JP2009076372A - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP2009076372A
JP2009076372A JP2007245669A JP2007245669A JP2009076372A JP 2009076372 A JP2009076372 A JP 2009076372A JP 2007245669 A JP2007245669 A JP 2007245669A JP 2007245669 A JP2007245669 A JP 2007245669A JP 2009076372 A JP2009076372 A JP 2009076372A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
siox
electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007245669A
Other languages
Japanese (ja)
Inventor
Satoru Miyawaki
悟 宮脇
Shu Kashida
周 樫田
Toshio Oba
敏夫 大庭
Tsuguro Mori
嗣朗 森
Hisashi Satake
久史 佐竹
Shizukuni Yada
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007245669A priority Critical patent/JP2009076372A/en
Publication of JP2009076372A publication Critical patent/JP2009076372A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous secondary battery in which energy density and average voltage are improved and excellent rate characteristics can be obtained. <P>SOLUTION: In the non-aqueous secondary battery having a positive electrode, a negative electrode, and a non-aqueous electrolyte, the positive electrode is composed of a material capable of electrochemically storing and releasing lithium, and the negative electrode contains a material in which lithium is pre-doped in SiOx (0.3≤x≤1.6). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、負極に非水系電解質を用いる二次電池に関し、特にリチウムをプリドーピングしたSiOxよりなる負極材料を用いる非水系二次電池に関する。   The present invention relates to a secondary battery using a nonaqueous electrolyte for a negative electrode, and more particularly to a nonaqueous secondary battery using a negative electrode material made of SiOx pre-doped with lithium.

近年、携帯電話、ノート型パソコンに代表される小型携帯機器用の電源、家庭用分散型蓄電システム、電気自動車などに関連して、各種の高エネルギー密度電池の開発が精力的に行われている。特に、黒鉛を負極材料に用いたリチウムイオン電池は、高エネルギー密度を有すること、金属リチウムを負極として用いるリチウム二次電池に比べて、安全性、サイクル特性などの信頼性が優れることなどの理由により、小型携帯機器用の電源として、その市場が飛躍的に拡大している。   In recent years, various high energy density batteries have been vigorously developed in connection with power supplies for small portable devices typified by mobile phones and laptop computers, home-use distributed power storage systems, electric vehicles, etc. . In particular, lithium ion batteries using graphite as a negative electrode material have high energy density, and are superior in reliability such as safety and cycle characteristics compared to lithium secondary batteries using metal lithium as a negative electrode. As a result, the market is rapidly expanding as a power source for small portable devices.

リチウムイオン電池は、正極としてLiCoO2、LiMn24などに代表されるリチウム含有遷移金属酸化物を用い、負極として黒鉛に代表される炭素系材料を用いている。現在、リチウムイオン電池のより一層の高容量化が進められているが、正極酸化物及び負極炭素系材料の改良による高容量化は、ほぼ限界である500Wh/lに達したため、過度な活物質充填率の向上、セパレータの薄型化、充電電圧の高電圧化等により無理な高容量化を進めざるを得ない状況にある。この結果、リチウムイオン電池の特徴である安全性を脅かすこととなり、500Wh/lを超える電池は市販されているものの安全性が懸念される。 The lithium ion battery uses a lithium-containing transition metal oxide typified by LiCoO 2 or LiMn 2 O 4 as a positive electrode, and a carbon-based material typified by graphite as a negative electrode. Currently, further increase in capacity of lithium ion batteries is being promoted, but the increase in capacity by improving positive electrode oxide and negative electrode carbon-based material has reached almost the limit of 500 Wh / l, so an excessive active material It is in a situation where it is unavoidable to increase the capacity by increasing the filling rate, thinning the separator, and increasing the charging voltage. As a result, the safety characteristic of the lithium ion battery is threatened, and there is a concern about safety although batteries exceeding 500 Wh / l are commercially available.

リチウムイオン電池において、従来の材料系での高容量化が限界に達した今、高エネルギー密度化に向け、信頼性、安全性を有し、高エネルギー密度化が可能な新たな材料系が希求されている。   Lithium ion batteries have reached the limit of capacity increase in conventional material systems, and there is a need for new material systems that are reliable and safe and that can increase energy density in order to achieve higher energy densities. Has been.

負極材料においては、高容量材料として、黒鉛の理論容量であるC6Li(372mAh/g)を超える炭素材料、1000mAh/gを超えるリチウム吸蔵能を有するポリアセン系有機半導体に代表される多環芳香族系縮合ポリマー等が開発されている。また、別の方向性としてSi、SnとLiの合金系材料、Si、Sn等をベースとした酸化物系材料も高容量材料として注目されている。これら材料の中で合金系材料は、最も高い質量あたりの容量が期待されているが、充放電の繰り返しにおける材料自身の微粉化問題を本質的に有することから、実用化へのハードルは高い。一方、合金に比べ体積膨収が少ない酸化物系材料は、容量においては合金材料に比べ劣るものの、例えば、特許文献1(特開2006−62949号公報)に記載されているSi−C−O複合材料は、容量が900mAh/gと黒鉛系材料の3倍程度と大きな値を示し、かつ、50サイクル後容量も初期の95%程度と良好なサイクル特性が得られている。 In the negative electrode material, as a high-capacity material, a polycyclic aromatic typified by a carbon material exceeding the theoretical capacity of graphite, C 6 Li (372 mAh / g), and a polyacene organic semiconductor having a lithium occlusion capacity exceeding 1000 mAh / g. Group condensation polymers have been developed. As other directions, Si, Sn and Li alloy-based materials, and oxide-based materials based on Si, Sn and the like are also attracting attention as high-capacity materials. Among these materials, the alloy-based material is expected to have the highest capacity per mass, but the hurdle to practical use is high because it essentially has the problem of pulverization of the material itself in repeated charge and discharge. On the other hand, an oxide-based material whose volume expansion is smaller than that of an alloy is inferior to that of an alloy material in capacity. For example, Si—C—O described in Patent Document 1 (Japanese Patent Laid-Open No. 2006-62949). The composite material has a capacity of 900 mAh / g, which is about three times as large as that of the graphite-based material, and the capacity after 50 cycles is about 95% of the initial capacity and good cycle characteristics are obtained.

一方、リチウムイオン電池あるいはキャパシタなどの蓄電デバイスにおいて、活物質にあらかじめリチウムイオンを担持させること(以下、プリドープと呼ぶ)により、蓄電デバイスの高容量化、高電圧化する技術が注目されている。プリドープは古くから実用化されている技術であり、例えば、非特許文献1(矢田静邦,工業材料,Vol.40,No.5,32(1992))、特許文献2(特開平3−233860号公報)には、リチウムを負極活物質であるポリアセン系骨格構造を含有する不溶不融性基体にプリドープさせた、高電圧かつ高容量な蓄電デバイスが開示されている。プリドープ法に関しては、あらかじめリチウムを担持させた電極を用いて蓄電デバイスに組み込む方法、リチウム金属などを電極成形時に混合する方法などが知られているが、簡便かつ実用的なプリドープ法に関しては、活物質を含有する電極にリチウム金属箔を接触させる方法があり、実際、コイン型電池で実用化されている。   On the other hand, in a power storage device such as a lithium ion battery or a capacitor, attention has been paid to a technology for increasing the capacity and voltage of the power storage device by previously supporting lithium ions on the active material (hereinafter referred to as pre-doping). Pre-doping is a technology that has been put into practical use for a long time. For example, Non-Patent Document 1 (Shiho Yada, Industrial Materials, Vol. 40, No. 5, 32 (1992)), Patent Document 2 (Japanese Patent Laid-Open No. 3-233860). Discloses a high-voltage and high-capacity electricity storage device in which lithium is pre-doped on an insoluble infusible substrate containing a polyacene skeleton structure which is a negative electrode active material. As for the pre-doping method, there are known a method of incorporating an lithium-supported electrode into an electricity storage device, a method of mixing lithium metal or the like at the time of electrode formation, and the like. There is a method of bringing a lithium metal foil into contact with an electrode containing a substance, and in fact, it has been put to practical use in a coin-type battery.

また、特許文献3(国際公開第98/33227号パンフレット)には、貫通孔を備えた集電体上に電極層を形成し、電池内に配置されたリチウム金属と負極を短絡することにより、リチウムイオンが集電体の貫通孔を通過し、すべての負極にプリドープする技術も開示されており、電極が巻回構造、積層構造をとる円筒型、角型電池等に有効な技術である。   Patent Document 3 (International Publication No. 98/33227 pamphlet) forms an electrode layer on a current collector provided with a through hole, and short-circuits a lithium metal and a negative electrode arranged in the battery, A technique in which lithium ions pass through the through-holes of the current collector and pre-dope all the negative electrodes is also disclosed, which is an effective technique for a cylindrical battery, a rectangular battery, etc. in which the electrode has a wound structure or a laminated structure.

上記のように酸化物系材料、特にSi系酸化物は質量あたりのリチウム吸蔵能は高く、電池の高エネルギー密度化において有望な材料であるが、初期効率が低いこと、リチウム吸蔵時に体積変化が炭素材料に比べて大きいことから、実際電池に組み立てた場合、黒鉛系材料を負極に用いたリチウムイオン電池に対し、大幅なエネルギー密度向上効果が得られにくいという課題があった。   As described above, oxide-based materials, especially Si-based oxides, have a high lithium storage capacity per mass and are promising materials for increasing the energy density of batteries. However, the initial efficiency is low, and the volume changes during lithium storage. Since it is larger than the carbon material, when assembled in an actual battery, there is a problem that it is difficult to obtain a significant energy density improvement effect as compared with a lithium ion battery using a graphite-based material as a negative electrode.

一方、リチウムのプリドープの適用技術に関しても、Si系酸化物材料に対する検討はほとんどなく、特に、サイクル特性に優れ、かつ、容量が大きい炭素材料を複合したSiO系材料への適用可能性、適用した場合の電池特性(エネルギー密度、充放電挙動等)については検討されていない。   On the other hand, with regard to the application technology of lithium pre-doping, there is almost no study on Si-based oxide materials, and in particular, the applicability to SiO-based materials that combine carbon materials with excellent cycle characteristics and large capacity were applied. The battery characteristics (energy density, charge / discharge behavior, etc.) in the case have not been studied.

特開2006−62949号公報JP 2006-62949 A 特開平3−233860号公報JP-A-3-233860 国際公開第98/33227号パンフレットInternational Publication No. 98/33227 Pamphlet 矢田静邦,工業材料,Vol.40,No.5,32(1992)Shigeru Yada, Industrial Materials, Vol. 40, no. 5, 32 (1992)

本発明は、上記事情に鑑みなされたもので、エネルギー密度、平均電圧が向上し、良好なレート特性が得られる非水系二次電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a non-aqueous secondary battery in which energy density and average voltage are improved and good rate characteristics are obtained.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、正極、負極及び非水系電解質を備えた非水系二次電池において、(1)正極がリチウムを電気化学的に吸蔵及び放出し得る材料からなり、(2)負極がSiOx(0.3≦x≦1.6)にリチウムをプリドーピングした材料からなる非水系二次電池が、従来の黒鉛を負極に用いたリチウムイオン電池に比べて、エネルギー密度が顕著に向上することを見出し、本発明をなすに至った。なお、本発明において、正極、負極とは、それぞれ正極活物質層(即ち、正極活物質を含む正極合材層)、負極活物質層(即ち、負極活物質を含む負極合材層)を意味し、集電体は含まない。   As a result of intensive studies to achieve the above object, the present inventors have found that in a non-aqueous secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, (1) the positive electrode electrochemically occludes lithium and (2) A non-aqueous secondary battery in which the negative electrode is made of a material in which lithium is predoped with SiOx (0.3 ≦ x ≦ 1.6) is a lithium ion using conventional graphite as a negative electrode. As a result, the present inventors have found that the energy density is remarkably improved as compared with the battery, and have made the present invention. In the present invention, the positive electrode and the negative electrode mean a positive electrode active material layer (ie, a positive electrode mixture layer containing a positive electrode active material) and a negative electrode active material layer (ie, a negative electrode mixture layer containing a negative electrode active material), respectively. However, the current collector is not included.

