WO2013038672A1 - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell Download PDF

Info

Publication number
WO2013038672A1
WO2013038672A1 PCT/JP2012/005835 JP2012005835W WO2013038672A1 WO 2013038672 A1 WO2013038672 A1 WO 2013038672A1 JP 2012005835 W JP2012005835 W JP 2012005835W WO 2013038672 A1 WO2013038672 A1 WO 2013038672A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
lithium
electrode active
layer
Prior art date
Application number
PCT/JP2012/005835
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 俊忠
古結 康隆
本田 和義
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013038672A1 publication Critical patent/WO2013038672A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery, and specifically relates to an improvement of a negative electrode mixture layer.
  • Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have attracted attention as typical batteries that satisfy such requirements.
  • the nonaqueous electrolyte secondary battery includes an electrode group in which a positive electrode, a negative electrode, and a separator (porous insulator) interposed therebetween are spirally wound, and a nonaqueous electrolyte.
  • the electrode group is a power generation element.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on the surface thereof
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer formed on the surface thereof.
  • the positive electrode active material a material that reversibly electrochemically reacts with lithium ions, such as lithium cobalt composite oxide, is used, and as the negative electrode active material, lithium metal, a lithium alloy, graphite having lithium ions as a host material is used.
  • the “host substance” refers to a substance that can occlude and release lithium ions.
  • an aprotic organic solvent solution in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved is used as the non-aqueous electrolyte.
  • Non-aqueous electrolyte secondary batteries often use a wound electrode group as described above in order to increase the capacity of the battery.
  • a method of filling as many active materials as possible in the battery by increasing the active material density of the active material layer or using a higher capacity active material is employed.
  • an alloy-based active material containing an element such as silicon or tin used as a negative electrode active material can be expected to increase the capacity because it can store a larger amount of lithium than a graphite material.
  • a film having an appropriate thickness is advantageous for stabilizing the charge / discharge reaction by suppressing side reactions between the active material and the non-aqueous electrolyte.
  • the capacity of the negative electrode is reduced by taking in lithium contained in the nonaqueous electrolyte and the active material, and the cycle life of the battery is shortened.
  • Patent Document 1 uses a nonaqueous electrolyte to which a cyclic carbonate having an unsaturated bond, such as vinylene carbonate (VC), is used to form a stable and strong film on the surface of the negative electrode active material layer at the time of initial charge.
  • VC vinylene carbonate
  • Patent Document 2 proposes a method of forming a lithium carbonate film on the surface of the negative electrode active material layer by previously bringing the negative electrode active material layer occluded with lithium into contact with carbon dioxide.
  • the film formed by the method of Patent Document 1 is a film containing a polymer obtained by polymerization of vinylene carbonate or the like, but the film is easily broken or peeled by expansion and contraction due to repeated charge and discharge.
  • Patent Document 2 tends to cause an increase in resistance and a decrease in charge acceptance by hindering ionic conductivity. As described above, in Patent Document 1 and Patent Document 2, the capacity and the capacity maintenance rate are easily lost.
  • An object of the present invention is to provide a non-aqueous electrolyte secondary battery having high capacity and energy density and improved cycle life.
  • One aspect of the present invention includes a positive electrode, a negative electrode, and an electrode group in which a separator interposed between the positive electrode and the negative electrode is wound or laminated, and a nonaqueous electrolyte.
  • the positive electrode includes a positive electrode current collector, a positive electrode collector, and the like.
  • a positive electrode active material layer including a positive electrode active material capable of occluding and releasing lithium ions attached to the surface of the electric current body, wherein the negative electrode absorbs the negative electrode current collector and the lithium ions attached to the surface of the negative electrode current collector And a negative electrode active material layer containing a releasable negative electrode active material, the negative electrode active material layer comprising a film formed on the surface of the negative electrode active material, wherein at least a part of the film comprises an inorganic lithium compound,
  • the active material layer is divided into the A layer on the negative electrode current collector side and the B layer on the surface side of the negative electrode active material layer in a thickness ratio of 7: 3, the inorganic contained in the B layer per area of the negative electrode
  • the content of the lithium compound is the inorganic Greater than the content of um compounds, it relates to a nonaqueous electrolyte secondary battery.
  • the negative electrode active material layer includes a film containing an inorganic lithium compound, and the content of the inorganic lithium compound is greater on the surface side than the negative electrode current collector side of the negative electrode active material layer. Therefore, it can suppress that a film
  • FIG. 1 is a longitudinal sectional view schematically showing a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically showing a positive electrode, a negative electrode, and a separator used in the nonaqueous electrolyte secondary battery according to one embodiment of the present invention.
  • FIG. 3 is a scanning electron microscope (SEM) photograph of a longitudinal section of the negative electrode active material layer of the negative electrode prepared in Example 1.
  • the nonaqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, and an electrode group in which separators interposed between the positive electrode and the negative electrode are wound or laminated, and a nonaqueous electrolyte.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer including a positive electrode active material capable of inserting and extracting lithium ions attached to the surface of the positive electrode current collector.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer including a negative electrode active material capable of inserting and extracting lithium ions attached to the surface of the negative electrode current collector.
  • the negative electrode active material layer includes a film formed on the surface of the negative electrode active material, and at least a part of the film includes an inorganic lithium compound.
  • the negative electrode active material layer is divided into the A layer on the negative electrode current collector side and the B layer on the surface side of the negative electrode active material layer in a thickness ratio of 7: 3, the B layer per area of the negative electrode
  • the content of the inorganic lithium compound contained is greater than the content of the inorganic lithium compound contained in the A layer.
  • the content per area of the negative electrode may be simply referred to as the content.
  • a film containing an inorganic lithium compound is formed on the surface of the negative electrode active material contained in the negative electrode active material layer. Moreover, the content of the inorganic lithium compound in the B layer on the surface side of the negative electrode (the surface side of the negative electrode active material) is larger than that in the A layer on the negative electrode current collector side.
  • a fresh non-aqueous electrolyte is easily supplied to the B layer on the surface side of the negative electrode active material layer through the separator interface, and side reactions are likely to occur accordingly.
  • the surface of the negative electrode active material is appropriately inactivated, and a side reaction between the negative electrode active material and the nonaqueous electrolyte is suppressed. Therefore, it can suppress that a membrane
  • the content of the inorganic lithium compound is less in the A layer than in the B layer, a battery reaction is likely to occur smoothly even with a small amount of non-aqueous electrolyte supplied. As a result, the battery reaction occurs between the A layer and the B layer. It can be performed uniformly.
  • the coating preferably contains, as the inorganic lithium compound, mainly an inorganic acid lithium salt such as lithium carbonate; lithium hydroxide, lithium oxide; lithium halide such as lithium fluoride, and the like.
  • the coating preferably contains at least lithium carbonate as an inorganic lithium compound.
  • the inorganic lithium compound contained most in the above film is lithium carbonate.
  • Lithium carbonate is a chemically and electrochemically stable compound in the non-aqueous electrolyte and in the working potential range of the negative electrode. If such a film containing a large amount of lithium carbonate is formed on the surface side of the negative electrode active material layer, the side reaction between the negative electrode active material and the nonaqueous electrolyte can be more effectively suppressed. Moreover, since the film
  • the composition of the film formed on the negative electrode active material layer can be analyzed by X-ray photoelectron spectroscopy.
  • the lithium carbonate formed in the negative electrode active material layer can be quantified by, for example, inductively coupled plasma (ICP) emission spectroscopy, ion chromatography, or the like. Specifically, when a predetermined amount of the negative electrode active material layer is collected at a predetermined position of the negative electrode active material layer, and added to water and stirred, water-soluble components (lithium carbonate, lithium hydroxide) contained in the negative electrode active material layer Water-soluble lithium compounds, etc.) dissolve in water.
  • ICP inductively coupled plasma
  • the amount of carbonate ion is quantified, and the content of lithium carbonate can be calculated based on this value.
  • the content of lithium can be quantified by analyzing the water in which the water-soluble component is dissolved by ICP emission spectroscopy.
  • the surface of the negative electrode active material layer When the surface of the negative electrode active material layer has irregularities, the surface of the negative electrode active material layer is assumed to be intermediate between the bottom surface of the concave portion and the top surface of the convex portion. Then, the distance between the surface of the negative electrode active material layer and the surface of the negative electrode current collector is divided into 7: 3 from the current collector side, thereby forming an A layer and a B layer.
  • the content C A of lithium carbonate contained in the A layer of the current collector side for example, 10 ⁇ 65 ⁇ g / cm 2, preferably 13 ⁇ 60 ⁇ g / cm 2, more preferably 15 ⁇ 55 ⁇ g / cm 2.
  • the ratio C B / C A of the content C B of lithium carbonate contained in the B layer to the content C A of lithium carbonate in the A layer is, for example, 1.05 to 2, preferably 1.07 to 1.7. Further, this is preferably 1.1 to 1.5. In such a range, the effect by the film containing lithium carbonate can be obtained more effectively.
  • the content C A and C B are each an amount per unit area of the negative electrode.
  • the film formed in the negative electrode active material layer contains an organolithium compound.
  • the organic lithium compound include lithium alkyl carbonate.
  • the identification and quantification of the organolithium compound can be performed based on, for example, X-ray photoelectron spectroscopy.
  • the content of the organolithium compound contained in the A layer per area of the negative electrode is preferably larger than the content of the organolithium compound contained in the B layer.
  • the A layer on the current collector side preferably contains a large amount of the organic lithium compound per area of the negative electrode
  • the B layer on the surface side preferably contains a large amount of the inorganic lithium compound per area of the negative electrode.
  • the film containing the organolithium compound is mainly generated by the decomposition reaction of the non-aqueous electrolyte as the battery is charged / discharged.
  • a large amount of a film containing an inorganic lithium compound is formed, so that the content of the organic lithium compound is reduced.
  • the content of the organic lithium compound is increased because the amount of the film containing the inorganic lithium compound is small. Moreover, since the A layer has a larger volume than the B layer, the content of the organolithium compound is also increased.
  • the negative electrode active material contained in the negative electrode active material layer expands due to charging, the contacts between the active materials, between the active material and the current collector, and between the active material and the conductive agent decrease. Further, with expansion, the non-aqueous electrolyte contained in the negative electrode active material layer is easily depleted. Therefore, the reaction efficiency of the battery reaction tends to decrease inside the negative electrode active material layer.
  • the non-aqueous electrolyte is abundantly present inside the negative electrode active material layer. Therefore, even when the expansion of the negative electrode active material is increased, the shortage or depletion of the nonaqueous electrolyte can be more effectively suppressed in the negative electrode active material layer.
  • the reason why a large amount of the non-aqueous electrolyte can be held inside the negative electrode active material layer is that the organic group portion of the organolithium compound has a high affinity for the non-aqueous electrolyte and can maintain an easily wetted state. Accordingly, a stable battery reaction can be performed even inside the negative electrode active material layer, and the active material inside the active material layer can be used more effectively. As a result, the capacity of the negative electrode can be increased.
  • the negative electrode including the negative electrode active material layer having the A layer and the B layer having different inorganic lithium compound contents as described above occludes lithium in the negative electrode active material layer including the negative electrode active material before forming the electrode group.
  • Such occlusion of lithium can be performed by forming a metallic lithium layer by attaching vacuum deposition or a lithium foil to the surface of the negative electrode active material layer containing the negative electrode active material.
  • a metal lithium layer is formed on the surface of the negative electrode active material layer, a local battery is formed in the negative electrode, and lithium ions can be introduced into the negative electrode active material layer in advance.
  • the lithium in the metal lithium layer is occluded by the negative electrode active material of the negative electrode active material layer even if the electrode group is assembled and a battery is manufactured.
  • the lithium occlusion may be promoted by leaving it under dry conditions for a predetermined period. By leaving it under predetermined conditions, a large amount of an inorganic lithium compound such as lithium carbonate is generated, and the content of the inorganic lithium compound on the surface side of the negative electrode active material layer can be increased more effectively.
  • the standing period is, for example, 0.5 days to 2 weeks, preferably 0.5 to 10 days. Further, the leaving is preferably performed in air or in an atmosphere containing carbon dioxide.
  • the negative electrode on which the metal lithium layer is formed is preferably left under dry conditions. As such drying conditions, a low dew point, for example, a dew point of ⁇ 25 ° C. or lower, preferably a dew point of ⁇ 30 ° C. or lower is preferable. In particular, the negative electrode on which the metal lithium layer is formed is preferably left in dry air with a low dew point.
  • the metal lithium layer can be formed on at least a part of the surface of the negative electrode active material layer.
  • the metal lithium layer may remain on at least a part of the surface of the negative electrode active material layer before the assembly of the electrode group, or all of the lithium in the metal lithium layer may be occluded in the negative electrode active material layer. Good.
  • lithium ions are supplied into the battery only from the positive electrode.
  • the positive electrode active material is effectively used, and it is possible to prevent a decrease in capacity due to the irreversible capacity of the negative electrode and increase the capacity.
  • the effect of the above films can be acquired more effectively.
  • the negative electrode active material layer may be attached to both surfaces of the negative electrode current collector, or may be attached to one surface.
  • the negative electrode current collector may be a non-porous conductive substrate or a porous conductive substrate having a plurality of through holes.
  • a non-porous conductive substrate a metal foil, a metal sheet, or the like can be used.
  • the porous conductive substrate include a metal foil having a communication hole (perforation), a mesh body, a net body, a punching sheet, an expanded metal, and a lath body.
  • the current collector has a long band shape.
  • the metal material used for the negative electrode current collector include stainless steel, nickel, copper, and copper alloy. Of these, copper or a copper alloy is preferable.
  • the thickness of the negative electrode current collector is not particularly limited, and can be selected, for example, from a range of 1 to 500 ⁇ m, preferably 3 to 50 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the negative electrode active material layer may be a deposited film of a negative electrode active material by a vapor phase method, but is preferably a mixture layer containing a binder, and optionally a conductive agent and / or a thickener, in addition to the negative electrode active material. .
  • the deposited film can be formed by depositing the negative electrode active material on the surface of the negative electrode current collector by a vapor phase method such as a vacuum evaporation method, a sputtering method, or an ion plating method.
  • a vapor phase method such as a vacuum evaporation method, a sputtering method, or an ion plating method.
  • the negative electrode active material for example, silicon, silicon compound, tin, tin compound, metal or alloy described later can be used.
  • the negative electrode mixture layer is prepared by preparing a negative electrode mixture slurry containing a negative electrode active material, a dispersion medium, and, if necessary, a binder, a conductive agent and / or a thickener, and applying the slurry to the surface of the negative electrode current collector, followed by drying. If necessary, it can be formed by rolling.
  • the thickness of the negative electrode active material layer is, for example, 10 to 150 ⁇ m, preferably 15 to 100 ⁇ m.
  • the negative electrode active material only needs to be able to occlude and release lithium ions.
  • carbon materials silicon, silicon compounds; tin, tin compounds; metals or alloys (for example, silicon alloys; tin alloys; tin, aluminum, zinc) And a lithium alloy containing at least one selected from magnesium).
  • carbon material carbonaceous active material
  • examples of the carbon material (carbonaceous active material) include graphite such as natural graphite and artificial graphite; coke, graphitizing carbon, graphitized carbon fiber, and amorphous carbon.
  • silicon compound and tin compound include oxides and nitrides.
  • These negative electrode active materials can be used individually by 1 type or in combination of 2 or more types.
  • the shape of the negative electrode active material is not particularly limited, and may be fibrous or particulate.
  • an active material containing at least one selected from the group consisting of silicon and tin is preferable, and an active material containing silicon and / or tin is more preferably included in an amount of 80% by mass or more of the whole negative electrode active material. Since such an active material has a large volume change accompanying charging / discharging, it easily deteriorates and its capacity tends to decrease. In the present invention, since many highly rigid films are formed on the surface side of the negative electrode active material layer, the cycle life can be effectively improved even when such an active material having a large volume change is used.
  • the content of the active material containing silicon and / or tin is preferably 90% by mass or more based on the whole negative electrode active material, and the whole negative electrode active material may be an active material containing silicon and / or tin. .
  • An active material containing silicon tin is advantageous because it has a larger capacity density than a carbon material conventionally used as a negative electrode active material and can increase the capacity of the negative electrode.
  • the carbon material the site where lithium is occluded and released is limited.
  • the negative electrode active material containing silicon or tin often has no such limitation. The effect of can be obtained more effectively.
  • examples of the silicon compound include silicon oxide SiO ⁇ (0.05 ⁇ ⁇ ⁇ 1.95). ⁇ is preferably 0.1 to 1.8, more preferably 0.15 to 1.6.
  • a part of silicon may be substituted with one or more elements. Examples of such elements include B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, V, W, Zn, C, N, and Sn.
  • the at least 1 type of element D selected is mentioned.
  • the silicon alloy examples include an alloy in which a part of silicon is substituted with the above element D, and a substance containing the other metal element (such as the above element D) incorporated between silicon atoms (the element D). It may be a silicon solid solution containing).
  • examples of tin compounds include SnO ⁇ (where 0 ⁇ ⁇ 2), tin oxides such as SnO 2 ; intermetallic compounds such as Ni 2 Sn 4 and Mg 2 Sn; SnSiO 3 and the like it can.
  • a carbonaceous active material such as graphite
  • the content of the carbonaceous active material with respect to the entire negative electrode active material is preferably 80% by mass or more, and more preferably 90% by mass or more.
