aqueous electrolyte solution 13. As shown in FIG.
  • Example 9 The above-described manganese oxide electrode B is used as the positive electrode 11, the above-described lithium composite electrode A is used as the cathode 12, and the above-described lithium dihydrogen phosphate-lithium hydroxide buffer (pH 6.87) is used as the aqueous electrolyte solution 13.
  • the hybrid capacitor 1 was configured as shown in FIG.
  • Example 10 The above-described ruthenium oxide hydrate electrode is used as the positive electrode 11, the above-described lithium composite electrode A is used as the cathode 12, and the above-described lithium dihydrogen phosphate-lithium hydroxide buffer (pH 6.87) is used as the aqueous electrolyte solution 13.
  • the hybrid capacitor 1 was configured as shown in FIG.
  • Example 11 Using the above-described ruthenium oxide hydrate electrode as the positive electrode 11, using the above-described lithium composite electrode A as the cathode 12, and using the above-described lithium acetate-acetic acid buffer solution (pH 5.41) as the aqueous electrolyte solution 13, a hybrid capacitor 1 was constructed as shown in FIG.
  • Cyclic voltammetry (CV) Cyclic voltammetry (CV) Cyclic voltammetry measurement was performed using a potentiostat (HZ3000, manufactured by Hokuto Denko Co., Ltd.) and a cell (semi-micro separable cover, semi-micro separable flask, manufactured by Nihon Rikenki Co., Ltd.).
  • aqueous electrolytic solution as used in each example was used as the electrolytic solution, glassy carbon ( ⁇ 5, 19.625 mm 2 ) carrying a positive electrode material was used as the working electrode, and a silver / silver chloride electrode (HS -205C, manufactured by Toa DKK Co., Ltd.) and a Pt mesh (100 mesh, 20 ⁇ 30 mm, Niraco Co., Ltd.) was used as the counter electrode.
  • HS / silver chloride electrode HS / silver chloride electrode
  • Pt mesh 100 mesh, 20 ⁇ 30 mm, Niraco Co., Ltd.
  • carbon paper on which a manganese oxide film was electrodeposited was used as a working electrode. This cyclic voltammetry measurement was performed under the temperature condition of 60 ° C. and in the range of potential scanning speed of 2 mV / s to 500 mV / s.
  • FIG. 2 is a cyclic voltammogram using the activated carbon electrode obtained in Example 1 and an aqueous lithium chloride solution.
  • the shape of the cyclic voltammogram was rectangular, and it showed an ideal electric double layer behavior even when the scanning speed was changed.
  • the obtained specific capacitance Cp was 102 F / g (2 mV / sec).
  • Table 1 shows the specific capacitance Cp at each scanning speed. If this activated carbon electrode is used for the positive electrode of a hybrid capacitor, it is considered that the charge / discharge behavior like a capacitor is exhibited.
  • vs. RHE since a peak due to an irreversible capacity is not seen up to 1.2 V (vs. RHE), in a cell combined with a lithium composite electrode, about 4.2 V is considered in consideration of the standard electrode potential of Li / Li + . A cell voltage is considered to be obtained.
  • any cyclic voltammogram showed an electric double layer behavior. From this, it is thought that the hybrid capacitor of each Example exhibits a capacitor-like charge / discharge behavior.
  • the operating voltage on the positive electrode side is greatly limited by the oxygen generation reaction (OER). . If the OER overvoltage is high, expansion of the operating voltage on the positive electrode side can be expected. Even in the hybrid capacitor of the present invention, a manganese oxide electrode having a high OER overvoltage (stable up to 1.6 V vs. RHE), a lead oxide electrode (stable up to 2.0 V vs. RHE), a conductive diamond electrode (stable up to 2.5 V vs. RHE) Etc. can be expected to further increase the operating voltage.
  • OER oxygen generation reaction
  • FIG. 3 is a charge / discharge curve obtained in a charge / discharge test of the hybrid capacitor 1 using the activated carbon electrode obtained in Example 1 and an aqueous lithium chloride solution.
  • the cut-off potential was 3.9 V for charging and 2.9 V for discharging.
  • Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity.
  • Table 3 This hybrid capacitor uses a two-phase electrolyte. That is, Li + moves between the aqueous electrolyte (1M LiCl aqueous solution) between the positive electrode and the negative electrode and the polymer electrolyte (PEO-LiTFSI
  • a voltage of about 3 V can be obtained on the negative electrode side by the reaction of Li / Li + and a voltage of about 1 V can be obtained on the positive electrode side by the electric double layer.
  • the voltage between the positive and negative electrodes obtained can be expected to be about 4 V, and a cell voltage exceeding that of a conventional lithium ion capacitor can be obtained.
  • a great improvement in energy density can be expected.
  • the charge / discharge curve changes with a constant slope, and a triangular shape is obtained, which indicates that the capacitor-like behavior is exhibited. That is, it can be seen that the capacity of the activated carbon electrode is not due to the battery reaction but to the electric double layer.
  • a high cell voltage of 3.9 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
  • the charge / discharge test of the hybrid capacitor 1 using the manganese oxide electrode obtained in Example 2 and each aqueous electrolyte was performed.
  • the cut-off potential was 4.3V for charging and 3.3V for discharging.
  • Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 4.
  • the charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 4.3 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
  • the charge / discharge test of the hybrid capacitor 1 using the ruthenium oxide hydrate electrode obtained in Example 3 and each aqueous electrolyte was performed.
  • the cut-off potential was 3.8 V for charging and 2.8 V for discharging.
  • Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 5.
  • the charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Further, a high cell voltage of 3.8 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
  • the charge / discharge test of the hybrid capacitor 1 using the ruthenium oxide nanosheet electrode obtained in Example 4 and each aqueous electrolyte was performed.
  • the cut-off potential was 3.9 V for charging and 2.9 V for discharging.
  • Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 6.
  • the charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 3.9 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
  • the charge / discharge test of the hybrid capacitor 1 using the ruthenium oxide nanosheet electrode obtained in Example 5 and each aqueous electrolyte was performed.
  • the cut-off potential was 3.9 V for charging and 2.9 V for discharging.
  • Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 7.
  • the charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 3.9 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
  • the charge / discharge test of the hybrid capacitor 1 using the manganese oxide electrode B obtained in Example 6 and the aqueous electrolyte was performed.
  • the cut-off potential was set to 4.2V for charging and 3.2V for discharging.
  • Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity.
  • the results are shown in Table 8.
  • the charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 4.2 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
  • the charge / discharge test of the hybrid capacitor 1 using the activated carbon electrode obtained in Example 7, the aqueous electrolyte, and the lithium composite electrode B was performed.
  • the cut-off potential was 3.6 V for charging and 2.6 V for discharging.
  • Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 9.
  • the charge / discharge curve changed with a constant slope, and the triangular shape was obtained.
  • a high cell voltage of 3.6 V was obtained, and a cell voltage close to that of a hybrid capacitor using the lithium composite electrode A could be obtained.
  • the charge / discharge test of the hybrid capacitor 1 using the ruthenium oxide hydrate electrode obtained in Example 8 and the aqueous electrolyte was performed.
  • the cut-off potential was set to 3.7V for charging and 2.7V for discharging.
  • Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity.
  • the results are shown in Table 10.
  • the charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 3.7 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
  • the charge / discharge test of the hybrid capacitor 1 using the manganese oxide electrode A obtained in Example 9 and the aqueous electrolyte was performed.
  • the cut-off potential was set to 4.3V for charging and 3.3V for discharging.
  • Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 11.
  • the charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 4.3 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
  • the charge / discharge test of the hybrid capacitor 1 using the ruthenium oxide hydrate electrode obtained in Example 10 and the aqueous electrolyte was performed.
  • the cut-off potential was 3.9 V for charging and 2.9 V for discharging.
  • Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 12.
  • the charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 3.9 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
  • the charge / discharge test of the hybrid capacitor 1 using the ruthenium oxide hydrate electrode obtained in Example 11 and the aqueous electrolyte was performed.
  • the cut-off potential was 3.9 V for charging and 2.9 V for discharging.
  • Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 13.
  • the charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 3.9 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
  • the charge / discharge cycle test of the hybrid capacitor 1 using the ruthenium oxide hydrate electrode obtained in Example 3 and the lithium sulfate aqueous solution was performed.
  • the charge / discharge cycle test was performed for 200 cycles at a constant current density of 255 ⁇ A / cm 2 with a cut-off potential of 3.8 V for charge and 2.8 V for discharge.
  • Table 15 shows the result of converting the specific capacitance obtained from the cycle discharge curve into the battery capacity. Even after 200 cycles of charge / discharge, 95% or more of the initial capacity was maintained.
  • the charge / discharge cycle test of the hybrid capacitor 1 using the manganese oxide electrode B obtained in Example 6 and the lithium sulfate aqueous solution was performed.
  • the charge / discharge cycle test was performed 2000 cycles at a constant current density of 0.6 mA / cm 2 with a cut-off potential of 4.2 V for charge and 3.2 V for discharge.
  • Table 16 shows the results of the energy density and the capacity retention rate obtained by converting the specific capacitance obtained from the charge / discharge cycle curve into the battery capacity. Even after 2000 cycles of charge and discharge, 80% or more of the initial capacity was maintained.
  • the hybrid capacitor 1 of the present invention showed capacitor characteristics having a high cell voltage and a high energy density.
  • the hybrid capacitor 1 using the aqueous electrolyte 13 was able to achieve a dramatic improvement in energy density because of the positive electrode active material having a cell voltage of 5 V class and a very high single electrode capacity. Two were the factors.
  • the hybrid capacitor 1 of the present invention uses a neutral aqueous electrolyte, and thus has an advantage of being safe and easy to handle, and improves durability without damaging the positive electrode 11 and the lithium composite electrode 12. be able to.

Abstract

[Problem] To provide a hybrid capacitor with which there is safety and robustness, and it is possible to obtain high energy density with high cell voltage. [Solution] A hybrid capacitor comprises at least: a positive electrode (11) having a carbon material and/or a metallic oxide; a negative electrode which is configured of a lithium composite electrode; and a neutral aqueous electrolyte (13) which is filled between the positive electrode (11) and the negative electrode (12). The lithium composite electrode (12) is configured to be a layered electrode of a lithium ion conductive solid-state electrolyte (21), a polymer electrolyte (22), and an active material layer (23) including lithium, thus solving the problem. It is desirable for the neutral aqueous electrolyte (13) to have a ph of 5-8.5, and for the metallic oxide to be chosen from manganese oxide, ruthenium oxide, or lead oxide.