従って、本発明は、下記非水系二次電池を提供する。
〔1〕 正極、負極及び非水系電解質を備えた非水系二次電池において、正極がリチウムを電気化学的に吸蔵及び放出し得る材料からなると共に、負極がSiOx(0.3≦x≦1.6)にリチウムをプリドーピングした材料を含むことを特徴とする非水系二次電池。
〔2〕 正極から放出され負極に吸蔵されるリチウムの負極Siに対する原子比をLpとし、負極へプリドーピングするリチウムの負極Siに対する原子比をLnとする時、0.3<Ln、かつ2.5<Ln+Lp<5.5であることを特徴とする〔1〕に記載の非水系二次電池。
〔3〕 正極がリチウム複合酸化物であり、正極から放出され負極に吸蔵されるリチウムの負極Siに対する原子比Lpが2.0<Lpであることを特徴とする〔2〕記載の非水系二次電池。
〔4〕 負極と金属リチウムとを電池内で電気化学的に接触させることで、SiOx(0.3≦x≦1.6)にリチウムがプリドーピングされてなることを特徴とする〔1〕〜〔3〕のいずれかに記載の非水系二次電池。
〔5〕 負極表面にリチウムを張り合わせて電池内で電気化学的に接触させることで、SiOx(0.3≦x≦1.6)にリチウムがプリドーピングされてなることを特徴とする〔4〕記載の非水系二次電池。
〔6〕 張り合わせるリチウムの厚さをTL、プリドーピング前の負極の厚みをTN0、電池が満充電された時の負極の厚みをTNCとした時、(TNC−TN0)≧TLであることを特徴とする〔5〕記載の非水系二次電池。
〔7〕 負極として、SiOxの表面に炭素材料をSiOxの質量に対し1〜50%で複合させたものを用いることを特徴とする〔1〕〜〔6〕のいずれかに記載の非水系二次電池。
Accordingly, the present invention provides the following non-aqueous secondary battery.
[1] In a non-aqueous secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, the positive electrode is made of a material capable of electrochemically inserting and extracting lithium, and the negative electrode is made of SiOx (0.3 ≦ x ≦ 1. 6) A non-aqueous secondary battery comprising a material pre-doped with lithium.
[2] When the atomic ratio of lithium released from the positive electrode and occluded by the negative electrode to the negative electrode Si is Lp, and the atomic ratio of lithium pre-doped to the negative electrode Si is Ln, 0.3 <Ln, and 2. 5 <Ln + Lp <5.5, The nonaqueous secondary battery according to [1].
[3] The non-aqueous system according to [2], wherein the positive electrode is a lithium composite oxide, and the atomic ratio Lp of lithium released from the positive electrode and stored in the negative electrode to the negative electrode Si is 2.0 <Lp. Next battery.
[4] Lithium is pre-doped in SiOx (0.3 ≦ x ≦ 1.6) by electrochemically contacting the negative electrode and metallic lithium in the battery [1] to [3] The nonaqueous secondary battery according to any one of [3].
[5] Lithium is bonded to SiOx (0.3 ≦ x ≦ 1.6) by lithium being bonded to the negative electrode surface and electrochemically contacting in the battery [4] The nonaqueous secondary battery as described.
[6] When the thickness of the lithium to be bonded is TL, the thickness of the negative electrode before pre-doping is TN 0 , and the thickness of the negative electrode when the battery is fully charged is TN C , (TN C −TN 0 ) ≧ TL [5] The nonaqueous secondary battery according to [5].
[7] The non-aqueous two-component film according to any one of [1] to [6], wherein the negative electrode is a composite of a carbon material on the surface of SiOx at 1 to 50% with respect to the mass of SiOx. Next battery.

上記構成によれば、エネルギー密度の高い非水系二次電池が得られ、特に負極SiOxへの総リチウムドープ量をプリドーピングにより特定範囲に制御すること、更には、正極に特定量以上の放出可能なリチウムを含有するリチウム複合酸化物を用いることにより、エネルギー密度をより高め、かつ、平均電圧、レート特性に優れた非水系二次電池を得ることができる。また、上記のように電池内でリチウムをプリドーピングさせることは、体積変化がある本発明の負極において特に好ましく、更には特殊な集電体等を用いる必要がなく、既存のリチウムイオン電池の電極構成を適用することができる。更に、負極として、SiOxの表面に特定量の炭素材料を複合させたものを用いることにより、サイクル特性が良好な非水系二次電池を得ることができる。   According to the above configuration, a non-aqueous secondary battery with high energy density can be obtained. In particular, the total lithium doping amount to the negative electrode SiOx can be controlled within a specific range by pre-doping, and more than a specific amount can be released to the positive electrode. By using a lithium composite oxide containing fresh lithium, it is possible to obtain a nonaqueous secondary battery with higher energy density and excellent average voltage and rate characteristics. In addition, pre-doping lithium in the battery as described above is particularly preferable in the negative electrode of the present invention having a volume change, and further, it is not necessary to use a special current collector or the like, and an electrode of an existing lithium ion battery Configuration can be applied. Furthermore, a non-aqueous secondary battery with good cycle characteristics can be obtained by using a negative electrode in which a specific amount of carbon material is combined on the surface of SiOx.

本発明の非水系二次電池は、エネルギー密度が向上する、平均電圧が向上する、良好なレート特性が得られるという効果を奏する。   The non-aqueous secondary battery of the present invention has an effect that energy density is improved, average voltage is improved, and good rate characteristics are obtained.

本発明による非水系二次電池は、正極、負極及び非水系電解質を備えた非水系二次電池において、正極がリチウムを電気化学的に吸蔵及び放出し得る材料からなり、負極がSiOx(0.3≦x≦1.6)にリチウムをプリドーピングした材料を含む。   The non-aqueous secondary battery according to the present invention is a non-aqueous secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode is made of a material capable of electrochemically inserting and extracting lithium, and the negative electrode is made of SiOx (0. 3 ≦ x ≦ 1.6) including a material pre-doped with lithium.

本発明において、負極はSiOx(0.3≦x≦1.6)にリチウムをプリドーピングした材料からなる。SiOxにおけるxは0.3≦x≦1.6であり、xが下限値未満の時、Si比率が高いため充放電時の体積変化が大きくなりすぎ、サイクル特性が低下する傾向にあり、xが上限値を超える場合、Si比率が低下し、本発明の目的であるエネルギー密度向上効果を得にくくなる。この観点から、xは特に0.7≦x≦1.2が好ましい。SiOxの製造法は特に限定されるものではないが、例えば、特開2002−260651号公報に記載の方法で製造可能であり、製造時にSiOxに炭素、窒素等を複合することも可能である(以下の説明において、SiOxと記載した場合、このように他元素を複合させたものも含む。)。   In the present invention, the negative electrode is made of a material obtained by pre-doping lithium into SiOx (0.3 ≦ x ≦ 1.6). X in SiOx is 0.3 ≦ x ≦ 1.6, and when x is less than the lower limit value, the Si ratio is high, so that the volume change during charge / discharge becomes too large, and the cycle characteristics tend to deteriorate. When the value exceeds the upper limit value, the Si ratio decreases, making it difficult to obtain the effect of improving the energy density, which is an object of the present invention. In this respect, x is particularly preferably 0.7 ≦ x ≦ 1.2. The production method of SiOx is not particularly limited. For example, it can be produced by the method described in JP-A-2002-260651, and it is possible to combine carbon, nitrogen, etc. with SiOx during production ( In the following description, the term “SiOx” includes such a composite of other elements).

また、負極に含まれるSiOxには、サイクル特性を向上させる目的でSiOxの表面に炭素材料をSiOxに対し1〜50質量%で複合させたものを用いることもできる。炭素材料はSiOxに対し5〜30質量%が好ましく、5〜20質量%が特に好ましい。複合させる炭素量が1質量%未満では、当該SiOxを単独で負極活物質として用いた場合、負極膜の導電性が少なく、炭素複合の意味がなく、50質量%を超えると、炭素の割合が多くなりすぎ、負極容量が減少してしまい、本発明の目的であるエネルギー密度向上効果を得にくくなる場合がある。複合方法については特に限定するものではないが、CVD等の手法を用いることができる(以下の説明において、SiOxと記載した場合、このように炭素材料を複合させたものも含む。)。   Moreover, what mixed the carbon material on the surface of SiOx at 1-50 mass% with respect to SiOx can also be used for SiOx contained in a negative electrode for the purpose of improving cycling characteristics. 5-30 mass% is preferable with respect to SiOx, and, as for a carbon material, 5-20 mass% is especially preferable. When the amount of carbon to be combined is less than 1% by mass, when the SiOx is used alone as a negative electrode active material, the conductivity of the negative electrode film is small, and there is no meaning of carbon composite. In some cases, the negative electrode capacity decreases and the energy density improvement effect that is the object of the present invention is hardly obtained. Although there is no particular limitation on the composite method, a technique such as CVD can be used (in the following description, the term “SiOx” includes a composite of carbon materials in this way).

本発明の負極は上記SiOxよりなり、該SiOxはリチウムがプリドーピングされている。本発明の負極は、例えば、平均粒径0.5〜30μm、好ましくは1〜20μm程度の上記SiOx粉末を、結着剤樹脂と混合して例えば集電体上に成形することにより得られる。SiOxへのリチウムのプリドーピングは、SiOxを電極に形成した後、後述する方法で電気化学的に実施することが、実用上好ましい。なお、この平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50(即ち、累積質量が50%となるときの粒子径又はメジアン径)として測定した値である。 The negative electrode of the present invention comprises the above-mentioned SiOx, and the SiOx is predoped with lithium. The negative electrode of the present invention can be obtained, for example, by mixing the SiOx powder having an average particle size of 0.5 to 30 μm, preferably about 1 to 20 μm with a binder resin and molding it on a current collector, for example. It is practically preferable that the pre-doping of lithium into SiOx is carried out electrochemically by the method described later after forming SiOx on the electrode. The average particle diameter is a value measured as a mass average value D 50 (that is, a particle diameter or a median diameter when the cumulative mass is 50%) in the particle size distribution measurement by the laser light diffraction method.

本発明の負極の成形は、所望の非水系二次電池の形状、特性などを考慮しつつ、公知の方法により行うことができる。   The negative electrode of the present invention can be molded by a known method in consideration of the shape and characteristics of a desired nonaqueous secondary battery.