  • the dispersion medium is not particularly limited, and examples thereof include water, alcohols such as ethanol, ethers such as tetrahydrofuran, amides such as dimethylformamide, N-methyl-2-pyrrolidone (NMP), or a mixed solvent thereof. .
  • binder examples include resin materials such as polytetrafluoroethylene, polyvinylidene fluoride (PVDF), or modified products thereof (such as PVDF having a functional group introduced), copolymers containing vinylidene fluoride as monomer units, and the like.
  • resin materials such as polytetrafluoroethylene, polyvinylidene fluoride (PVDF), or modified products thereof (such as PVDF having a functional group introduced), copolymers containing vinylidene fluoride as monomer units, and the like.
  • Polyolefin resin such as polyethylene and polypropylene; Polyamide resin such as aramid resin; Polyimide resin such as polyimide and polyamideimide; Acrylic resin such as polyacrylic acid, polymethyl acrylate, and ethylene-acrylic acid copolymer; Examples thereof include vinyl resins such as acrylonitrile and polyvinyl acetate; polyvinyl pyrrolidone; polyether sulfone; and rubbery materials such as styrene-butadiene copolymer rubber (SBR). These binders can be used individually by 1 type or in combination of 2 or more types.
  • SBR styrene-butadiene copolymer rubber
  • the binder may be in a state dissolved in a dispersion medium in the slurry, or in a state of being dispersed in the form of particles.
  • the ratio of the binder is, for example, 0.3 to 10 parts by mass, preferably 1 to 6 parts by mass, per 100 parts by mass of the active material.
  • the conductive agent examples include graphite such as natural graphite and artificial graphite; carbon black such as acetylene black; carbon fluoride; conductive fiber such as carbon fiber and metal fiber; metal powder such as aluminum; zinc oxide and potassium titanate. Conductive whiskers such as; conductive metal oxides such as titanium oxide; and organic conductive materials such as phenylene derivatives. These electrically conductive agents can be used individually by 1 type or in combination of 2 or more types. The ratio of the conductive agent is, for example, 0.3 to 10 parts by mass per 100 parts by mass of the active material.
  • the thickener examples include carboxymethylcellulose (CMC) and modified products thereof (including salts such as Na salts), cellulose derivatives such as methylcellulose; saponified polymers having vinyl acetate units such as polyvinyl alcohol; polyethers ( And polyalkylene oxides such as polyethylene oxide). These thickeners can be used singly or in combination of two or more.
  • the amount of the thickener is, for example, 0.01 to 10 parts by mass with respect to 100 parts by mass of the active material.
  • FIG. 1 is a longitudinal sectional view schematically showing a lithium ion secondary battery as a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • the nonaqueous electrolyte secondary battery has an electrode group 4 in which a long strip-shaped positive electrode 5, a long strip-shaped negative electrode 6, and a separator 7 interposed between the positive electrode 5 and the negative electrode 6 are wound.
  • a non-aqueous electrolyte (not shown) is accommodated.
  • a positive electrode lead 9 is electrically connected to the positive electrode 5, and a negative electrode lead 10 is electrically connected to the negative electrode 6.
  • the electrode group 4 is housed in the battery case 1 together with the lower insulating ring 8b with the positive electrode lead 9 led out.
  • the sealing plate 2 is welded to the end of the positive electrode lead 9, and the positive electrode 5 and the sealing plate 2 are electrically connected.
  • the lower insulating ring 8 b is disposed between the bottom surface of the electrode group 4 and the negative electrode lead 10 led out from the electrode group 4.
  • the negative electrode lead 10 is welded to the inner bottom surface of the battery case 1, and the negative electrode 6 and the battery case 1 are electrically connected.
  • An upper insulating ring 8 a is mounted on the upper surface of the electrode group 4.
  • the electrode group 4 is held in the battery case 1 by an inwardly protruding step 11 formed on the upper side surface of the battery case 1 above the upper insulating ring 8a.
  • a sealing plate 2 having a resin gasket 3 on the periphery is placed, and the opening end of the battery case 1 is caulked and sealed inward.
  • FIG. 2 is a longitudinal sectional view schematically showing a positive electrode, a negative electrode, and a separator used in the nonaqueous electrolyte secondary battery according to one embodiment of the present invention.
  • the negative electrode 6 includes a long strip-shaped negative electrode current collector 6a and a negative electrode active material layer 6b formed on both surfaces of the negative electrode current collector 6a. At one end in the longitudinal direction of the negative electrode current collector 6a, current collector exposed portions 6a and 6d where the negative electrode active material layer 6b is not formed are formed on both surfaces of the negative electrode current collector 6a. .
  • the negative electrode lead is welded to the current collector exposed portion 6c.
  • the positive electrode 5 includes a long strip-shaped positive electrode current collector 5a and a positive electrode active material layer 5b formed on both surfaces of the positive electrode current collector 5a.
  • the current collector exposed part 5c in which the positive electrode active material layer 5b is not formed so as to cross the short direction on both surfaces of the positive electrode current collector 5a, 5d is formed.
  • a positive electrode lead is welded to the current collector exposed portion 5c.
  • the separator 7 which is a porous insulator has a long band shape.
  • the positive electrode 5 and the negative electrode 6 are arranged to face each other with a separator 7 interposed therebetween. And in this state, by winding, an electrode group as shown in FIG. 1 is formed.
  • the positive electrode active material layer may be attached to both surfaces of the negative electrode current collector, or may be attached to one surface.
  • a nonporous or porous conductive substrate can be used as the positive electrode current collector.
  • the thickness of the positive electrode current collector can be selected from the same range as the thickness of the negative electrode current collector. Examples of the metal material used for the positive electrode current collector include stainless steel, titanium, aluminum, and an aluminum alloy.
  • the positive electrode active material layer may be, for example, a positive electrode mixture layer containing a positive electrode active material and, if necessary, a binder, a conductive additive, a thickener, and the like.
  • a positive electrode can be formed according to the formation method of a negative electrode.
  • the thickness of the positive electrode active material layer is, for example, 15 to 100 ⁇ m, preferably 20 to 70 ⁇ m.
  • the positive electrode active material a known positive electrode active material capable of occluding and releasing lithium ions can be used.
  • the positive electrode active material preferably contains a sufficient amount of lithium, and specifically includes an oxide containing lithium and a metal element (element M) (hereinafter also referred to as lithium-containing metal composite oxide).
  • Such a lithium-containing metal composite oxide preferably has a layered or hexagonal crystal structure or a spinel structure.
  • the metal element M includes at least one selected from the group consisting of Co, Ni, Mn, and Fe.
  • the element M is particularly preferably at least one selected from the group consisting of Co, Ni and Mn.
  • the metal element M may further include a different element in addition to the above metal element. Moreover, the surface of the lithium-containing metal composite oxide particles may be coated with a different element. Examples of the different element M 1 include Na, Mg, Sc, Y, Cu, Zn, Al, Cr, Pb, Sb, and B.
  • a positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Specific positive electrode active material for example, lithium cobalt oxide Li m CoO 2, lithium nickelate Li m NiO 2, Li m MnO 2, Li m Co n Ni 1-n O 2, Li m Co n M 1 1 -n O p, Li m Ni 1 -n M 1 n O p (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), Li m Mn 2 O 4, Li m Mn 2-n M 1 n O 4 , LiMPO 4 , Li 2 MPO 4 F and the like can be mentioned.
  • the element M 1 is the above-mentioned different element, and the element M is the above-described metal element. In the above general formula, 0 ⁇ m ⁇ 1.2, 0 ⁇ n ⁇ 0.9, and 2.0 ⁇ p ⁇ 2.3.
  • a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • oxides that can be represented by LiMO 2 M is the above metal element
  • Li m CoO 2 lithium nickelate Li m NiO 2 , Li m MnO 2 , Li m Con n Ni 1-n O 2, Li m Co n M 1 1-n O p, such as Li m Ni 1-n M 1 n O p are preferred.
  • the ratio x / M c between the total amount x of lithium contained in the positive electrode and the negative electrode and the amount M c of the metal element M contained in the oxide is preferably greater than 1.03, for example, 1.05 More preferably, it is larger.
  • the ratio x / Mc is within such a range, the ratio of lithium ions supplied into the battery becomes very large. That is, it is advantageous in terms of irreversible capacity compensation and formation of inorganic lithium compounds such as lithium carbonate.
  • the ratio x / M c is preferably greater than 1.03, more preferably greater than 1.04 (particularly 1.05).
  • the ratio x / Mc is preferably greater than 1.05, more preferably 1.06 or more, and even more preferably 1.07 or more (particularly 1 .08 or more).
  • the ratio x / M c is the amount M c of the metal element M contained in the lithium content x and the positive electrode active material contained in the positive electrode and the negative electrode, were quantified, respectively, dividing the amount of x in an amount M c of the metal element M This can be calculated.
  • the amount M c of lithium content x and the metal element M can be quantified as follows. First, the battery is completely discharged and then decomposed to remove the nonaqueous electrolyte, and the inside of the battery is washed with a solvent such as dimethyl carbonate. Next, a predetermined amount of each of the positive electrode and the negative electrode is collected, and the amount of lithium x is determined by quantifying the amounts of lithium contained in the positive electrode and the negative electrode by ICP analysis. Also, as in the case of the amount of lithium in the positive electrode, the amount M c of the metal element M contained in the positive electrode is quantified by ICP analysis.
  • the positive electrode active material is usually used in a particulate form.
  • the average particle diameter of the positive electrode active material is, for example, 5 to 30 ⁇ m, preferably 5 to 20 ⁇ m, and more preferably 7 to 15 ⁇ m.
  • the surface area of the active material particles can be maintained in an appropriate range. Therefore, sufficient adhesion strength can be easily obtained in the positive electrode without increasing the amount of the binder, and the binding can be achieved. A decrease in capacity due to an increase in the amount of the adhesive can be suppressed.
  • the positive electrode active material particles may be subjected to various surface treatments as necessary.
  • the surface treatment include a surface treatment with a metal oxide (for example, alumina, titania, etc.) other than the oxide constituting the positive electrode active material, a surface treatment with a conductive agent, and a hydrophobic treatment.
  • the dispersion medium binder, conductive agent and thickener, those exemplified for the negative electrode can be used.
  • the amount of each component relative to the active material can also be selected from the same range as that of the positive electrode.
  • the thickness of the positive electrode active material layer can also be selected from the same range as the negative electrode active material layer.
  • the content of the binder in the positive electrode active material layer is, for example, 1 to 10 parts by mass, preferably 3 to 6 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • binders used for the positive electrode from the viewpoint of being chemically stable in the battery and easily obtaining a sufficient binding force, a co-polymer containing PVDF, a modified product thereof, or vinylidene fluoride as a monomer unit. It is preferable to use a polymer or a rubber-like material.
  • a copolymer containing PVDF and vinylidene fluoride in order to improve discharge characteristics and cycle characteristics.
  • the separator is not particularly limited as long as it has high ion permeability and has mechanical strength and insulation necessary for preventing a short circuit between the positive electrode and the negative electrode.
  • a microporous membrane made of resin, woven fabric, etc. A cloth or a nonwoven fabric can be illustrated.
  • the resin constituting the separator include polyolefins such as polyethylene and polypropylene; polyamide resins such as polyamide; polyimide resins such as polyamideimide and polyimide.
  • the microporous membrane may contain a known additive as necessary.
  • the microporous membrane separator may be a single layer film or a multilayer film (composite film) having a different composition.
  • the thickness of the separator can be appropriately selected from the range of, for example, 10 to 300 ⁇ m, preferably 10 to 40 ⁇ m, more preferably 10 to 30 ⁇ m (particularly 10 to 25 ⁇ m).
  • the separator has a porosity of, for example, 30 to 70%, preferably 35 to 60%. The porosity indicates the ratio of the volume of the void portion to the total volume of the separator.
  • the nonaqueous electrolyte includes a nonaqueous solvent and a lithium salt (electrolyte) dissolved in the nonaqueous solvent.
  • the non-aqueous solvent include known non-aqueous solvents used for non-aqueous electrolytes of non-aqueous electrolyte secondary batteries, such as cyclic carbonates, chain carbonates, and cyclic carboxylic acid esters.
  • the cyclic carbonate include ethylene carbonate (EC) and propylene carbonate.
  • Examples of the chain carbonate include diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate (DMC) and the like.
  • the cyclic carboxylic acid ester include ⁇ -butyrolactone and ⁇ -valerolactone.
  • a non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the non-aqueous solvent preferably contains a cyclic carbonate and a chain carbonate.
  • the cyclic carbonate preferably contains EC, and the chain carbonate preferably contains DEC and / or DMC.
  • lithium salt examples include a lithium salt of a chlorine-containing acid (LiClO 4 , LiAlCl 4 , LiB 10 Cl 10, etc.), a lithium salt of a fluorine-containing acid (LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiCF 3 SO 3). LiCF 3 CO 2 ), lithium salt of fluorine-containing acid imide (LiN (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (C 2 F 5 SO 2 ) 2 ), lithium halide (LiCl, LiBr, LiI, etc.) can be used. These lithium salts can be used singly or in combination of two or more.
  • the concentration of the lithium salt in the nonaqueous electrolyte is, for example, 0.5 to 2 mol / L, preferably 1.2 to 1.6 mol / L.
  • the non-aqueous electrolyte may contain a known additive.
  • additives include an additive (additive A) that decomposes on the negative electrode to form a film having high lithium ion conductivity and increases the charge / discharge efficiency of the battery, and decomposes on overcharge to form a film on the electrode. And an additive (additive B) that inactivates the battery.
  • Examples of the additive A include cyclic carbonates having a polymerizable unsaturated bond (vinylene group, vinyl group, etc.).
  • cyclic carbonates having vinylene groups VC: C 1-4 alkyl groups such as 4-methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4-ethyl vinylene carbonate and / or C 6-10 aryl groups are substituted.
  • VC which has as a group can be illustrated.
  • cyclic carbonate having a vinyl group examples include EC having a vinyl group as a substituent, such as vinyl ethylene carbonate (VEC) and divinyl ethylene carbonate.
  • VEC vinyl ethylene carbonate
  • Additive A can be used alone or in combination of two or more.
  • the additives A at least one selected from the group consisting of VC, VEC and divinylethylene carbonate is preferable.
  • Examples of the additive B include an aromatic compound having an aliphatic ring and an aromatic compound having a plurality of aromatic rings.
  • Examples of the aliphatic ring include a cycloalkane ring such as a cyclohexane ring, a cyclic ether, a cyclic ester, and the like.
  • the aromatic compound preferably has these aliphatic rings as substituents. Specific examples of such aromatic compounds include benzene compounds such as cyclohexylbenzene. Examples of the aromatic compound having a plurality of aromatic rings include biphenyl and diphenyl ether. These additives B can be used singly or in combination of two or more.
  • the content of the additive in the nonaqueous electrolyte is, for example, 10% by mass or less, preferably 7% by mass or less.
  • the additive B is 10 mass parts or less with respect to 100 mass parts of nonaqueous solvents, for example.
  • the non-aqueous electrolyte may be liquid or gel.
  • the liquid nonaqueous electrolyte includes a nonaqueous solvent and a lithium salt dissolved in the nonaqueous solvent.
  • the gel-like nonaqueous electrolyte includes a liquid nonaqueous electrolyte and a polymer material that holds the nonaqueous electrolyte.
  • the polymer material include fluorine resins such as PVDF and vinylidene fluoride-hexafluoropropylene copolymer; vinyl resins such as polyacrylonitrile and polyvinyl chloride; polyalkylene oxides such as polyethylene oxide; acrylic resins such as polyacrylate Etc.
  • the electrode group is not limited to the wound one as shown in FIG. 1, but may be a laminated one including one folded in a zigzag manner.
  • the shape of the electrode group may be a cylindrical shape or a flat shape whose end surface perpendicular to the winding axis is an oval shape, depending on the shape of the battery or the battery case.
  • the battery case may be made of metal or laminate film.
  • the metal material forming the battery case aluminum, an aluminum alloy (such as an alloy containing a trace amount of metal such as manganese or copper), a steel plate such as iron or stainless steel, or the like can be used.
  • the battery case may be plated by nickel plating or the like, if necessary.
  • the shape of the battery case may be other than a cylindrical shape, a rectangular shape, etc., depending on the shape of the electrode group.
  • Example 1 Batteries 1 to 5 were produced by the following procedure.
  • (Battery 1) (1) Production of positive electrode LiNi 0.82 Co 0.15 Al 0.03 O 2 particles (average particle diameter 10 ⁇ m) as a positive electrode active material, acetylene black as a conductive agent, and an NMP solution containing PVDF as a binder are mixed. Thus, a positive electrode mixture slurry was prepared. The amount of the conductive agent was 4.5 parts by mass and the amount of the binder was 4.7 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • the positive electrode mixture slurry was applied to both sides of an aluminum foil (thickness 15 ⁇ m) as a positive electrode current collector and dried.
  • the obtained positive electrode current collector having a dried coating film was rolled to produce a positive electrode plate having a thickness of 0.157 mm.
  • a positive electrode having a thickness of 0.157 mm, a width of 57 mm, and a length of 564 mm was produced.
  • the collector exposure part in which the coating film of positive mix slurry was not formed in both surfaces was formed in the center part of the longitudinal direction of a positive electrode.