Description

ハイブリッドキャパシタHybrid capacitor
 本発明は、ハイブリッドキャパシタに関し、さらに詳しくは、高いセル電圧で、高いエネルギー密度を得ることができるハイブリッドキャパシタに関する。 The present invention relates to a hybrid capacitor, and more particularly to a hybrid capacitor capable of obtaining a high energy density at a high cell voltage.
 電気化学キャパシタは、物理的な電気二重層又はファラデー反応を伴う擬似二重層(電極表面の速いレドックス反応)を電荷の蓄積に利用しているデバイスである。前者は活性炭電極を活物質として用いたときの電荷蓄積機構であり、後者はRuOやMnO等の金属酸化物電極を活物質として用いたときの電荷蓄積機構である。こうした電気化学キャパシタで用いられる電解液は、水系電解液と非水系電解液の二つに大きく分けることができる。 An electrochemical capacitor is a device that uses a physical electric double layer or a pseudo double layer (a fast redox reaction on the electrode surface) with a Faraday reaction for charge accumulation. The former is a charge accumulation mechanism when an activated carbon electrode is used as an active material, and the latter is a charge accumulation mechanism when a metal oxide electrode such as RuO 2 or MnO 2 is used as an active material. Electrolytic solutions used in such electrochemical capacitors can be broadly divided into two types: aqueous electrolytic solutions and nonaqueous electrolytic solutions.
 有機電解液に代表される非水系電解液は、水系電解液と比較してイオン伝導性に劣る。しかし、その非水系電解液を用いた電気化学キャパシタは、電解液の電気分解電圧を3V以上にすることができるため、高いセル電圧と高いエネルギー密度を得ることができる点で有利である。こうした電気化学キャパシタでは、単極自体の比静電容量を水系電解液の場合と同程度すると、セル電圧が高い分だけエネルギー密度が向上する。エネルギー密度はセル電圧の二乗に比例するため、セル電圧を1V向上させるとエネルギー密度を劇的に向上させることができる。特に広い電位窓を持つイオン液体を電解液に用いた場合には、3Vを超えるセル電圧と高いエネルギー密度を得ることが可能である。 Non-aqueous electrolytes represented by organic electrolytes are inferior in ionic conductivity compared to aqueous electrolytes. However, the electrochemical capacitor using the non-aqueous electrolyte is advantageous in that a high cell voltage and a high energy density can be obtained because the electrolytic voltage of the electrolyte can be 3 V or higher. In such an electrochemical capacitor, when the specific capacitance of the single electrode itself is approximately the same as that of the aqueous electrolyte, the energy density is improved by the amount of the cell voltage being higher. Since the energy density is proportional to the square of the cell voltage, the energy density can be dramatically improved by increasing the cell voltage by 1V. In particular, when an ionic liquid having a wide potential window is used as the electrolyte, a cell voltage exceeding 3 V and a high energy density can be obtained.
 一方、水系電解液は、非水系電解液と比較してイオン伝導性が良く、その水系電解液を用いた電気化学キャパシタは、出力密度の点で有利である。しかし、水系電解液は、水の電気分解電圧を超えるようなセル電圧を得ることが難しく、エネルギー密度を高めることが難しい。 On the other hand, the aqueous electrolyte has better ion conductivity than the non-aqueous electrolyte, and an electrochemical capacitor using the aqueous electrolyte is advantageous in terms of output density. However, it is difficult for an aqueous electrolyte to obtain a cell voltage exceeding the electrolysis voltage of water, and it is difficult to increase the energy density.
 こうした問題に対し、非特許文献1には、正極と負極に異なる種類の電極をそれぞれ用い、水系電解液中でセル電圧とエネルギー密度を高めた非対称型のハイブリッドキャパシタが提案されている。この技術では、酸素発生過電圧が比較的高いMnOを正極に用いることで、理論的な酸素発生電圧を超える正極側のセル電圧を得ることができるとされている。具体的には、この技術によると、最大で2.2Vのセル電圧が得られ、有機電解液を用いた電気化学キャパシタと同程度のエネルギー密度(19Wh/kg)が得られている。 To deal with such problems, Non-Patent Document 1 proposes an asymmetric hybrid capacitor in which different types of electrodes are used for the positive electrode and the negative electrode, respectively, and the cell voltage and energy density are increased in the aqueous electrolyte. In this technique, it is said that a cell voltage on the positive electrode side exceeding the theoretical oxygen generation voltage can be obtained by using MnO 2 having a relatively high oxygen generation overvoltage for the positive electrode. Specifically, according to this technique, a maximum cell voltage of 2.2 V is obtained, and an energy density (19 Wh / kg) comparable to that of an electrochemical capacitor using an organic electrolyte is obtained.
 また、特許文献1には、水系電解液と非水系電解液を併用した擬似容量キャパシタにおいて、水の電気分解の理論電圧を超えた作動電圧で充放電できる技術が提案されている。この疑似容量キャパシタは、具体的には、正極側集電体と負極側集電体との間に樹脂製のケースが配置され、このケースの中心孔内にキャパシタ構造を備えている。そして、このキャパシタ構造が、中心孔の上部に配置された正極と、中心孔の下部に配置された負極と、中心孔の段差に配置された固体電解質板と、Liイオンを含む水系電解液が充填された第1液室と、Liイオンを含む非水系電解液が充填された第2液室とを備えている。正極はレドックス変化が可能な金属酸化物を含む電極であり、負極はLiイオンを吸蔵・放出可能な電極であり、固体電解質板はLiイオン伝導性を有し、水系電解液と負極との接触を妨げる役割を果たしている。 Further, Patent Document 1 proposes a technology that can charge and discharge at a working voltage exceeding the theoretical voltage of water electrolysis in a pseudo-capacitor capacitor using both an aqueous electrolyte and a non-aqueous electrolyte. Specifically, the pseudo-capacitor has a resin case disposed between a positive current collector and a negative current collector, and a capacitor structure is provided in the center hole of the case. The capacitor structure includes a positive electrode disposed at the upper part of the central hole, a negative electrode disposed at the lower part of the central hole, a solid electrolyte plate disposed at the step of the central hole, and an aqueous electrolyte containing Li ions. A first liquid chamber filled and a second liquid chamber filled with a non-aqueous electrolyte containing Li ions are provided. The positive electrode is an electrode containing a metal oxide capable of redox change, the negative electrode is an electrode capable of inserting and extracting Li ions, the solid electrolyte plate has Li ion conductivity, and the contact between the aqueous electrolyte and the negative electrode Plays a role in hindering.
特開2011-198925号公報JP 2011-198925 A
 しかしながら、特許文献1の技術は、第2液室に非水系電解液を充填しているため比較的高いセル電圧を得ることができるが、安全性に難点がある。また、第1液室にアルカリ性の水系電解液を充填しているため、固体電解質と正極の耐久性を低下させるおそれがある。 However, the technique of Patent Document 1 can obtain a relatively high cell voltage because the second liquid chamber is filled with the nonaqueous electrolytic solution, but there is a problem in safety. Further, since the first liquid chamber is filled with an alkaline aqueous electrolyte, the durability of the solid electrolyte and the positive electrode may be reduced.
 また、水系電解液や非水系電解液を用いた電気化学キャパシタでは、それぞれ様々な技術によりセル電圧及びエネルギー密度の向上を目指しているが、リチウムイオン電池と比較すると、今後さらなるエネルギー密度の向上が必要である。 Electrochemical capacitors using aqueous electrolytes and non-aqueous electrolytes aim to improve cell voltage and energy density using various technologies, but the energy density will be further improved in the future compared to lithium ion batteries. is necessary.
 本発明は、上記課題を解決するためになされたものであって、その目的は、安全性と耐久性があり、高いセル電圧で高いエネルギー密度を得ることができるハイブリッドキャパシタを提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a hybrid capacitor that is safe and durable and that can obtain a high energy density at a high cell voltage. .
 上記課題を解決するための本発明に係るハイブリッドキャパシタは、炭素材料及び金属酸化物の一方又は両方を有する正極と、リチウム複合電極で構成された負極と、前記正極と前記負極との間に充填された中性水系電解液とを少なくとも備え、前記リチウム複合電極が、リチウムイオン伝導性固体電解質と高分子電解質とリチウムを含有する活物質層との積層電極であることを特徴とする。 In order to solve the above problems, a hybrid capacitor according to the present invention includes a positive electrode having one or both of a carbon material and a metal oxide, a negative electrode composed of a lithium composite electrode, and a gap between the positive electrode and the negative electrode. The lithium composite electrode is a laminated electrode of a lithium ion conductive solid electrolyte, a polymer electrolyte, and an active material layer containing lithium.
 この発明によれば、中性水系電解液を用い、さらに水に安定なリチウム複合電極を負極として用いるので、安全で耐久性のある新規な水系ハイブリッドキャパシタとすることができた。また、炭素材料及び金属酸化物の一方又は両方を有する正極のキャパシタ的な電荷蓄積に加えて、M/M(Mは金属)の標準電極電位を利用することで、高いセル電圧を得ることができた。 According to the present invention, since a neutral aqueous electrolyte is used and a water-stable lithium composite electrode is used as the negative electrode, a safe and durable new aqueous hybrid capacitor can be obtained. In addition to capacitor charge accumulation of a positive electrode having one or both of a carbon material and a metal oxide, a high cell voltage can be obtained by utilizing a standard electrode potential of M / M + (M is a metal). I was able to.
 本発明に係るハイブリッドキャパシタにおいて、前記中性水系電解液がpH5以上、pH8.5以下であり、前記金属酸化物が酸化マンガン、酸化ルテニウム及び酸化鉛から選ばれるいずれかである。 In the hybrid capacitor according to the present invention, the neutral aqueous electrolyte is pH 5 or more and pH 8.5 or less, and the metal oxide is any one selected from manganese oxide, ruthenium oxide and lead oxide.
 本発明に係るハイブリッドキャパシタにおいて、前記正極は、炭素材料及び金属酸化物の一方又は両方を含有するシートと、前記シートの少なくとも表面に設けられた金属酸化物膜とを有する。 In the hybrid capacitor according to the present invention, the positive electrode includes a sheet containing one or both of a carbon material and a metal oxide, and a metal oxide film provided on at least the surface of the sheet.
 本発明に係るハイブリッドキャパシタにおいて、前記シートは、炭素繊維を有する紙状体である。 In the hybrid capacitor according to the present invention, the sheet is a paper-like body having carbon fibers.
 本発明に係るハイブリッドキャパシタにおいて、前記リチウムを含有する活物質層は、リチウム、リチウム合金、又はリチウムがドープされた炭素材料を有する。 In the hybrid capacitor according to the present invention, the active material layer containing lithium includes lithium, a lithium alloy, or a carbon material doped with lithium.
 本発明に係るハイブリッドキャパシタによれば、安全性と耐久性があり、高いセル電圧で高いエネルギー密度を得ることができる。 The hybrid capacitor according to the present invention has safety and durability, and can obtain a high energy density at a high cell voltage.
本発明に係るハイブリッドキャパシタの構成を示す模式図である。It is a schematic diagram which shows the structure of the hybrid capacitor which concerns on this invention. サイクリックボルタンメトリーで得られたサイクリックボルタモグラムの一例である。It is an example of the cyclic voltammogram obtained by cyclic voltammetry. 充放電測定で得られた充放電曲線の一例である。It is an example of the charging / discharging curve obtained by the charging / discharging measurement. 充放電サイクル測定で得られた充放電サイクル曲線の一例である。It is an example of the charging / discharging cycle curve obtained by charging / discharging cycle measurement.
 以下、本発明に係るハイブリッドキャパシタについて詳しく説明するが、本発明は、その技術的範囲に含まれる範囲において下記の説明に限定されず、種々の態様で実施することができる。 Hereinafter, although the hybrid capacitor according to the present invention will be described in detail, the present invention is not limited to the following description within the scope of the technical scope, and can be implemented in various modes.
 本発明に係るハイブリッドキャパシタ1は、図1に示すように、炭素材料及び金属酸化物の一方又は両方を有する正極11と、リチウム複合電極で構成された負極12と、正極11と負極12との間に充填された中性水系電解液13とを少なくとも備えている。そして、負極12であるリチウム複合電極が、リチウムイオン伝導性固体電解質23と高分子電解質22とリチウムを含有する活物質層21との積層電極である。また、中性水系電解液13はpH5以上、pH8.5以下であり、pH5以上、pH8であることが好ましい。なお、図1中、符号18は容器である。 As shown in FIG. 1, the hybrid capacitor 1 according to the present invention includes a positive electrode 11 having one or both of a carbon material and a metal oxide, a negative electrode 12 composed of a lithium composite electrode, and a positive electrode 11 and a negative electrode 12. And at least a neutral aqueous electrolyte 13 filled therebetween. And the lithium composite electrode which is the negative electrode 12 is a laminated electrode of the lithium ion conductive solid electrolyte 23, the polymer electrolyte 22, and the active material layer 21 containing lithium. Further, the neutral aqueous electrolyte solution 13 has a pH of 5 or more and a pH of 8.5 or less, and preferably has a pH of 5 or more and pH 8. In addition, the code | symbol 18 is a container in FIG.
 (中性水系電解液)
 中性水系電解液13は、正極11と負極12との間に充填された電解液である。本発明では、水性で中性の電解液を用いている。中性水系電解液としては、アルカリ金属塩を溶解した水系電解液を挙げることができる。そのアルカリ金属塩としては、LiCl、LiNO、LiSO、LiCO、LiHPO、LiHPO、LiCOOCH、LiCOO(OH)CHCH、Li、NaCl、NaSO、KCl、KSO、等の無機酸塩及び有機酸塩を挙げることができる。また、これらのうちから複数のアルカリ金属塩を混合して中性に調整した水系電解液でもよいし、アルカリ金属塩と酸又は塩基とを混合して緩衝作用を付与した水系電解液であってもよい。緩衝作用を有する水系電解液は、充放電過程でのpHが安定であり、ハイブリッドキャパシタ1の安全性と耐久性を高めることができる。
(Neutral aqueous electrolyte)
The neutral aqueous electrolyte 13 is an electrolyte filled between the positive electrode 11 and the negative electrode 12. In the present invention, an aqueous neutral electrolyte is used. Examples of the neutral aqueous electrolyte include an aqueous electrolyte in which an alkali metal salt is dissolved. The alkali metal salts include LiCl, LiNO 3 , Li 2 SO 4 , Li 2 CO 3 , Li 2 HPO 4 , LiH 2 PO 4 , LiCOOCH 3 , LiCOO (OH) CHCH 3 , Li 2 C 2 O 2 , NaCl. , Na 2 SO 4 , KCl, K 2 SO 4 , and other inorganic acid salts and organic acid salts. In addition, a water-based electrolytic solution in which a plurality of alkali metal salts are mixed and adjusted to neutrality may be used, or a water-based electrolytic solution in which an alkali metal salt and an acid or base are mixed to provide a buffering action. Also good. The aqueous electrolyte having a buffering action has a stable pH during the charge / discharge process, and can improve the safety and durability of the hybrid capacitor 1.
 緩衝作用を有する中性水系電解液13としては、リン酸二水素リチウム-水酸化リチウム(LiHPO-LiOH)液(pH6.87)、酢酸リチウム-酢酸(CHCOOLi-CHCOOH)液(pH5.41)等を挙げることができる。 Examples of the neutral aqueous electrolyte solution 13 having a buffering action include lithium dihydrogen phosphate-lithium hydroxide (LiH 2 PO 4 -LiOH) solution (pH 6.87), lithium acetate-acetic acid (CH 3 COOLi-CH 3 COOH). Liquid (pH 5.41).
 本発明では、水系電解液13が中性であるので、電解液が負極12や正極11にダメージを与えることがなく、安定したハイブリッドキャパシタを構成できる。また、このハイブリッドキャパシタ1は、特許文献1に記載のような水以外の溶媒を用いた非水系電解液も用いないので、取り扱いが容易で安全であり、低コストでもある。 In the present invention, since the aqueous electrolytic solution 13 is neutral, the electrolytic solution does not damage the negative electrode 12 and the positive electrode 11, and a stable hybrid capacitor can be configured. In addition, since the hybrid capacitor 1 does not use a non-aqueous electrolyte using a solvent other than water as described in Patent Document 1, it is easy to handle, safe, and low cost.
 中性水系電解液13の中性とは、pH5以上、pH8.5以下の範囲をいい、pH5以上、pH8以下の範囲であることが好ましい。また、中性水系電解液13中の塩濃度は、0.01mol/L以上、5mol/L以下であることが好ましい。 The neutrality of the neutral aqueous electrolyte solution 13 means a range of pH 5 or more and pH 8.5 or less, preferably a pH of 5 or more and pH 8 or less. Moreover, it is preferable that the salt concentration in the neutral aqueous electrolyte solution 13 is 0.01 mol / L or more and 5 mol / L or less.
 (正極)
 正極11は、炭素材料及び金属酸化物の一方又は両方を有し、前記した中性水系電解液13に接触して可逆的なレドックス反応を起こす。具体的には、正極11は、可逆的なレドックス反応を起こすことができる炭素材料及び金属酸化物の一方又は両方を有するものであれば、金属酸化物単体で構成されていてもよいし、金属酸化物とバインダー材料とで構成されていてもよいし、金属酸化物とバインダー材料と導電材料とで構成されていてもよい。また、正極11は、炭素材料単体で構成されていてもよいし、炭素材料とバインダー材料とで構成されていてもよいし、炭素材料とバインダー材料と導電材料とで構成されていてもよい。さらに、正極11は、金属酸化物と炭素材料の両方で構成されていてもよい。
(Positive electrode)
The positive electrode 11 has one or both of a carbon material and a metal oxide, and causes a reversible redox reaction in contact with the neutral aqueous electrolyte solution 13 described above. Specifically, as long as the positive electrode 11 has one or both of a carbon material and a metal oxide capable of causing a reversible redox reaction, the positive electrode 11 may be composed of a single metal oxide or a metal. It may be composed of an oxide and a binder material, or may be composed of a metal oxide, a binder material, and a conductive material. Moreover, the positive electrode 11 may be comprised with the carbon material single-piece | unit, may be comprised with the carbon material and the binder material, and may be comprised with the carbon material, the binder material, and the electrically-conductive material. Furthermore, the positive electrode 11 may be composed of both a metal oxide and a carbon material.