成形に用いる結着剤樹脂は特に限定されるものではなく、具体的には、ポリフッ化ビニリデン(PVdF)、ポリ四フッ化エチレンなどのフッ素系樹脂;フッ素ゴム、SBRなどのゴム系材料;ポリエチレン、ポリプロピレンなどのポリオレフィン;アクリル樹脂;ポリイミド系樹脂等が例示されるが、特にポリイミド系樹脂を用いることで良好なサイクル特性が得られる。   The binder resin used for molding is not particularly limited, and specifically, fluorine-based resins such as polyvinylidene fluoride (PVdF) and polytetrafluoroethylene; rubber-based materials such as fluorine rubber and SBR; polyethylene And polyolefin such as polypropylene; acrylic resin; polyimide resin and the like are exemplified, but good cycle characteristics can be obtained particularly by using polyimide resin.

負極成形混合物における結着剤配合量は、本発明のSiOxの種類、粒径、形状、充放電時におけるSiOxのSi原子に対するリチウム量等に応じて適宜決定すれば良いが、本発明の負極は充放電時に体積変化が生じることから、結着強度の高い樹脂(例えば、ポリイミド系樹脂:結着強度を高めるために電極形成後180℃以上に加熱処理したもの等)をSiOxの質量に対し5〜20%、特に5〜15%程度用いることが好ましい。   The binder compounding amount in the negative electrode molding mixture may be appropriately determined according to the kind of SiOx of the present invention, the particle size, the shape, the amount of lithium with respect to Si atoms of SiOx during charge / discharge, etc. Since volume change occurs during charging / discharging, a resin having high binding strength (for example, polyimide resin: heat-treated at 180 ° C. or higher after electrode formation to increase the binding strength) is 5% of the mass of SiOx. It is preferable to use about 20%, especially about 5-15%.

また、本発明の負極に、必要に応じ、導電剤を添加することも可能である。本発明の負極に添加する導電剤の種類、量は特に限定されるものではなく、活物質の電子伝導性(炭素材料との複合の有無)、平均粒径、形状などにより適宜決定されるものであり、添加する場合、その量はSiOxの質量に対し1〜30%、特に1〜20%程度である。また、SiOx表面に炭素材料が複合されている場合などは導電剤を添加しなくてもよい。導電剤の種類としては、カーボンブラック、アセチレンブラック、黒鉛などの微粉状炭素材料、カーボン繊維や単層又は多層カーボンナノチューブ(例えば昭和電工(株)製のVGCF等)などの繊維状炭素材料や、銅、ニッケルなどの金属材料が例示される。   Moreover, it is also possible to add a electrically conductive agent to the negative electrode of this invention as needed. The kind and amount of the conductive agent added to the negative electrode of the present invention are not particularly limited, and are appropriately determined depending on the electronic conductivity of the active material (whether it is combined with the carbon material), the average particle diameter, the shape, or the like. When added, the amount is about 1 to 30%, particularly about 1 to 20% with respect to the mass of SiOx. Further, when a carbon material is composited on the SiOx surface, it is not necessary to add a conductive agent. As a kind of conductive agent, carbon fiber, acetylene black, fine carbon material such as graphite, carbon fiber and fibrous carbon material such as single-walled or multi-walled carbon nanotubes (for example, VGCF manufactured by Showa Denko KK), Examples of the metal material include copper and nickel.

本発明において、上記負極成形混合物を集電体上に成形し、電極を形成するに際し、使用する集電体は特に限定されるものではないが、銅箔、ステンレス鋼箔、チタン箔などが挙げられる。更に、多孔性集電体である、例えば、エキスパンドメタル、メッシュ、パンチングメタルなどを用いることもできる。   In the present invention, when forming the electrode by forming the negative electrode molding mixture on a current collector, the current collector to be used is not particularly limited, and examples thereof include copper foil, stainless steel foil, and titanium foil. It is done. Furthermore, a porous current collector, for example, expanded metal, mesh, punching metal, or the like can be used.

本発明の負極を構成するSiOxにはリチウムがプリドーピングされている。プリドーピングとは、正負極間での通常の充放電前にSiOxにリチウムを吸蔵・担持させることである。本発明のSiOxへのリチウムのプリドーピングの手法は、特に限定されるものではないが、電極を形成した後に行うのが実用的である。   The SiOx constituting the negative electrode of the present invention is predoped with lithium. Pre-doping means that SiOx is occluded / supported before normal charge / discharge between positive and negative electrodes. The method of pre-doping lithium into SiOx of the present invention is not particularly limited, but it is practical to carry out after forming the electrode.

本発明のSiOxへのリチウムのプリドーピングの一例として、電極を形成した後、電気化学的に行う方法を具体的に説明する。この方法としては、電池組み立て前に、対極としてリチウム金属を用いる電気化学システムを組み立て、後述の非水系電解液中において、プリドーピングする方法、電解液を含浸した負極にリチウム金属を張り合わせる方法が挙げられる。また、電池組み立て後に、リチウムのプリドーピングを行うには、リチウム金属などのリチウム源と負極とを張り合わせる方法などにより電気的に接触させておき、電池内に電解液を注液することにより、リチウムをプリドーピングする方法があり、実用的には電池組み立て後にプリドーピングすることが好ましい。   As an example of lithium pre-doping to SiOx of the present invention, a method of electrochemically forming an electrode will be described. This method includes assembling an electrochemical system using lithium metal as a counter electrode before assembling the battery, pre-doping in a non-aqueous electrolyte described later, and attaching lithium metal to the negative electrode impregnated with the electrolyte. Can be mentioned. In addition, in order to perform lithium pre-doping after the battery is assembled, the lithium source such as lithium metal and the negative electrode are electrically contacted with each other by injecting the electrolyte into the battery. There is a method of pre-doping lithium, and it is practically preferable to pre-dope after battery assembly.

本発明の目的である高エネルギー密度を有する非水系二次電池を得るためには、SiOxにリチウムをプリドーピングすることが必須である。一般に負極材料に対するプリドーピングは、不可逆容量を補償する目的、あるいは、正極にリチウムを含まない材料を用いる場合において充放電に必要なリチウムを負極に持たせることを目的としている。しかし、プリドーピング技術の適用に関しては、負極個々の特性(充放電電位、充放電に伴う内部抵抗変化)、目的とする電池特性に応じて検討されるべきものである。例えば、プリドーピング量についても、不可逆容量分だけプリドーピングすれば良いというものではなく、正極リチウム量、正極効率、負極特性(充放電電位、充放電に伴う内部抵抗変化)により異なるものである。   In order to obtain a non-aqueous secondary battery having a high energy density, which is the object of the present invention, it is essential to pre-dope lithium into SiOx. In general, pre-doping of a negative electrode material is intended to compensate for irreversible capacity, or to provide the negative electrode with lithium necessary for charging and discharging when a material that does not contain lithium is used for the positive electrode. However, the application of the pre-doping technique should be examined according to the characteristics of each negative electrode (charge / discharge potential, change in internal resistance accompanying charge / discharge) and target battery characteristics. For example, the pre-doping amount is not limited to the pre-doping amount corresponding to the irreversible capacity, but differs depending on the positive electrode lithium amount, the positive electrode efficiency, and the negative electrode characteristics (charge / discharge potential, change in internal resistance associated with charge / discharge).

本発明ではリチウムをプリドープしたSiOxを用いるが、プリドープにより次の関係を満たす場合、特に効果が大きい。すなわち、正極から放出され負極に吸蔵されるリチウムの負極Siに対する原子比をLpとし、負極へプリドーピングするリチウムの負極Siに対する原子比をLnとする時、0.3<Ln、かつ2.5<Ln+Lp<5.5とすることにより、エネルギー密度が高く、かつ、平均電圧、レート特性に優れた非水系二次電池を得ることができる。ここで、正極から放出され負極に吸蔵されるリチウムとは、正極に電気化学的に放出可能なリチウムを含む材料を用いる場合において初回充電量から算出されるリチウム量である。   In the present invention, SiOx pre-doped with lithium is used, but the effect is particularly great when the following relationship is satisfied by pre-doping. That is, when the atomic ratio of lithium released from the positive electrode and occluded in the negative electrode to the negative electrode Si is Lp, and the atomic ratio of lithium predoped to the negative electrode to the negative electrode Si is Ln, 0.3 <Ln and 2.5 By setting <Ln + Lp <5.5, a non-aqueous secondary battery having a high energy density and excellent average voltage and rate characteristics can be obtained. Here, the lithium released from the positive electrode and occluded by the negative electrode is the amount of lithium calculated from the initial charge amount when a material containing lithium that can be electrochemically released is used for the positive electrode.

負極へプリドーピングするリチウムの負極Siに対する原子比Lnは0.3<Lnであることが好ましい。正極に電気化学的に放出可能なリチウムを含む材料を用いる場合は、好ましくは0.8<Ln、更に好ましくは1.2<Lnである。また、正極に電気化学的に放出可能なリチウムを含まない材料を用いる場合は、好ましくは2.5<Ln、更に好ましくは3.5<Lnである。Lnの値が下限以下の場合、プリドープによる高エネルギー密度化、平均電圧の向上等本発明の効果が得られない場合がある。   The atomic ratio Ln of lithium to be pre-doped into the negative electrode with respect to the negative electrode Si is preferably 0.3 <Ln. When a material containing lithium that can be electrochemically released is used for the positive electrode, preferably 0.8 <Ln, and more preferably 1.2 <Ln. When a material that does not contain lithium that can be electrochemically released is used for the positive electrode, preferably 2.5 <Ln, and more preferably 3.5 <Ln. When the value of Ln is less than the lower limit, the effects of the present invention such as high energy density by pre-doping and improvement of average voltage may not be obtained.

上記LpとLnの和(Ln+Lp)が充電完了時における負極内の総リチウム量に相当し、この時のリチウムの負極Siに対する原子比を示す。例えばSiOx(x=1の場合)に炭素を5質量%複合した場合、リチウムの負極Siに対する原子比が1.5でリチウムを充放電に関与させることにより900mAh/g、原子比が2.0で1200mAh/gの容量となる。これは、既存の黒鉛系負極材の容量300mAh/gを大幅に上回ることが可能である。   The sum of Lp and Ln (Ln + Lp) corresponds to the total amount of lithium in the negative electrode at the completion of charging, and indicates the atomic ratio of lithium to the negative electrode Si at this time. For example, when 5% by mass of carbon is combined with SiOx (when x = 1), the atomic ratio of lithium to the negative electrode Si is 1.5, and lithium is involved in charging / discharging, so that 900 mAh / g and the atomic ratio are 2.0. The capacity becomes 1200 mAh / g. This can greatly exceed the capacity of 300 mAh / g of the existing graphite-based negative electrode material.

一方、実施例に係る図1からも明らかなようにSiOxのリチウムを放出時(電池では放電に相当)の電位カーブは0.7V vs Li/Li+を超えると傾きが大きくなる。また、0.7V以上の領域ではSiOxのリチウム吸蔵・放出に対する内部抵抗も大きくなる傾向にある。従って、SiOxを負極に用いる場合、0.7V以下の電位領域を用いることが平均電圧、レート特性向上の観点から好ましい。なお、レート特性とは、放電あるいは充電電流を増加させていった場合(放電あるいは充電レートを上げていった場合)の、基準レートに対する容量保持率、電圧挙動等の電池特性を意味する。 On the other hand, as is clear from FIG. 1 according to the example, the slope of the potential curve when SiOx lithium is released (corresponding to discharge in the battery) exceeds 0.7 V vs Li / Li + . Further, in the region of 0.7 V or more, the internal resistance against SiO occlusion / release of SiOx tends to increase. Therefore, when SiOx is used for the negative electrode, it is preferable to use a potential region of 0.7 V or less from the viewpoint of improving the average voltage and rate characteristics. The rate characteristic means battery characteristics such as capacity retention ratio and voltage behavior with respect to the reference rate when the discharge or charge current is increased (when the discharge or charge rate is increased).