  • One end of a positive electrode lead made of aluminum was welded to the exposed portion of the current collector.
  • a negative electrode mixture slurry was prepared by mixing 100 parts by mass of a negative electrode active material, 3 parts by mass of SBR as a binder, and 100 parts by mass of a CMC aqueous solution (CMC concentration: 1% by mass).
  • the negative electrode mixture slurry was applied to both sides of a copper foil (thickness 8 ⁇ m) as a negative electrode current collector and dried.
  • the obtained negative electrode current collector having a dried coating film was rolled to obtain a negative electrode plate having a thickness of 0.156 mm.
  • Heat treatment was performed by exposing the negative electrode plate to hot air at 190 ° C. for 8 hours in a nitrogen atmosphere. By cutting the heat-treated negative electrode plate, a negative electrode having a thickness of 0.156 mm, a width of 58.5 mm, and a length of 750 mm was formed.
  • lithium was vacuum-deposited on the surface of the negative electrode so that the deposition amount was 0.26 g / m 2 (equivalent to 0.5 ⁇ m when converted to the thickness of the Li metal deposition film).
  • a negative electrode having a deposited film of Li on both sides was placed in a dry air environment having a dew point of ⁇ 30 ° C. or lower and allowed to stand for 7 days, whereby lithium was occluded in the negative electrode. By such an operation, the irreversible capacity of the negative electrode was reduced. And the one end part of the negative electrode lead made from nickel was welded to the collector exposed part of the negative electrode.
  • the concentration of LiPF 6 in the nonaqueous electrolyte was 1.4 mol / dm 3 , and the concentration of VC was adjusted to 5% by mass.
  • the upper insulating film and the lower insulating plate were arranged on the upper end and the lower end of the obtained electrode group, respectively, and housed in a bottomed cylindrical metal battery case.
  • the other end portion of the positive electrode lead pulled out from the electrode group was welded to a sealing plate having an internal pressure actuated safety valve, and the other end portion of the negative electrode lead was welded to the inner bottom surface of the battery case.
  • the electrode group was held in the battery case by forming a stepped portion protruding inward on the side surface of the battery case above the upper end of the electrode group.
  • a non-aqueous electrolyte is injected into the battery case by a decompression method, and the opening of the battery case is sealed by caulking the peripheral edge of the sealing plate via a gasket, thereby providing a cylindrical lithium ion secondary battery ( A battery 1) was prepared.
  • Battery 2 was produced in the same manner as the battery 1 except that lithium was vacuum-deposited on the negative electrode and the battery was produced immediately after deposition, as with the battery 1.
  • the batteries 3 and 4 were produced in the same manner as the battery 1 except that the period of time in the dry air environment after vacuum deposition of lithium was changed to the period shown in Table 1.
  • Battery 5 was produced in the same manner as Battery 1 except that lithium was not vacuum deposited on the negative electrode and then left untreated.
  • the discharge capacity (initial discharge capacity) at the first cycle of charge / discharge and the discharge capacity at the 500th cycle are measured, and the ratio (percentage) of the discharge capacity at the 500th cycle of charge / discharge to the initial discharge capacity is determined as the capacity maintenance rate. As sought.
  • the results are shown in Table 1 together with the deposition of lithium and the standing period after the deposition.
  • Example 2 A lithium ion secondary battery (battery 6) was produced in the same manner as the battery 1 of Example 1, except that the negative electrode produced as follows was used. (Preparation of negative electrode) 100 parts by mass of silicon powder (average particle diameter 10 ⁇ m) as a negative electrode active material prepared by a chemical vapor deposition (CVD) method, 10 parts by mass of PVDF as a binder, and 5 mass of graphite (average particle diameter 3 ⁇ m) as a conductive agent A negative electrode mixture slurry was prepared by mixing a part and an appropriate amount of NMP.
  • silicon powder average particle diameter 10 ⁇ m
  • PVDF chemical vapor deposition
  • graphite average particle diameter 3 ⁇ m
  • a copper foil (thickness: 18 ⁇ m) whose surfaces were roughened was used as a negative electrode current collector, and a negative electrode mixture slurry was applied to both sides of the negative electrode current collector and dried.
  • the obtained negative electrode current collector having a dried coating film was rolled to prepare a negative electrode plate having a thickness of 98 ⁇ m.
  • the collector exposed portion where the negative electrode mixture slurry coating film is not formed on both sides Formed.
  • lithium was vacuum-deposited on the surface of the negative electrode so that the deposition amount was 1.6 g / m 2 (equivalent to 3 ⁇ m in terms of the thickness of the Li metal deposition film).
  • a negative electrode having a deposited film of Li on both sides was placed in a dry air environment having a dew point of ⁇ 30 ° C. or lower and allowed to stand for 7 days, whereby lithium was occluded in the negative electrode. By such an operation, the irreversible capacity of the negative electrode was reduced.
  • the obtained negative electrode plate was cut to obtain a negative electrode having a width of 58.5 mm and a length of 750 mm.
  • Batteries 7 to 10 were produced in the same manner as the battery 6 except that the presence or absence of vacuum vapor deposition and the standing period after the vapor deposition were changed in the same manner as the batteries 2 to 5.
  • the initial discharge capacity and the capacity retention rate were evaluated in the same manner as in Example 1. The results are shown in Table 2 together with the presence or absence of lithium deposition and the standing period after the deposition.
  • Example 3 A lithium ion secondary battery (battery 11) was produced in the same manner as the battery 1 of Example 1 except that the negative electrode produced as follows was used. (Preparation of negative electrode) 100 parts by mass of silicon monoxide (SiO) powder (average particle diameter 8 ⁇ m) as a negative electrode active material, 15 parts by mass of PVDF as a binder, 7 parts by mass of graphite (average particle diameter 3 ⁇ m) as a conductive agent, and an appropriate amount A negative electrode mixture slurry was prepared by mixing with NMP.
  • SiO silicon monoxide
  • a copper foil (thickness: 18 ⁇ m) whose surfaces were roughened was used as a negative electrode current collector, and a negative electrode mixture slurry was applied to both sides of the negative electrode current collector and dried.
  • the obtained negative electrode current collector having a dried coating film was rolled to prepare a 125 ⁇ m-thick negative electrode having a negative electrode active material layer on both surfaces.
  • a metal lithium foil having a thickness of 30 ⁇ m, a width of 50 mm, and a length of 10 mm was attached to the surface of the negative electrode active material layer at intervals of 30 mm.
  • the negative electrode on which the lithium foil was attached was placed in an environment of 120 ° C. in a carbon dioxide atmosphere and left for 7 days to produce a negative electrode in which lithium was occluded. By such an operation, the irreversible capacity of the negative electrode was reduced.
  • Batteries 12 to 15 were fabricated in the same manner as the battery 11, except that the presence or absence of the lithium foil and the standing period after the pasting were changed in the same manner as the standing time after the deposition of the batteries 2 to 5.
  • the initial discharge capacity and the capacity retention rate were evaluated in the same manner as in Example 1. The results are shown in Table 3 together with the presence / absence of application of lithium foil and the standing period after application.
  • Example 4 100 parts by mass of tin-cobalt-carbon alloy powder (average particle diameter 4 ⁇ m) as a negative electrode active material, 15 parts by mass of PVDF as a binder, 5 parts by mass of graphite (average particle diameter 3 ⁇ m) as a conductive agent, and an appropriate amount A negative electrode mixture slurry was prepared by mixing with NMP.
  • a copper foil (thickness: 18 ⁇ m) whose surfaces were roughened was used as a negative electrode current collector, and a negative electrode mixture slurry was applied to both sides of the negative electrode current collector and dried.
  • the obtained negative electrode current collector having a dried coating film was rolled to prepare a negative electrode plate having a thickness of 118 ⁇ m.
  • the collector exposed portion where the negative electrode mixture slurry coating film is not formed on both sides Formed.
  • lithium was vacuum-deposited on the surface of the negative electrode so that the deposition amount was 3.2 g / m 2 (equivalent to 6 ⁇ m when converted to the thickness of the Li metal deposition film).
  • a negative electrode having a deposited film of Li on both sides was placed in a dry air environment having a dew point of ⁇ 30 ° C. or lower and allowed to stand for 7 days, whereby lithium was occluded in the negative electrode. By such an operation, the irreversible capacity of the negative electrode was reduced.
  • the obtained negative electrode plate was cut to obtain a negative electrode having a width of 58.5 mm and a length of 750 mm.
  • Batteries 17 to 20 were produced in the same manner as the battery 16 except that the presence or absence of vacuum deposition and the standing period after the deposition were changed in the same manner as the batteries 2 to 5.
  • the initial discharge capacity and the capacity retention rate were evaluated in the same manner as in Example 1. The results are shown in Table 4 together with the presence or absence of lithium deposition and the standing period after deposition.
  • Examples 1 to 4 will be examined in detail based on Tables 1 to 4.
  • irreversible capacity can be obtained by depositing lithium or pasting lithium foil, compared to batteries 5, 10, 15, and 20, where neither lithium deposition nor lithium foil is applied. High capacity was obtained in other batteries using negative electrodes with reduced resistance.
  • Example 3 in which silicon monoxide was used as the negative electrode active material, the irreversible capacity of the negative electrode was very large, so that a high irreversible capacity filling effect was obtained by occlusion of lithium.
  • the film formed on the surface side of the negative electrode mainly contains an inorganic lithium compound such as lithium carbonate, lithium hydroxide, lithium oxide, and lithium fluoride, and particularly contains a large amount of lithium carbonate.
  • the amount of the film containing the inorganic lithium compound decreases as the surface of the negative electrode active material layer (the surface of the negative electrode) approaches the current collector, and the amount of the film containing the organic lithium compound decreases. The amount increased.
  • alkyl lithium carbonate etc. were detected as an organolithium compound.
  • the amount of lithium carbonate contained in the negative electrode was quantified as follows. Using a surface cutting device (for example, Dyprawintes Co., Ltd., Psycus), as shown in FIG. 3, the active material from the surface of the negative electrode active material layer (the surface of the negative electrode) to a depth of 30% indicated by the broken line 11 is used. The material layer (B layer) 14 was cut out, and the lithium carbonate contained in the B layer 14 was quantitatively analyzed.
  • a surface cutting device for example, Dyprawintes Co., Ltd., Psycus
  • the negative electrode active material layer (A layer) 13 left after cutting out the B layer 14 was similarly subjected to quantitative analysis of the amount of lithium carbonate.
  • the quantitative analysis of each layer is carried out by putting each layer into pure water, eluting carbonate ions contained in each layer purely, obtaining the content of carbonate ions by ion chromatography, and based on this content, This was done by calculating the amount of lithium carbonate contained in the water.
  • the amount of lithium carbonate contained in the A layer is obviously large in the current collector side A layer and the surface side B layer of the negative electrode active material layer.
  • the longer the standing period after lithium deposition or lithium foil attachment the greater the amount of lithium carbonate contained in the negative electrode active material layer, and the greater the amount of coating film containing lithium carbonate.
  • the x / Mc ratio is larger in the battery in which lithium is vapor-deposited or attached to the negative electrode than in the battery in which lithium is not vapor-deposited or attached to the negative electrode. Its value exceeded 1.03.
  • non-aqueous electrolyte secondary battery of the present invention has a high capacity and a high energy density, and a high capacity retention rate can be obtained even after repeated charging and discharging. Therefore, non-aqueous electrolyte secondary batteries are used in hybrid electric vehicles (especially for plug-in hybrid vehicles), power sources for automobiles such as electric vehicles, various consumer power sources such as mobile phones, notebook personal computers, and video camcorders. Useful for applications such as power supplies for tools.

Abstract

The present invention provides a nonaqueous electrolyte secondary cell having high capacity and energy density, and moreover improved cycle life. The nonaqueous electrolyte secondary cell is equipped with: an electrode group in which a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode are wound or stacked; and a nonaqueous electrolyte. The positive electrode includes a positive electrode current collector, and, deposited onto the surface of the positive electrode current collector, a positive electrode active material layer of a positive electrode active material capable of occluding and releasing lithium ions. The negative electrode includes a negative electrode current collector, and, deposited onto the surface of the negative electrode current collector, a negative electrode active material layer of a negative electrode active material capable of occluding and releasing lithium ions. The negative electrode active material layer includes a film formed on the surface of the negative electrode active material, at least a portion of the film including an inorganic lithium compound. When the negative electrode active material layer is divided at a thickness ratio of 7:3 into a layer (A) nearer the negative electrode current collector and a layer (B) nearer the surface of the negative electrode active material layer, the inorganic lithium compound content included in the layer (B) is greater than the inorganic lithium compound content included in the layer (A).

Description

非水電解質二次電池Nonaqueous electrolyte secondary battery
 本発明は、非水電解質二次電池に関し、具体的には、負極の合剤層の改良に関する。 The present invention relates to a non-aqueous electrolyte secondary battery, and specifically relates to an improvement of a negative electrode mixture layer.
 近年、環境問題から自動車搭載用への要望、大型工具の直流(DC)化の要望などに対して、急速充電および大電流放電可能な小型および軽量な二次電池への要求が高まっている。そのような要求を満たす典型的な電池として、リチウムイオン二次電池などの非水電解質二次電池が注目されている。 In recent years, there has been an increasing demand for small and lightweight secondary batteries capable of rapid charging and large current discharge in response to demands for mounting on automobiles and direct current (DC) of large tools due to environmental problems. Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have attracted attention as typical batteries that satisfy such requirements.
 非水電解質二次電池は、正極と、負極と、これらの間に介在するセパレータ(多孔質絶縁体)とを渦巻き状に捲回した電極群、および非水電解質を含む。非水電解質二次電池では、電極群が発電要素となる。捲回型電極群では、正極は、正極集電体とその表面に形成された正極活物質層を含み、負極は、負極集電体とその表面に形成された負極活物質層を含む。 The nonaqueous electrolyte secondary battery includes an electrode group in which a positive electrode, a negative electrode, and a separator (porous insulator) interposed therebetween are spirally wound, and a nonaqueous electrolyte. In the nonaqueous electrolyte secondary battery, the electrode group is a power generation element. In the wound electrode group, the positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on the surface thereof, and the negative electrode includes a negative electrode current collector and a negative electrode active material layer formed on the surface thereof.
 正極活物質としては、リチウムコバルト複合酸化物などのようにリチウムイオンと可逆的に電気化学反応をするものが使用され、負極活物質として、リチウム金属、リチウム合金、リチウムイオンをホスト物質である黒鉛などの炭素質材料に吸蔵させたリチウムインターカレーション化合物が使用される。なお、「ホスト物質」とは、リチウムイオンを吸蔵および放出可能な物質をいう。また、非水電解質としては、LiClO4、LiPF6などのリチウム塩を溶解した非プロトン性の有機溶媒溶液が使用される。 As the positive electrode active material, a material that reversibly electrochemically reacts with lithium ions, such as lithium cobalt composite oxide, is used, and as the negative electrode active material, lithium metal, a lithium alloy, graphite having lithium ions as a host material is used. A lithium intercalation compound occluded in a carbonaceous material such as is used. The “host substance” refers to a substance that can occlude and release lithium ions. Further, as the non-aqueous electrolyte, an aprotic organic solvent solution in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved is used.
 非水電解質二次電池では、電池を高容量化するために、上記のような捲回型電極群を用いることが多い。また、活物質層の活物質密度を高めることにより電池内にできるだけ多くの活物質を充填したり、もしくは、より高容量の活物質を用いたりする方法が採用されている。例えば、負極活物質として使用されるケイ素やスズなどの元素を含む合金系活物質は、黒鉛材料より多量のリチウムを吸蔵可能であるため、高容量化の点で期待される。 Non-aqueous electrolyte secondary batteries often use a wound electrode group as described above in order to increase the capacity of the battery. In addition, a method of filling as many active materials as possible in the battery by increasing the active material density of the active material layer or using a higher capacity active material is employed. For example, an alloy-based active material containing an element such as silicon or tin used as a negative electrode active material can be expected to increase the capacity because it can store a larger amount of lithium than a graphite material.
 しかし、合金系活物質は、電池の充放電に伴って膨張収縮する際の体積変化が大きいため、充放電反応の際に新たな反応面(新生面)が露出しやすい。新生面は、活物質自体が露出した状態であるため、極めて反応性が高く、非水電解質と直接反応して新生面上には新たな皮膜が形成される。そのため、充放電を繰り返すことにより、次々に新生面が形成され、この新生面上に皮膜が形成されることとなる。 However, since an alloy-based active material has a large volume change when it expands and contracts as the battery is charged / discharged, a new reaction surface (new surface) is likely to be exposed during the charge / discharge reaction. Since the new surface is in a state where the active material itself is exposed, the reactivity is extremely high, and a new film is formed on the new surface by directly reacting with the nonaqueous electrolyte. Therefore, by repeating charging and discharging, new surfaces are formed one after another, and a film is formed on this new surface.
 適度な厚みの皮膜は、活物質と非水電解質との副反応を抑制して、充放電反応を安定化するのに有利である。しかし、皮膜が多量に形成されると、非水電解質や活物質に含まれるリチウムを取り込むことにより、負極の容量が低下し、電池のサイクル寿命が短くなる。 A film having an appropriate thickness is advantageous for stabilizing the charge / discharge reaction by suppressing side reactions between the active material and the non-aqueous electrolyte. However, when a large amount of film is formed, the capacity of the negative electrode is reduced by taking in lithium contained in the nonaqueous electrolyte and the active material, and the cycle life of the battery is shortened.