 炭素材料としては、各種の炭素材料を挙げることができるが、好ましくは、活性炭、アセチレンブラック、カーボンナノチューブ、グラファイト、導電性ダイヤモンド、グラフェン等を挙げることができる。これらの炭素素材は、1種で用いてもよいし2種以上複合させて用いてもよい。また、金属酸化物としては、可逆的なレドックス反応を起こすことができるものであれば各種のものを適用でき、例えば、酸化マンガン、酸化ルテニウム、酸化鉛、酸化タングステン、酸化コバルト、酸化スズ、酸化ニッケル、酸化モリブデン、酸化チタン、酸化イリジウム、酸化バナジウム、酸化インジウム等、及びそれらの水和物を挙げることができる。これらの金属酸化物は、1種で用いてもよいし2種以上複合させて用いてもよい。好ましくは、酸化マンガン、酸化ルテニウム、酸化鉛等を挙げることができる。 As the carbon material, various carbon materials can be exemplified, and preferably, activated carbon, acetylene black, carbon nanotube, graphite, conductive diamond, graphene and the like can be exemplified. These carbon materials may be used alone or in combination of two or more. Various metal oxides can be used as long as they can cause a reversible redox reaction, such as manganese oxide, ruthenium oxide, lead oxide, tungsten oxide, cobalt oxide, tin oxide, and oxide. Examples thereof include nickel, molybdenum oxide, titanium oxide, iridium oxide, vanadium oxide, indium oxide, and the like, and hydrates thereof. These metal oxides may be used alone or in combination of two or more. Preferable examples include manganese oxide, ruthenium oxide, lead oxide and the like.
 なお、バインダー材料や導電材料も従来公知のものを適用できる。バインダー材料としては、例えば、フッ素系樹脂、熱可塑性樹脂、エチレン-プロピレン-ジエンマー、天然ブチルゴム等を任意に用いることができる。導電材料としては、例えば、天然黒鉛、人造黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属等の粉末又は繊維等を用いることができる。これらのバインダー材料及び導電材料は、1種で用いてもよいし2種以上複合させて用いてもよい。 Note that conventionally known binder materials and conductive materials can be applied. As the binder material, for example, a fluorine-based resin, a thermoplastic resin, ethylene-propylene-dienemer, natural butyl rubber and the like can be arbitrarily used. As the conductive material, for example, natural graphite, artificial graphite, acetylene black, carbon black, ketjen black, carbon whisker, needle coke, carbon fiber, metal powder or fiber can be used. These binder materials and conductive materials may be used alone or in combination of two or more.
 また、正極11は、炭素材料及び金属酸化物の一方又は両方を含有するシートと、このシートの少なくとも表面に設けられた金属酸化物膜とを有するものであってもよい。具体的には、シートは、金属酸化物単体で構成されていてもよいし、金属酸化物とバインダー材料等の添加剤とで構成されていてもよいし、炭素材料単体で構成されていてもよいし、炭素材料とバインダー材料等の添加剤とで構成されていてもよい。また、シートは、金属酸化物と炭素材料の両方を含有していてもよい。 The positive electrode 11 may have a sheet containing one or both of a carbon material and a metal oxide, and a metal oxide film provided on at least the surface of the sheet. Specifically, the sheet may be composed of a single metal oxide, may be composed of a metal oxide and an additive such as a binder material, or may be composed of a single carbon material. Alternatively, it may be composed of a carbon material and an additive such as a binder material. The sheet may contain both a metal oxide and a carbon material.
 炭素材料を含有するシートとしては、例えば、炭素繊維で形成されたシート、具体的には炭素繊維で形成された布状体等を挙げることができる。
 金属酸化物と炭素材料の両方を含有するシートとしては、金属酸化物と炭素材料とを混練した材料をシート状に成形したシート等を挙げることができる。
As a sheet | seat containing a carbon material, the sheet | seat formed with carbon fiber, for example, the cloth-like body formed with carbon fiber, etc. can be mentioned, for example.
Examples of the sheet containing both the metal oxide and the carbon material include a sheet obtained by molding a material obtained by kneading the metal oxide and the carbon material into a sheet shape.
シートに含有されるバインダーとしては、Fluon(旭硝子株式会社製、登録商標)、ルブロン(ダイキン工業株式会社製、登録商標)等のフッ素樹脂系材料、TRD2001(JSR株式会社製)等のスチレンブタジエンゴム系材料等を挙げることができる。 Examples of the binder contained in the sheet include fluororesin materials such as Fluon (manufactured by Asahi Glass Co., Ltd., registered trademark) and Lubron (manufactured by Daikin Industries, Ltd., registered trademark), and styrene butadiene rubbers such as TRD2001 (manufactured by JSR Corporation) Examples thereof include system materials.
 金属酸化物膜は、シートの少なくとも表面に設けられていればよい。例えば、金属酸化物膜は、シートの表面にのみ設けられていてもよいし、シートの表面に設けられるとともにシートの内部に入り込んで設けられていてもよい。また、例えば、シートが炭素繊維で形成されている場合には、金属酸化物膜は、各炭素繊維の表面を覆うように設けられていてもよい。各炭素繊維の表面に金属酸化物膜が設けられた正極11を用いたハイブリッドキャパシタ1は、正極11の金属酸化物の特性を大きく反映した特性を得ることができる。 The metal oxide film may be provided on at least the surface of the sheet. For example, the metal oxide film may be provided only on the surface of the sheet, or may be provided on the surface of the sheet and enter the inside of the sheet. For example, when the sheet is formed of carbon fibers, the metal oxide film may be provided so as to cover the surface of each carbon fiber. The hybrid capacitor 1 using the positive electrode 11 in which the metal oxide film is provided on the surface of each carbon fiber can obtain characteristics that greatly reflect the characteristics of the metal oxide of the positive electrode 11.
 金属酸化物膜の形成方法としては、電析法、電気泳動法、CVD(化学気相成長法)法、スパッタリング法、真空蒸着法等の薄膜形成方法を挙げることができる。このうち、電析法は、金属酸化物膜を比較的短時間に形成することができるため、ハイブリッドキャパシタの製造効率を高める上で有利である。 Examples of the method for forming the metal oxide film include thin film formation methods such as electrodeposition, electrophoresis, CVD (chemical vapor deposition), sputtering, and vacuum deposition. Among these, the electrodeposition method is advantageous in increasing the production efficiency of the hybrid capacitor because the metal oxide film can be formed in a relatively short time.
 正極11の形状は特に限定されないが、通常は、シート状又は板状であることが好ましい。正極11の厚さも特に限定されないが、例えば、1nm以上、10mm以下の範囲内である。なお、正極11は、通常、正極用集電体16上に設けられている。正極用集電体16は従来公知のものを任意に適用できる。 The shape of the positive electrode 11 is not particularly limited, but is usually preferably a sheet shape or a plate shape. The thickness of the positive electrode 11 is not particularly limited, but is, for example, in the range of 1 nm or more and 10 mm or less. The positive electrode 11 is usually provided on the positive electrode current collector 16. A conventionally known positive electrode current collector 16 can be arbitrarily applied.
 (負極)
 負極12は、リチウム複合電極(符号12で表す。)で構成されている。こうした負極12は、上記した水系電解液13に接触し、レドックス反応を起こす金属イオンを吸蔵、放出するように作用する。リチウム複合電極12は、図1に示すように、リチウムイオン伝導性固体電解質23と、高分子電解質22と、リチウム含有する活物質層21とを有する積層電極である。
(Negative electrode)
The negative electrode 12 is composed of a lithium composite electrode (represented by reference numeral 12). Such a negative electrode 12 is in contact with the aqueous electrolyte solution 13 described above, and acts to occlude and release metal ions that cause a redox reaction. As shown in FIG. 1, the lithium composite electrode 12 is a laminated electrode having a lithium ion conductive solid electrolyte 23, a polymer electrolyte 22, and an active material layer 21 containing lithium.
 リチウムを含有する活物質層21としては、金属リチウム、リチウム合金、又はリチウムがドープされた炭素材料が用いられる。 As the active material layer 21 containing lithium, metallic lithium, a lithium alloy, or a carbon material doped with lithium is used.
 リチウム合金は、リチウムを主成分とするリチウム合金又はリチウム化合物であればよく、例えば、リチウム-アルミニウム合金、リチウム-亜鉛合金、リチウム-スズ合金、リチウム-シリコン合金等を挙げることができる。 The lithium alloy may be any lithium alloy or lithium compound mainly composed of lithium, and examples thereof include a lithium-aluminum alloy, a lithium-zinc alloy, a lithium-tin alloy, and a lithium-silicon alloy.
 リチウムがドープされた炭素材料としては、例えば、易黒鉛化性炭素、難黒鉛化性炭素、黒鉛等を挙げることができる。易黒鉛化性炭素としては、熱分解炭素類、又はピッチコークス、ニードルコークスもしくは石油コークス等のコークス類等を挙げることができる。難黒鉛化性炭素としては、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭又はカーボンブラック類等を挙げることができる。ここで、有機高分子化合物焼成体とは、フェノール樹脂やフラン樹脂等を適当な温度で焼成して炭素化したものである。炭素材料へのリチウムのドープ量は、1μg/cm以上、1g/cm以下とするのが適当である。 Examples of the carbon material doped with lithium include graphitizable carbon, non-graphitizable carbon, and graphite. Examples of the graphitizable carbon include pyrolytic carbons, and cokes such as pitch coke, needle coke, and petroleum coke. Examples of the non-graphitizable carbon include glassy carbon fibers, organic polymer compound fired bodies, activated carbon, and carbon blacks. Here, the organic polymer compound fired body is obtained by firing and carbonizing a phenol resin, a furan resin, or the like at an appropriate temperature. The amount of lithium doped into the carbon material is suitably 1 μg / cm 2 or more and 1 g / cm 2 or less.
 リチウムがドープされた炭素材料は、下記式に示すように、ハイブリッドキャパシタに放電電圧が印加されると炭素材料からリチウムイオンが放出され、充電電圧が印加されると炭素材料にリチウムイオンが吸蔵され、負極活物質として機能する。 As shown in the following formula, a lithium-doped carbon material releases lithium ions from the carbon material when a discharge voltage is applied to the hybrid capacitor, and stores lithium ions in the carbon material when a charge voltage is applied. It functions as a negative electrode active material.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 こうした炭素材料からなる活物質層21は、充電に際してリチウム樹枝状結晶(デンドライト)を析出し難く、リチウム樹枝状結晶に起因して、活物質層21の上に設けられた高分子電解質22等が破損したり、短絡が生じることを回避することができる。その結果、ハイブリッドキャパシタの耐久性と安全性をより高めることができる。また、活物質層21の材料として炭素材料を用いることにより、金属リチウム等を用いる場合に比べて、リチウムの使用量を削減することができるため、ハイブリッドキャパシタの安全性の向上、コストの低減を図ることができる。 The active material layer 21 made of such a carbon material is unlikely to deposit lithium dendritic crystals (dendrites) upon charging, and the polymer electrolyte 22 and the like provided on the active material layer 21 are caused by the lithium dendritic crystals. It is possible to avoid damage or short circuit. As a result, the durability and safety of the hybrid capacitor can be further increased. Moreover, since the amount of lithium used can be reduced by using a carbon material as the material of the active material layer 21 compared to the case of using metallic lithium or the like, it is possible to improve the safety of the hybrid capacitor and reduce the cost. Can be planned.
 こうしたリチウムを含有する活物質層21の形状は、シート状又はフィルム状等を挙げることができる。活物質層21の厚さは特に限定されないが、例えば、0.1mm以上、3mm以下の範囲内である。 Examples of the shape of the active material layer 21 containing lithium include a sheet shape or a film shape. Although the thickness of the active material layer 21 is not specifically limited, For example, it exists in the range of 0.1 mm or more and 3 mm or less.
 リチウムイオン伝導性固体電解質23は、リチウムイオン伝導性と非透水性を持ち、水系電解液13と負極12とを隔離するように作用する。高分子電解質22は、固体ポリマーとリチウム塩を含んでいる。 The lithium ion conductive solid electrolyte 23 has lithium ion conductivity and water impermeability, and acts to isolate the aqueous electrolyte solution 13 and the negative electrode 12. The polymer electrolyte 22 contains a solid polymer and a lithium salt.
 高分子電解質22を構成する固体ポリマーとしては、ポリエチレンオキシド(PEO)又はポリプロピレンオキシド(PPO)等を用いることができる。これらは、アルキレン基とエーテル酸素とが交互に配列された分子鎖であるポリアルキレンオキシド鎖を有し、リチウムイオンを溶媒和させる多数のエーテル酸素を有するので、リチウム塩を溶解させることができる。 As the solid polymer constituting the polymer electrolyte 22, polyethylene oxide (PEO), polypropylene oxide (PPO) or the like can be used. These have polyalkylene oxide chains that are molecular chains in which alkylene groups and ether oxygens are alternately arranged, and have a large number of ether oxygens that solvate lithium ions, so that lithium salts can be dissolved.
 高分子電解質22を構成するリチウム塩としては、例えば、LiPF6、LiClO4、LiBF4、LiTFSI(Li(SO2CF32N)、Li(SO2252N、LiBOB(ビスオキサラトホウ酸リチウム)等を挙げることができる。これらのリチウム塩は、1種で用いてもよいし2種以上複合させて用いてもよい。 Examples of the lithium salt constituting the polymer electrolyte 22 include LiPF 6 , LiClO 4 , LiBF 4 , LiTFSI (Li (SO 2 CF 3 ) 2 N), Li (SO 2 C 2 F 5 ) 2 N, LiBOB ( Lithium bisoxalatoborate) and the like. These lithium salts may be used alone or in combination of two or more.
 また、高分子電解質22には、機械的特性や電気的特性を考慮して、例えばチタン酸バリウム等のセラミックス材料を配合してもよいし、高分子電解質22の機能を阻害しない他の材料を配合してもよい。 The polymer electrolyte 22 may be blended with a ceramic material such as barium titanate in consideration of mechanical characteristics and electrical characteristics, or other materials that do not hinder the function of the polymer electrolyte 22. You may mix | blend.
 高分子電解質22を構成するこれらの材料の配合量は、高分子電解質22の所望の機能を考慮して設定される。高分子電解質22は、従来公知の方法で作製できる。例えば、有機溶媒に各種の構成材料を分散させた溶液を乾燥させて所定の形状に成形できる。高分子電解質22の厚さは特に限定されないが、通常、0.05mm以上、0.5mm以下の範囲内である。こうして作製された高分子電解質22は、リチウム21とリチウムイオン伝導性固体電解質23との間に配置され、両者が直接接触して反応するのを妨げることができる。その結果、ハイブリッドキャパシタ1の長寿命化に寄与できる。 The amount of these materials constituting the polymer electrolyte 22 is set in consideration of the desired function of the polymer electrolyte 22. The polymer electrolyte 22 can be produced by a conventionally known method. For example, a solution in which various constituent materials are dispersed in an organic solvent can be dried to be molded into a predetermined shape. The thickness of the polymer electrolyte 22 is not particularly limited, but is usually in the range of 0.05 mm or more and 0.5 mm or less. The polymer electrolyte 22 produced in this way is disposed between the lithium 21 and the lithium ion conductive solid electrolyte 23, and can prevent both from coming into direct contact and reacting. As a result, the lifetime of the hybrid capacitor 1 can be increased.
 リチウムイオン伝導性固体電解質23は、耐水性と、リチウムイオン伝導性とを持つNASICON(ナトリウム超イオン伝導体)型のリチウムイオン伝導体であることが望ましい。具体的には、リチウムイオン伝導性固体電解質23としては、Li1+XTi2SiX3-X12・AlPO4(LICGC、オハラガラス)、Li1.5Al0.5Ge1.5(PO43(LAGP)、Li1+x+uAlxTi2-x3-ySiy12(LATP)、ガーネット型酸化物Li7La3Zr212 、LiPON等を挙げることができる。このリチウムイオン伝導性固体電解質23は、シート状又は板状であることが望ましく、その厚さは通常、0.05mm以上、0.5mm以下の範囲内である。 The lithium ion conductive solid electrolyte 23 is preferably a NASICON (sodium superionic conductor) type lithium ion conductor having water resistance and lithium ion conductivity. Specifically, the lithium ion conductive solid electrolyte 23, Li 1 + X Ti 2 Si X P 3-X O 12 · AlPO 4 (LICGC, Ohara glass), Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 (LAGP), Li 1 + x + u Al x Ti 2-x P 3-y Si y O 12 (LATP), mention may be made of a garnet-type oxide Li 7 La 3 Zr 2 O 12 , LiPON like. The lithium ion conductive solid electrolyte 23 is preferably in the form of a sheet or a plate, and the thickness is usually in the range of 0.05 mm or more and 0.5 mm or less.
 なお、負極12は、通常、負極用集電体17上に設けられている。負極用集電体17は従来公知のものを任意に適用できる。 The negative electrode 12 is usually provided on the negative electrode current collector 17. A conventionally known negative electrode current collector 17 can be arbitrarily applied.
 (ハイブリッドキャパシタ)
 上記した正極11、負極12、及び水系電解液13とで少なくとも構成されるハイブリッドキャパシタ1は、必要に応じて他の構成材料や構成部材が設けられていてもよい。ハイブリッドキャパシタ1の大きさは大小特に限定されず、また、その形状も特に限定されない。形状としては、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型等を挙げることができる。
(Hybrid capacitor)
The hybrid capacitor 1 composed of at least the positive electrode 11, the negative electrode 12, and the aqueous electrolyte solution 13 may be provided with other constituent materials and constituent members as necessary. The size of the hybrid capacitor 1 is not particularly limited, and the shape thereof is not particularly limited. Examples of the shape include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type.
 以上説明したように、本発明に係るハイブリッドキャパシタ1によれば、中性水系電解液13を用い、さらに水に安定なリチウム複合電極12を負極として用いるので、安全で耐久性のある新規な水系ハイブリッドキャパシタとすることができた。また、正極である金属酸化物電極のキャパシタ的な電荷蓄積に加えて、Li/Liの標準電極電位を利用することで、高いセル電圧を得ることができた。 As described above, according to the hybrid capacitor 1 according to the present invention, the neutral aqueous electrolyte 13 is used, and the water-stable lithium composite electrode 12 is used as the negative electrode. A hybrid capacitor could be obtained. Further, in addition to the capacitor charge accumulation of the metal oxide electrode as the positive electrode, a high cell voltage could be obtained by utilizing the standard electrode potential of Li / Li + .