本発明において、LpとLnの和(Ln+Lp)は、好ましくは2.5<Ln+Lp<5.5、更に好ましくは3.3<Ln+Lp<5.5である。この場合、充放電に関与するリチウムの量を負極Siに対する原子比で表すと1.5より大、好ましくは2.0より大となり、かつ、0.7V vs Li/Li+以下の電位領域を用いることができることから、エネルギー密度向上効果に加え、平均電圧が向上し、良好なレート特性を実現することができる。また、Ln+Lpの上限値はSiOxのリチウム吸蔵能力と関係がある。本発明者らは、例えばSiOx(x=1の場合)に炭素を5質量%複合した場合、リチウムの負極Siに対する原子比が4.5程度までリチウムを吸蔵できることを見出している。xの値が低い、すなわちSiOxにおけるSi比率が高い場合、更に高いリチウム吸蔵能力を有するものの、Ln+Lpが5.5より大きい場合、充放電に伴う負極へのリチウム析出等の問題が生じることが懸念される。 In the present invention, the sum of Lp and Ln (Ln + Lp) is preferably 2.5 <Ln + Lp <5.5, and more preferably 3.3 <Ln + Lp <5.5. In this case, when the amount of lithium involved in charge / discharge is expressed as an atomic ratio with respect to the negative electrode Si, the potential region is greater than 1.5, preferably greater than 2.0, and 0.7 V vs Li / Li + or less. Since it can be used, in addition to the effect of improving the energy density, the average voltage is improved and good rate characteristics can be realized. The upper limit of Ln + Lp is related to the lithium storage capacity of SiOx. The present inventors have found that, for example, when 5% by mass of carbon is combined with SiOx (when x = 1), lithium can be occluded up to an atomic ratio of lithium to the negative electrode Si of about 4.5. When the value of x is low, that is, when the Si ratio in SiOx is high, the lithium occlusion capacity is higher, but when Ln + Lp is greater than 5.5, there is a concern that problems such as lithium deposition on the negative electrode due to charge / discharge may occur. Is done.

本発明において使用する正極(正極活物質)としては、リチウムを電気化学的に吸蔵及び放出し得る材料であれば特に限定されず、例えば、電気化学的に放出可能なリチウムを含むものとして、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、リチウム複合チタン酸化物(LiTiO2)、あるいはこれらの混合物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系などを用いることができる。また、電気化学的に放出可能なリチウムを含まないものとして、マンガン、バナジウム、鉄などの金属酸化物、ジスルフィド系化合物、ポリアセン系物質、活性炭などを用いることも可能である。 The positive electrode (positive electrode active material) used in the present invention is not particularly limited as long as it is a material capable of electrochemically occluding and releasing lithium. For example, lithium containing lithium that can be electrochemically released includes lithium. Composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, lithium composite titanium oxide (LiTiO 2 ), or a mixture thereof, and a system in which one or more different metal elements are added to these composite oxides Can be used. In addition, metal oxides such as manganese, vanadium, and iron, disulfide compounds, polyacene materials, activated carbon, and the like can be used as those that do not contain electrochemically releasable lithium.

上記正極がリチウム複合酸化物である場合、上述したLpは2.0<Lpであることが好ましく、上記関係を満足するように正極活物質の質量と負極活物質の質量との比率を制御することが望ましい。Lpが2.0以下の場合、上記充放電に関与する好ましいリチウムの量(負極Siに対する原子比で表すと1.5以上、好ましくは2.0以上)を正極として受け入れることができなくなる可能性がある。   When the positive electrode is a lithium composite oxide, the above-described Lp is preferably 2.0 <Lp, and the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material is controlled so as to satisfy the above relationship. It is desirable. When Lp is 2.0 or less, there is a possibility that a preferable amount of lithium involved in the above charge / discharge (1.5 or more, preferably 2.0 or more in terms of atomic ratio with respect to the negative electrode Si) cannot be accepted as the positive electrode. There is.

本発明において、特に、SiOxに対する好ましいプリドーピング法として、負極にLnに相当する量のリチウム金属箔を張り合わせて電池を組み立て、電池内に電解液を注液することにより、リチウムをプリドーピングする方法が挙げられる。これはSiOxよりなる負極がリチウムの吸蔵・放出に伴い電極体積(厚み)変化があることに起因している。電極体積(厚み)変化がない、あるいは、少ない負極の場合、リチウムのプリドーピング完了後に、消失したリチウム金属部分が隙間となり、特に、ハードケース外装である円筒型、角型等の電池形状において内部抵抗が大きくなる傾向があった。従って、負極表面にリチウム金属箔を張り合わせることにより電池内で電気化学的に接触させ、SiOxにリチウムをプリドーピングする場合、張り合わせるリチウムの厚さをTL、プリドーピング前の負極の厚みをTN0、電池が満充電された時の負極の厚みをTNCとした時、(TNC−TN0)≧TLであれば上記隙間は形成されず、このような関係を満たす負極の場合、リチウム金属箔を張り合わせることによるプリドーピングを特に好ましく適用することができる。 In the present invention, in particular, as a preferred pre-doping method for SiOx, a battery is assembled by laminating a lithium metal foil in an amount corresponding to Ln on the negative electrode, and lithium is pre-doped by injecting an electrolyte into the battery. Is mentioned. This is due to the fact that the negative electrode made of SiOx has a change in electrode volume (thickness) with the insertion and extraction of lithium. In the case of a negative electrode with little or no change in electrode volume (thickness), the lithium metal portion that disappeared becomes a gap after completion of lithium pre-doping, especially in the battery shape such as a cylindrical shape or square shape that is a hard case exterior There was a tendency for resistance to increase. Therefore, when lithium metal foil is laminated on the negative electrode surface to make electrochemical contact in the battery and lithium is predoped to SiOx, the thickness of the laminated lithium is TL, and the thickness of the negative electrode before predoping is TN. 0 , when the thickness of the negative electrode when the battery is fully charged is TN C , the gap is not formed if (TN C −TN 0 ) ≧ TL. Pre-doping by laminating metal foils can be particularly preferably applied.

本発明において使用する非水系電解質としては、リチウム塩を含む非水系電解液、ポリマー電解質、ポリマーゲル電解質などの公知の非水系電解質を用いることが可能であり、正極材料の種類、負極材料の性状、充電電圧などの使用条件などに対応して、適宜決定される。リチウム塩を含む非水系電解液としては、例えば、LiPF6、LiBF4、LiClO4などのリチウム塩を、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチルなどの1種又は2種以上からなる有機溶媒に溶解したものを用いることができる。また、電解液の濃度は、特に限定されるものではないが、一般的に0.5〜2mol/l程度が実用的である。電解液は、当然のことながら、水分が100ppm以下のものを用いることが好ましい。なお、本明細書で使用する「非水系電解質」という用語は、非水系電解液及び有機電解液を含む概念を意味するものであり、また、ゲル状及び固体の電解質を含む概念をも意味するものである。 As the non-aqueous electrolyte used in the present invention, a known non-aqueous electrolyte such as a non-aqueous electrolyte containing a lithium salt, a polymer electrolyte, and a polymer gel electrolyte can be used. The type of the positive electrode material and the property of the negative electrode material It is determined appropriately according to the use conditions such as the charging voltage. As the non-aqueous electrolyte containing a lithium salt, for example, lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, What was melt | dissolved in the organic solvent which consists of 1 type (s) or 2 or more types, such as methyl acetate and methyl formate, can be used. The concentration of the electrolytic solution is not particularly limited, but generally about 0.5 to 2 mol / l is practical. As a matter of course, it is preferable to use an electrolytic solution having a water content of 100 ppm or less. As used herein, the term “non-aqueous electrolyte” means a concept including a non-aqueous electrolyte and an organic electrolyte, and also includes a concept including gelled and solid electrolytes. Is.

本発明の非水系二次電池の形状、大きさなどは特に限定されるものではなく、それぞれの用途に応じて、円筒型、角型、フィルム電池、箱型などの任意の形状及び寸法のものを選択すればよい。   The shape, size, etc. of the non-aqueous secondary battery of the present invention are not particularly limited, and are of any shape and size such as a cylindrical shape, a square shape, a film battery, a box shape, etc., depending on the respective use. Should be selected.

以下に実施例を示し、本発明の特徴とするところを更に明確化するが、本発明は下記の実施例により何ら限定されるものではない。   EXAMPLES Examples will be shown below to further clarify the features of the present invention, but the present invention is not limited to the following examples.

[実施例1]
(SiOx負極の試作及び特性評価)
下記の物性を有するSiOx炭素複合体(信越化学工業製:KSC801)を用いて、負極を作製した。
SiOx:x=1.0
SiOxの炭素複合量:SiOxに対し5質量%
SiOx炭素複合体の粒径(D50%):7.0μm
[Example 1]
(Trial manufacture and characteristic evaluation of SiOx negative electrode)
A negative electrode was produced using a SiOx carbon composite (manufactured by Shin-Etsu Chemical Co., Ltd .: KSC801) having the following physical properties.
SiOx: x = 1.0
Carbon composite amount of SiOx: 5% by mass with respect to SiOx
Particle size of SiOx carbon composite (D 50% ): 7.0 μm

バインダーにはポリイミド樹脂(宇部興産社製:U−ワニスA、NMP(N−メチル−2−ピロリドン)溶液、固形分18.1質量%)を用いた。上記SiOxとバインダーを質量比で85:15(固形分量)の配合比にて混練し、NMPで粘度調整をしてスラリーを得た。集電体であるCu箔(厚み:18μm)に、該スラリーを塗布後乾燥して、厚み37μm、密度が1.00g/cm3の負極を得た。負極の電気伝導度は1.9×10-1S/cmであり、リチウムイオン電池用負極として十分な伝導度を有していた。また強度については、軸芯巻付け(4mmφ軸)及びアセトン浸漬に対しても集電体からの剥れ・脱落等は見られず、以下の電気化学的評価に対し、十分な強度を持つことを確認した。 As the binder, polyimide resin (Ube Industries, Ltd .: U-Varnish A, NMP (N-methyl-2-pyrrolidone) solution, solid content 18.1% by mass) was used. The SiOx and binder were kneaded at a mass ratio of 85:15 (solid content), and the viscosity was adjusted with NMP to obtain a slurry. The slurry was applied to a Cu foil (thickness: 18 μm) as a current collector and dried to obtain a negative electrode having a thickness of 37 μm and a density of 1.00 g / cm 3 . The electric conductivity of the negative electrode was 1.9 × 10 −1 S / cm, which was sufficient as a negative electrode for a lithium ion battery. In addition, the strength is sufficient for the following electrochemical evaluation, with no peeling or dropping off from the current collector even when wound around the shaft core (4 mmφ axis) or with acetone. It was confirmed.