 そこで、負極表面に安定な皮膜を形成するために様々な方法が検討されている。例えば、特許文献1は、ビニレンカーボネート(VC)などの不飽和結合を有する環状炭酸エステルを添加した非水電解質を用いることにより、初回充電時に安定で強固な皮膜が負極活物質層の表面に形成されることを開示している。また、特許文献2は、リチウムを吸蔵させた負極活物質層を、予め二酸化炭素と接触させることにより、負極活物質層の表面に炭酸リチウムの皮膜を形成する方法を提案している。 Therefore, various methods are being studied in order to form a stable film on the negative electrode surface. For example, Patent Document 1 uses a nonaqueous electrolyte to which a cyclic carbonate having an unsaturated bond, such as vinylene carbonate (VC), is used to form a stable and strong film on the surface of the negative electrode active material layer at the time of initial charge. Is disclosed. Patent Document 2 proposes a method of forming a lithium carbonate film on the surface of the negative electrode active material layer by previously bringing the negative electrode active material layer occluded with lithium into contact with carbon dioxide.
特開2004-171877号公報JP 2004-171877 A 特開2005-216601号公報JP 2005-216601 A
 しかし、特許文献1の方法で形成される皮膜は、ビニレンカーボネートなどの重合により得られるポリマーを含む皮膜であるが、充放電の繰り返しによる膨張収縮によって皮膜が破壊または剥離しやすい。 However, the film formed by the method of Patent Document 1 is a film containing a polymer obtained by polymerization of vinylene carbonate or the like, but the film is easily broken or peeled by expansion and contraction due to repeated charge and discharge.
 また、特許文献2で形成される炭酸リチウムの皮膜は、イオン伝導性を妨げることで抵抗の増加、充電受入性の低下を引き起こしやすい。
 以上のように、特許文献1や特許文献2では、容量や容量維持率を損ないやすい。
Further, the lithium carbonate film formed in Patent Document 2 tends to cause an increase in resistance and a decrease in charge acceptance by hindering ionic conductivity.
As described above, in Patent Document 1 and Patent Document 2, the capacity and the capacity maintenance rate are easily lost.
 本発明の目的は、高い容量およびエネルギー密度を有し、かつサイクル寿命が向上された非水電解質二次電池を提供することである。 An object of the present invention is to provide a non-aqueous electrolyte secondary battery having high capacity and energy density and improved cycle life.
 本発明の一局面は、正極、負極、ならびに正極および負極の間に介在するセパレータが捲回または積層された電極群と、非水電解質とを備え、正極が、正極集電体と、正極集電体の表面に付着したリチウムイオンを吸蔵および放出可能な正極活物質を含む正極活物質層とを含み、負極が、負極集電体と、負極集電体の表面に付着したリチウムイオンを吸蔵および放出可能な負極活物質を含む負極活物質層とを含み、負極活物質層が、負極活物質の表面に形成された皮膜を含み、皮膜のうち少なくとも一部が無機リチウム化合物を含み、負極活物質層を、負極集電体側のA層と、負極活物質層の表面側のB層とに、厚み比で7:3に分割したとき、負極の面積当たりの、B層に含まれる無機リチウム化合物の含有量が、A層に含まれる無機リチウム化合物の含有量よりも多い、非水電解質二次電池に関する。 One aspect of the present invention includes a positive electrode, a negative electrode, and an electrode group in which a separator interposed between the positive electrode and the negative electrode is wound or laminated, and a nonaqueous electrolyte. The positive electrode includes a positive electrode current collector, a positive electrode collector, and the like. A positive electrode active material layer including a positive electrode active material capable of occluding and releasing lithium ions attached to the surface of the electric current body, wherein the negative electrode absorbs the negative electrode current collector and the lithium ions attached to the surface of the negative electrode current collector And a negative electrode active material layer containing a releasable negative electrode active material, the negative electrode active material layer comprising a film formed on the surface of the negative electrode active material, wherein at least a part of the film comprises an inorganic lithium compound, When the active material layer is divided into the A layer on the negative electrode current collector side and the B layer on the surface side of the negative electrode active material layer in a thickness ratio of 7: 3, the inorganic contained in the B layer per area of the negative electrode When the content of the lithium compound is the inorganic Greater than the content of um compounds, it relates to a nonaqueous electrolyte secondary battery.
 本発明では、負極活物質層が、無機リチウム化合物を含む皮膜を含み、無機リチウム化合物の含有量が、負極活物質層の負極集電体側よりも表面側において多くなっている。そのため、充放電の繰り返しに伴い、皮膜が過度に形成されるのを抑制することができる。また、負極活物質層が、表面側において無機リチウム化合物を多く含む、つまり、表面側において剛性の高い皮膜が多く形成される。これにより、充電時の負極の膨張を効果的に抑制できるので、負極活物質の劣化が抑制され、非水電解質二次電池のサイクル寿命を向上できる。 In the present invention, the negative electrode active material layer includes a film containing an inorganic lithium compound, and the content of the inorganic lithium compound is greater on the surface side than the negative electrode current collector side of the negative electrode active material layer. Therefore, it can suppress that a film | membrane is formed excessively with repetition of charging / discharging. Further, the negative electrode active material layer contains a large amount of an inorganic lithium compound on the surface side, that is, a highly rigid film is formed on the surface side. Thereby, since the expansion | swelling of the negative electrode at the time of charge can be suppressed effectively, deterioration of a negative electrode active material is suppressed and the cycle life of a nonaqueous electrolyte secondary battery can be improved.
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。 While the novel features of the invention are set forth in the appended claims, the invention will be further described by reference to the following detailed description, taken in conjunction with the other objects and features of the invention, both in terms of construction and content. It will be well understood.
図1は、本発明の一実施形態に係る非水電解質二次電池を模式的に示す縦断面図である。FIG. 1 is a longitudinal sectional view schematically showing a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る非水電解質二次電池に使用される、正極、負極およびセパレータを模式的に示す縦断面図である。FIG. 2 is a longitudinal sectional view schematically showing a positive electrode, a negative electrode, and a separator used in the nonaqueous electrolyte secondary battery according to one embodiment of the present invention. 図3は、実施例1で作製した負極の負極活物質層の縦断面の走査型電子顕微鏡(SEM)写真である。FIG. 3 is a scanning electron microscope (SEM) photograph of a longitudinal section of the negative electrode active material layer of the negative electrode prepared in Example 1.
 本発明の非水電解質二次電池は、正極、負極、ならびに正極および負極の間に介在するセパレータが捲回または積層された電極群と、非水電解質とを備える。正極は、正極集電体と、正極集電体の表面に付着したリチウムイオンを吸蔵および放出可能な正極活物質を含む正極活物質層とを含む。負極は、負極集電体と、負極集電体の表面に付着したリチウムイオンを吸蔵および放出可能な負極活物質を含む負極活物質層とを含む。 The nonaqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, and an electrode group in which separators interposed between the positive electrode and the negative electrode are wound or laminated, and a nonaqueous electrolyte. The positive electrode includes a positive electrode current collector and a positive electrode active material layer including a positive electrode active material capable of inserting and extracting lithium ions attached to the surface of the positive electrode current collector. The negative electrode includes a negative electrode current collector and a negative electrode active material layer including a negative electrode active material capable of inserting and extracting lithium ions attached to the surface of the negative electrode current collector.
 本発明では、負極活物質層は、負極活物質の表面に形成された皮膜を含み、皮膜のうち少なくとも一部は、無機リチウム化合物を含む。そして、負極活物質層を、負極集電体側のA層と、負極活物質層の表面側のB層とに、厚み比で7:3に分割したとき、負極の面積当たりの、B層に含まれる無機リチウム化合物の含有量が、A層に含まれる無機リチウム化合物の含有量よりも多い。以下、負極の面積当たりの含有量を、単に、含有量と称する場合がある。 In the present invention, the negative electrode active material layer includes a film formed on the surface of the negative electrode active material, and at least a part of the film includes an inorganic lithium compound. When the negative electrode active material layer is divided into the A layer on the negative electrode current collector side and the B layer on the surface side of the negative electrode active material layer in a thickness ratio of 7: 3, the B layer per area of the negative electrode The content of the inorganic lithium compound contained is greater than the content of the inorganic lithium compound contained in the A layer. Hereinafter, the content per area of the negative electrode may be simply referred to as the content.
 このように、本発明では、負極活物質層中に含まれる負極活物質の表面に、無機リチウム化合物を含む皮膜が形成されている。しかも、負極の表面側(負極活物質の表面側)のB層の無機リチウム化合物の含有量が、負極集電体側のA層よりも多くなっている。 Thus, in the present invention, a film containing an inorganic lithium compound is formed on the surface of the negative electrode active material contained in the negative electrode active material layer. Moreover, the content of the inorganic lithium compound in the B layer on the surface side of the negative electrode (the surface side of the negative electrode active material) is larger than that in the A layer on the negative electrode current collector side.
 負極活物質層の表面側のB層には、セパレータ界面を通して新鮮な非水電解質が供給されやすく、その分、副反応が起こりやすい。このようなB層において、上記のような皮膜が形成されていると、負極活物質の表面が適度に不活性化され、負極活物質と非水電解質との副反応が抑制される。そのため、充放電の繰り返しに伴い皮膜が過度に形成されるのを抑制することができる。 A fresh non-aqueous electrolyte is easily supplied to the B layer on the surface side of the negative electrode active material layer through the separator interface, and side reactions are likely to occur accordingly. In such a B layer, when the film as described above is formed, the surface of the negative electrode active material is appropriately inactivated, and a side reaction between the negative electrode active material and the nonaqueous electrolyte is suppressed. Therefore, it can suppress that a membrane | film | coat is formed excessively with repetition of charging / discharging.
 また、負極活物質層の内部に無機リチウム化合物を含む皮膜が形成されることに加え、負極活物質層の表面側に無機リチウム化合物を含む剛性の高い皮膜が多く形成される。そのため、充電時の負極の膨張を効果的に抑制できる。これにより、負極活物質の劣化が抑制され、非水電解質二次電池のサイクル寿命を向上できる。また、充放電を繰り返しても過度な皮膜の形成が抑制されるため、電池反応の反応効率の低下や、抵抗の増大が抑制される。 In addition to the formation of a film containing an inorganic lithium compound inside the negative electrode active material layer, many highly rigid films containing an inorganic lithium compound are formed on the surface side of the negative electrode active material layer. Therefore, the expansion of the negative electrode during charging can be effectively suppressed. Thereby, deterioration of a negative electrode active material is suppressed and the cycle life of a nonaqueous electrolyte secondary battery can be improved. Moreover, since formation of an excessive film | membrane is suppressed even if charging / discharging is repeated, the fall of the reaction efficiency of a battery reaction and the increase in resistance are suppressed.
 また、無機リチウム化合物の含有量が、B層よりもA層において少ないことにより、少ない非水電解質の供給量でもスムーズに電池反応が生じやすく、結果として、A層とB層とで電池反応を均一に行うことができる。 In addition, since the content of the inorganic lithium compound is less in the A layer than in the B layer, a battery reaction is likely to occur smoothly even with a small amount of non-aqueous electrolyte supplied. As a result, the battery reaction occurs between the A layer and the B layer. It can be performed uniformly.
 上記の皮膜は、無機リチウム化合物として、主に、炭酸リチウムなどの無機酸リチウム塩;水酸化リチウム、酸化リチウム;フッ化リチウムなどのリチウムハライドなどを含むことが好ましい。
 上記の皮膜は、無機リチウム化合物として、少なくとも炭酸リチウムを含むことが好ましい。特に、上記の皮膜に最も多く含まれる無機リチウム化合物が、炭酸リチウムであることが好ましい。
The coating preferably contains, as the inorganic lithium compound, mainly an inorganic acid lithium salt such as lithium carbonate; lithium hydroxide, lithium oxide; lithium halide such as lithium fluoride, and the like.
The coating preferably contains at least lithium carbonate as an inorganic lithium compound. In particular, it is preferable that the inorganic lithium compound contained most in the above film is lithium carbonate.
 炭酸リチウムは、非水電解質中、および負極の使用電位範囲もおいて、化学的および電気化学的に安定な化合物である。このような炭酸リチウムを多く含む皮膜が、負極活物質層の表面側において多く形成されると、負極活物質と非水電解質との副反応をより有効に抑制できる。また、負極活物質層の表面側に多く形成される皮膜が強固であるため、放電時の負極の過度な膨張をより効果的に抑制できる。 Lithium carbonate is a chemically and electrochemically stable compound in the non-aqueous electrolyte and in the working potential range of the negative electrode. If such a film containing a large amount of lithium carbonate is formed on the surface side of the negative electrode active material layer, the side reaction between the negative electrode active material and the nonaqueous electrolyte can be more effectively suppressed. Moreover, since the film | membrane formed many on the surface side of a negative electrode active material layer is firm, the excessive expansion | swelling of the negative electrode at the time of discharge can be suppressed more effectively.
 なお、負極活物質層に形成される皮膜の組成は、X線光電子分光分析などにより分析することができる。また、負極活物質層中に形成された炭酸リチウムは、例えば、誘導結合プラズマ(ICP)発光分光、イオンクロマトグラフィーなどにより定量できる。具体的には、負極活物質層の所定の位置において負極活物質層を所定量採取し、水に添加して撹拌すると、負極活物質層中に含まれる水溶性成分(炭酸リチウム、水酸化リチウムなどの水溶性のリチウム化合物など)が水に溶解する。水溶性成分が溶解した水を、イオンクロマトグラフィーで分析することにより、炭酸イオン量を定量し、この値に基づいて、炭酸リチウムの含有量を算出できる。また、水溶性成分が溶解した水を、ICP発光分光で分析することにより、リチウムの含有量を定量することができる。 In addition, the composition of the film formed on the negative electrode active material layer can be analyzed by X-ray photoelectron spectroscopy. The lithium carbonate formed in the negative electrode active material layer can be quantified by, for example, inductively coupled plasma (ICP) emission spectroscopy, ion chromatography, or the like. Specifically, when a predetermined amount of the negative electrode active material layer is collected at a predetermined position of the negative electrode active material layer, and added to water and stirred, water-soluble components (lithium carbonate, lithium hydroxide) contained in the negative electrode active material layer Water-soluble lithium compounds, etc.) dissolve in water. By analyzing the water in which the water-soluble component is dissolved by ion chromatography, the amount of carbonate ion is quantified, and the content of lithium carbonate can be calculated based on this value. Moreover, the content of lithium can be quantified by analyzing the water in which the water-soluble component is dissolved by ICP emission spectroscopy.
 なお、負極活物質層の表面に凹凸を有する場合、凹部の底面と凸部の頂面との中間を負極活物質層の表面と仮定する。そして、この負極活物質層の表面と、負極集電体の表面との距離を、集電体側から7:3に分割することにより、A層とB層とする。 When the surface of the negative electrode active material layer has irregularities, the surface of the negative electrode active material layer is assumed to be intermediate between the bottom surface of the concave portion and the top surface of the convex portion. Then, the distance between the surface of the negative electrode active material layer and the surface of the negative electrode current collector is divided into 7: 3 from the current collector side, thereby forming an A layer and a B layer.
 集電体側のA層に含まれる炭酸リチウムの含有量CAは、例えば、10~65μg/cm2、好ましくは13~60μg/cm2、さらに好ましくは15~55μg/cm2である。
 A層中の炭酸リチウムの含有量CAに対するB層に含まれる炭酸リチウムの含有量CBの割合CB/CAは、例えば、1.05~2、好ましくは1.07~1.7、さらにこのましくは1.1~1.5である。このような範囲では、炭酸リチウムを含む皮膜による効果をより有効に得ることができる。
 なお、含有量CAおよびCBは、いずれも、負極の面積当たりの含有量である。
The content C A of lithium carbonate contained in the A layer of the current collector side, for example, 10 ~ 65μg / cm 2, preferably 13 ~ 60μg / cm 2, more preferably 15 ~ 55μg / cm 2.
The ratio C B / C A of the content C B of lithium carbonate contained in the B layer to the content C A of lithium carbonate in the A layer is, for example, 1.05 to 2, preferably 1.07 to 1.7. Further, this is preferably 1.1 to 1.5. In such a range, the effect by the film containing lithium carbonate can be obtained more effectively.
The content C A and C B are each an amount per unit area of the negative electrode.
 負極活物質層中に形成される皮膜のうち少なくとも一部は、有機リチウム化合物を含むことが好ましい。有機リチウム化合物としては、例えば、アルキル炭酸リチウムが挙げられる。
 なお、有機リチウム化合物の同定および定量は、例えば、X線光電子分光分析などに基づいて行うことができる。
It is preferable that at least a part of the film formed in the negative electrode active material layer contains an organolithium compound. Examples of the organic lithium compound include lithium alkyl carbonate.
The identification and quantification of the organolithium compound can be performed based on, for example, X-ray photoelectron spectroscopy.