 以下、実験例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described by experimental examples.
 [正極の準備]
 (活性炭電極の作製)
 活性炭を用いた正極11を以下のように作製した。まず、活性炭粉末(関西熱化学株式会社製、商品名:MSP-20、BET比表面積2200m/g、平均粒子径8μm)20mgを10mLの超純水に添加し、超音波処理により活性炭粉末を超純水中で均一に分散させて活性炭分散液を得た。次いで、この活性炭分散液20μLを直径5mmの円筒状のグラッシーカーボン(東海カーボン株式会社製、商品名:GC-20S)の先端の端面に滴下し、60℃で30分間保持して乾燥させた。次いで、グラッシーカーボンの同じ端面に、1質量%のナフィオン(Nafion:デュポン社の登録商標、Sigma-Aldrich社製)アルコール水混合溶液20μLを滴下し、60℃で30分間保持して乾燥させ、正極11である活性炭電極を作製した。この活性炭電極の端面に担持された活物質は40μgである。なお、グラッシーカーボンは、使用する前に、前処理として研磨紙で鏡面になるように研磨した後、蒸留水及びアルコール中で超音波処理し乾燥させた。
[Preparation of positive electrode]
(Production of activated carbon electrode)
The positive electrode 11 using activated carbon was produced as follows. First, 20 mg of activated carbon powder (manufactured by Kansai Thermal Chemical Co., Ltd., trade name: MSP-20, BET specific surface area 2200 m 2 / g, average particle size 8 μm) was added to 10 mL of ultrapure water, and the activated carbon powder was sonicated. An activated carbon dispersion was obtained by uniformly dispersing in ultrapure water. Next, 20 μL of this activated carbon dispersion was dropped onto the end surface of the tip of cylindrical glassy carbon (trade name: GC-20S, manufactured by Tokai Carbon Co., Ltd.) having a diameter of 5 mm, and dried at 60 ° C. for 30 minutes. Next, 20 μL of 1% by mass of Nafion (Nafion: a registered trademark of DuPont, Sigma-Aldrich) alcohol water mixed solution is dropped onto the same end face of the glassy carbon, and kept at 60 ° C. for 30 minutes to dry. 11 was produced. The active material supported on the end face of the activated carbon electrode is 40 μg. Before use, the glassy carbon was polished to a mirror surface with a polishing paper as a pretreatment, and then ultrasonicated in distilled water and alcohol and dried.
 (酸化マンガン電極Aの作製)
 酸化マンガン(MnO)粉末は非特許文献1にしたがって合成した。具体的には、酸化マンガンを用いた正極11を以下のように作製した。まず、過マンガン酸カリウム(KMnO)3.16gを100mLの超純水に溶解させた過マンガン酸カリウム水溶液に、フマル酸[C(COOH)]0.773gを添加し、30分間減圧攪拌した後、1日室温で静置してスラリーを得た。次いで、このスラリーを0.1Mの硫酸(HSO)、超純水及びアセトンの順にそれぞれを用いて洗浄を行い、乾燥させた後、粉砕して平均細孔径が5nm、BET比表面積が235m/gの酸化マンガン(MnO)粉末を得た。得られた酸化マンガン粉末を、導電材料であるアセチレンブラックと7:3の質量比で混合し、上記した活性炭電極の作製方法での活性炭粉末の代わりに用いて、酸化マンガン電極Aを作製した。
(Preparation of manganese oxide electrode A)
Manganese oxide (MnO 2 ) powder was synthesized according to Non-Patent Document 1. Specifically, the positive electrode 11 using manganese oxide was produced as follows. First, 0.773 g of fumaric acid [C 2 H 2 (COOH) 2 ] is added to an aqueous potassium permanganate solution in which 3.16 g of potassium permanganate (KMnO 4 ) is dissolved in 100 mL of ultrapure water. After stirring under reduced pressure for minutes, the mixture was allowed to stand at room temperature for 1 day to obtain a slurry. Next, this slurry was washed with 0.1 M sulfuric acid (H 2 SO 4 ), ultrapure water and acetone in this order, dried, pulverized, and average pore diameter was 5 nm, BET specific surface area was A 235 m 2 / g manganese oxide (MnO 2 ) powder was obtained. The obtained manganese oxide powder was mixed with acetylene black, which is a conductive material, in a mass ratio of 7: 3, and used in place of the activated carbon powder in the above-described activated carbon electrode production method, to produce a manganese oxide electrode A.
 (酸化マンガン電極Bの作製)
 酸化マンガン電極Bは、カーボンペーパーの炭素繊維の表面に、酸化マンガンを電析させることによって作製した。具体的には、硫酸マンガン水和物(MnSO・5HO)水溶液と硫酸水溶液とを混合して0.1MMnSOを含有する硫酸溶液(電析用電解液)を調製した。次に、この電析用電解液中に、カーボンペーパー(SGL社製、商品名:SIGRACET GDL10)を浸漬し、このカーボンペーパーをアノード電極として用い、白金電極をカソード電極として用い、電流密度:0.5mA/cm、温度:25℃、電析時間:1800秒の条件で電析を行い、酸化マンガン電極Bを作製した。この酸化マンガン電極Bの酸化マンガンの被着量は0.4mg/cmであった。
(Preparation of manganese oxide electrode B)
Manganese oxide electrode B was produced by electrodepositing manganese oxide on the surface of carbon fiber of carbon paper. Specifically, an aqueous solution of manganese sulfate hydrate (MnSO 4 .5H 2 O) and an aqueous sulfuric acid solution were mixed to prepare a sulfuric acid solution (electrolytic solution for electrodeposition) containing 0.1M MnSO 4 . Next, carbon paper (manufactured by SGL, trade name: SIGRACET GDL10) is immersed in the electrolytic solution for electrodeposition, the carbon paper is used as an anode electrode, a platinum electrode is used as a cathode electrode, and a current density is 0. Electrodeposition was performed under the conditions of 0.5 mA / cm 2 , temperature: 25 ° C., and electrodeposition time: 1800 seconds, and a manganese oxide electrode B was produced. The manganese oxide deposition amount of this manganese oxide electrode B was 0.4 mg / cm 2 .
 (酸化ルテニウム水和物電極の作製)
 水和酸化ルテニウム(RuO・nHO)粉末は、上記した非特許文献2にしたがって合成した。具体的には、酸化ルテニウム水和物を用いた正極11を以下のように作製した。まず、塩化ルテニウム(RuCl)1.038gを50mLの超純水に溶解させた塩化ルテニウム水溶液に、超純水50mLに水酸化ナトリウム0.6gを溶解した水溶液をpH7になるまで撹拌下で滴下し、その後、25℃、15時間静置してスラリーを得た。次いで、このスラリーを超純水で洗浄、濾過し、さらに、この洗浄と濾過を、スラリーの液性が中性になるまで5回繰り返した。このスラリーを乾燥させた後、粉砕して平均粒子径が2nmで、25℃、0.5mol/LのHSO電解液中での比静電容量が600F/gの酸化ルテニウム水和物粉末(RuO・nHO)を得た。得られた酸化ルテニウム水和物粉末を、上記した活性炭電極の作製方法での活性炭粉末の代わりに用いて、酸化ルテニウム水和物電極を作製した。
(Production of ruthenium oxide hydrate electrode)
Hydrated ruthenium oxide (RuO 2 .nH 2 O) powder was synthesized according to Non-Patent Document 2 described above. Specifically, the positive electrode 11 using ruthenium oxide hydrate was produced as follows. First, an aqueous solution obtained by dissolving 0.638 g of ruthenium chloride (RuCl 3 ) in 50 mL of ultrapure water and dropwise adding an aqueous solution of 0.6 g of sodium hydroxide in 50 mL of ultrapure water with stirring until pH 7 is reached. Thereafter, the slurry was allowed to stand at 25 ° C. for 15 hours to obtain a slurry. Next, this slurry was washed with ultrapure water and filtered, and this washing and filtration was repeated 5 times until the slurry became neutral. The slurry was dried and then pulverized to obtain ruthenium oxide hydrate having an average particle diameter of 2 nm, a specific capacitance of 600 F / g in an H 2 SO 4 electrolyte solution at 25 ° C. and 0.5 mol / L. A powder (RuO 2 · nH 2 O) was obtained. The obtained ruthenium oxide hydrate powder was used in place of the activated carbon powder in the above-described method for producing an activated carbon electrode to produce a ruthenium oxide hydrate electrode.
 (酸化ルテニウムナノシートAの作製)
 酸化ルテニウムナノシートA(Ru4+2.1)は、上記した非特許文献3にしたがって合成した。具体的には、酸化ルテニウムナノシートAを用いた正極11を以下のように作製した。まず、酸化ルテニウム(RuO)0.60gと炭酸カリウム(KCO)0.39gとをアセトン中で混合し、ペレットを成形した。次いで、そのペレットを800℃、アルゴンガス雰囲気中で12時間焼成した後、超純水で洗浄し、層状ルテニウム酸カリウムを得た。この層状ルテニウム酸カリウムを、1M HCl水溶液100mLに添加し、60℃で72時間撹拌した後、超純水で洗浄して層状ルテニウム酸を得た。この層状ルテニウム酸を、10質量%TBAOH(水酸化テトラブチルアンモニウム)6.88mLで残りを超純水とした100mLの水溶液に添加し、25℃で10日間撹拌し、その後、遠心分離(2000rpm、30分間)して、酸化ルテニウムナノシートAのコロイド溶液を得た。得られた酸化ルテニウムナノシートAを0.2g/L含むコロイド溶液20μLを直径5mmの円筒状のグラッシーカーボン(東海カーボン株式会社製、商品名:GC-20S)の先端の端面に滴下し、60℃で30分間保持して乾燥させた。次いで、グラッシーカーボンの同じ端面に、0.033質量%のナフィオン(Nafion:デュポン社の登録商標、Sigma-Aldrich社製)アルコール水混合溶液20μLを滴下し、60℃で30分間保持して乾燥させ、正極11である酸化ルテニウムナノシート電極Aを作製した。この電極の端面に担持された活物質は4μgである。
(Preparation of ruthenium oxide nanosheet A)
Ruthenium oxide nanosheet A (Ru 4+ O 2.1 ) was synthesized according to Non-Patent Document 3 described above. Specifically, the positive electrode 11 using the ruthenium oxide nanosheet A was produced as follows. First, 0.60 g of ruthenium oxide (RuO 2 ) and 0.39 g of potassium carbonate (K 2 CO 3 ) were mixed in acetone to form pellets. Next, the pellet was fired at 800 ° C. in an argon gas atmosphere for 12 hours and then washed with ultrapure water to obtain layered potassium ruthenate. This layered potassium ruthenate was added to 100 mL of 1M HCl aqueous solution, stirred at 60 ° C. for 72 hours, and then washed with ultrapure water to obtain layered ruthenate. This layered ruthenic acid was added to 100 mL of an aqueous solution containing 6.88 mL of 10% by weight TBAOH (tetrabutylammonium hydroxide) and the remainder being ultrapure water, stirred at 25 ° C. for 10 days, and then centrifuged (2000 rpm, 30 minutes) to obtain a colloidal solution of ruthenium oxide nanosheet A. 20 μL of the obtained colloidal solution containing 0.2 g / L of ruthenium oxide nanosheet A was dropped onto the end face of the tip of cylindrical glassy carbon (trade name: GC-20S, manufactured by Tokai Carbon Co., Ltd.) having a diameter of 5 mm, and 60 ° C. Held for 30 minutes to dry. Then, 20 μL of 0.033 mass% Nafion (registered trademark of DuPont, manufactured by Sigma-Aldrich) alcohol water mixed solution is dropped onto the same end face of the glassy carbon, and kept at 60 ° C. for 30 minutes to dry. Then, a ruthenium oxide nanosheet electrode A as the positive electrode 11 was produced. The active material carried on the end face of this electrode is 4 μg.
 (酸化ルテニウムナノシートBの作製)
 酸化ルテニウムナノシートB(Ru3.8+)は、上記した非特許文献4にしたがって合成した。具体的には、酸化ルテニウムナノシートBを用いた正極11を以下のように作製した。まず、ルテニウム0.298gと酸化ルテニウム(RuO)0.560gと炭酸ナトリウム(NaCO)0.142gとをアセトン中で混合し、ペレットを成形した。次いで、そのペレットを700℃で1時間の焼成と900℃で12時間の焼成とをいずれもアルゴンガス雰囲気中で順に行って層状ルテニウム酸ナトリウムを得た。この層状ルテニウム酸ナトリウムを、Na1.257gを超純水420gに溶解した溶液中に添加し、その後、超純水で洗浄し、さらに1MHCl水溶液200mLに添加し、60℃で72時間撹拌した後、超純水で洗浄して層状ルテニウム酸を得た。この層状ルテニウム酸を、10質量%TBAOH(水酸化テトラブチルアンモニウム)2.8mLで残りを超純水とした183mLの水溶液に添加し、25℃で10日間撹拌し、その後、遠心分離(2000rpm、30分間)して、酸化ルテニウムナノシートBのコロイド溶液を得た。得られた酸化ルテニウムナノシートBを0.2g/L含むコロイド溶液20μLを直径5mmの円筒状のグラッシーカーボン(東海カーボン株式会社製、商品名:GC-20S)の先端の端面に滴下し、60℃で30分間保持して乾燥させた。次いで、グラッシーカーボンの同じ端面に、0.033質量%のナフィオン(Nafion:デュポン社の登録商標、Sigma-Aldrich社製)アルコール水混合溶液20μLを滴下し、60℃で30分間保持して乾燥させ、正極11である活性炭電極を作製した。この活性炭電極の端面に担持された活物質は4μgである。
(Preparation of ruthenium oxide nanosheet B)
Ruthenium oxide nanosheet B (Ru 3.8+ O 2 ) was synthesized according to Non-Patent Document 4 described above. Specifically, the positive electrode 11 using the ruthenium oxide nanosheet B was produced as follows. First, 0.298 g of ruthenium, 0.560 g of ruthenium oxide (RuO 2 ), and 0.142 g of sodium carbonate (Na 2 CO 3 ) were mixed in acetone to form pellets. Next, the pellet was fired at 700 ° C. for 1 hour and 900 ° C. for 12 hours in order in an argon gas atmosphere to obtain layered sodium ruthenate. This layered sodium ruthenate is added to a solution obtained by dissolving 1.257 g of Na 2 S 2 O 8 in 420 g of ultrapure water, then washed with ultrapure water, and further added to 200 mL of 1 M HCl aqueous solution at 60 ° C. After stirring for 72 hours, laminar ruthenic acid was obtained by washing with ultrapure water. This layered ruthenic acid was added to 183 mL of an aqueous solution containing 2.8 mL of 10% by mass TBAOH (tetrabutylammonium hydroxide) and the remainder being ultrapure water, stirred at 25 ° C. for 10 days, and then centrifuged (2000 rpm, 30 minutes) to obtain a colloidal solution of ruthenium oxide nanosheet B. 20 μL of the resulting colloidal solution containing 0.2 g / L of ruthenium oxide nanosheet B was dropped onto the end face of the tip of cylindrical glassy carbon (trade name: GC-20S, manufactured by Tokai Carbon Co., Ltd.) having a diameter of 5 mm, and 60 ° C. Held for 30 minutes to dry. Then, 20 μL of 0.033 mass% Nafion (registered trademark of DuPont, manufactured by Sigma-Aldrich) alcohol water mixed solution is dropped onto the same end face of the glassy carbon, and kept at 60 ° C. for 30 minutes to dry. Then, an activated carbon electrode as the positive electrode 11 was produced. The active material supported on the end face of the activated carbon electrode is 4 μg.
 [負極の準備]
 (リチウム複合電極A)
 リチウム複合電極Aを用いた負極12は、上記した非特許文献5にしたがって合成した。具体的には、リチウム複合電極Aを用いた負極12を以下のように作製した。まず、金属ニッケル箔(株式会社ニラコ製、0.1×5×150mm、負極用集電体17)の片端に金属リチウム(本城金属工業株式会社製、0.2×5×5mm、活物質層21)を載せた。この金属リチウムの上に6mm角に切り出したPEO(シグマアルドリッチ株式会社製)-LiTFSI(リチウムビストリフルオロメタンスルホニルイミド、Li(CFSON、和光純薬工業株式会社製)複合シート(高分子電解質22)を積層した。さらにその上に10mm角に切り出したLTAP(LICGC、リチウムイオン伝導性ガラスセラミックス、株式会社オハラ、厚さ0.15mm、リチウムイオン伝導性固体電解質23)を積層した。この積層体を、100mm角に切り出した2枚のラミネートフィルム(株式会社生産日本社、商品名:ラミジップAL-15、アルミニウム製)で中心に位置するように挟み込み、ラミネータ(ボンマック社製真空包装機、商品名:BMV-281)で四辺をラミネートして密封した。LTAPに接するラミネートフィルムに5mm角の穴をあけ、LTAPが水系電解液と接する測定窓とした。このリチウム複合電極の四辺のうち一辺から引き出したニッケル箔をリチウム複合負極の集電に用いた。作製したリチウム複合電極Aのセル抵抗は185Wcmであった。
[Preparation of negative electrode]
(Lithium composite electrode A)
The negative electrode 12 using the lithium composite electrode A was synthesized according to Non-Patent Document 5 described above. Specifically, the negative electrode 12 using the lithium composite electrode A was produced as follows. First, metallic lithium (manufactured by Honjo Metal Industry Co., Ltd., 0.2 × 5 × 5 mm, active material) at one end of a metallic nickel foil (manufactured by Niraco Co., Ltd., 0.1 × 5 × 150 mm, negative electrode current collector 17) Layer 21) was loaded. PEO (manufactured by Sigma-Aldrich Co., Ltd.)-LiTFSI (lithium bistrifluoromethanesulfonylimide, Li (CF 3 SO 2 ) 2 N, manufactured by Wako Pure Chemical Industries, Ltd.) composite sheet cut into 6 mm square on this metallic lithium ( A polymer electrolyte 22) was laminated. Furthermore, LTAP (LICGC, lithium ion conductive glass ceramics, OHARA, Inc., thickness 0.15 mm, lithium ion conductive solid electrolyte 23) cut into a 10 mm square was laminated thereon. This laminate was sandwiched between two laminate films (produced by Nihon Co., Ltd., trade name: Rami Zip AL-15, made of aluminum) cut into 100 mm squares, and laminator (vacuum packaging machine made by Bonmac Co., Ltd.). (Trade name: BMV-281). A 5 mm square hole was made in the laminate film in contact with LTAP, and a measurement window in which LTAP was in contact with the aqueous electrolyte was used. A nickel foil drawn from one side of the four sides of the lithium composite electrode was used for collecting the lithium composite negative electrode. The cell resistance of the produced lithium composite electrode A was 185 Wcm 2 .
 (リチウム複合電極B)
 リチウム複合電極Bを用いた負極12は、以下のように作製した。まず、銅箔(負極用集電体17)と、リチウムがドープされたグラファイト層(活物質層21)との積層体(以下、「リチウムプレドープグラファイト電極」ともいう。)を作製した。
(Lithium composite electrode B)
The negative electrode 12 using the lithium composite electrode B was produced as follows. First, a laminate (hereinafter, also referred to as “lithium pre-doped graphite electrode”) of a copper foil (current collector 17 for negative electrode) and a graphite layer (active material layer 21) doped with lithium was prepared.
 具体的には、グラファイト粉末(平均粒径20μm未満、シグマアルドリッチ株式会社製)0.5gとポリビニリデンフルオリド(シグマアルドリッチ株式会社製)0.05gとN-メチル-ピロリジノン(関東化学株式会社製)1.25mLとを5分間混合して塗料を調製した。この塗料を、100μmの厚さで銅箔(厚さ:100μm)に塗布して塗膜を形成した。この塗膜を60℃で1時間乾燥した後、さらに自然乾燥した。次に、塗膜が形成された銅箔を、1cmの円形に打ち抜き、700kg/cmの圧力で1分間プレスした。その後、塗膜を、150℃で16時間真空乾燥して銅箔の表面にグラファイト層が形成されたグラファイト電極を得た。 Specifically, 0.5 g of graphite powder (average particle size less than 20 μm, manufactured by Sigma-Aldrich), 0.05 g of polyvinylidene fluoride (manufactured by Sigma-Aldrich), and N-methyl-pyrrolidinone (manufactured by Kanto Chemical Co., Ltd.) ) 1.25 mL was mixed for 5 minutes to prepare a paint. This paint was applied to a copper foil (thickness: 100 μm) with a thickness of 100 μm to form a coating film. This coating film was dried at 60 ° C. for 1 hour and then naturally dried. Next, the copper foil on which the coating film was formed was punched into a 1 cm 2 circle and pressed at a pressure of 700 kg / cm 2 for 1 minute. Thereafter, the coating film was vacuum-dried at 150 ° C. for 16 hours to obtain a graphite electrode having a graphite layer formed on the surface of the copper foil.