作用極が上記で得られたSiOx電極(SiOx負極を集電体上に形成した電極)、対極及び参照極がLi金属の3極式セルを用い、上記負極の単極特性を評価した。SiOx電極は17mmφに打ち抜き、200℃で10時間真空下乾燥後、ドライボックス内でセルを組み立てた。電解液にはエチレンカーボネートとメチルエチルカーボネートを3:7体積比で混合し、溶媒に1mol/lの濃度にLiPF6を溶解した溶液を用いた。 Using the above-obtained SiOx electrode (electrode in which a SiOx negative electrode was formed on a current collector) as a working electrode and a tripolar cell in which the counter electrode and the reference electrode were Li metal, the unipolar characteristics of the negative electrode were evaluated. The SiOx electrode was punched to 17 mmφ, dried under vacuum at 200 ° C. for 10 hours, and then the cell was assembled in a dry box. As the electrolytic solution, a solution in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 3: 7 and LiPF 6 was dissolved in a solvent at a concentration of 1 mol / l was used.

SiOxへのリチウムのドーピング(リチウムの吸蔵)は、1.5mAの電流でLi金属電位に対し1mVまで定電流で、1mVに到達後、Li金属電位に対し1mVの定電圧を所定時間印加することにより実施した。その後、0.6mAの電流でLi金属電位に対し2.0Vまで定電流で脱ドーピング(リチウムの放出)を行った。この時の電圧カーブをSiOx炭素複合体の質量に対する比容量に対し、プロットしたものを図1に示した。また、SiOxへのリチウムのドーピング量、Li金属電位に対し2.0Vまで脱ドーピングした場合の比容量、0.7Vまで脱ドーピングした場合の比容量を表1にまとめた。   The doping of lithium to SiOx (lithium occlusion) is to apply a constant voltage of 1 mV to the Li metal potential for a predetermined time after reaching 1 mV at a constant current of 1 mA to the Li metal potential at a current of 1.5 mA. It carried out by. Thereafter, dedoping (release of lithium) was performed at a constant current up to 2.0 V with respect to the Li metal potential at a current of 0.6 mA. A plot of the voltage curve at this time versus the specific capacity with respect to the mass of the SiOx carbon composite is shown in FIG. Further, Table 1 summarizes the lithium doping amount into SiOx, the specific capacity when dedoping to 2.0 V with respect to the Li metal potential, and the specific capacity when dedoping to 0.7 V.

Figure 2009076372
Figure 2009076372

SiOxがリチウムを吸蔵した場合の体積変化を考慮した場合、既存の黒鉛系材料(300mAh/g、充電時密度SiOxの2−3倍程度)と差別化する場合、900mAh/g以上、好ましくは1200mAh/g以上の容量が必要となる。従って、表1の結果より、SiOxへの総ドープ量(Ln+Lpに相当するドープ量)は、リチウムの負極Siに対する原子比(即ち、Ln+Lp)で表すと2.5より大きな量が必要となる。また、図1からも明らかなようにSiOxのリチウムを放出時(電池では放電に相当)の電位カーブは0.7V vs Li/Li+を超えると傾きが大きくなる。また、0.7Vを超える領域ではSiOxのリチウム吸蔵・放出に対する内部抵抗も大きくなることから、0.7V以下の電位領域を用いることが平均電圧、レート特性向上の観点から好ましく、この場合、表1の結果より、SiOxへの総ドープ量(Ln+Lpに相当するドープ量)は、リチウムの負極Siに対する原子比(即ち、Ln+Lp)で表すと3.3より大とすることが好ましくなる。また、リチウム金属電位に対し1mVでの低電圧で所定時間印加した際の充電容量が負極中Siに対するリチウムの原子比が4.2であることより、負極への金属リチウムの析出を防ぐためには、5.5未満とすることが好ましい。故にLpとLpの和は、2.5<Ln+Lp<5.5であり、好ましくは3.3<Ln+Lp<5.5である。またLnは、負極へプリドーピングするリチウムの負極Siに対する原子比であるが、Ln+Lp=4.2までリチウムドープし、0.7Vまで放電した際に可逆とならなかった分を補えば良く、Ln=4.2−2.4=1.8であるが、正極に電気化学的に放出可能なリチウムを含む材料では、好ましくは0.8<Ln、更に好ましくは1.2<Lnであり、正極に電気化学的に放出可能なリチウムを含まない材料では、好ましくは2.5<Ln、更に好ましくは3.5<Lnである。
なお、0.3<Lnについては、負極へプリドーピングするリチウムの負極Siに対する原子比Lnが下限値0.3未満の場合、プリドーピングの量が少なく、実施例(図2)、比較例(図3)に示すように、プリドープによる高エネルギー密度化、平均電圧の向上等本発明の効果が得られない。
また、Lpは正極から放出され負極Siに吸蔵されるリチウム量であり、リチウム複合酸化物の場合、充放電に関与するリチウム量は、正極から放出されるリチウム量を超えない場合が多い。即ち、2.0≧Lpの場合、Siが高いリチウムを吸蔵、放出が可能な能力を有するにもかかわらず、その能力を十分に利用できないことから、高いエネルギー密度を得ることが難しくなるため、2.0<Lpであることが好ましい。即ち、2.0≧Lpとは、負極容量において1200mAh/g以下の利用となる。
When considering the volume change when SiOx occludes lithium, 900 mAh / g or more, preferably 1200 mAh when differentiating from existing graphite-based materials (300 mAh / g, about 2-3 times the density during charging SiOx). A capacity of at least / g is required. Therefore, from the results in Table 1, the total doping amount to SiOx (the doping amount corresponding to Ln + Lp) needs to be larger than 2.5 when expressed by the atomic ratio of lithium to the negative electrode Si (that is, Ln + Lp). Further, as apparent from FIG. 1, the slope of the potential curve at the time of releasing SiOx lithium (corresponding to discharge in the battery) exceeds 0.7 V vs Li / Li + . In addition, since the internal resistance to SiO occlusion / release of SiOx increases in a region exceeding 0.7 V, it is preferable to use a potential region of 0.7 V or less from the viewpoint of improving the average voltage and rate characteristics. From the result of 1, it is preferable that the total doping amount to SiOx (the doping amount corresponding to Ln + Lp) is larger than 3.3 in terms of the atomic ratio of lithium to the negative electrode Si (that is, Ln + Lp). In order to prevent deposition of metallic lithium on the negative electrode, the charge capacity when applied for a predetermined time at a low voltage of 1 mV with respect to the lithium metal potential is the atomic ratio of lithium to Si in the negative electrode being 4.2. It is preferable to be less than 5.5. Therefore, the sum of Lp and Lp is 2.5 <Ln + Lp <5.5, and preferably 3.3 <Ln + Lp <5.5. Ln is an atomic ratio of lithium to be negatively doped to the negative electrode with respect to the negative electrode Si. However, Ln may be compensated for the amount which is not reversible when lithium-doped to Ln + Lp = 4.2 and discharged to 0.7V. = 4.2-2.4 = 1.8, but in a material containing lithium that can be electrochemically released to the positive electrode, preferably 0.8 <Ln, more preferably 1.2 <Ln, In a material that does not contain lithium that can be electrochemically released into the positive electrode, preferably 2.5 <Ln, more preferably 3.5 <Ln.
For 0.3 <Ln, when the atomic ratio Ln of lithium to be negatively doped to the negative electrode with respect to the negative electrode Si is less than the lower limit of 0.3, the amount of pre-doping is small, and Example (FIG. 2), Comparative Example ( As shown in FIG. 3), the effects of the present invention such as high energy density by pre-doping and improvement of average voltage cannot be obtained.
Lp is the amount of lithium released from the positive electrode and occluded by the negative electrode Si. In the case of a lithium composite oxide, the amount of lithium involved in charge / discharge often does not exceed the amount of lithium released from the positive electrode. That is, in the case of 2.0 ≧ Lp, it is difficult to obtain a high energy density because the ability cannot be fully utilized even though Si has the ability to occlude and release lithium. It is preferable that 2.0 <Lp. That is, 2.0 ≧ Lp means that the negative electrode capacity is 1200 mAh / g or less.

(SiOx負極を用いた非水系二次電池の試作及び評価)
Ni系正極材料であるLiNi0.8Co0.22を活物質とし、正極を作製した。正極活物質、アセチレンブラック(導電剤)、PVdF(バインダー)を92/4/4(質量比)にてNMP(N−メチルピロリドン)溶液中で混合し、正極合剤スラリーを得た。該スラリーを集電体であるAl集電箔上(厚さ20μm)に塗工して乾燥後、プレスにより、密度3.05g/cm3,厚さ107μmの正極を得た。この正極単極の初期充放電特性は4.3V−2.7Vで175mAh/gの容量を有し、初期充放電効率は82%であった。
なお、Ni系正極材料であるLiNi0.8Co0.22はNi:Coモル比=80:20となるように硝酸ニッケル、硝酸コバルト水溶液を作製し、該水溶液に水酸化ナトリウム溶液を混合・反応させ、得られた反応物をろ過・水洗、続いてLi/(Ni+Co)=1.05に相当する量の水酸化リチウム水溶液を混合・乾燥後、酸素下、800℃にて焼成を行うことにより得た。
(Trial manufacture and evaluation of non-aqueous secondary battery using SiOx negative electrode)
A positive electrode was prepared using LiNi 0.8 Co 0.2 O 2 , which is a Ni-based positive electrode material, as an active material. A positive electrode active material, acetylene black (conductive agent), and PVdF (binder) were mixed in an NMP (N-methylpyrrolidone) solution at 92/4/4 (mass ratio) to obtain a positive electrode mixture slurry. The slurry was coated on an Al current collector foil (thickness 20 μm) as a current collector, dried, and then pressed to obtain a positive electrode having a density of 3.05 g / cm 3 and a thickness of 107 μm. The initial charge / discharge characteristics of this positive electrode single electrode were 4.3V-2.7V, a capacity of 175 mAh / g, and the initial charge / discharge efficiency was 82%.
In addition, NiNi 0.8 Co 0.2 O 2 which is a Ni-based positive electrode material is prepared by making nickel nitrate and cobalt nitrate aqueous solution so that Ni: Co molar ratio = 80: 20, and mixing and reacting sodium hydroxide solution with the aqueous solution. The reaction product obtained was filtered and washed, followed by mixing and drying an aqueous lithium hydroxide solution in an amount corresponding to Li / (Ni + Co) = 1.05, followed by firing at 800 ° C. under oxygen. It was.

上記と同じ方法で作製した厚み40μmのSiOx電極(200℃真空下、10時間乾燥)と上記Ni系正極(上記の厚さ107μmの正極を集電体上に形成した電極)(170℃真空下、10時間乾燥)を組み合わせて、非水系二次電池を試作した。なお、SiOxへのプリドーピングは、厚さ20μmのLi金属をSiOx負極上に貼り付け、セル組み立て後、電解液を注入し、60時間放置することにより電池内で実施した。   A SiOx electrode having a thickness of 40 μm (dried at 200 ° C. under vacuum for 10 hours) and the Ni-based positive electrode (electrode having the positive electrode having a thickness of 107 μm formed on a current collector) (170 ° C. under vacuum) 10 hours dry) was combined to produce a non-aqueous secondary battery. In addition, the pre-doping to SiOx was performed in the battery by attaching Li metal having a thickness of 20 μm on the SiOx negative electrode, injecting an electrolytic solution after cell assembly, and allowing to stand for 60 hours.