 負極の面積当たりの、A層に含まれる有機リチウム化合物の含有量は、B層に含まれる有機リチウム化合物の含有量よりも多いことが好ましい。つまり、集電体側のA層では、負極の面積当たりの有機リチウム化合物の含有量が多く、表面側のB層では、負極の面積当たりの無機リチウム化合物の含有量が多いことが好ましい。
 有機リチウム化合物を含む皮膜は、主に、電池の充放電に伴い、非水電解質の分解反応により生成する。負極の表面側のA層では、無機リチウム化合物を含む皮膜が多く形成されるため、有機リチウム化合物の含有量は少なくなる。逆に、負極集電体側のB層では、無機リチウム化合物を含む皮膜の量が少ないため、有機リチウム化合物の含有量が多くなる。また、A層はB層よりも体積が大きいため、有機リチウム化合物の含有量も多くなる。
The content of the organolithium compound contained in the A layer per area of the negative electrode is preferably larger than the content of the organolithium compound contained in the B layer. In other words, the A layer on the current collector side preferably contains a large amount of the organic lithium compound per area of the negative electrode, and the B layer on the surface side preferably contains a large amount of the inorganic lithium compound per area of the negative electrode.
The film containing the organolithium compound is mainly generated by the decomposition reaction of the non-aqueous electrolyte as the battery is charged / discharged. In the layer A on the surface side of the negative electrode, a large amount of a film containing an inorganic lithium compound is formed, so that the content of the organic lithium compound is reduced. On the contrary, in the B layer on the negative electrode current collector side, the content of the organic lithium compound is increased because the amount of the film containing the inorganic lithium compound is small. Moreover, since the A layer has a larger volume than the B layer, the content of the organolithium compound is also increased.
 充電により負極活物質層中に含まれる負極活物質が膨張すると、活物質間、活物質-集電体間、活物質-導電剤間での接点が減少する。また、膨張に伴い、負極活物質層の内部に含まれる非水電解質が枯渇し易くなる。そのため、負極活物質層の内部では電池反応の反応効率が低下し易い。ところが、有機リチウム化合物が集電体側のA層に多く存在すると、負極活物質層の内部に非水電解質が潤沢に存在することになる。そのため、負極活物質の膨張が大きくなるような場合であっても、負極活物質層内で非水電解質の不足または枯渇をより有効に抑制できる。 When the negative electrode active material contained in the negative electrode active material layer expands due to charging, the contacts between the active materials, between the active material and the current collector, and between the active material and the conductive agent decrease. Further, with expansion, the non-aqueous electrolyte contained in the negative electrode active material layer is easily depleted. Therefore, the reaction efficiency of the battery reaction tends to decrease inside the negative electrode active material layer. However, when a large amount of the organic lithium compound is present in the A layer on the current collector side, the non-aqueous electrolyte is abundantly present inside the negative electrode active material layer. Therefore, even when the expansion of the negative electrode active material is increased, the shortage or depletion of the nonaqueous electrolyte can be more effectively suppressed in the negative electrode active material layer.
 負極活物質層内部に非水電解質を多く保持できるのは、有機リチウム化合物の有機基の部分が非水電解質に対して親和性が高く、濡れ易い状態を維持することができるためである。これにより、負極活物質層の内部でも、安定な電池反応を行うことができるようになり、活物質層の内部の活物質をより有効に利用できる。その結果、負極の容量を高めることができる。 The reason why a large amount of the non-aqueous electrolyte can be held inside the negative electrode active material layer is that the organic group portion of the organolithium compound has a high affinity for the non-aqueous electrolyte and can maintain an easily wetted state. Accordingly, a stable battery reaction can be performed even inside the negative electrode active material layer, and the active material inside the active material layer can be used more effectively. As a result, the capacity of the negative electrode can be increased.
 上記のような無機リチウム化合物の含有量が異なるA層とB層とを有する負極活物質層を含む負極は、電極群を形成する前に、負極活物質を含む負極活物質層にリチウムを吸蔵させることにより形成できる。このようなリチウムの吸蔵は、負極活物質を含む負極活物質層の表面に、真空蒸着またはリチウム箔を貼り付けて、金属リチウム層を形成することにより行うことができる。負極活物質層の表面に金属リチウム層を形成すると、負極内で局部電池が形成され、リチウムイオンを負極活物質層中に予め導入させることが可能になる。 The negative electrode including the negative electrode active material layer having the A layer and the B layer having different inorganic lithium compound contents as described above, occludes lithium in the negative electrode active material layer including the negative electrode active material before forming the electrode group. Can be formed. Such occlusion of lithium can be performed by forming a metallic lithium layer by attaching vacuum deposition or a lithium foil to the surface of the negative electrode active material layer containing the negative electrode active material. When a metal lithium layer is formed on the surface of the negative electrode active material layer, a local battery is formed in the negative electrode, and lithium ions can be introduced into the negative electrode active material layer in advance.
 負極活物質層の表面に金属リチウム層を形成した後、すぐに、電極群を組み立てて、電池を作製しても、金属リチウム層のリチウムは、負極活物質層の負極活物質に吸蔵されるが、金属リチウム層を形成した後、所定の期間、乾燥条件下で放置することにより、リチウムの吸蔵を促進させてもよい。所定の条件下で放置することにより、炭酸リチウムなどの無機リチウム化合物が多く生成することとなり、負極活物質層の表面側における無機リチウム化合物の含有量を、より効果的に高めることができる。 Immediately after forming the metal lithium layer on the surface of the negative electrode active material layer, the lithium in the metal lithium layer is occluded by the negative electrode active material of the negative electrode active material layer even if the electrode group is assembled and a battery is manufactured. However, after the metal lithium layer is formed, the lithium occlusion may be promoted by leaving it under dry conditions for a predetermined period. By leaving it under predetermined conditions, a large amount of an inorganic lithium compound such as lithium carbonate is generated, and the content of the inorganic lithium compound on the surface side of the negative electrode active material layer can be increased more effectively.
 放置期間は、例えば、0.5日~2週間、好ましくは0.5~10日間である。
 また、放置は、空気中や二酸化炭素を含む雰囲気中で行うことが好ましい。水分の混入を避けるため、金属リチウム層を形成した負極は、乾燥条件下で放置することが好ましい。このような乾燥条件としては、低露点、例えば、露点-25℃以下、好ましくは露点-30℃以下であることが好ましい。特に、金属リチウム層を形成した負極を、低露点のドライエア中で放置することが好ましい。
The standing period is, for example, 0.5 days to 2 weeks, preferably 0.5 to 10 days.
Further, the leaving is preferably performed in air or in an atmosphere containing carbon dioxide. In order to avoid moisture contamination, the negative electrode on which the metal lithium layer is formed is preferably left under dry conditions. As such drying conditions, a low dew point, for example, a dew point of −25 ° C. or lower, preferably a dew point of −30 ° C. or lower is preferable. In particular, the negative electrode on which the metal lithium layer is formed is preferably left in dry air with a low dew point.
 金属リチウム層は、負極活物質層の少なくとも一部の表面に形成できる。
 また、負極活物質層の少なくとも一部の表面には、電極群の組み立て前に、金属リチウム層が残存していてもよく、金属リチウム層のリチウムが全て負極活物質層に吸蔵されていてもよい。
The metal lithium layer can be formed on at least a part of the surface of the negative electrode active material layer.
In addition, the metal lithium layer may remain on at least a part of the surface of the negative electrode active material layer before the assembly of the electrode group, or all of the lithium in the metal lithium layer may be occluded in the negative electrode active material layer. Good.
 一般的な非水電解質二次電池では、正極のみから電池内にリチウムイオンが供給されるが、さらなる高容量化を目指す場合に正極以外のリチウム源から補填する設計を行うことが好ましい。このような設計では、負極の不可逆容量を補填する結果として、正極活物質が有効利用され、負極の不可逆容量による容量低下を防ぎ高容量化が可能になる。このように不可逆容量が補填された負極を用いる場合、上記のような皮膜の効果をより有効に得ることができる。 In general non-aqueous electrolyte secondary batteries, lithium ions are supplied into the battery only from the positive electrode. However, it is preferable to make a design to compensate from a lithium source other than the positive electrode when aiming at further higher capacity. In such a design, as a result of supplementing the irreversible capacity of the negative electrode, the positive electrode active material is effectively used, and it is possible to prevent a decrease in capacity due to the irreversible capacity of the negative electrode and increase the capacity. Thus, when using the negative electrode with which the irreversible capacity | capacitance was compensated, the effect of the above films can be acquired more effectively.
 負極活物質層は、負極集電体の両方の表面に付着していてもよく、一方の表面に付着していてもよい。
 負極集電体は、無孔の導電性基板であってもよく、複数の貫通孔を有する多孔性の導電性基板であってもよい。無孔の導電性基板としては、金属箔、金属シートなどが利用できる。多孔性の導電性基板としては、連通孔(穿孔)を有する金属箔、メッシュ体、ネット体、パンチングシート、エキスパンドメタル、ラス体などが例示できる。
The negative electrode active material layer may be attached to both surfaces of the negative electrode current collector, or may be attached to one surface.
The negative electrode current collector may be a non-porous conductive substrate or a porous conductive substrate having a plurality of through holes. As the non-porous conductive substrate, a metal foil, a metal sheet, or the like can be used. Examples of the porous conductive substrate include a metal foil having a communication hole (perforation), a mesh body, a net body, a punching sheet, an expanded metal, and a lath body.
 本発明では、電池の容量を高めるため、捲回型または積層型の電極群を用いる。そのため、集電体は、長尺帯状であることが好ましい。
 負極集電体に使用される金属材料としては、例えば、ステンレス鋼、ニッケル、銅、銅合金などが例示できる。なかでも、銅または銅合金などが好ましい。
 負極集電体の厚みは、特に限定されず、例えば、1~500μmの範囲から選択でき、好ましくは3~50μm、さらに好ましくは5~20μmである。
In the present invention, a wound or stacked electrode group is used to increase the capacity of the battery. Therefore, it is preferable that the current collector has a long band shape.
Examples of the metal material used for the negative electrode current collector include stainless steel, nickel, copper, and copper alloy. Of these, copper or a copper alloy is preferable.
The thickness of the negative electrode current collector is not particularly limited, and can be selected, for example, from a range of 1 to 500 μm, preferably 3 to 50 μm, more preferably 5 to 20 μm.
 負極活物質層は、気相法による負極活物質の堆積膜でもよいが、負極活物質に加え、結着剤、必要により導電剤および/または増粘剤を含む合剤層であるのが好ましい。
 堆積膜は、負極活物質を、真空蒸着法、スパッタリング法、イオンプレーティング法などの気相法により、負極集電体の表面に堆積させることにより形成できる。この場合、負極活物質としては、例えば、後述するケイ素、ケイ素化合物、スズ、スズ化合物、金属または合金などが利用できる。
The negative electrode active material layer may be a deposited film of a negative electrode active material by a vapor phase method, but is preferably a mixture layer containing a binder, and optionally a conductive agent and / or a thickener, in addition to the negative electrode active material. .
The deposited film can be formed by depositing the negative electrode active material on the surface of the negative electrode current collector by a vapor phase method such as a vacuum evaporation method, a sputtering method, or an ion plating method. In this case, as the negative electrode active material, for example, silicon, silicon compound, tin, tin compound, metal or alloy described later can be used.
 負極合剤層は、負極活物質、分散媒、必要により、結着剤、導電剤および/または増粘剤を含む負極合剤スラリーを調製し、負極集電体の表面に塗布し、乾燥し、必要により圧延することにより形成できる。
 負極活物質層の厚みは、例えば、10~150μm、好ましくは15~100μmである。
The negative electrode mixture layer is prepared by preparing a negative electrode mixture slurry containing a negative electrode active material, a dispersion medium, and, if necessary, a binder, a conductive agent and / or a thickener, and applying the slurry to the surface of the negative electrode current collector, followed by drying. If necessary, it can be formed by rolling.
The thickness of the negative electrode active material layer is, for example, 10 to 150 μm, preferably 15 to 100 μm.
 負極活物質としては、リチウムイオンを吸蔵および放出可能であればよく、例えば、炭素材料;ケイ素、ケイ素化合物;スズ、スズ化合物;金属または合金(例えば、ケイ素合金;スズ合金;スズ、アルミニウム、亜鉛、およびマグネシウムから選ばれる少なくとも一種を含むリチウム合金など);が挙げられる。炭素材料(炭素質活物質)としては、例えば、天然黒鉛、人造黒鉛などの黒鉛;コークス、黒鉛化途上炭素、黒鉛化炭素繊維、非晶質炭素などが挙げられる。ケイ素化合物およびスズ化合物としては、酸化物、窒化物などが例示できる。これらの負極活物質は、一種を単独でまたは二種以上を組み合わせて使用できる。
 負極活物質の形状は、特に制限されず、繊維状または粒子状であってもよい。
The negative electrode active material only needs to be able to occlude and release lithium ions. For example, carbon materials; silicon, silicon compounds; tin, tin compounds; metals or alloys (for example, silicon alloys; tin alloys; tin, aluminum, zinc) And a lithium alloy containing at least one selected from magnesium). Examples of the carbon material (carbonaceous active material) include graphite such as natural graphite and artificial graphite; coke, graphitizing carbon, graphitized carbon fiber, and amorphous carbon. Examples of the silicon compound and tin compound include oxides and nitrides. These negative electrode active materials can be used individually by 1 type or in combination of 2 or more types.
The shape of the negative electrode active material is not particularly limited, and may be fibrous or particulate.
 これらのうち、ケイ素およびスズからなる群より選択される少なくとも一種を含む活物質が好ましく、ケイ素および/またはスズを含む活物質を、負極活物質全体の80質量%以上含むことがさらに好ましい。このような活物質は、充放電に伴う体積変化が大きいため、劣化しやすく、容量が低下しやすい。本発明では、負極活物質層の表面側に剛性の高い皮膜を多く形成するため、このような体積変化の大きな活物質を用いてもサイクル寿命を効果的に向上できる。ケイ素および/スズを含む活物質の含有量は、負極活物質全体に対して、90質量%以上であることが好ましく、負極活物質全体がケイ素および/またはスズを含む活物質であってもよい。 Of these, an active material containing at least one selected from the group consisting of silicon and tin is preferable, and an active material containing silicon and / or tin is more preferably included in an amount of 80% by mass or more of the whole negative electrode active material. Since such an active material has a large volume change accompanying charging / discharging, it easily deteriorates and its capacity tends to decrease. In the present invention, since many highly rigid films are formed on the surface side of the negative electrode active material layer, the cycle life can be effectively improved even when such an active material having a large volume change is used. The content of the active material containing silicon and / or tin is preferably 90% by mass or more based on the whole negative electrode active material, and the whole negative electrode active material may be an active material containing silicon and / or tin. .
 ケイ素なスズを含む活物質は、従来から負極活物質として使用されている炭素材料に比べ、容量密度が大きく、負極を高容量化できるため有利である。炭素材料では、リチウムが吸蔵および放出される部位が制限されるが、ケイ素やスズを含む負極活物質では、そのような制限がないことが多いため、リチウムの吸蔵および放出性が高く、本発明の効果をより有効に得ることができる。 An active material containing silicon tin is advantageous because it has a larger capacity density than a carbon material conventionally used as a negative electrode active material and can increase the capacity of the negative electrode. In the carbon material, the site where lithium is occluded and released is limited. However, the negative electrode active material containing silicon or tin often has no such limitation. The effect of can be obtained more effectively.
 ケイ素を含む活物質のうち、ケイ素化合物としては、ケイ素酸化物SiOα(0.05≦α≦1.95)などが挙げられる。αは、好ましくは0.1~1.8、さらに好ましくは0.15~1.6である。ケイ素酸化物においては、ケイ素の一部が1または2以上の元素で置換されていてもよい。このような元素としては、例えば、B、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、NおよびSnからなる群より選択される少なくとも一種の元素Dが挙げられる。 Among active materials containing silicon, examples of the silicon compound include silicon oxide SiO α (0.05 ≦ α ≦ 1.95). α is preferably 0.1 to 1.8, more preferably 0.15 to 1.6. In the silicon oxide, a part of silicon may be substituted with one or more elements. Examples of such elements include B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, V, W, Zn, C, N, and Sn. The at least 1 type of element D selected is mentioned.
 また、ケイ素合金としては、ケイ素の一部を上記の元素Dで置換された合金などが例示でき、ケイ素原子間に組み込まれた他の金属元素(上記元素Dなど)を含む物質(元素Dを含むケイ素固溶体など)などであってもよい。 Examples of the silicon alloy include an alloy in which a part of silicon is substituted with the above element D, and a substance containing the other metal element (such as the above element D) incorporated between silicon atoms (the element D). It may be a silicon solid solution containing).
 スズを含む化合物のうち、スズ化合物としては、SnOβ(但し0<β<2)、SnO2などのスズ酸化物;Ni2Sn4、Mg2Snなどの金属間化合物;SnSiO3などが例示できる。 Among the compounds containing tin, examples of tin compounds include SnO β (where 0 <β <2), tin oxides such as SnO 2 ; intermetallic compounds such as Ni 2 Sn 4 and Mg 2 Sn; SnSiO 3 and the like it can.
 また、負極活物質としては、黒鉛などの炭素質活物質を用いることも好ましい。負極活物質全体に対する炭素質活物質の含有量は、80質量%以上が好ましく、90質量%以上がさらに好ましい。また、負極活物質として、炭素質活物質のみを使用してもよい。 It is also preferable to use a carbonaceous active material such as graphite as the negative electrode active material. The content of the carbonaceous active material with respect to the entire negative electrode active material is preferably 80% by mass or more, and more preferably 90% by mass or more. Moreover, you may use only a carbonaceous active material as a negative electrode active material.