 次に、ガルバノ/ポテンショスタット(北斗電工株式会社製 商品名:HZ3000)を用いてグラファイト層にリチウムをドープし、リチウムプレドープグラファイト電極を得た。具体的には、対極としてLi箔(本城金属株式会社製)を用い、電解液として、1MLiPFをエチレンカーボネート(EC)とジエチルカーボネート(DEC)(体積比で1:1)との混合溶媒に溶解した非水電解液(キシダ化学株式会社製)を用い、前述のように作製したグラファイト電極を作用電極として用い、Li箔とグラファイト電極とを72時間ショートさせてグラファイト層にリチウムをドープした。ここで、グラファイト電極の自然電位は、ショート開始時で3.0V(vs.Li/Li)、ショート終了時で0V(vs.Li/Li)であった。得られたリチウムプレドープグラファイト電極を、上記したリチウム複合電極Aの作製方法での金属ニッケル箔と金属リチウムの代わりに用いて、リチウム複合電極Bを作製した。 Next, lithium was doped into the graphite layer using a galvano / potentiostat (trade name: HZ3000 manufactured by Hokuto Denko Co., Ltd.) to obtain a lithium pre-doped graphite electrode. Specifically, Li foil (manufactured by Honjo Metal Co., Ltd.) is used as the counter electrode, and 1M LiPF 6 is a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (1: 1 by volume) as the electrolyte. Using a non-aqueous electrolyte solution (manufactured by Kishida Chemical Co., Ltd.) dissolved in 1 and using the graphite electrode produced as described above as a working electrode, the Li foil and the graphite electrode were short-circuited for 72 hours to dope the graphite layer with lithium . Here, the natural potential of the graphite electrode was 3.0 V (vs. Li / Li + ) at the start of the short circuit and 0 V (vs. Li / Li + ) at the end of the short circuit. The obtained lithium pre-doped graphite electrode was used in place of the metal nickel foil and metal lithium in the above-described method for producing the lithium composite electrode A to produce a lithium composite electrode B.
 [水系電解液の準備]
 (塩化リチウム水溶液・硫酸リチウム水溶液)
 水系電解液として、塩化リチウム水溶液と、硫酸リチウム水溶液を調製した。塩化リチウム水溶液としては、塩化リチウムを超純水中に溶解して1Mの水溶液を調製した。硫酸リチウム水溶液の同様、硫酸リチウムを超純水中に溶解して1Mの水溶液を調製した。
[Preparation of aqueous electrolyte]
(Lithium chloride aqueous solution / lithium sulfate aqueous solution)
As an aqueous electrolyte, an aqueous lithium chloride solution and an aqueous lithium sulfate solution were prepared. As the lithium chloride aqueous solution, lithium chloride was dissolved in ultrapure water to prepare a 1M aqueous solution. Similar to the lithium sulfate aqueous solution, lithium sulfate was dissolved in ultrapure water to prepare a 1M aqueous solution.
 (酢酸リチウム水溶液)
 水系電解液として、酢酸リチウム(CHCOOLi)33gを超純水250mLに溶解して2Mの水溶液(pH8.30)を調製した。
(Lithium acetate aqueous solution)
As an aqueous electrolyte, 33 g of lithium acetate (CH 3 COOLi) was dissolved in 250 mL of ultrapure water to prepare a 2M aqueous solution (pH 8.30).
 (リン酸二水素リチウム-水酸化リチウム液)
 水系電解液として、リン酸二水素リチウム-水酸化リチウム液を調製した。まず、リン酸二水素リチウム(LiHPO)4.7876gを超純水500mLに溶解して0.1Mリン酸二水素リチウム水溶液を調製した。また、水酸化リチウム(LiOH)2.098gを超純水500mLに溶解して0.1M水酸化リチウム水溶液を調製した。調製した0.1M水酸化リチウム水溶液29.1mLと0.1Mリン酸二水素リチウム水溶液50mLとを混合し、リン酸二水素リチウム-水酸化リチウム液(pH6.87)を調製した。
(Lithium dihydrogen phosphate-lithium hydroxide solution)
A lithium dihydrogen phosphate-lithium hydroxide solution was prepared as an aqueous electrolyte. First, 4.7786 g of lithium dihydrogen phosphate (LiH 2 PO 4 ) was dissolved in 500 mL of ultrapure water to prepare a 0.1 M lithium dihydrogen phosphate aqueous solution. Further, 2.098 g of lithium hydroxide (LiOH) was dissolved in 500 mL of ultrapure water to prepare a 0.1 M lithium hydroxide aqueous solution. The prepared 0.1 M lithium hydroxide aqueous solution (29.1 mL) and 0.1 M lithium dihydrogen phosphate aqueous solution (50 mL) were mixed to prepare a lithium dihydrogen phosphate-lithium hydroxide solution (pH 6.87).
 (酢酸リチウム-酢酸液)
 水系電解液として、酢酸リチウム-酢酸液を調製した。まず、酢酸リチウム(CHCOOLi)33gを超純水250mLに溶解して2M酢酸リチウム水溶液を調製した。また、酢酸(CHCOOH)30gを超純水250mLに溶解して2M酢酸水溶液を調製した。調製した2M酢酸リチウム水溶液87.5mLと2M酢酸水溶液12.5mLとを混合し、超純水を加えて全量を200mLとすることで、酢酸リチウム-酢酸液(pH5.41)を調製した。
(Lithium acetate-acetic acid solution)
A lithium acetate-acetic acid solution was prepared as an aqueous electrolyte. First, 33 g of lithium acetate (CH 3 COOLi) was dissolved in 250 mL of ultrapure water to prepare a 2M lithium acetate aqueous solution. Further, 30 g of acetic acid (CH 3 COOH) was dissolved in 250 mL of ultrapure water to prepare a 2M acetic acid aqueous solution. The prepared 2M lithium acetate aqueous solution 87.5 mL and 2M acetic acid aqueous solution 12.5 mL were mixed, and ultrapure water was added to make the total volume 200 mL, thereby preparing a lithium acetate-acetic acid solution (pH 5.41).
 なお、いずれの水系電解液も窒素ガスバブリングをして溶存酸素を除去した。水系電解液のpHは、pHメータ(東亜ディーケーケー株式会社製、HM-60E)を用い、60℃で測定した。 Note that any aqueous electrolyte was subjected to nitrogen gas bubbling to remove dissolved oxygen. The pH of the aqueous electrolyte was measured at 60 ° C. using a pH meter (manufactured by Toa DKK Corporation, HM-60E).
 [実施例1]
 正極11として上記した活性炭電極を用い、陰極12として上記したリチウム複合電極Aを用い、水系電解液13として上記した塩化リチウム水溶液(pH7.64)と硫酸リチウム水溶液(pH5.15)を用いて、2種類のハイブリッドキャパシタ1を図1に示すように構成した。
[Example 1]
Using the above-mentioned activated carbon electrode as the positive electrode 11, using the above-mentioned lithium composite electrode A as the cathode 12, and using the above-described lithium chloride aqueous solution (pH 7.64) and lithium sulfate aqueous solution (pH 5.15) as the aqueous electrolyte solution 13, Two types of hybrid capacitors 1 were constructed as shown in FIG.
 [実施例2]
 正極11として上記した酸化マンガン電極を用い、陰極12として上記したリチウム複合電極Aを用い、水系電解液13として上記した塩化リチウム水溶液(pH6.52)と硫酸リチウム水溶液(pH5.50)を用いて、2種類のハイブリッドキャパシタ1を図1に示すように構成した。
[Example 2]
The above-described manganese oxide electrode is used as the positive electrode 11, the above-described lithium composite electrode A is used as the cathode 12, and the above-described lithium chloride aqueous solution (pH 6.52) and lithium sulfate aqueous solution (pH 5.50) are used as the aqueous electrolyte solution 13. Two types of hybrid capacitors 1 were constructed as shown in FIG.
 [実施例3]
 正極11として上記した酸化ルテニウム水和物電極を用い、陰極12として上記したリチウム複合電極Aを用い、水系電解液13として上記した塩化リチウム水溶液(pH6.52)と硫酸リチウム水溶液(pH5.50)を用いて、2種類のハイブリッドキャパシタ1を図1に示すように構成した。
[Example 3]
The above-described ruthenium oxide hydrate electrode is used as the positive electrode 11, the above-described lithium composite electrode A is used as the cathode 12, and the above-described lithium chloride aqueous solution (pH 6.52) and lithium sulfate aqueous solution (pH 5.50) are used as the aqueous electrolyte solution 13. Two types of hybrid capacitors 1 were constructed as shown in FIG.
 [実施例4]
 正極11として上記した酸化ルテニウムシート電極Aを用い、陰極12として上記したリチウム複合電極Aを用い、水系電解液13として上記した塩化リチウム水溶液(pH6.54)と硫酸リチウム水溶液(pH5.36)を用いて、2種類のハイブリッドキャパシタ1を図1に示すように構成した。
[Example 4]
The above-described ruthenium oxide sheet electrode A is used as the positive electrode 11, the above-described lithium composite electrode A is used as the cathode 12, and the above-described lithium chloride aqueous solution (pH 6.54) and lithium sulfate aqueous solution (pH 5.36) are used as the aqueous electrolyte solution 13. In use, two types of hybrid capacitors 1 were constructed as shown in FIG.
 [実施例5]
 正極11として上記した酸化ルテニウムシート電極Bを用い、陰極12として上記したリチウム複合電極Aを用い、水系電解液13として上記した塩化リチウム水溶液(pH6.6)と硫酸リチウム水溶液(pH5.7)を用いて、2種類のハイブリッドキャパシタ1を図1に示すように構成した。
[Example 5]
The above-described ruthenium oxide sheet electrode B is used as the positive electrode 11, the above-described lithium composite electrode A is used as the cathode 12, and the above-described lithium chloride aqueous solution (pH 6.6) and lithium sulfate aqueous solution (pH 5.7) are used as the aqueous electrolyte solution 13. In use, two types of hybrid capacitors 1 were constructed as shown in FIG.
 [実施例6]
 正極11として上記した酸化マンガン電極Bを用い、陰極12として上記したリチウム複合電極Aを用い、水系電解液13として上記した硫酸リチウム水溶液(pH5.7)を用いて、ハイブリッドキャパシタ1を図1に示すように構成した。
[Example 6]
The above-described manganese oxide electrode B is used as the positive electrode 11, the above-described lithium composite electrode A is used as the cathode 12, and the above-described lithium sulfate aqueous solution (pH 5.7) is used as the aqueous electrolyte solution 13. Configured as shown.
 [実施例7]
 正極11として上記した活性炭電極を用い、陰極12として上記したリチウム複合電極Bを用い、水系電解液13として上記した塩化リチウム水溶液を用いて、ハイブリッドキャパシタ1を図1に示すように構成した。
[Example 7]
The above-described activated carbon electrode was used as the positive electrode 11, the above-described lithium composite electrode B was used as the cathode 12, and the above-described lithium chloride aqueous solution was used as the aqueous electrolyte solution 13, so that the hybrid capacitor 1 was configured as shown in FIG.
 [実施例8]
 正極11として上記した酸化ルテニウム水和物電極を用い、陰極12として上記したリチウム複合電極Aを用い、水系電解液13として上記した酢酸リチウム水溶液(pH8.30)を用いて、ハイブリッドキャパシタ1を図1に示すように構成した。
[Example 8]
The hybrid capacitor 1 is illustrated using the above-described ruthenium oxide hydrate electrode as the positive electrode 11, the above-described lithium composite electrode A as the cathode 12, and the above-described aqueous lithium acetate solution (pH 8.30) as the aqueous electrolyte solution 13. As shown in FIG.
 [実施例9]
 正極11として上記した酸化マンガン電極Bを用い、陰極12として上記したリチウム複合電極Aを用い、水系電解液13として上記したリン酸二水素リチウム-水酸化リチウム緩衝液(pH6.87)を用いて、ハイブリッドキャパシタ1を図1に示すように構成した。
[Example 9]
The above-described manganese oxide electrode B is used as the positive electrode 11, the above-described lithium composite electrode A is used as the cathode 12, and the above-described lithium dihydrogen phosphate-lithium hydroxide buffer (pH 6.87) is used as the aqueous electrolyte solution 13. The hybrid capacitor 1 was configured as shown in FIG.
 [実施例10]
 正極11として上記した酸化ルテニウム水和物電極を用い、陰極12として上記したリチウム複合電極Aを用い、水系電解液13として上記したリン酸二水素リチウム-水酸化リチウム緩衝液(pH6.87)を用いて、ハイブリッドキャパシタ1を図1に示すように構成した。
[Example 10]
The above-described ruthenium oxide hydrate electrode is used as the positive electrode 11, the above-described lithium composite electrode A is used as the cathode 12, and the above-described lithium dihydrogen phosphate-lithium hydroxide buffer (pH 6.87) is used as the aqueous electrolyte solution 13. The hybrid capacitor 1 was configured as shown in FIG.
 [実施例11]
 正極11として上記した酸化ルテニウム水和物電極を用い、陰極12として上記したリチウム複合電極Aを用い、水系電解液13として上記した酢酸リチウム-酢酸緩衝液(pH5.41)を用いて、ハイブリッドキャパシタ1を図1に示すように構成した。
[Example 11]
Using the above-described ruthenium oxide hydrate electrode as the positive electrode 11, using the above-described lithium composite electrode A as the cathode 12, and using the above-described lithium acetate-acetic acid buffer solution (pH 5.41) as the aqueous electrolyte solution 13, a hybrid capacitor 1 was constructed as shown in FIG.
 [測定]
 実施例1~11のハイブリッドキャパシタ1を用い、キャパシタ特性と充放電特性を評価した。キャパシタ特性は、3極式の電気化学測定セルを用いたサイクリックボルタンメトリーから評価した。また、充放電特性は、2極式の電気化学測定セルを用いた充放電測定結果から評価した。
[Measurement]
Using the hybrid capacitor 1 of Examples 1 to 11, capacitor characteristics and charge / discharge characteristics were evaluated. Capacitor characteristics were evaluated by cyclic voltammetry using a tripolar electrochemical measurement cell. The charge / discharge characteristics were evaluated from the charge / discharge measurement results using a bipolar electrochemical measurement cell.
 (サイクリックボルタンメトリー(CV))
 ポテンショスタット(HZ3000、北斗電工株式会社製)とセル(セミミクロセパラブルカバー、セミミクロセパラブルフラスコ、日本理化学器機株式会社製)を用いてサイクリックボルタンメトリー測定を行った。電解液として各実施例で使用したものと同様の水系電解液を用い、作用極として正極材料を担持したグラッシーカーボン(φ5、19.625mm)を用い、参照極として銀/塩化銀電極(HS-205C、東亜ディーケーケー株式会社製)を用い、対極としてPtメッシュ(100mesh、20×30mm、株式会社ニラコ)を用いた。但し、実施例6、9では、作用極として、酸化マンガン被膜が電析されたカーボンペーパーを用いた。このサイクリックボルタンメトリー測定は、60℃の温度条件で、電位走査速度2mV/s~500mV/sの範囲で行った。
(Cyclic voltammetry (CV))
Cyclic voltammetry measurement was performed using a potentiostat (HZ3000, manufactured by Hokuto Denko Co., Ltd.) and a cell (semi-micro separable cover, semi-micro separable flask, manufactured by Nihon Rikenki Co., Ltd.). The same aqueous electrolytic solution as used in each example was used as the electrolytic solution, glassy carbon (φ5, 19.625 mm 2 ) carrying a positive electrode material was used as the working electrode, and a silver / silver chloride electrode (HS -205C, manufactured by Toa DKK Co., Ltd.) and a Pt mesh (100 mesh, 20 × 30 mm, Niraco Co., Ltd.) was used as the counter electrode. However, in Examples 6 and 9, carbon paper on which a manganese oxide film was electrodeposited was used as a working electrode. This cyclic voltammetry measurement was performed under the temperature condition of 60 ° C. and in the range of potential scanning speed of 2 mV / s to 500 mV / s.
 (充放電測定)
 充放電測定には、電解液として各実施例で使用したものと同じ水系電解液を用い、作用極として正極材料を担持したグラッシーカーボン(φ5、19.625mm)を用い、対極として各実施例で使用したものと同じリチウム複合電極を用い、参照極として銀/塩化銀電極(HS-205C、東亜ディーケーケー株式会社製)を用いた。但し、実施例6、9では、作用極として、酸化マンガン被膜が電析されたカーボンペーパーを用いた。充放電測定は、60℃の温度条件で、定電流密度として、0.08mA/cm~1.53mA/cmの範囲で行った。
(Charge / discharge measurement)
For the charge / discharge measurement, the same aqueous electrolyte as that used in each example was used as the electrolyte, glassy carbon (φ5, 19.625 mm 2 ) carrying a positive electrode material as the working electrode, and each example as the counter electrode. The same lithium composite electrode as used in Example 1 was used, and a silver / silver chloride electrode (HS-205C, manufactured by Toa DKK Corporation) was used as a reference electrode. However, in Examples 6 and 9, carbon paper on which a manganese oxide film was electrodeposited was used as a working electrode. Charging and discharging measurements, at a temperature of 60 ° C., as a constant current density was carried out in the range of 0.08mA / cm 2 ~ 1.53mA / cm 2.
 (充放電サイクル測定)
 電解液として各実施例で使用したものと同じ水系電解液を用い、作用極として正極材料を担持したグラッシーカーボン(φ5、19.625mm)を用い、対極としてリチウム複合電極A(Li|PEO-LiTFSI|LTAP)を用い、60℃の温度条件で、定電流密度として行った。
(Charge / discharge cycle measurement)
The same aqueous electrolyte as that used in each example was used as an electrolyte, glassy carbon (φ5, 19.625 mm 2 ) carrying a cathode material was used as a working electrode, and a lithium composite electrode A (Li | PEO-) was used as a counter electrode. LiTFSI | LTAP) was used as a constant current density under a temperature condition of 60 ° C.
 [結果]
 (キャパシタ特性)
 図2は、実施例1で得た活性炭電極と塩化リチウム水溶液を用いたサイクリックボルタモグラムである。サイクリックボルタモグラムの形状は矩形であり、走査速度を変えても理想的な電気二重層的な挙動を示した。得られた比静電容量Cpは102F/g(2mV/秒)であった。各走査速度での比静電容量Cpを表1に示した。この活性炭電極をハイブリッドキャパシタの正極に用いればキャパシタ的な充放電挙動を示すと考えられる。また、1.2V(vs.RHE)までで不可逆な容量に起因するピークが見られないため、リチウム複合電極と組み合わせたセルでは、Li/Liの標準電極電位を考慮すると約4.2Vのセル電圧が得られると考えられる。
[result]
(Capacitor characteristics)
FIG. 2 is a cyclic voltammogram using the activated carbon electrode obtained in Example 1 and an aqueous lithium chloride solution. The shape of the cyclic voltammogram was rectangular, and it showed an ideal electric double layer behavior even when the scanning speed was changed. The obtained specific capacitance Cp was 102 F / g (2 mV / sec). Table 1 shows the specific capacitance Cp at each scanning speed. If this activated carbon electrode is used for the positive electrode of a hybrid capacitor, it is considered that the charge / discharge behavior like a capacitor is exhibited. In addition, since a peak due to an irreversible capacity is not seen up to 1.2 V (vs. RHE), in a cell combined with a lithium composite electrode, about 4.2 V is considered in consideration of the standard electrode potential of Li / Li + . A cell voltage is considered to be obtained.