電極対向面積は1.4×2.0cm2とし、セパレータには厚さ25μmの多孔性ポリエチレンを介してSiOx電極(Li金属貼り付け)とNi系電極を対向させ、電解液としてエチレンカーボネートとメチルエチルカーボネートを3:7体積比で混合し、溶媒に1mol/lの濃度にLiPF6を溶解した溶液を含浸させた。60時間放置後、試作したセルの内1セルを解体したところ、リチウム金属は負極表面から消失しており、SiOx負極表面にリチウムを張り合わせることにより電池内で電気化学的に接触させ、リチウムをプリドーピングすることが、SiOxにおいて可能であることを確認した。この時の負極へプリドーピングしたリチウムの負極Siに対する原子比Lnは1.8であり、プリドーピング後の負極厚みは60μmであり、貼り付けたLi金属(20μm)に相当する厚みが増加しており、リチウム金属消失による隙間があいていないことが分かる。 The electrode facing area is 1.4 × 2.0 cm 2, and a SiOx electrode (Li metal affixed) and a Ni-based electrode are opposed to each other through a 25 μm thick porous polyethylene on the separator, and ethylene carbonate and methyl are used as the electrolyte. Ethyl carbonate was mixed at a volume ratio of 3: 7 and impregnated with a solution of LiPF 6 dissolved in a solvent at a concentration of 1 mol / l. After leaving for 60 hours, one of the prototyped cells was disassembled. As a result, lithium metal disappeared from the negative electrode surface. By attaching lithium to the SiOx negative electrode surface, electrochemical contact was made in the battery, and lithium was removed. It was confirmed that pre-doping is possible in SiOx. At this time, the atomic ratio Ln of lithium pre-doped to the negative electrode with respect to the negative electrode Si is 1.8, the negative electrode thickness after pre-doping is 60 μm, and the thickness corresponding to the attached Li metal (20 μm) increases. It can be seen that there is no gap due to loss of lithium metal.

上記で作製した電池を3mAの電流で4.3Vまで充電し、その後4.3Vの定電圧を印加する定電流定電圧充電を8時間行った。続いて、3mAの定電流で2.0V(負極電圧がリチウム電位に対し0.7V程度に相当)まで放電した。結果を図2に示した。充電容量は18.0mAhであり、放電容量は14.9mAhであり、放電平均電圧は3.60Vであった。また、3.0Vまでの放電容量においても14.0mAhであった。正極から放出され負極に吸蔵されるリチウムの負極Siに対する原子比Lpは2.7であり、Ln+Lp=4.5である。初期充放電効率は82.8%であり、正極の効率とほぼ等しくなり、負極SiOxに関してはプリドープにより、特性の優れるLi金属電位に対し、0.7Vまでの領域内で利用することが可能となった。   The battery fabricated as described above was charged to 4.3 V with a current of 3 mA, and then a constant current and constant voltage charge in which a constant voltage of 4.3 V was applied was performed for 8 hours. Subsequently, the battery was discharged at a constant current of 3 mA to 2.0 V (negative electrode voltage corresponding to about 0.7 V with respect to the lithium potential). The results are shown in FIG. The charge capacity was 18.0 mAh, the discharge capacity was 14.9 mAh, and the discharge average voltage was 3.60V. Moreover, it was 14.0 mAh also in the discharge capacity to 3.0V. The atomic ratio Lp of lithium released from the positive electrode and occluded by the negative electrode with respect to the negative electrode Si is 2.7, and Ln + Lp = 4.5. The initial charge / discharge efficiency is 82.8%, which is almost equal to the efficiency of the positive electrode, and the negative electrode SiOx can be used in a region up to 0.7 V with respect to the Li metal potential having excellent characteristics by pre-doping. became.

[比較例1]
上記厚み40μmのSiOx電極(200℃真空下、10時間乾燥)と上記厚み107μmのNi系電極(170℃真空下、10時間乾燥)を組み合わせて、非水系二次電池を試作した。SiOxへのプリドーピングは実施しなかった。電極対向面積は1.4×2.0cm2とし、セパレータには厚さ25μmの多孔性ポリエチレンを介してSiOx電極(Li金属貼り付けなし)とNi系電極を対向させ、電解液としてエチレンカーボネートとメチルエチルカーボネートを3:7体積比で混合し、溶媒に1mol/lの濃度にLiPF6を溶解した溶液を含浸させた。この時の負極へプリドーピングしたリチウムの負極Siに対する原子比Lnは当然のことながら0である。
[Comparative Example 1]
A non-aqueous secondary battery was prototyped by combining the 40 μm thick SiOx electrode (200 ° C. under vacuum for 10 hours) and the 107 μm thick Ni-based electrode (170 ° C. under vacuum for 10 hours). Predoping to SiOx was not performed. The electrode facing area is 1.4 × 2.0 cm 2 , and the separator is made to face a SiOx electrode (without attaching Li metal) and a Ni-based electrode through a porous polyethylene having a thickness of 25 μm. Methyl ethyl carbonate was mixed at a volume ratio of 3: 7 and impregnated with a solution of LiPF 6 dissolved in a solvent at a concentration of 1 mol / l. At this time, the atomic ratio Ln of lithium pre-doped into the negative electrode with respect to the negative electrode Si is zero as a matter of course.

上記で作製した電池を1mAの電流で4.3Vまで充電し、その後4.3Vの定電圧を印加する定電流定電圧充電を20時間行った。続いて、2mAの定電流で3.0V(負極電圧がリチウム電位に対し0.7V程度に相当)まで放電した。結果を図3に示した。充電容量は18.2mAhであり、放電容量は10.6mAhであり、放電平均電圧は3.57Vであった。正極から放出され負極に吸蔵されるリチウムの負極Siに対する原子比Lpは2.7であり、Ln+Lp=2.7である。初期充放電効率は58.2%である。   The battery produced above was charged to 4.3 V with a current of 1 mA, and then a constant current and constant voltage charge for applying a constant voltage of 4.3 V was performed for 20 hours. Subsequently, the battery was discharged at a constant current of 2 mA to 3.0 V (negative electrode voltage corresponding to about 0.7 V with respect to the lithium potential). The results are shown in FIG. The charge capacity was 18.2 mAh, the discharge capacity was 10.6 mAh, and the discharge average voltage was 3.57V. The atomic ratio Lp of lithium released from the positive electrode and occluded by the negative electrode with respect to the negative electrode Si is 2.7, and Ln + Lp = 2.7. The initial charge / discharge efficiency is 58.2%.

[比較例2]
上記と同様の方法で作製した、厚み30μmのSiOx電極(200℃真空下、10時間乾燥)と上記厚み107μmのNi系電極(170℃真空下、10時間乾燥)を組み合わせて、非水系二次電池を試作した。SiOxへのプリドーピングは実施しなかった。電極対向面積は1.4×2.0cm2とし、セパレータには厚さ25μmの多孔性ポリエチレンを介してSiOx電極(Li金属貼り付けなし)とNi系電極を対向させ、電解液としてエチレンカーボネートとメチルエチルカーボネートを3:7体積比で混合し、溶媒に1mol/lの濃度にLiPF6を溶解した溶液を含浸させた。この時の負極へプリドーピングしたリチウムの負極Siに対する原子比Lnは当然のことながら0である。
[Comparative Example 2]
A non-aqueous secondary electrode prepared by combining the 30 μm thick SiOx electrode (dried at 200 ° C. under vacuum for 10 hours) and the 107 μm thick Ni-based electrode (dried at 170 ° C. under vacuum for 10 hours) produced in the same manner as above. A battery was prototyped. Predoping to SiOx was not performed. The electrode facing area is 1.4 × 2.0 cm 2 , and the separator is made to face a SiOx electrode (without attaching Li metal) and a Ni-based electrode through a porous polyethylene having a thickness of 25 μm. Methyl ethyl carbonate was mixed at a volume ratio of 3: 7 and impregnated with a solution of LiPF 6 dissolved in a solvent at a concentration of 1 mol / l. At this time, the atomic ratio Ln of lithium pre-doped into the negative electrode with respect to the negative electrode Si is zero as a matter of course.

上記で作製した電池を1mAの電流で4.3Vまで充電し、その後4.3Vの定電圧を印加する定電流定電圧充電を20時間行った。続いて、2mAの定電流で3.0V(負極電圧がリチウム電位に対し0.7V程度に相当)まで放電した。充電容量は17.8mAhであり、放電容量は11.0mAhであり、放電平均電圧は3.59Vであった。正極から放出され負極に吸蔵されるリチウムの負極Siに対する原子比Lpは4.1であり、Ln+Lp=4.1である。初期充放電効率は61.8%である。   The battery produced above was charged to 4.3 V with a current of 1 mA, and then a constant current and constant voltage charge for applying a constant voltage of 4.3 V was performed for 20 hours. Subsequently, the battery was discharged at a constant current of 2 mA to 3.0 V (negative electrode voltage corresponding to about 0.7 V with respect to the lithium potential). The charge capacity was 17.8 mAh, the discharge capacity was 11.0 mAh, and the discharge average voltage was 3.59V. The atomic ratio Lp of lithium released from the positive electrode and stored in the negative electrode with respect to the negative electrode Si is 4.1, and Ln + Lp = 4.1. The initial charge / discharge efficiency is 61.8%.

本実施例では初期効率が82%のNi系酸化物を用いているが、本実施例は本発明の正極を何ら限定するものではなく、例えば、初期効率が更に高い正極を用いた場合、プリドーピングによる容量向上効果は更に顕著に現れる。また、実施例と同等の正極に黒鉛系負極を合わせた場合、黒鉛系負極の厚みは125μm程度(密度1.5g/cm3:容量330mAh/g)の厚みが必要となる。正負極の総厚み(正極電極層厚み+負極電極層厚み)を180μm程度とする場合では、プリドーピングを実施したSiOx電池の場合、黒鉛系材料に対しては同体積で1.3倍程度の容量向上が達成できる。 In this example, an Ni-based oxide having an initial efficiency of 82% is used. However, this example does not limit the positive electrode of the present invention. For example, when a positive electrode having a higher initial efficiency is used, The capacity improvement effect by doping appears more remarkably. Further, when a graphite negative electrode is combined with a positive electrode equivalent to the example, the thickness of the graphite negative electrode is required to be about 125 μm (density 1.5 g / cm 3 : capacity 330 mAh / g). In the case where the total thickness of the positive and negative electrodes (positive electrode layer thickness + negative electrode layer thickness) is about 180 μm, in the case of a pre-doped SiOx battery, about 1.3 times the same volume as the graphite material. Capacity improvement can be achieved.

高容量材料であるSiOxにリチウムをプリドーピングした材料を負極材料として用いた本発明の非水系二次電池は、例えば、携帯機器用分野において希求される電池の大幅な高エネルギー密度化に応えることができる。また、SiOxへリチウムをプリドーピングする量を適切に制御することにより、高エネルギー密度化に加え、平均電圧・内部抵抗等をコントロールすることも可能である。   The non-aqueous secondary battery of the present invention using a high-capacity material SiOx pre-doped lithium as a negative electrode material, for example, responds to the drastic increase in energy density of batteries that are desired in the field of portable devices. Can do. Further, by appropriately controlling the amount of pre-doping lithium into SiOx, it is possible to control the average voltage, internal resistance, etc. in addition to increasing the energy density.