 分散媒としては、特に制限されないが、例えば、水、エタノールなどのアルコール、テトラヒドロフランなどのエーテル、ジメチルホルムアミドなどのアミド、N-メチル-2-ピロリドン(NMP)、またはこれらの混合溶媒などが例示できる。 The dispersion medium is not particularly limited, and examples thereof include water, alcohols such as ethanol, ethers such as tetrahydrofuran, amides such as dimethylformamide, N-methyl-2-pyrrolidone (NMP), or a mixed solvent thereof. .
 結着剤としては、樹脂材料、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、またはその変性体(官能基が導入されたPVDFなど)、フッ化ビニリデンをモノマー単位として含む共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;アラミド樹脂などのポリアミド樹脂;ポリイミド、ポリアミドイミドなどのポリイミド樹脂;ポリアクリル酸、ポリアクリル酸メチル、エチレン-アクリル酸共重合体などのアクリル樹脂;ポリアクリルニトリル、ポリ酢酸ビニルなどのビニル樹脂;ポリビニルピロリドン;ポリエーテルサルフォン;スチレン-ブタジエン共重合ゴム(SBR)などのゴム状材料などが例示できる。これらの結着剤は、一種を単独でまたは二種以上を組み合わせて使用できる。 Examples of the binder include resin materials such as polytetrafluoroethylene, polyvinylidene fluoride (PVDF), or modified products thereof (such as PVDF having a functional group introduced), copolymers containing vinylidene fluoride as monomer units, and the like. Polyolefin resin such as polyethylene and polypropylene; Polyamide resin such as aramid resin; Polyimide resin such as polyimide and polyamideimide; Acrylic resin such as polyacrylic acid, polymethyl acrylate, and ethylene-acrylic acid copolymer; Examples thereof include vinyl resins such as acrylonitrile and polyvinyl acetate; polyvinyl pyrrolidone; polyether sulfone; and rubbery materials such as styrene-butadiene copolymer rubber (SBR). These binders can be used individually by 1 type or in combination of 2 or more types.
 なお、結着剤は、スラリー中、分散媒に溶解した状態であってもよく、粒子状に分散した状態であってもよい。
 結着剤の割合は、活物質100質量部当たり、例えば、0.3~10質量部、好ましくは1~6質量部である。
In addition, the binder may be in a state dissolved in a dispersion medium in the slurry, or in a state of being dispersed in the form of particles.
The ratio of the binder is, for example, 0.3 to 10 parts by mass, preferably 1 to 6 parts by mass, per 100 parts by mass of the active material.
 導電剤としては、例えば、天然黒鉛、人造黒鉛などの黒鉛;アセチレンブラックなどのカーボンブラック;フッ化カーボン;炭素繊維、金属繊維などの導電性繊維;アルミニウムなどの金属粉末;酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー;酸化チタンなどの導電性金属酸化物;フェニレン誘導体などの有機導電性材料などが挙げられる。これらの導電剤は、一種を単独でまたは二種以上を組み合わせて使用できる。導電剤の割合は、活物質100質量部あたり、例えば、0.3~10質量部である。 Examples of the conductive agent include graphite such as natural graphite and artificial graphite; carbon black such as acetylene black; carbon fluoride; conductive fiber such as carbon fiber and metal fiber; metal powder such as aluminum; zinc oxide and potassium titanate. Conductive whiskers such as; conductive metal oxides such as titanium oxide; and organic conductive materials such as phenylene derivatives. These electrically conductive agents can be used individually by 1 type or in combination of 2 or more types. The ratio of the conductive agent is, for example, 0.3 to 10 parts by mass per 100 parts by mass of the active material.
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)およびその変性体(Na塩などの塩も含む)、メチルセルロースなどのセルロース誘導体;ポリビニルアルコールなどの酢酸ビニルユニットを有するポリマーのケン化物;ポリエーテル(ポリエチレンオキシドなどのポリアルキレンオキサイドなど)などが挙げられる。これらの増粘剤は、一種を単独でまたは二種以上を組み合わせて使用できる。
 増粘剤の量は、活物質100質量部に対して、例えば、0.01~10質量部である。
Examples of the thickener include carboxymethylcellulose (CMC) and modified products thereof (including salts such as Na salts), cellulose derivatives such as methylcellulose; saponified polymers having vinyl acetate units such as polyvinyl alcohol; polyethers ( And polyalkylene oxides such as polyethylene oxide). These thickeners can be used singly or in combination of two or more.
The amount of the thickener is, for example, 0.01 to 10 parts by mass with respect to 100 parts by mass of the active material.
 以下に、本発明の非水電解質二次電池の構成を、必要に応じて図面を参照しながら、より詳細に説明する。 Hereinafter, the configuration of the nonaqueous electrolyte secondary battery of the present invention will be described in more detail with reference to the drawings as necessary.
 図1は、本発明の一実施形態に係る非水電解質二次電池としてのリチウムイオン二次電池を模式的に示す縦断面図である。非水電解質二次電池は、長尺帯状の正極5と、長尺帯状の負極6と、正極5と負極6との間に介在するセパレータ7とが捲回された電極群4を有する。有底円筒型の金属製の電池ケース1内には、電極群4とともに、図示しない非水電解質が収容されている。 FIG. 1 is a longitudinal sectional view schematically showing a lithium ion secondary battery as a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. The nonaqueous electrolyte secondary battery has an electrode group 4 in which a long strip-shaped positive electrode 5, a long strip-shaped negative electrode 6, and a separator 7 interposed between the positive electrode 5 and the negative electrode 6 are wound. In the bottomed cylindrical metal battery case 1, together with the electrode group 4, a non-aqueous electrolyte (not shown) is accommodated.
 電極群4において、正極5には正極リード9が電気的に接続され、負極6には負極リード10が電気的に接続されている。
 電極群4は、正極リード9を導出した状態で、下部絶縁リング8bとともに電池ケース1に収納される。正極リード9の端部には封口板2が溶接され、正極5と封口板2とは電気的に接続されている。
In the electrode group 4, a positive electrode lead 9 is electrically connected to the positive electrode 5, and a negative electrode lead 10 is electrically connected to the negative electrode 6.
The electrode group 4 is housed in the battery case 1 together with the lower insulating ring 8b with the positive electrode lead 9 led out. The sealing plate 2 is welded to the end of the positive electrode lead 9, and the positive electrode 5 and the sealing plate 2 are electrically connected.
 下部絶縁リング8bは、電極群4の底面と、電極群4から下方へ導出された負極リード10との間に配されている。負極リード10は電池ケース1の内底面に溶接され、負極6と電池ケース1とが電気的に接続されている。電極群4の上面には上部絶縁リング8aが載置されている。 The lower insulating ring 8 b is disposed between the bottom surface of the electrode group 4 and the negative electrode lead 10 led out from the electrode group 4. The negative electrode lead 10 is welded to the inner bottom surface of the battery case 1, and the negative electrode 6 and the battery case 1 are electrically connected. An upper insulating ring 8 a is mounted on the upper surface of the electrode group 4.
 電極群4は、上部絶縁リング8aの上方の電池ケース1の上部側面に形成された内側に突出した段部11により電池ケース1内に保持される。段部11の上には、周縁部に樹脂製のガスケット3を有する封口板2が載置され、電池ケース1の開口端部は、内方にかしめ封口されている。 The electrode group 4 is held in the battery case 1 by an inwardly protruding step 11 formed on the upper side surface of the battery case 1 above the upper insulating ring 8a. On the step portion 11, a sealing plate 2 having a resin gasket 3 on the periphery is placed, and the opening end of the battery case 1 is caulked and sealed inward.
 図2は、本発明の一実施形態に係る非水電解質二次電池に使用される、正極、負極およびセパレータを模式的に示す縦断面図である。
 負極6は、長尺帯状の負極集電体6aと、負極集電体6aの両方の表面に形成された負極活物質層6bを含む。負極集電体6aの長手方向の一方の端部には、負極集電体6aの両方の表面において、負極活物質層6bが形成されていない集電体露出部6a,6dを形成されている。そして、集電体露出部6cには、負極リードが溶接される。
FIG. 2 is a longitudinal sectional view schematically showing a positive electrode, a negative electrode, and a separator used in the nonaqueous electrolyte secondary battery according to one embodiment of the present invention.
The negative electrode 6 includes a long strip-shaped negative electrode current collector 6a and a negative electrode active material layer 6b formed on both surfaces of the negative electrode current collector 6a. At one end in the longitudinal direction of the negative electrode current collector 6a, current collector exposed portions 6a and 6d where the negative electrode active material layer 6b is not formed are formed on both surfaces of the negative electrode current collector 6a. . The negative electrode lead is welded to the current collector exposed portion 6c.
 正極5は、長尺帯状の正極集電体5aと、正極集電体5aの両方の表面に形成された正極活物質層5bを含む。正極集電体5aの長手方向における中央部には、正極集電体5aの両方の表面において、短手方向を横切るように、正極活物質層5bが形成されていない集電体露出部5c,5dが形成されている。集電体露出部5cには、正極リードが溶接される。 The positive electrode 5 includes a long strip-shaped positive electrode current collector 5a and a positive electrode active material layer 5b formed on both surfaces of the positive electrode current collector 5a. In the central part of the positive electrode current collector 5a in the longitudinal direction, the current collector exposed part 5c in which the positive electrode active material layer 5b is not formed so as to cross the short direction on both surfaces of the positive electrode current collector 5a, 5d is formed. A positive electrode lead is welded to the current collector exposed portion 5c.
 多孔質絶縁体であるセパレータ7は、長尺帯状である。正極5と、負極6は、間にセパレータ7を介在させた状態で対向配置される。そして、この状態で、捲回されることにより、図1に示されるような電極群が形成される。 The separator 7 which is a porous insulator has a long band shape. The positive electrode 5 and the negative electrode 6 are arranged to face each other with a separator 7 interposed therebetween. And in this state, by winding, an electrode group as shown in FIG. 1 is formed.
 以下、負極以外の電池の構成要素について詳細に説明する。
 (正極)
 正極活物質層は、図2に示すように、負極集電体の両方の表面に付着していてもよく、一方の表面に付着していてもよい。
 正極集電体は、負極集電体と同様に、無孔のまたは多孔性の導電性基板が使用できる。正極集電体の厚みは、負極集電体の厚みと同様の範囲から選択できる。正極集電体に使用される金属材料としては、ステンレス鋼、チタン、アルミニウム、アルミニウム合金などが例示できる。
Hereinafter, components of the battery other than the negative electrode will be described in detail.
(Positive electrode)
As shown in FIG. 2, the positive electrode active material layer may be attached to both surfaces of the negative electrode current collector, or may be attached to one surface.
As the negative electrode current collector, a nonporous or porous conductive substrate can be used as the positive electrode current collector. The thickness of the positive electrode current collector can be selected from the same range as the thickness of the negative electrode current collector. Examples of the metal material used for the positive electrode current collector include stainless steel, titanium, aluminum, and an aluminum alloy.
 正極活物質層は、例えば、正極活物質、必要に応じて、結着剤、導電助剤、増粘剤などを含む正極合剤層であってもよい。正極は、負極の形成方法に準じて形成できる。
 正極活物質層の厚みは、例えば、15~100μm、好ましくは20~70μmである。
The positive electrode active material layer may be, for example, a positive electrode mixture layer containing a positive electrode active material and, if necessary, a binder, a conductive additive, a thickener, and the like. A positive electrode can be formed according to the formation method of a negative electrode.
The thickness of the positive electrode active material layer is, for example, 15 to 100 μm, preferably 20 to 70 μm.
 正極活物質としては、リチウムイオンを吸蔵および放出可能な公知の正極活物質が使用できる。正極活物質としては、十分な量のリチウムを含むものが好ましく、具体的には、リチウムと金属元素(元素M)とを含む酸化物(以下、リチウム含有金属複合酸化物とも言う)が挙げられる。このようなリチウム含有金属複合酸化物は、層状もしくは六方晶の結晶構造またはスピネル構造を有することが好ましい。 As the positive electrode active material, a known positive electrode active material capable of occluding and releasing lithium ions can be used. The positive electrode active material preferably contains a sufficient amount of lithium, and specifically includes an oxide containing lithium and a metal element (element M) (hereinafter also referred to as lithium-containing metal composite oxide). . Such a lithium-containing metal composite oxide preferably has a layered or hexagonal crystal structure or a spinel structure.
 金属元素Mは、Co、Ni、MnおよびFeからなる群より選択される少なくとも一種を含む。元素Mは、特に、Co、NiおよびMnからなる群より選択される少なくとも一種であることが好ましい。 The metal element M includes at least one selected from the group consisting of Co, Ni, Mn, and Fe. The element M is particularly preferably at least one selected from the group consisting of Co, Ni and Mn.
 金属元素Mは、上記の金属元素に加えて、さらに異種元素を含んでもよい。また、リチウム含有金属複合酸化物粒子は、その表面が異種元素で被覆されていてもよい。異種元素M1としては、Na、Mg、Sc、Y、Cu、Zn、Al、Cr、Pb、Sb、Bなどが挙げられる。正極活物質は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The metal element M may further include a different element in addition to the above metal element. Moreover, the surface of the lithium-containing metal composite oxide particles may be coated with a different element. Examples of the different element M 1 include Na, Mg, Sc, Y, Cu, Zn, Al, Cr, Pb, Sb, and B. A positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
 具体的な正極活物質としては、例えば、コバルト酸リチウムLimCoO2、ニッケル酸リチウムLimNiO2、LimMnO2、LimConNi1-n2、LimCon1 1-np、LimNi1-n1 np(例えば、LiNi1/3Co1/3Mn1/32など)、LimMn24、LimMn2-n1 n4、LiMPO4、Li2MPO4Fなどが挙げられる。元素M1は、上記の異種元素であり、元素Mは、上記の金属元素である。上記の一般式において、0<m≦1.2、0<n≦0.9、2.0≦p≦2.3である。 Specific positive electrode active material, for example, lithium cobalt oxide Li m CoO 2, lithium nickelate Li m NiO 2, Li m MnO 2, Li m Co n Ni 1-n O 2, Li m Co n M 1 1 -n O p, Li m Ni 1 -n M 1 n O p ( for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), Li m Mn 2 O 4, Li m Mn 2-n M 1 n O 4 , LiMPO 4 , Li 2 MPO 4 F and the like can be mentioned. The element M 1 is the above-mentioned different element, and the element M is the above-described metal element. In the above general formula, 0 <m ≦ 1.2, 0 <n ≦ 0.9, and 2.0 ≦ p ≦ 2.3.
 正極活物質は、一種を単独でまたは二種以上を組み合わせて使用できる。これらのうち、LiMO2(Mは上記金属元素)で表すことができるような酸化物、具体的には、LimCoO2、ニッケル酸リチウムLimNiO2、LimMnO2、LimConNi1-n2、LimCon1 1-np、LimNi1-n1 npなどが好ましい。 A positive electrode active material can be used individually by 1 type or in combination of 2 or more types. Among these, oxides that can be represented by LiMO 2 (M is the above metal element), specifically, Li m CoO 2 , lithium nickelate Li m NiO 2 , Li m MnO 2 , Li m Con n Ni 1-n O 2, Li m Co n M 1 1-n O p, such as Li m Ni 1-n M 1 n O p are preferred.
 正極および負極に含まれるリチウム量の総和xと、上記の酸化物に含まれる金属元素Mの量Mcとの比率x/Mcは、例えば、1.03より大きいことが好ましく、1.05より大きいことがさらに好ましい。比率x/Mcがこのような範囲である場合、電池内に供給されるリチウムイオンの比率が非常に大きくなることになる。つまり、不可逆容量の補填および炭酸リチウムなどの無機リチウム化合物の形成の点で有利である。 The ratio x / M c between the total amount x of lithium contained in the positive electrode and the negative electrode and the amount M c of the metal element M contained in the oxide is preferably greater than 1.03, for example, 1.05 More preferably, it is larger. When the ratio x / Mc is within such a range, the ratio of lithium ions supplied into the battery becomes very large. That is, it is advantageous in terms of irreversible capacity compensation and formation of inorganic lithium compounds such as lithium carbonate.
 負極活物質が、炭素質活物質を含む場合、比率x/Mcは、好ましくは1.03より大きく、さらに好ましくは1.04(特に、1.05)より大きい。
 また、負極活物質が、ケイ素および/またはスズを含む場合、比率x/Mcは、好ましくは1.05より大きく、より好ましくは1.06以上、さらに好ましくは1.07以上(特に、1.08以上)である。
When the negative electrode active material includes a carbonaceous active material, the ratio x / M c is preferably greater than 1.03, more preferably greater than 1.04 (particularly 1.05).
When the negative electrode active material contains silicon and / or tin, the ratio x / Mc is preferably greater than 1.05, more preferably 1.06 or more, and even more preferably 1.07 or more (particularly 1 .08 or more).
 比率x/Mcは、正極および負極中に含まれるリチウム量xと正極活物質に含まれる金属元素Mの量Mcを、それぞれ定量し、xの量を金属元素Mの量Mcで除することにより算出できる。
 なお、リチウム量xおよび金属元素Mの量Mcは、次のようにして定量できる。
 まず、電池を、完全に放電した後、分解し、非水電解質を除去して、電池内部をジメチルカーボネートなどの溶媒を用いて洗浄する。次いで、正極および負極をそれぞれ所定の質量だけ採取し、ICP分析により、正極および負極に含まれるリチウム量を定量することにより、リチウム量xを求める。また、正極中のリチウム量の場合と同様にして、正極に含まれる金属元素Mの量McをICP分析により定量する。
The ratio x / M c is the amount M c of the metal element M contained in the lithium content x and the positive electrode active material contained in the positive electrode and the negative electrode, were quantified, respectively, dividing the amount of x in an amount M c of the metal element M This can be calculated.