 実施例2~11で得た各正極用電極と水系電解液を用いたサイクリックボルタモグラムも得た(図示しない)。実施例1~5の各走査速度での比静電容量Cpを表1に示し、実施例6、8~11の各走査速度での比静電容量Cpを表2に示した。 Cyclic voltammograms using each positive electrode obtained in Examples 2 to 11 and an aqueous electrolyte were also obtained (not shown). The specific capacitance Cp at each scanning speed of Examples 1 to 5 is shown in Table 1, and the specific capacitance Cp at each scanning speed of Examples 6 and 8 to 11 is shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 このように、いずれのサイクリックボルタモグラムも電気二重層的な挙動が認められた。このことから、各実施例のハイブリッドキャパシタは、キャパシタ的な充放電挙動を示すと考えられる。 Thus, any cyclic voltammogram showed an electric double layer behavior. From this, it is thought that the hybrid capacitor of each Example exhibits a capacitor-like charge / discharge behavior.
 なお、水系電解液において、非ファラデー的な(つまり物理的な)電気二重層を電荷蓄積に利用している電気化学キャパシタでは、正極側の作動電圧は酸素発生反応(OER)によって大きく制限される。そのOER過電圧が高ければ、正極側の作動電圧の拡大が期待できる。本発明のハイブリッドキャパシタでも、OER過電圧が高い酸化マンガン電極(1.6Vvs.RHEまで安定)、酸化鉛電極(2.0Vvs.RHEまで安定)、導電性ダイヤモンド電極(2.5Vvs.RHEまで安定)等を正極に用いることで、作動電圧の拡大がより一層期待できる。 In the case of an electrochemical capacitor that uses a non-Faraday (ie, physical) electric double layer for charge storage in an aqueous electrolyte, the operating voltage on the positive electrode side is greatly limited by the oxygen generation reaction (OER). . If the OER overvoltage is high, expansion of the operating voltage on the positive electrode side can be expected. Even in the hybrid capacitor of the present invention, a manganese oxide electrode having a high OER overvoltage (stable up to 1.6 V vs. RHE), a lead oxide electrode (stable up to 2.0 V vs. RHE), a conductive diamond electrode (stable up to 2.5 V vs. RHE) Etc. can be expected to further increase the operating voltage.
 (充放電特性)
 図3は、実施例1で得た活性炭電極と塩化リチウム水溶液を用いたハイブリッドキャパシタ1の充放電試験で得られた充放電曲線である。カットオフ電位は、充電3.9Vで、放電2.9Vとした。放電曲線から得られた比静電容量を電池容量に換算して各充放電特性を得た。その結果を表3に示した。このハイブリッドキャパシタは、二相の電解質を用いている。つまり、Liが正極と負極との間にある水系電解液(1M LiCl水溶液)と高分子電解質(PEO-LiTFSI|LTAP)の間を移動する。このセル構成にすることで、負極側ではLi/Liの反応により約3Vの電圧が得られ、正極側では電気二重層により約1Vの電圧が得られると考えられる。得られる正負極間の電圧は約4Vと予想でき、従来のリチウムイオンキャパシタを超えるセル電圧を得ることができる。それに伴いエネルギー密度の大きな向上が期待できる。図3に示すように、充放電曲線が一定の傾きで変化し、三角形の形状が得られていることから、キャパシタ的な挙動を示していることがわかる。つまり、活性炭電極の容量は電池反応ではなく電気二重層に起因することがわかる。また、3.9Vの高いセル電圧が得られ、現状のリチウムイオンキャパシタと比較しても高いセル電圧を得ることができた。
(Charge / discharge characteristics)
FIG. 3 is a charge / discharge curve obtained in a charge / discharge test of the hybrid capacitor 1 using the activated carbon electrode obtained in Example 1 and an aqueous lithium chloride solution. The cut-off potential was 3.9 V for charging and 2.9 V for discharging. Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 3. This hybrid capacitor uses a two-phase electrolyte. That is, Li + moves between the aqueous electrolyte (1M LiCl aqueous solution) between the positive electrode and the negative electrode and the polymer electrolyte (PEO-LiTFSI | LTAP). With this cell configuration, it is considered that a voltage of about 3 V can be obtained on the negative electrode side by the reaction of Li / Li + and a voltage of about 1 V can be obtained on the positive electrode side by the electric double layer. The voltage between the positive and negative electrodes obtained can be expected to be about 4 V, and a cell voltage exceeding that of a conventional lithium ion capacitor can be obtained. Along with this, a great improvement in energy density can be expected. As shown in FIG. 3, the charge / discharge curve changes with a constant slope, and a triangular shape is obtained, which indicates that the capacitor-like behavior is exhibited. That is, it can be seen that the capacity of the activated carbon electrode is not due to the battery reaction but to the electric double layer. Moreover, a high cell voltage of 3.9 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例2で得た酸化マンガン電極と各水系電解液を用いたハイブリッドキャパシタ1の充放電試験を行った。カットオフ電位は、充電4.3Vで、放電3.3Vとした。放電曲線から得られた比静電容量を電池容量に換算して各充放電特性を得た。その結果を表4に示した。充放電曲線は一定の傾きで変化し、三角形の形状が得られていることから、キャパシタ的な挙動を示していることがわかった。また、4.3Vの高いセル電圧が得られ、現状のリチウムイオンキャパシタと比較しても高いセル電圧を得ることができた。 The charge / discharge test of the hybrid capacitor 1 using the manganese oxide electrode obtained in Example 2 and each aqueous electrolyte was performed. The cut-off potential was 4.3V for charging and 3.3V for discharging. Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 4. The charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 4.3 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例3で得た酸化ルテニウム水和物電極と各水系電解液を用いたハイブリッドキャパシタ1の充放電試験を行った。カットオフ電位は、充電3.8Vで、放電2.8Vとした。放電曲線から得られた比静電容量を電池容量に換算して各充放電特性を得た。その結果を表5に示した。充放電曲線は一定の傾きで変化し、三角形の形状が得られていることから、キャパシタ的な挙動を示していることがわかった。また、3.8Vの高いセル電圧が得られ、現状のリチウムイオンキャパシタと比較しても高いセル電圧を得ることができた。 The charge / discharge test of the hybrid capacitor 1 using the ruthenium oxide hydrate electrode obtained in Example 3 and each aqueous electrolyte was performed. The cut-off potential was 3.8 V for charging and 2.8 V for discharging. Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 5. The charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Further, a high cell voltage of 3.8 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例4で得た酸化ルテニウムナノシート電極と各水系電解液を用いたハイブリッドキャパシタ1の充放電試験を行った。カットオフ電位は、充電3.9Vで、放電2.9Vとした。放電曲線から得られた比静電容量を電池容量に換算して各充放電特性を得た。その結果を表6に示した。充放電曲線は一定の傾きで変化し、三角形の形状が得られていることから、キャパシタ的な挙動を示していることがわかった。また、3.9Vの高いセル電圧が得られ、現状のリチウムイオンキャパシタと比較しても高いセル電圧を得ることができた。 The charge / discharge test of the hybrid capacitor 1 using the ruthenium oxide nanosheet electrode obtained in Example 4 and each aqueous electrolyte was performed. The cut-off potential was 3.9 V for charging and 2.9 V for discharging. Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 6. The charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 3.9 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例5で得た酸化ルテニウムナノシート電極と各水系電解液を用いたハイブリッドキャパシタ1の充放電試験を行った。カットオフ電位は、充電3.9Vで、放電2.9Vとした。放電曲線から得られた比静電容量を電池容量に換算して各充放電特性を得た。その結果を表7に示した。充放電曲線は一定の傾きで変化し、三角形の形状が得られていることから、キャパシタ的な挙動を示していることがわかった。また、3.9Vの高いセル電圧が得られ、現状のリチウムイオンキャパシタと比較しても高いセル電圧を得ることができた。 The charge / discharge test of the hybrid capacitor 1 using the ruthenium oxide nanosheet electrode obtained in Example 5 and each aqueous electrolyte was performed. The cut-off potential was 3.9 V for charging and 2.9 V for discharging. Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 7. The charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 3.9 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例6で得た酸化マンガン電極Bと水系電解液を用いたハイブリッドキャパシタ1の充放電試験を行った。カットオフ電位は、充電4.2V、放電3.2Vとした。放電曲線から得られた比静電容量を電池容量に換算して各充放電特性を得た。その結果を表8に示した。充放電曲線は一定の傾きで変化し、三角形の形状が得られていることから、キャパシタ的な挙動を示していることがわかった。また、4.2Vの高いセル電圧が得られ、現状のリチウムイオンキャパシタと比較しても高いセル電圧を得ることができた。 The charge / discharge test of the hybrid capacitor 1 using the manganese oxide electrode B obtained in Example 6 and the aqueous electrolyte was performed. The cut-off potential was set to 4.2V for charging and 3.2V for discharging. Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 8. The charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 4.2 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例7で得た活性炭電極と水系電解液とリチウム複合電極Bを用いたハイブリッドキャパシタ1の充放電試験を行った。カットオフ電位は、充電3.6V、放電2.6Vとした。放電曲線から得られた比静電容量を電池容量に換算して各充放電特性を得た。その結果を表9に示した。充放電曲線は一定の傾きで変化し、三角形の形状が得られていることから、キャパシタ的な挙動を示していることがわかった。また、3.6Vの高いセル電圧が得られ、リチウム複合電極Aを用いたハイブリッドキャパシタに近いセル電圧を得ることができた。 The charge / discharge test of the hybrid capacitor 1 using the activated carbon electrode obtained in Example 7, the aqueous electrolyte, and the lithium composite electrode B was performed. The cut-off potential was 3.6 V for charging and 2.6 V for discharging. Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 9. The charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 3.6 V was obtained, and a cell voltage close to that of a hybrid capacitor using the lithium composite electrode A could be obtained.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例8で得た酸化ルテニウム水和物電極と水系電解液を用いたハイブリッドキャパシタ1の充放電試験を行った。カットオフ電位は、充電3.7V、放電2.7Vとした。放電曲線から得られた比静電容量を電池容量に換算して各充放電特性を得た。その結果を表10に示した。充放電曲線は一定の傾きで変化し、三角形の形状が得られていることから、キャパシタ的な挙動を示していることがわかった。また、3.7Vの高いセル電圧が得られ、現状のリチウムイオンキャパシタと比較しても高いセル電圧を得ることができた。 The charge / discharge test of the hybrid capacitor 1 using the ruthenium oxide hydrate electrode obtained in Example 8 and the aqueous electrolyte was performed. The cut-off potential was set to 3.7V for charging and 2.7V for discharging. Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 10. The charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 3.7 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例9で得た酸化マンガン電極Aと水系電解液を用いたハイブリッドキャパシタ1の充放電試験を行った。カットオフ電位は、充電4.3V、放電3.3Vとした。放電曲線から得られた比静電容量を電池容量に換算して各充放電特性を得た。その結果を表11に示した。充放電曲線は一定の傾きで変化し、三角形の形状が得られていることから、キャパシタ的な挙動を示していることがわかった。また、4.3Vの高いセル電圧が得られ、現状のリチウムイオンキャパシタと比較しても高いセル電圧を得ることができた。 The charge / discharge test of the hybrid capacitor 1 using the manganese oxide electrode A obtained in Example 9 and the aqueous electrolyte was performed. The cut-off potential was set to 4.3V for charging and 3.3V for discharging. Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 11. The charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 4.3 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例10で得た酸化ルテニウム水和物電極と水系電解液を用いたハイブリッドキャパシタ1の充放電試験を行った。カットオフ電位は、充電3.9V、放電2.9Vとした。放電曲線から得られた比静電容量を電池容量に換算して各充放電特性を得た。その結果を表12に示した。充放電曲線は一定の傾きで変化し、三角形の形状が得られていることから、キャパシタ的な挙動を示していることがわかった。また、3.9Vの高いセル電圧が得られ、現状のリチウムイオンキャパシタと比較しても高いセル電圧を得ることができた。 The charge / discharge test of the hybrid capacitor 1 using the ruthenium oxide hydrate electrode obtained in Example 10 and the aqueous electrolyte was performed. The cut-off potential was 3.9 V for charging and 2.9 V for discharging. Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 12. The charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 3.9 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 実施例11で得た酸化ルテニウム水和物電極と水系電解液を用いたハイブリッドキャパシタ1の充放電試験を行った。カットオフ電位は、充電3.9V、放電2.9Vとした。放電曲線から得られた比静電容量を電池容量に換算して各充放電特性を得た。その結果を表13に示した。充放電曲線は一定の傾きで変化し、三角形の形状が得られていることから、キャパシタ的な挙動を示していることがわかった。また、3.9Vの高いセル電圧が得られ、現状のリチウムイオンキャパシタと比較しても高いセル電圧を得ることができた。 The charge / discharge test of the hybrid capacitor 1 using the ruthenium oxide hydrate electrode obtained in Example 11 and the aqueous electrolyte was performed. The cut-off potential was 3.9 V for charging and 2.9 V for discharging. Each charge / discharge characteristic was obtained by converting the specific capacitance obtained from the discharge curve into the battery capacity. The results are shown in Table 13. The charge / discharge curve changed with a constant slope, and the triangular shape was obtained. Moreover, a high cell voltage of 3.9 V was obtained, and a high cell voltage could be obtained even when compared with the current lithium ion capacitor.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 (充放電サイクル特性)
 実施例1で得た活性炭電極と塩化リチウム水溶液を用いたハイブリッドキャパシタ1の充放電サイクル試験で得られた充放電サイクル曲線を図4に示した。充放電サイクル試験は、カットオフ電位を、充電3.9Vで、放電2.9Vとし、255μA/cmの定電流密度で200サイクル行った。表14は、サイクル放電曲線から得られた比静電容量を電池容量に換算した結果である。充放電を200サイクル行っても、初期容量に対して95%以上を保持した。
(Charge / discharge cycle characteristics)
The charge / discharge cycle curve obtained by the charge / discharge cycle test of the hybrid capacitor 1 using the activated carbon electrode obtained in Example 1 and the lithium chloride aqueous solution is shown in FIG. The charge / discharge cycle test was performed for 200 cycles at a constant current density of 255 μA / cm 2 with a cut-off potential of 3.9 V for charge and 2.9 V for discharge. Table 14 shows the result of converting the specific capacitance obtained from the cycle discharge curve into the battery capacity. Even after 200 cycles of charge / discharge, 95% or more of the initial capacity was maintained.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 実施例3で得た酸化ルテニウム水和物電極と硫酸リチウム水溶液を用いたハイブリッドキャパシタ1の充放電サイクル試験を行った。充放電サイクル試験は、カットオフ電位を、充電3.8Vで、放電2.8Vとし、255μA/cmの定電流密度で200サイクル行った。表15は、サイクル放電曲線から得られた比静電容量を電池容量に換算した結果である。充放電を200サイクル行っても、初期容量に対して95%以上を保持した。 The charge / discharge cycle test of the hybrid capacitor 1 using the ruthenium oxide hydrate electrode obtained in Example 3 and the lithium sulfate aqueous solution was performed. The charge / discharge cycle test was performed for 200 cycles at a constant current density of 255 μA / cm 2 with a cut-off potential of 3.8 V for charge and 2.8 V for discharge. Table 15 shows the result of converting the specific capacitance obtained from the cycle discharge curve into the battery capacity. Even after 200 cycles of charge / discharge, 95% or more of the initial capacity was maintained.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 実施例6で得た酸化マンガン電極Bと硫酸リチウム水溶液を用いたハイブリッドキャパシタ1の充放電サイクル試験を行った。充放電サイクル試験は、カットオフ電位を、充電4.2V、放電3.2Vとし、0.6mA/cmの定電流密度で2000サイクル行った。表16は、充放電サイクル曲線から得られた比静電容量を電池容量に換算して得たエネルギー密度及び容量維持率の結果である。充放電を2000サイクル行っても、初期容量に対して80%以上を保持した。 The charge / discharge cycle test of the hybrid capacitor 1 using the manganese oxide electrode B obtained in Example 6 and the lithium sulfate aqueous solution was performed. The charge / discharge cycle test was performed 2000 cycles at a constant current density of 0.6 mA / cm 2 with a cut-off potential of 4.2 V for charge and 3.2 V for discharge. Table 16 shows the results of the energy density and the capacity retention rate obtained by converting the specific capacitance obtained from the charge / discharge cycle curve into the battery capacity. Even after 2000 cycles of charge and discharge, 80% or more of the initial capacity was maintained.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 以上の実験結果のように、本発明のハイブリッドキャパシタ1では、高いセル電圧及び高いエネルギー密度を持つキャパシタ特性を示した。このように、水系電解液13を用いたハイブリッドキャパシタ1が劇的なエネルギー密度の向上を達成することができたのは、5V級のセル電圧と非常に高い単極容量を持つ正極活物質の二つが要因であった。また、本発明のハイブリッドキャパシタ1では、中性の水系電解液を用いたので、安全で取り扱いやすいという利点があるとともに、正極11やリチウム複合電極12にダメージを与えることがなく耐久性を向上させることができる。 As shown in the above experimental results, the hybrid capacitor 1 of the present invention showed capacitor characteristics having a high cell voltage and a high energy density. As described above, the hybrid capacitor 1 using the aqueous electrolyte 13 was able to achieve a dramatic improvement in energy density because of the positive electrode active material having a cell voltage of 5 V class and a very high single electrode capacity. Two were the factors. Further, the hybrid capacitor 1 of the present invention uses a neutral aqueous electrolyte, and thus has an advantage of being safe and easy to handle, and improves durability without damaging the positive electrode 11 and the lithium composite electrode 12. be able to.
 1 ハイブリッドキャパシタ
 11 正極(金属酸化物電極)
 12 負極(リチウム複合電極)
 13 中性水系電解液
 16 正極用集電体
 17 負極用集電体
 18 容器
 21 リチウムを含有する活物質層
 22 高分子電解質
 23 リチウムイオン伝導性固体電解質
1 Hybrid capacitor 11 Positive electrode (metal oxide electrode)
12 Negative electrode (lithium composite electrode)
13 Neutral Aqueous Electrolyte 16 Current Collector for Positive Electrode 17 Current Collector for Negative Electrode 18 Container 21 Active Material Layer Containing Lithium 22 Polymer Electrolyte 23 Lithium Ion Conductive Solid Electrolyte