本発明の実施例1における負極の単極のリチウムドーピング・脱ドーピング特性を示すものであり、(a)は1200mAh/gまでドーピングした場合、(b)は1800mAh/gまでドーピングした場合、(c)は2500mAh/gまでドーピングした場合を示す。FIG. 6 shows the single-electrode lithium doping / dedoping characteristics of the negative electrode in Example 1 of the present invention, where (a) is doped to 1200 mAh / g, (b) is doped to 1800 mAh / g, (c ) Shows the case of doping up to 2500 mAh / g. 本発明の実施例1における本発明電池の初期充放電特性を示す図である。It is a figure which shows the initial stage charge / discharge characteristic of this invention battery in Example 1 of this invention. 本発明の比較例1における比較電池の初期充放電特性を示す図である。It is a figure which shows the initial stage charge / discharge characteristic of the comparative battery in the comparative example 1 of this invention.

Claims (7)

正極、負極及び非水系電解質を備えた非水系二次電池において、正極がリチウムを電気化学的に吸蔵及び放出し得る材料からなると共に、負極がSiOx(0.3≦x≦1.6)にリチウムをプリドーピングした材料を含むことを特徴とする非水系二次電池。   In a nonaqueous secondary battery including a positive electrode, a negative electrode, and a nonaqueous electrolyte, the positive electrode is made of a material capable of electrochemically inserting and extracting lithium, and the negative electrode is made of SiOx (0.3 ≦ x ≦ 1.6). A non-aqueous secondary battery comprising a material pre-doped with lithium. 正極から放出され負極に吸蔵されるリチウムの負極Siに対する原子比をLpとし、負極へプリドーピングするリチウムの負極Siに対する原子比をLnとする時、0.3<Ln、かつ2.5<Ln+Lp<5.5であることを特徴とする請求項1に記載の非水系二次電池。   When the atomic ratio of lithium released from the positive electrode and occluded by the negative electrode to the negative electrode Si is Lp, and the atomic ratio of lithium predoped to the negative electrode to the negative electrode Si is Ln, 0.3 <Ln and 2.5 <Ln + Lp The nonaqueous secondary battery according to claim 1, wherein <5.5. 正極がリチウム複合酸化物であり、正極から放出され負極に吸蔵されるリチウムの負極Siに対する原子比Lpが2.0<Lpであることを特徴とする請求項2記載の非水系二次電池。   3. The nonaqueous secondary battery according to claim 2, wherein the positive electrode is a lithium composite oxide, and the atomic ratio Lp of lithium released from the positive electrode and occluded by the negative electrode to the negative electrode Si is 2.0 <Lp. 負極と金属リチウムとを電池内で電気化学的に接触させることで、SiOx(0.3≦x≦1.6)にリチウムがプリドーピングされてなることを特徴とする請求項1〜3のいずれか1項に記載の非水系二次電池。   4. The lithium is pre-doped in SiOx (0.3 ≦ x ≦ 1.6) by bringing the negative electrode and metallic lithium into electrochemical contact within the battery. The non-aqueous secondary battery according to claim 1. 負極表面にリチウムを張り合わせて電池内で電気化学的に接触させることで、SiOx(0.3≦x≦1.6)にリチウムがプリドーピングされてなることを特徴とする請求項4記載の非水系二次電池。   5. The non-doped lithium according to claim 4, wherein lithium is pre-doped in SiOx (0.3 ≦ x ≦ 1.6) by attaching lithium to the negative electrode surface and bringing it into electrochemical contact within the battery. Water-based secondary battery. 張り合わせるリチウムの厚さをTL、プリドーピング前の負極の厚みをTN0、電池が満充電された時の負極の厚みをTNCとした時、(TNC−TN0)≧TLであることを特徴とする請求項5記載の非水系二次電池。 (TN C −TN 0 ) ≧ TL, where TL is the thickness of the lithium to be bonded, TN 0 is the thickness of the negative electrode before pre-doping, and TN C is the thickness of the negative electrode when the battery is fully charged. The non-aqueous secondary battery according to claim 5. 負極として、SiOxの表面に炭素材料をSiOxの質量に対し1〜50%で複合させたものを用いることを特徴とする請求項1〜6のいずれか1項に記載の非水系二次電池。   The nonaqueous secondary battery according to any one of claims 1 to 6, wherein the negative electrode is a composite of a carbon material on the surface of SiOx at 1 to 50% with respect to the mass of SiOx.
JP2007245669A 2007-09-21 2007-09-21 Non-aqueous secondary battery Pending JP2009076372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007245669A JP2009076372A (en) 2007-09-21 2007-09-21 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007245669A JP2009076372A (en) 2007-09-21 2007-09-21 Non-aqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2009076372A true JP2009076372A (en) 2009-04-09

Family

ID=40611146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007245669A Pending JP2009076372A (en) 2007-09-21 2007-09-21 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2009076372A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023710A (en) * 2009-06-19 2011-02-03 Semiconductor Energy Lab Co Ltd Method for manufacturing electric storage device
WO2012015033A1 (en) 2010-07-29 2012-02-02 日本電気株式会社 Lithium ion secondary battery and process for production thereof
KR101138502B1 (en) * 2010-08-27 2012-04-25 삼성전기주식회사 Method of manufacturing lithium ion capacitor
EP2497144A2 (en) * 2009-11-03 2012-09-12 Envia Systems, Inc. High capacity anode materials for lithium ion batteries
WO2012144177A1 (en) * 2011-04-21 2012-10-26 株式会社豊田自動織機 Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
JP2012226890A (en) * 2011-04-18 2012-11-15 Toyota Industries Corp Lithium ion secondary battery
WO2012165049A1 (en) * 2011-05-27 2012-12-06 日本電気株式会社 Method for doping and dedoping lithium into and from negative electrode and method for manufacturing negative electrode for lithium secondary battery
JP2013008586A (en) * 2011-06-24 2013-01-10 Sony Corp Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
JP5121035B1 (en) * 2012-02-28 2013-01-16 株式会社日立製作所 Lithium ion secondary battery
JP2013033692A (en) * 2011-08-03 2013-02-14 Toyota Industries Corp Binder for lithium ion secondary battery negative electrode, and lithium ion secondary battery with binder for negative electrode
WO2013038672A1 (en) * 2011-09-13 2013-03-21 パナソニック株式会社 Nonaqueous electrolyte secondary cell
WO2013042421A1 (en) * 2011-09-21 2013-03-28 日本電気株式会社 Secondary battery
WO2013042561A1 (en) * 2011-09-20 2013-03-28 Semiconductor Energy Laboratory Co., Ltd. Lithium secondary battery and manufacturing method thereof
JP2013065494A (en) * 2011-09-20 2013-04-11 Toyota Industries Corp Binder for negative electrode of lithium ion secondary battery, manufacturing method of the same, and lithium ion secondary battery using binder for negative electrode
JP2013065493A (en) * 2011-09-20 2013-04-11 Toyota Industries Corp Binder for negative electrode of lithium ion secondary battery, and lithium ion secondary battery using binder for negative electrode
JP2013175316A (en) * 2012-02-24 2013-09-05 Toyota Industries Corp Lithium-ion secondary battery and vehicle mounted with the same
WO2014077113A1 (en) * 2012-11-13 2014-05-22 日本電気株式会社 Negative-electrode active substance, method for manufacturing same, and lithium secondary cell
JP2015002169A (en) * 2013-06-14 2015-01-05 上海緑孚新能源科技有限公司Greenful New Energy Co.,Ltd. Secondary battery and electrode for secondary battery
JP2015002168A (en) * 2013-06-14 2015-01-05 上海緑孚新能源科技有限公司Greenful New Energy Co.,Ltd. Secondary battery
JP2015002171A (en) * 2013-06-14 2015-01-05 上海緑孚新能源科技有限公司Greenful New Energy Co.,Ltd. Secondary battery and electrode for secondary battery
JP2015111547A (en) * 2013-10-29 2015-06-18 信越化学工業株式会社 Negative electrode active material, production method for negative electrode active material, and lithium ion secondary battery
JP2016042487A (en) * 2015-12-10 2016-03-31 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric motor vehicle, electric power storage system, electric motor-driven tool and electronic device
US9312534B2 (en) 2010-12-09 2016-04-12 Nec Corporation Nonaqueous electrolytic solution secondary battery, and positive electrode and negative electrode used in the same
JP2016110777A (en) * 2014-12-04 2016-06-20 積水化学工業株式会社 Method for manufacturing lithium ion secondary battery
JP2017037748A (en) * 2015-08-07 2017-02-16 日立化成株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO2017125977A1 (en) * 2016-01-21 2017-07-27 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, nonaqueous electrolyte secondary battery, method for producing negative electrode active material, and method for manufacturing nonaqueous electrolyte secondary battery
WO2018047656A1 (en) * 2016-09-08 2018-03-15 マクセルホールディングス株式会社 Lithium ion secondary battery and method for manufacturing same
WO2018084046A1 (en) * 2016-11-02 2018-05-11 マクセルホールディングス株式会社 Lithium ion secondary battery, manufacturing method for same, and precursor for lithium ion secondary battery
US10050262B2 (en) 2011-12-28 2018-08-14 Panasonic Intellectual Property Mangement Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
US10153479B2 (en) 2014-10-21 2018-12-11 Semiconductor Energy Laboratory Co., Ltd. Apparatus, secondary battery, electronic device, and battery management unit
US10403879B2 (en) 2014-12-25 2019-09-03 Semiconductor Energy Laboratory Co., Ltd. Electrolytic solution, secondary battery, electronic device, and method of manufacturing electrode
EP3537519A4 (en) * 2017-05-19 2019-12-04 LG Chem, Ltd. Method for pre-lithiating silicon oxide anode for secondary battery
US10581060B2 (en) 2015-02-24 2020-03-03 Semiconductor Energy Laboratory Co., Ltd. Apparatus, secondary battery, manufacturing method, and electronic device
US10593929B2 (en) 2014-07-04 2020-03-17 Semiconductor Energy Laboratory Co., Ltd. Fabricating method and fabricating apparatus for secondary battery
CN111183537A (en) * 2017-07-18 2020-05-19 日产自动车株式会社 Method for predoping negative electrode active material, electrode for electrical device, and method for manufacturing electrical device
EP3618161A4 (en) * 2017-05-25 2021-01-13 Murata Manufacturing Co., Ltd. Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
KR20210022237A (en) 2019-08-19 2021-03-03 대주전자재료 주식회사 Secondary battery and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097638A (en) * 1995-06-22 1997-01-10 Seiko Instr Inc Nonaqueous electrolytic secondary battery
JP2001148242A (en) * 1998-12-24 2001-05-29 Seiko Instruments Inc Non-aqueous electrolyte secondary battery
JP2002373653A (en) * 2001-06-15 2002-12-26 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery
JP2004349057A (en) * 2003-05-21 2004-12-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2005085717A (en) * 2003-09-11 2005-03-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2007026983A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, its manufacturing method and lithium secondary battery using it
JP2007109477A (en) * 2005-10-12 2007-04-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its positive electrode active material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097638A (en) * 1995-06-22 1997-01-10 Seiko Instr Inc Nonaqueous electrolytic secondary battery
JP2001148242A (en) * 1998-12-24 2001-05-29 Seiko Instruments Inc Non-aqueous electrolyte secondary battery
JP2002373653A (en) * 2001-06-15 2002-12-26 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery
JP2004349057A (en) * 2003-05-21 2004-12-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2005085717A (en) * 2003-09-11 2005-03-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2007026983A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, its manufacturing method and lithium secondary battery using it
JP2007109477A (en) * 2005-10-12 2007-04-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its positive electrode active material