The amount M c of lithium content x and the metal element M can be quantified as follows.
First, the battery is completely discharged and then decomposed to remove the nonaqueous electrolyte, and the inside of the battery is washed with a solvent such as dimethyl carbonate. Next, a predetermined amount of each of the positive electrode and the negative electrode is collected, and the amount of lithium x is determined by quantifying the amounts of lithium contained in the positive electrode and the negative electrode by ICP analysis. Also, as in the case of the amount of lithium in the positive electrode, the amount M c of the metal element M contained in the positive electrode is quantified by ICP analysis.
 正極活物質は、通常、粒子状の形態で使用される。正極活物質の平均粒子径は、例えば、5~30μm、好ましくは5~20μm、さらに好ましくは7~15μmである。平均粒子径がこのような範囲である場合、活物質粒子の表面積を適度な範囲に保持できるため、結着剤の量を多くしなくても、正極において十分な接着強度が得られやすく、結着剤の量を多くすることによる容量の低下を抑制できる。また、正極合剤スラリーを集電体に塗布する際に、塗工スジが発生するのをより効果的に抑制できる。 The positive electrode active material is usually used in a particulate form. The average particle diameter of the positive electrode active material is, for example, 5 to 30 μm, preferably 5 to 20 μm, and more preferably 7 to 15 μm. When the average particle diameter is in such a range, the surface area of the active material particles can be maintained in an appropriate range. Therefore, sufficient adhesion strength can be easily obtained in the positive electrode without increasing the amount of the binder, and the binding can be achieved. A decrease in capacity due to an increase in the amount of the adhesive can be suppressed. Moreover, when applying the positive electrode mixture slurry to the current collector, it is possible to more effectively suppress the occurrence of coating streaks.
 なお、正極活物質粒子には、必要に応じて、各種表面処理を行ってもよい。表面処理としては、上記正極活物質を構成する酸化物以外の金属酸化物(例えば、アルミナ、チタニアなど)による表面処理、導電剤による表面処理、疎水化処理などが例示できる。 The positive electrode active material particles may be subjected to various surface treatments as necessary. Examples of the surface treatment include a surface treatment with a metal oxide (for example, alumina, titania, etc.) other than the oxide constituting the positive electrode active material, a surface treatment with a conductive agent, and a hydrophobic treatment.
 分散媒、結着剤、導電剤および増粘剤としては、それぞれ、負極について例示したものなどが使用できる。また、活物質に対する各成分の量も、正極と同様の範囲から選択できる。正極活物質層の厚みも、負極活物質層と同様の範囲から選択できる。 As the dispersion medium, binder, conductive agent and thickener, those exemplified for the negative electrode can be used. The amount of each component relative to the active material can also be selected from the same range as that of the positive electrode. The thickness of the positive electrode active material layer can also be selected from the same range as the negative electrode active material layer.
 正極活物質層中の結着剤の含有量は、正極活物質100質量部に対して、例えば、1~10質量部、好ましくは3~6質量部である。 The content of the binder in the positive electrode active material layer is, for example, 1 to 10 parts by mass, preferably 3 to 6 parts by mass with respect to 100 parts by mass of the positive electrode active material.
 また、正極に使用される結着剤のうち、電池内において化学的に安定であり、十分な結着力が得られやすい観点から、PVDF、その変性体、またはフッ化ビニリデンをモノマー単位として含む共重合体、ゴム状材料を用いることが好ましい。正極における結着力が高いと、充放電による正極の劣化をより効果的に抑制できる。そのため、PVDF、フッ化ビニリデンを含む共重合体を用いることが、放電特性およびサイクル特性を向上する上では、より有利である。このような結着剤を用いる場合、より高い結着力が得られやすいため、結着剤を分散媒に溶解させた状態で使用することが望ましい。 Among the binders used for the positive electrode, from the viewpoint of being chemically stable in the battery and easily obtaining a sufficient binding force, a co-polymer containing PVDF, a modified product thereof, or vinylidene fluoride as a monomer unit. It is preferable to use a polymer or a rubber-like material. When the binding force at the positive electrode is high, deterioration of the positive electrode due to charge / discharge can be more effectively suppressed. Therefore, it is more advantageous to use a copolymer containing PVDF and vinylidene fluoride in order to improve discharge characteristics and cycle characteristics. When such a binder is used, it is easy to obtain a higher binding force. Therefore, it is desirable to use the binder in a state where it is dissolved in a dispersion medium.
 (セパレータ)
 セパレータとしては、イオン透過性が高く、正極と負極との短絡を防止するために必要な機械的強度および絶縁性を備えるものであれば特に制限されず、例えば、樹脂製の微多孔膜、織布または不織布などが例示できる。セパレータを構成する樹脂としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリアミドなどのポリアミド樹脂;ポリアミドイミド、ポリイミドなどのポリイミド樹脂などが例示できる。
(Separator)
The separator is not particularly limited as long as it has high ion permeability and has mechanical strength and insulation necessary for preventing a short circuit between the positive electrode and the negative electrode. For example, a microporous membrane made of resin, woven fabric, etc. A cloth or a nonwoven fabric can be illustrated. Examples of the resin constituting the separator include polyolefins such as polyethylene and polypropylene; polyamide resins such as polyamide; polyimide resins such as polyamideimide and polyimide.
 これらのうち、耐久性やシャットダウン機能に優れ、電池の安全性を確保し易い観点から、ポリオレフィン製のセパレータが好ましい。微多孔膜は、必要に応じて、公知の添加剤を含んでもよい。
 微多孔膜セパレータは、単層フィルムであってもよく、組成が異なる多層フィルム(複合フィルム)であってもよい。
Among these, a separator made of polyolefin is preferable from the viewpoint of excellent durability and shutdown function and easy securing of battery safety. The microporous membrane may contain a known additive as necessary.
The microporous membrane separator may be a single layer film or a multilayer film (composite film) having a different composition.
 セパレータの厚みは、例えば、10~300μmの範囲から適宜選択でき、好ましくは10~40μm、さらに好ましくは10~30μm(特に、10~25μm)である。
 セパレータの空孔率は、例えば、30~70%、好ましくは35~60%である。空孔率とは、セパレータの全体積に対する空孔部分の体積の比率を示す。
The thickness of the separator can be appropriately selected from the range of, for example, 10 to 300 μm, preferably 10 to 40 μm, more preferably 10 to 30 μm (particularly 10 to 25 μm).
The separator has a porosity of, for example, 30 to 70%, preferably 35 to 60%. The porosity indicates the ratio of the volume of the void portion to the total volume of the separator.
 (非水電解質)
 非水電解質は、非水溶媒と、非水溶媒に溶解したリチウム塩(電解質)を含む。
 非水溶媒としては、非水電解質二次電池の非水電解質に使用される公知の非水溶媒、例えば、環状カーボネート、鎖状カーボネート、環状カルボン酸エステルなどが例示できる。環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネートなどが挙げられる。鎖状カーボネートとしては、ジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート(DMC)などが挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン、γ-バレロラクトンなどが挙げられる。非水溶媒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
(Non-aqueous electrolyte)
The nonaqueous electrolyte includes a nonaqueous solvent and a lithium salt (electrolyte) dissolved in the nonaqueous solvent.
Examples of the non-aqueous solvent include known non-aqueous solvents used for non-aqueous electrolytes of non-aqueous electrolyte secondary batteries, such as cyclic carbonates, chain carbonates, and cyclic carboxylic acid esters. Examples of the cyclic carbonate include ethylene carbonate (EC) and propylene carbonate. Examples of the chain carbonate include diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate (DMC) and the like. Examples of the cyclic carboxylic acid ester include γ-butyrolactone and γ-valerolactone. A non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
 非水溶媒は、環状カーボネートと、鎖状カーボネートとを含むことが好ましい。環状カーボネートは、ECを含むことが好ましく、鎖状カーボネートは、DECおよび/またはDMCを含むことが好ましい。 The non-aqueous solvent preferably contains a cyclic carbonate and a chain carbonate. The cyclic carbonate preferably contains EC, and the chain carbonate preferably contains DEC and / or DMC.
 リチウム塩としては、例えば、塩素含有酸のリチウム塩(LiClO4、LiAlCl4、LiB10Cl10など)、フッ素含有酸のリチウム塩(LiPF6、LiBF4、LiSbF6、LiAsF6、LiCF3SO3、LiCF3CO2など)、フッ素含有酸イミドのリチウム塩(LiN(CF3SO22、LiN(CF3SO2)(C49SO2)、LiN(C25SO22など)、リチウムハライド(LiCl、LiBr、LiIなど)などが使用できる。これらのリチウム塩は、一種を単独でまたは二種以上組み合わせて使用できる。 Examples of the lithium salt include a lithium salt of a chlorine-containing acid (LiClO 4 , LiAlCl 4 , LiB 10 Cl 10, etc.), a lithium salt of a fluorine-containing acid (LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiCF 3 SO 3). LiCF 3 CO 2 ), lithium salt of fluorine-containing acid imide (LiN (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (C 2 F 5 SO 2 ) 2 ), lithium halide (LiCl, LiBr, LiI, etc.) can be used. These lithium salts can be used singly or in combination of two or more.
 非水電解質におけるリチウム塩の濃度は、例えば、0.5~2mol/L、好ましくは1.2~1.6mol/Lである。 The concentration of the lithium salt in the nonaqueous electrolyte is, for example, 0.5 to 2 mol / L, preferably 1.2 to 1.6 mol / L.
 非水電解質は、公知の添加剤を含有してもよい。このような添加剤としては、負極上で分解してリチウムイオン伝導性の高い皮膜を形成し、電池の充放電効率を高める添加剤(添加剤A)、過充電時に分解して電極上に皮膜を形成し、電池を不活性化させる添加剤(添加剤B)などが例示できる。 The non-aqueous electrolyte may contain a known additive. Examples of such additives include an additive (additive A) that decomposes on the negative electrode to form a film having high lithium ion conductivity and increases the charge / discharge efficiency of the battery, and decomposes on overcharge to form a film on the electrode. And an additive (additive B) that inactivates the battery.
 添加剤Aとしては、重合性不飽和結合(ビニレン基、ビニル基など)を有する環状カーボネートが例示できる。ビニレン基を有する環状カーボネートとしては、VC;4-メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、4-エチルビニレンカーボネートなどのC1-4アルキル基および/またはC6-10アリール基などを置換基として有するVCが例示できる。 Examples of the additive A include cyclic carbonates having a polymerizable unsaturated bond (vinylene group, vinyl group, etc.). As cyclic carbonates having vinylene groups, VC: C 1-4 alkyl groups such as 4-methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4-ethyl vinylene carbonate and / or C 6-10 aryl groups are substituted. VC which has as a group can be illustrated.
 ビニル基を有する環状カーボネートとしては、ビニルエチレンカーボネート(VEC)、ジビニルエチレンカーボネートなどのビニル基を置換基として有するECが挙げられる。また、これらの化合物において、置換基または環状カーボネートを構成する水素原子の一部が、一部がフッ素原子で置換されたものも、上記の添加剤として使用できる。添加剤Aは、一種を単独でまたは二種以上を組み合わせて使用できる。
 添加剤Aのうち、VC、VECおよびジビニルエチレンカーボネートからなる群より選択される少なくとも一種が好ましい。
Examples of the cyclic carbonate having a vinyl group include EC having a vinyl group as a substituent, such as vinyl ethylene carbonate (VEC) and divinyl ethylene carbonate. In these compounds, those in which a part of the hydrogen atoms constituting the substituent or cyclic carbonate are partially substituted with fluorine atoms can also be used as the additive. Additive A can be used alone or in combination of two or more.
Among the additives A, at least one selected from the group consisting of VC, VEC and divinylethylene carbonate is preferable.
 添加剤Bとしては、脂肪族環を有する芳香族化合物、複数の芳香環を有する芳香族化合物などが例示できる。
 脂肪族環としては、シクロヘキサン環などのシクロアルカン環の他、環状エーテル、環状エステルなどが例示できる。芳香族化合物は、これらの脂肪族環を置換基として有するものが好ましい。このような芳香族化合物の具体例としては、シクロヘキシルベンゼンなどのベンゼン化合物などが挙げられる。
 複数の芳香環を有する芳香族化合物としては、ビフェニル、ジフェニルエーテルなどが例示できる。
 これらの添加剤Bは、一種を単独でまたは二種以上を組み合わせて使用できる。
Examples of the additive B include an aromatic compound having an aliphatic ring and an aromatic compound having a plurality of aromatic rings.
Examples of the aliphatic ring include a cycloalkane ring such as a cyclohexane ring, a cyclic ether, a cyclic ester, and the like. The aromatic compound preferably has these aliphatic rings as substituents. Specific examples of such aromatic compounds include benzene compounds such as cyclohexylbenzene.
Examples of the aromatic compound having a plurality of aromatic rings include biphenyl and diphenyl ether.
These additives B can be used singly or in combination of two or more.
 添加剤の含有量は、非水電解質中、例えば、10質量%以下、好ましくは7質量%以下である。なお、添加剤Bは、非水溶媒100質量部に対して、例えば、10質量部以下であることが好ましい。
 非水電解質は、液状であってもよく、ゲル状であってもよい。
 液状の非水電解質は、非水溶媒と、これに溶解したリチウム塩とを含む。
The content of the additive in the nonaqueous electrolyte is, for example, 10% by mass or less, preferably 7% by mass or less. In addition, it is preferable that the additive B is 10 mass parts or less with respect to 100 mass parts of nonaqueous solvents, for example.
The non-aqueous electrolyte may be liquid or gel.
The liquid nonaqueous electrolyte includes a nonaqueous solvent and a lithium salt dissolved in the nonaqueous solvent.
 ゲル状非水電解質は、液状の非水電解質と、この非水電解質を保持する高分子材料とを含む。この高分子材料としては、例えばPVDF、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体などのフッ素樹脂;ポリアクリロニトリル、ポリ塩化ビニルなどのビニル樹脂;ポリエチレンオキサイドなどのポリアルキレンオキサイド;ポリアクリレートなどのアクリル樹脂などが挙げられる。 The gel-like nonaqueous electrolyte includes a liquid nonaqueous electrolyte and a polymer material that holds the nonaqueous electrolyte. Examples of the polymer material include fluorine resins such as PVDF and vinylidene fluoride-hexafluoropropylene copolymer; vinyl resins such as polyacrylonitrile and polyvinyl chloride; polyalkylene oxides such as polyethylene oxide; acrylic resins such as polyacrylate Etc.
(他の構成要素)
 電極群は、図1に示されるような捲回したものに限らず、つづら折りにされたものなどを含む積層したものであってもよい。電極群の形状は、電池または電池ケースの形状に応じて、円筒形、捲回軸に垂直な端面が長円形である扁平形であってもよい。
(Other components)
The electrode group is not limited to the wound one as shown in FIG. 1, but may be a laminated one including one folded in a zigzag manner. The shape of the electrode group may be a cylindrical shape or a flat shape whose end surface perpendicular to the winding axis is an oval shape, depending on the shape of the battery or the battery case.
 電池ケースは、金属製であってもよく、ラミネートフィルム製であってもよい。電池ケースを形成する金属材料としては、アルミニウム、アルミニウム合金(マンガン、銅等などの金属を微量含有する合金など)、鉄、ステンレス鋼などの鋼鈑などが使用できる。電池ケースは、必要により、ニッケルメッキなどによりメッキ処理されていてもよい。
 電池ケースの形状は、電極群の形状に応じて、円筒型、角型の他などであってもよい。
The battery case may be made of metal or laminate film. As the metal material forming the battery case, aluminum, an aluminum alloy (such as an alloy containing a trace amount of metal such as manganese or copper), a steel plate such as iron or stainless steel, or the like can be used. The battery case may be plated by nickel plating or the like, if necessary.
The shape of the battery case may be other than a cylindrical shape, a rectangular shape, etc., depending on the shape of the electrode group.
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples and comparative examples, but the present invention is not limited to the following examples.
 実施例1
 電池1~5を下記の手順で作製した。
(電池1)
 (1)正極の作製
 正極活物質としてのLiNi0.82Co0.15Al0.032粒子(平均粒子径10μm)と、導電剤としてのアセチレンブラックと、結着剤としてのPVDFを含むNMP溶液とを混合することにより、正極合剤スラリーを調製した。正極活物質100質量部に対して、導電剤の量は4.5質量部であり、結着剤の量は4.7質量部とした。
Example 1
Batteries 1 to 5 were produced by the following procedure.
(Battery 1)
(1) Production of positive electrode LiNi 0.82 Co 0.15 Al 0.03 O 2 particles (average particle diameter 10 μm) as a positive electrode active material, acetylene black as a conductive agent, and an NMP solution containing PVDF as a binder are mixed. Thus, a positive electrode mixture slurry was prepared. The amount of the conductive agent was 4.5 parts by mass and the amount of the binder was 4.7 parts by mass with respect to 100 parts by mass of the positive electrode active material.