Claims (5)

  1.  炭素材料及び金属酸化物の一方又は両方を有する正極と、リチウム複合電極で構成された負極と、前記正極と前記負極との間に充填された中性水系電解液とを少なくとも備え、前記リチウム複合電極が、リチウムイオン伝導性固体電解質と高分子電解質とリチウムを含有する活物質層との積層電極であることを特徴とするハイブリッドキャパシタ。 At least a positive electrode having one or both of a carbon material and a metal oxide, a negative electrode composed of a lithium composite electrode, and a neutral aqueous electrolyte filled between the positive electrode and the negative electrode, the lithium composite A hybrid capacitor, wherein the electrode is a laminated electrode of a lithium ion conductive solid electrolyte, a polymer electrolyte, and an active material layer containing lithium.
  2.  前記中性水系電解液がpH5以上、pH8.5以下であり、前記金属酸化物が酸化マンガン、酸化ルテニウム及び酸化鉛から選ばれるいずれかである、請求項1に記載のハイブリッドキャパシタ。 The hybrid capacitor according to claim 1, wherein the neutral aqueous electrolyte solution has a pH of 5 or more and a pH of 8.5 or less, and the metal oxide is selected from manganese oxide, ruthenium oxide, and lead oxide.
  3.  前記正極は、炭素材料及び金属酸化物の一方又は両方を含有するシートと、前記シートの少なくとも表面に設けられた金属酸化物膜とを有する、請求項1又は2に記載のハイブリッドキャパシタ。 The hybrid capacitor according to claim 1 or 2, wherein the positive electrode includes a sheet containing one or both of a carbon material and a metal oxide, and a metal oxide film provided on at least a surface of the sheet.
  4.  前記シートは、炭素繊維を有する布状体である、請求項3に記載のハイブリッドキャパシタ。 The hybrid capacitor according to claim 3, wherein the sheet is a cloth-like body having carbon fibers.
  5.  前記リチウムを含有する活物質層は、リチウム、リチウム合金、又はリチウムがドープされた炭素材料を有する、請求項1~4のいずれか1項に記載のハイブリッドキャパシタ。 The hybrid capacitor according to any one of claims 1 to 4, wherein the lithium-containing active material layer includes lithium, a lithium alloy, or a carbon material doped with lithium.
PCT/JP2013/058817 2012-03-28 2013-03-26 Hybrid capacitor WO2013146792A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014507921A JP6109153B2 (en) 2012-03-28 2013-03-26 Hybrid capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012075244 2012-03-28
JP2012-075244 2012-03-28