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023710A (en) * 2009-06-19 2011-02-03 Semiconductor Energy Lab Co Ltd Method for manufacturing electric storage device
US10003068B2 (en) 2009-11-03 2018-06-19 Zenlabs Energy, Inc. High capacity anode materials for lithium ion batteries
EP2497144A2 (en) * 2009-11-03 2012-09-12 Envia Systems, Inc. High capacity anode materials for lithium ion batteries
EP2497144A4 (en) * 2009-11-03 2014-04-23 Envia Systems Inc High capacity anode materials for lithium ion batteries
US9190694B2 (en) 2009-11-03 2015-11-17 Envia Systems, Inc. High capacity anode materials for lithium ion batteries
US11309534B2 (en) 2009-11-03 2022-04-19 Zenlabs Energy, Inc. Electrodes and lithium ion cells with high capacity anode materials
WO2012015033A1 (en) 2010-07-29 2012-02-02 日本電気株式会社 Lithium ion secondary battery and process for production thereof
US8956762B2 (en) 2010-07-29 2015-02-17 Nec Corporation Lithium ion secondary battery and method for manufacturing the same
KR101138502B1 (en) * 2010-08-27 2012-04-25 삼성전기주식회사 Method of manufacturing lithium ion capacitor
US9312534B2 (en) 2010-12-09 2016-04-12 Nec Corporation Nonaqueous electrolytic solution secondary battery, and positive electrode and negative electrode used in the same
JP2012226890A (en) * 2011-04-18 2012-11-15 Toyota Industries Corp Lithium ion secondary battery
WO2012144177A1 (en) * 2011-04-21 2012-10-26 株式会社豊田自動織機 Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
WO2012165049A1 (en) * 2011-05-27 2012-12-06 日本電気株式会社 Method for doping and dedoping lithium into and from negative electrode and method for manufacturing negative electrode for lithium secondary battery
US9123928B2 (en) 2011-05-27 2015-09-01 Nec Corporation Method for doping and dedoping lithium into and from negative electrode and method for producing negative electrode for lithium secondary battery
CN103563132A (en) * 2011-05-27 2014-02-05 日本电气株式会社 Method for doping and dedoping lithium into and from negative electrode and method for manufacturing negative electrode for lithium secondary battery
JPWO2012165049A1 (en) * 2011-05-27 2015-02-23 日本電気株式会社 Method for doping and dedoping lithium to negative electrode and method for producing negative electrode for lithium secondary battery
US9780368B2 (en) 2011-06-24 2017-10-03 Sony Corporation Lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic device
JP2013008586A (en) * 2011-06-24 2013-01-10 Sony Corp Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
JP2013033692A (en) * 2011-08-03 2013-02-14 Toyota Industries Corp Binder for lithium ion secondary battery negative electrode, and lithium ion secondary battery with binder for negative electrode
WO2013038672A1 (en) * 2011-09-13 2013-03-21 パナソニック株式会社 Nonaqueous electrolyte secondary cell
JP2013065493A (en) * 2011-09-20 2013-04-11 Toyota Industries Corp Binder for negative electrode of lithium ion secondary battery, and lithium ion secondary battery using binder for negative electrode
WO2013042561A1 (en) * 2011-09-20 2013-03-28 Semiconductor Energy Laboratory Co., Ltd. Lithium secondary battery and manufacturing method thereof
US9350044B2 (en) 2011-09-20 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Lithium secondary battery and manufacturing method thereof
JP2013065494A (en) * 2011-09-20 2013-04-11 Toyota Industries Corp Binder for negative electrode of lithium ion secondary battery, manufacturing method of the same, and lithium ion secondary battery using binder for negative electrode
WO2013042421A1 (en) * 2011-09-21 2013-03-28 日本電気株式会社 Secondary battery
US10050262B2 (en) 2011-12-28 2018-08-14 Panasonic Intellectual Property Mangement Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP2013175316A (en) * 2012-02-24 2013-09-05 Toyota Industries Corp Lithium-ion secondary battery and vehicle mounted with the same
WO2013128559A1 (en) * 2012-02-28 2013-09-06 株式会社日立製作所 Lithium ion secondary battery
JP5121035B1 (en) * 2012-02-28 2013-01-16 株式会社日立製作所 Lithium ion secondary battery
US9673446B2 (en) 2012-02-28 2017-06-06 Hitachi Maxell, Ltd. Lithium ion secondary battery containing a negative electrode material layer containing Si and O as constituent elements
WO2014077113A1 (en) * 2012-11-13 2014-05-22 日本電気株式会社 Negative-electrode active substance, method for manufacturing same, and lithium secondary cell
JPWO2014077113A1 (en) * 2012-11-13 2017-01-05 日本電気株式会社 Negative electrode active material, method for producing the same, and lithium secondary battery
US9985286B2 (en) 2012-11-13 2018-05-29 Nec Corporation Negative electrode active material, method for manufacturing same, and lithium secondary battery
JP2015002169A (en) * 2013-06-14 2015-01-05 上海緑孚新能源科技有限公司Greenful New Energy Co.,Ltd. Secondary battery and electrode for secondary battery
JP2015002171A (en) * 2013-06-14 2015-01-05 上海緑孚新能源科技有限公司Greenful New Energy Co.,Ltd. Secondary battery and electrode for secondary battery
JP2015002168A (en) * 2013-06-14 2015-01-05 上海緑孚新能源科技有限公司Greenful New Energy Co.,Ltd. Secondary battery
US9929399B2 (en) 2013-10-29 2018-03-27 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, method for producing a negative electrode active material, and lithium ion secondary battery
JP2015111547A (en) * 2013-10-29 2015-06-18 信越化学工業株式会社 Negative electrode active material, production method for negative electrode active material, and lithium ion secondary battery
US10283756B2 (en) 2013-10-29 2019-05-07 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, method for producing a negative electrode active material, and lithium ion secondary battery
US10615404B2 (en) 2014-07-04 2020-04-07 Semiconductor Energy Laboratory Co., Ltd. Fabricating method and fabricating apparatus for secondary battery
US10593929B2 (en) 2014-07-04 2020-03-17 Semiconductor Energy Laboratory Co., Ltd. Fabricating method and fabricating apparatus for secondary battery
US10153479B2 (en) 2014-10-21 2018-12-11 Semiconductor Energy Laboratory Co., Ltd. Apparatus, secondary battery, electronic device, and battery management unit
JP2016110777A (en) * 2014-12-04 2016-06-20 積水化学工業株式会社 Method for manufacturing lithium ion secondary battery
US10403879B2 (en) 2014-12-25 2019-09-03 Semiconductor Energy Laboratory Co., Ltd. Electrolytic solution, secondary battery, electronic device, and method of manufacturing electrode
US10581060B2 (en) 2015-02-24 2020-03-03 Semiconductor Energy Laboratory Co., Ltd. Apparatus, secondary battery, manufacturing method, and electronic device
JP2017037748A (en) * 2015-08-07 2017-02-16 日立化成株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2016042487A (en) * 2015-12-10 2016-03-31 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric motor vehicle, electric power storage system, electric motor-driven tool and electronic device
WO2017125977A1 (en) * 2016-01-21 2017-07-27 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, nonaqueous electrolyte secondary battery, method for producing negative electrode active material, and method for manufacturing nonaqueous electrolyte secondary battery
JP2017130368A (en) * 2016-01-21 2017-07-27 信越化学工業株式会社 Negative electrode active substance, mixed negative electrode active substance material, nonaqueous electrolyte secondary battery, method of producing negative electrode active substance, and method of manufacturing nonaqueous electrolyte secondary battery
CN108496267A (en) * 2016-01-21 2018-09-04 信越化学工业株式会社 The manufacturing method of negative electrode active material, mixing negative electrode active material material, non-aqueous electrolyte secondary battery, the manufacturing method of negative electrode active material and non-aqueous electrolyte secondary battery
WO2018047656A1 (en) * 2016-09-08 2018-03-15 マクセルホールディングス株式会社 Lithium ion secondary battery and method for manufacturing same
WO2018084046A1 (en) * 2016-11-02 2018-05-11 マクセルホールディングス株式会社 Lithium ion secondary battery, manufacturing method for same, and precursor for lithium ion secondary battery
EP3537519A4 (en) * 2017-05-19 2019-12-04 LG Chem, Ltd. Method for pre-lithiating silicon oxide anode for secondary battery
US11575117B2 (en) 2017-05-19 2023-02-07 Lg Energy Solution, Ltd. Pre-lithiation method of silicon oxide anode electrodes for secondary battery
EP3618161A4 (en) * 2017-05-25 2021-01-13 Murata Manufacturing Co., Ltd. Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
US11831008B2 (en) 2017-05-25 2023-11-28 Murata Manufacturing Co., Ltd. Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
CN111183537A (en) * 2017-07-18 2020-05-19 日产自动车株式会社 Method for predoping negative electrode active material, electrode for electrical device, and method for manufacturing electrical device
CN111183537B (en) * 2017-07-18 2023-07-18 日产自动车株式会社 Method for pre-doping negative electrode active material, electrode for electrical device, and method for manufacturing electrical device
KR20210022237A (en) 2019-08-19 2021-03-03 대주전자재료 주식회사 Secondary battery and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2009076372A (en) Non-aqueous secondary battery
JP5182477B2 (en) Non-aqueous secondary battery
US10573879B2 (en) Electrolytes and methods for using the same
JP5882516B2 (en) Lithium secondary battery
US10511049B2 (en) Electrolyte system including alkali metal bis(fluorosulfonyl)imide and dimethyoxyethane for improving anodic stability of electrochemical cells
JP5158193B2 (en) Lithium air battery
JP6071389B2 (en) Lithium secondary battery
JP4837614B2 (en) Lithium secondary battery
JP6258641B2 (en) Non-aqueous electrolyte secondary battery
US10707530B2 (en) Carbonate-based electrolyte system improving or supporting efficiency of electrochemical cells having lithium-containing anodes
WO2017038041A1 (en) Non-aqueous electrolyte secondary battery
KR100560546B1 (en) Electrode for lithium secondary battery and lithium secondary battery comprising same
JP6218413B2 (en) Pre-doping agent, power storage device using the same, and manufacturing method thereof
JP2021108305A (en) Positive electrode and lithium battery containing positive electrode
JP2007179956A (en) Negative electrode and battery using same
JP6077345B2 (en) Non-aqueous secondary battery positive electrode material, non-aqueous secondary battery positive electrode and non-aqueous secondary battery
JP6362440B2 (en) Secondary battery
JP2008262826A (en) Coin-shaped nonaqueous electrolytic solution secondary battery
JP2013122901A (en) Electrolyte solution for nonaqueous secondary battery, and secondary battery
JP2016139548A (en) Lithium ion battery
KR102531346B1 (en) Anodeless lithium secondary battery and preparing method thereof
JP5564872B2 (en) Nonaqueous electrolyte secondary battery
JP2008226643A (en) Nonaqueous electrolyte secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2013197052A (en) Lithium ion power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402