Publications (1)

Publication Number Publication Date
WO2013146792A1 true WO2013146792A1 (en) 2013-10-03

Family

ID=49260044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058817 WO2013146792A1 (en) 2012-03-28 2013-03-26 Hybrid capacitor

Country Status (2)

Country Link
JP (1) JP6109153B2 (en)
WO (1) WO2013146792A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015055351A1 (en) * 2013-10-15 2015-04-23 Robert Bosch Gmbh Lithium electrode for a lithium-ion battery, and method for the production thereof
JP2017126500A (en) * 2016-01-14 2017-07-20 国立大学法人 東京大学 Water-based electrolytic solution for power storage device and power storage device including the same
CN107112600A (en) * 2015-01-14 2017-08-29 国立大学法人东京大学 Electrical storage device aqueous electrolyte and the electrical storage device containing the aqueous electrolyte
WO2018097259A1 (en) * 2016-11-28 2018-05-31 トヨタ自動車株式会社 Electrolyte solution for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
CN108780707A (en) * 2016-03-18 2018-11-09 国立大学法人信州大学 Lithium composite negative pole and mixed capacitor and their manufacturing method
JP2018181420A (en) * 2017-04-03 2018-11-15 株式会社豊田中央研究所 Electrolyte solution for aqueous solution based lithium secondary battery, and aqueous solution based lithium secondary battery
CN110945708A (en) * 2017-09-15 2020-03-31 株式会社Lg化学 Aqueous electrolyte and energy storage device including the same
WO2020179653A1 (en) * 2019-03-06 2020-09-10 株式会社ダイセル Electrode-forming material for electrochemical capacitors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223089A (en) * 2004-02-04 2005-08-18 Japan Science & Technology Agency Composite electrode material for redox capacitor and manufacturing method therefor
JP2007299801A (en) * 2006-04-27 2007-11-15 Mitsui Mining & Smelting Co Ltd Energy storing element
JP2011238404A (en) * 2010-05-07 2011-11-24 Mie Univ Lithium secondary battery and composite negative electrode for the same
JP2012028366A (en) * 2010-07-20 2012-02-09 Nec Tokin Corp Power storage device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342595A (en) * 2003-04-25 2004-12-02 Nec Tokin Corp Electrode for electrochemical cell, and electrochemical cell using it
US20070231704A1 (en) * 2006-03-30 2007-10-04 Ohara Inc. Lithium ion conductive solid electrolyte and production process thereof
JP2008066681A (en) * 2006-09-11 2008-03-21 Osaka Prefecture Univ Electrochemical capacitor and method of manufacturing zinc electrode used in the electrochemical capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223089A (en) * 2004-02-04 2005-08-18 Japan Science & Technology Agency Composite electrode material for redox capacitor and manufacturing method therefor
JP2007299801A (en) * 2006-04-27 2007-11-15 Mitsui Mining & Smelting Co Ltd Energy storing element
JP2011238404A (en) * 2010-05-07 2011-11-24 Mie Univ Lithium secondary battery and composite negative electrode for the same
JP2012028366A (en) * 2010-07-20 2012-02-09 Nec Tokin Corp Power storage device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105612633B (en) * 2013-10-15 2018-11-09 罗伯特·博世有限公司 Lithium electrode and its manufacturing method for lithium-ions battery
CN105612633A (en) * 2013-10-15 2016-05-25 罗伯特·博世有限公司 Lithium electrode for a lithium-ion battery, and method for the production thereof
WO2015055351A1 (en) * 2013-10-15 2015-04-23 Robert Bosch Gmbh Lithium electrode for a lithium-ion battery, and method for the production thereof
US10553858B2 (en) 2013-10-15 2020-02-04 Robert Bosch Gmbh Lithium electrode for a rechargeable lithium-ion battery and method for the manufacture thereof
US10629958B2 (en) 2015-01-14 2020-04-21 The University Of Tokyo Aqueous electrolytic solution for power storage device and power storage device including said aqueous electrolytic solution
CN107112600A (en) * 2015-01-14 2017-08-29 国立大学法人东京大学 Electrical storage device aqueous electrolyte and the electrical storage device containing the aqueous electrolyte
JPWO2016114141A1 (en) * 2015-01-14 2017-12-07 国立大学法人 東京大学 Aqueous electrolyte for power storage device and power storage device including the aqueous electrolyte
CN107112600B (en) * 2015-01-14 2020-04-24 国立大学法人东京大学 Aqueous electrolyte for electricity storage device and electricity storage device containing the same
US10658706B2 (en) 2016-01-14 2020-05-19 The University Of Tokyo Aqueous electrolytic solution for power storage device and power storage device including said aqueous electrolytic solution
JP2017126500A (en) * 2016-01-14 2017-07-20 国立大学法人 東京大学 Water-based electrolytic solution for power storage device and power storage device including the same
WO2017122597A1 (en) * 2016-01-14 2017-07-20 国立大学法人東京大学 Aqueous electrolytic solution for electrical storage device, and electrical storage device including said aqueous electrolytic solution
US20190019629A1 (en) * 2016-03-18 2019-01-17 Shinshu University Lithium composite negative electrode and hybrid capacitor, and manufacturing methods thereof
EP3428941A4 (en) * 2016-03-18 2019-03-27 Shinshu University Lithium composite negative electrode and hybrid capacitor, and manufacturing methods thereof
US10790097B2 (en) 2016-03-18 2020-09-29 Shinshu University Lithium composite negative electrode and hybrid capacitor, and manufacturing methods thereof
CN108780707A (en) * 2016-03-18 2018-11-09 国立大学法人信州大学 Lithium composite negative pole and mixed capacitor and their manufacturing method
JPWO2018097259A1 (en) * 2016-11-28 2019-10-17 トヨタ自動車株式会社 ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM ION SECONDARY BATTERY
WO2018097259A1 (en) * 2016-11-28 2018-05-31 トヨタ自動車株式会社 Electrolyte solution for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
JP2018181420A (en) * 2017-04-03 2018-11-15 株式会社豊田中央研究所 Electrolyte solution for aqueous solution based lithium secondary battery, and aqueous solution based lithium secondary battery
CN110945708A (en) * 2017-09-15 2020-03-31 株式会社Lg化学 Aqueous electrolyte and energy storage device including the same
WO2020179653A1 (en) * 2019-03-06 2020-09-10 株式会社ダイセル Electrode-forming material for electrochemical capacitors
JP2020145314A (en) * 2019-03-06 2020-09-10 株式会社ダイセル Electrode-forming material for electrochemical capacitor
EP3937200A4 (en) * 2019-03-06 2022-12-28 Daicel Corporation Electrode-forming material for electrochemical capacitors
US11742153B2 (en) 2019-03-06 2023-08-29 Daicel Corporation Electrode-forming material for electrochemical capacitors

Also Published As

Publication number Publication date
JPWO2013146792A1 (en) 2015-12-14
JP6109153B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP6109153B2 (en) Hybrid capacitor
Imanishi et al. Perspectives and challenges of rechargeable lithium–air batteries
US8945756B2 (en) Composite anode structure for aqueous electrolyte energy storage and device containing same
Zhang et al. Aqueous lithium/air rechargeable batteries
US8828574B2 (en) Electrolyte compositions for aqueous electrolyte lithium sulfur batteries
US8828575B2 (en) Aqueous electrolyte lithium sulfur batteries
JP6542980B2 (en) Lithium composite negative electrode, hybrid capacitor and method for manufacturing them
US8137830B2 (en) High voltage battery composed of anode limited electrochemical cells
US10026562B2 (en) High voltage battery composed of anode limited electrochemical cells
US20180358620A1 (en) Anode electrode including doped electrode active material and energy storage device including same
Li et al. New electrochemical energy storage systems based on metallic lithium anode—the research status, problems and challenges of lithium-sulfur, lithium-oxygen and all solid state batteries
EP3329543B1 (en) Semi-solid flow li/o2 battery
US20220406532A1 (en) Metal ion capacitor based on hard carbon as negative electrode and a mixture of activated carbon and sacrificial salt as the positive electrode
Johan et al. Metal Negatrode Supercapatteries: Advancements, Challenges, and Future Perspectives for High‐Performance Energy Storage
CN108539151B (en) Electrode material for secondary battery and secondary battery
Tomar et al. Materials and Electrochemistry of Metal-Air Battery
Zhang State of the Art Development on Solid-State Lithium Batteries
Manshadi et al. Aqueous Na‐Air Batteries
You et al. Conclusions and Perspectives on New Opportunities of Nanostrucutres
吴士超 Improving the Performance of Lithium-Oxygen Batteries by Controlling the Contained Water
Liu Improving the energy efficiency of Li-oxygen batteries by integrating the photo-catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768054

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014507921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768054

Country of ref document: EP

Kind code of ref document: A1