 正極合剤スラリーを、正極集電体としてのアルミニウム箔(厚み15μm)の両面に塗布し、乾燥させた。得られた乾燥した塗膜を有する正極集電体を圧延し、厚さ0.157mmの正極用板を作製した。正極用板を裁断することにより、厚さ0.157mm、幅57mm、長さ564mmの正極を作製した。
 なお、正極の長手方向の中央部には、両面に正極合剤スラリーの塗膜が形成されていない集電体露出部を形成した。集電体露出部には、アルミニウム製の正極リードの一端部を溶接した。
The positive electrode mixture slurry was applied to both sides of an aluminum foil (thickness 15 μm) as a positive electrode current collector and dried. The obtained positive electrode current collector having a dried coating film was rolled to produce a positive electrode plate having a thickness of 0.157 mm. By cutting the positive electrode plate, a positive electrode having a thickness of 0.157 mm, a width of 57 mm, and a length of 564 mm was produced.
In addition, the collector exposure part in which the coating film of positive mix slurry was not formed in both surfaces was formed in the center part of the longitudinal direction of a positive electrode. One end of a positive electrode lead made of aluminum was welded to the exposed portion of the current collector.
(2)負極の作製
 鱗片状人造黒鉛を、粉砕および分級して、平均粒子径が約20μmの負極活物質を得た。負極活物質100質量部と、結着剤としてのSBR3質量部と、CMC水溶液(CMC濃度:1質量%)100質量部とを混合することにより、負極合剤スラリーを調製した。
(2) Production of negative electrode The flaky artificial graphite was pulverized and classified to obtain a negative electrode active material having an average particle diameter of about 20 μm. A negative electrode mixture slurry was prepared by mixing 100 parts by mass of a negative electrode active material, 3 parts by mass of SBR as a binder, and 100 parts by mass of a CMC aqueous solution (CMC concentration: 1% by mass).
 負極合剤スラリーを、負極集電体としての銅箔(厚み8μm)の両面に塗布し、乾燥させた。得られた乾燥した塗膜を有する負極集電体を圧延し、厚み0.156mmの負極用板を得た。負極用板を、窒素雰囲気中、190℃で、8時間、熱風に晒すことにより熱処理を行った。熱処理した負極用板を裁断することにより、厚さ0.156mm、幅58.5mm、長さ750mmの負極を形成した。
 なお、負極の長手方向の一方の端部の電極群形成時に正極活物質と対向しない負極の領域においては、両面に負極合剤スラリーの塗膜が形成されていない集電体露出部を形成した。
The negative electrode mixture slurry was applied to both sides of a copper foil (thickness 8 μm) as a negative electrode current collector and dried. The obtained negative electrode current collector having a dried coating film was rolled to obtain a negative electrode plate having a thickness of 0.156 mm. Heat treatment was performed by exposing the negative electrode plate to hot air at 190 ° C. for 8 hours in a nitrogen atmosphere. By cutting the heat-treated negative electrode plate, a negative electrode having a thickness of 0.156 mm, a width of 58.5 mm, and a length of 750 mm was formed.
In addition, in the negative electrode region that does not face the positive electrode active material when forming the electrode group at one end in the longitudinal direction of the negative electrode, a collector exposed portion in which a coating film of the negative electrode mixture slurry was not formed on both surfaces was formed. .
 次いで、0.26g/m2の蒸着量(Li金属の蒸着膜の厚みに換算すると0.5μm相当)になるように、負極の表面にリチウムを真空蒸着させた。Liの蒸着膜を両面に有する負極を、露点-30℃以下のドライエア環境下に置き、7日間放置させることにより、負極にリチウムを吸蔵させた。このような操作により、負極の不可逆容量を低減させた。
 そして、負極の集電体露出部には、ニッケル製の負極リードの一端部を溶接した。
Next, lithium was vacuum-deposited on the surface of the negative electrode so that the deposition amount was 0.26 g / m 2 (equivalent to 0.5 μm when converted to the thickness of the Li metal deposition film). A negative electrode having a deposited film of Li on both sides was placed in a dry air environment having a dew point of −30 ° C. or lower and allowed to stand for 7 days, whereby lithium was occluded in the negative electrode. By such an operation, the irreversible capacity of the negative electrode was reduced.
And the one end part of the negative electrode lead made from nickel was welded to the collector exposed part of the negative electrode.
(3)非水電解質の調製
 EC:DMC(体積比)=1:3で含む混合溶媒に、LiPF6およびVCを溶解させることにより非水電解質を調製した。非水電解質中のLiPF6の濃度は、1.4mol/dm3であり、VCの濃度は、5質量%に調整した。
(3) Preparation of Nonaqueous Electrolyte A nonaqueous electrolyte was prepared by dissolving LiPF 6 and VC in a mixed solvent containing EC: DMC (volume ratio) = 1: 3. The concentration of LiPF 6 in the nonaqueous electrolyte was 1.4 mol / dm 3 , and the concentration of VC was adjusted to 5% by mass.
(4)電池の作製
 上記(1)および(2)で得られた正極と負極とを、これらの間にポリエチレン製の微多孔膜セパレータ(厚み20μm)を介在させた状態で渦捲状に捲回して、電極群を作製した。
(4) Production of battery The positive electrode and the negative electrode obtained in the above (1) and (2) were wound in a spiral shape with a polyethylene microporous membrane separator (thickness 20 μm) interposed therebetween. Turned to produce an electrode group.
 得られた電極群の上端および下端にそれぞれ上部絶縁膜および下部絶縁板を配置し、有底円筒型の金属製の電池ケースに収容した。電極群から引き出した正極リードの他端部を、内圧作動型の安全弁を有する封口板に溶接し、負極リードの他端部を、電池ケースの内底面に溶接した。次いで、電池ケースの、電極群の上端部よりも上部の側面に、内側に突出した段部を形成することにより、電極群を電池ケース内に保持した。電池ケース内に、減圧方式により、非水電解質を注入し、電池ケースの開口部を、封口板の周縁部に対してガスケットを介して、かしめ封口することにより、円筒型リチウムイオン二次電池(電池1)を作製した。 The upper insulating film and the lower insulating plate were arranged on the upper end and the lower end of the obtained electrode group, respectively, and housed in a bottomed cylindrical metal battery case. The other end portion of the positive electrode lead pulled out from the electrode group was welded to a sealing plate having an internal pressure actuated safety valve, and the other end portion of the negative electrode lead was welded to the inner bottom surface of the battery case. Next, the electrode group was held in the battery case by forming a stepped portion protruding inward on the side surface of the battery case above the upper end of the electrode group. A non-aqueous electrolyte is injected into the battery case by a decompression method, and the opening of the battery case is sealed by caulking the peripheral edge of the sealing plate via a gasket, thereby providing a cylindrical lithium ion secondary battery ( A battery 1) was prepared.
(電池2~5)
 電池2については、電池1と同様に、負極にリチウムを真空蒸着し、蒸着直後に、電池を作製する以外は、電池1と同様にして作製した。
 電池3および4については、リチウムの真空蒸着後のドライエア環境下での放置期間を表1に示す期間に変更する以外は、電池1と同様にして作製した。
 電池5については、負極にリチウムの真空蒸着およびその後の放置を行わない以外は、電池1と同様にして作製した。
(Batteries 2 to 5)
The battery 2 was produced in the same manner as the battery 1 except that lithium was vacuum-deposited on the negative electrode and the battery was produced immediately after deposition, as with the battery 1.
The batteries 3 and 4 were produced in the same manner as the battery 1 except that the period of time in the dry air environment after vacuum deposition of lithium was changed to the period shown in Table 1.
Battery 5 was produced in the same manner as Battery 1 except that lithium was not vacuum deposited on the negative electrode and then left untreated.
(放電容量および容量維持率)
 電池1~5のそれぞれについて、充放電サイクル特性の評価を行った。
 具体的には、各電池を、45℃の環境下、1.4Aの定電流で電圧が4.20Vになるまで充電し、4.20Vの定電圧で電流が50mAになるまで充電を行った後、2.8Aの定電流で電圧が2.5Vになるまで放電を行った。このような充電および放電を1サイクルとして、充放電を繰り返した。充電と放電との間および放電と充電との間には、どちらも30分間の休止時間を設けた。
(Discharge capacity and capacity maintenance rate)
For each of the batteries 1 to 5, the charge / discharge cycle characteristics were evaluated.
Specifically, each battery was charged in a 45 ° C. environment at a constant current of 1.4 A until the voltage reached 4.20 V, and charged at a constant voltage of 4.20 V until the current reached 50 mA. Thereafter, discharging was performed at a constant current of 2.8 A until the voltage reached 2.5V. Charging and discharging were repeated with such charging and discharging as one cycle. A 30-minute rest period was provided between charging and discharging and between discharging and charging.
 上記の充放電の1サイクル目の放電容量(初期放電容量)および500サイクル目の放電容量を測定し、初期放電容量に対する充放電の500サイクル目の放電容量の比率(百分率)を、容量維持率として求めた。
 結果を、リチウムの蒸着、蒸着後の放置期間とともに、表1に示す。
The discharge capacity (initial discharge capacity) at the first cycle of charge / discharge and the discharge capacity at the 500th cycle are measured, and the ratio (percentage) of the discharge capacity at the 500th cycle of charge / discharge to the initial discharge capacity is determined as the capacity maintenance rate. As sought.
The results are shown in Table 1 together with the deposition of lithium and the standing period after the deposition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例2
(電池6)
 以下のようにして作製した負極を用いる以外は、実施例1の電池1と同様にして、リチウムイオン二次電池(電池6)を作製した。
(負極の作製)
 化学蒸着(CVD)法により作製した負極活物質としてのシリコン粉末(平均粒子径10μm)100質量部と、結着剤としてのPVDF10質量部と、導電剤としての黒鉛(平均粒子径3μm)5質量部と、適量のNMPとを混合することにより、負極合剤スラリーを調製した。
Example 2
(Battery 6)
A lithium ion secondary battery (battery 6) was produced in the same manner as the battery 1 of Example 1, except that the negative electrode produced as follows was used.
(Preparation of negative electrode)
100 parts by mass of silicon powder (average particle diameter 10 μm) as a negative electrode active material prepared by a chemical vapor deposition (CVD) method, 10 parts by mass of PVDF as a binder, and 5 mass of graphite (average particle diameter 3 μm) as a conductive agent A negative electrode mixture slurry was prepared by mixing a part and an appropriate amount of NMP.
 両面を粗面化加工した銅箔(厚み18μm)を、負極集電体として用い、この負極集電体の両面に、負極合剤スラリーを塗布し、乾燥させた。得られた乾燥した塗膜を有する負極集電体を圧延し、厚み98μmの負極板を作製した。
 なお、負極板の長手方向の一方の端部の電極群形成時に正極活物質と対向しない負極板の領域においては、両面に負極合剤スラリーの塗膜が形成されていない集電体露出部を形成した。
A copper foil (thickness: 18 μm) whose surfaces were roughened was used as a negative electrode current collector, and a negative electrode mixture slurry was applied to both sides of the negative electrode current collector and dried. The obtained negative electrode current collector having a dried coating film was rolled to prepare a negative electrode plate having a thickness of 98 μm.
In addition, in the region of the negative electrode plate that does not face the positive electrode active material when forming the electrode group at one end in the longitudinal direction of the negative electrode plate, the collector exposed portion where the negative electrode mixture slurry coating film is not formed on both sides Formed.
 次いで、1.6g/m2の蒸着量(Li金属の蒸着膜の厚みに換算すると3μm相当)になるように、負極の表面にリチウムを真空蒸着させた。Liの蒸着膜を両面に有する負極を、露点-30℃以下のドライエア環境下に置き、7日間放置させることにより、負極にリチウムを吸蔵させた。このような操作により、負極の不可逆容量を低減させた。
 得られた負極板を裁断することにより幅58.5mm、長さ750mmの負極を得た。
Next, lithium was vacuum-deposited on the surface of the negative electrode so that the deposition amount was 1.6 g / m 2 (equivalent to 3 μm in terms of the thickness of the Li metal deposition film). A negative electrode having a deposited film of Li on both sides was placed in a dry air environment having a dew point of −30 ° C. or lower and allowed to stand for 7 days, whereby lithium was occluded in the negative electrode. By such an operation, the irreversible capacity of the negative electrode was reduced.
The obtained negative electrode plate was cut to obtain a negative electrode having a width of 58.5 mm and a length of 750 mm.
(電池7~10)
 真空蒸着の有無および蒸着後の放置期間を電池2~5と同様に変更する以外は、電池6と同様にして電池7~10を作製した。
 電池6~10について、実施例1と同様にして、初期放電容量および容量維持率を評価した。
 結果を、リチウムの蒸着の有無、蒸着後の放置期間とともに、表2に示す。
(Batteries 7 to 10)
Batteries 7 to 10 were produced in the same manner as the battery 6 except that the presence or absence of vacuum vapor deposition and the standing period after the vapor deposition were changed in the same manner as the batteries 2 to 5.
For the batteries 6 to 10, the initial discharge capacity and the capacity retention rate were evaluated in the same manner as in Example 1.
The results are shown in Table 2 together with the presence or absence of lithium deposition and the standing period after the deposition.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例3
(電池11)
 以下のようにして作製した負極を用いる以外は、実施例1の電池1と同様にして、リチウムイオン二次電池(電池11)を作製した。
(負極の作製)
 負極活物質としての一酸化ケイ素(SiO)粉末(平均粒子径8μm)100質量部と、結着剤としてのPVDF15質量部と、導電剤としての黒鉛(平均粒子径3μm)7質量部と、適量のNMPとを混合することにより、負極合剤スラリーを調製した。
Example 3
(Battery 11)
A lithium ion secondary battery (battery 11) was produced in the same manner as the battery 1 of Example 1 except that the negative electrode produced as follows was used.
(Preparation of negative electrode)
100 parts by mass of silicon monoxide (SiO) powder (average particle diameter 8 μm) as a negative electrode active material, 15 parts by mass of PVDF as a binder, 7 parts by mass of graphite (average particle diameter 3 μm) as a conductive agent, and an appropriate amount A negative electrode mixture slurry was prepared by mixing with NMP.
 両面を粗面化加工した銅箔(厚み18μm)を、負極集電体として用い、この負極集電体の両面に、負極合剤スラリーを塗布し、乾燥させた。得られた乾燥した塗膜を有する負極集電体を圧延し、両面に負極活物質層を有する厚み125μmの負極を作製した。
 なお、負極板の長手方向の一方の端部の電極群形成時に正極活物質と対向しない負極板の領域においては、両面に負極合剤スラリーの塗膜が形成されていない集電体露出部を形成した。
A copper foil (thickness: 18 μm) whose surfaces were roughened was used as a negative electrode current collector, and a negative electrode mixture slurry was applied to both sides of the negative electrode current collector and dried. The obtained negative electrode current collector having a dried coating film was rolled to prepare a 125 μm-thick negative electrode having a negative electrode active material layer on both surfaces.
In addition, in the region of the negative electrode plate that does not face the positive electrode active material when forming the electrode group at one end in the longitudinal direction of the negative electrode plate, the collector exposed portion where the negative electrode mixture slurry coating film is not formed on both sides Formed.
 次いで、負極活物質層の表面に、厚み30μm、幅50mm、長さ10mmの金属リチウム箔を30mm間隔で貼り付けた。リチウム箔を貼り付けた負極を、二酸化炭素雰囲気中、120℃の環境下に置き、7日間放置させることにより、リチウムが吸蔵された負極を作製した。このような操作により、負極の不可逆容量を低減させた。 Next, a metal lithium foil having a thickness of 30 μm, a width of 50 mm, and a length of 10 mm was attached to the surface of the negative electrode active material layer at intervals of 30 mm. The negative electrode on which the lithium foil was attached was placed in an environment of 120 ° C. in a carbon dioxide atmosphere and left for 7 days to produce a negative electrode in which lithium was occluded. By such an operation, the irreversible capacity of the negative electrode was reduced.
(電池12~15)
 リチウム箔の貼り付けの有無、および貼り付け後の放置期間を電池2~5の蒸着後の放置時間と同様に変更する以外は、電池11と同様にして電池12~15を作製した。
 電池12~15について、実施例1と同様にして、初期放電容量および容量維持率を評価した。
 結果を、リチウム箔の貼り付けの有無、貼り付け後の放置期間とともに、表3に示す。
(Batteries 12 to 15)
Batteries 12 to 15 were fabricated in the same manner as the battery 11, except that the presence or absence of the lithium foil and the standing period after the pasting were changed in the same manner as the standing time after the deposition of the batteries 2 to 5.
For the batteries 12 to 15, the initial discharge capacity and the capacity retention rate were evaluated in the same manner as in Example 1.
The results are shown in Table 3 together with the presence / absence of application of lithium foil and the standing period after application.
 実施例4
(電池16)
 負極活物質としてのスズ-コバルト-炭素合金粉末(平均粒子径4μm)100質量部と、結着剤としてのPVDF15質量部と、導電剤としての黒鉛(平均粒子径3μm)5質量部と、適量のNMPとを混合することにより、負極合剤スラリーを調製した。
Example 4
(Battery 16)
100 parts by mass of tin-cobalt-carbon alloy powder (average particle diameter 4 μm) as a negative electrode active material, 15 parts by mass of PVDF as a binder, 5 parts by mass of graphite (average particle diameter 3 μm) as a conductive agent, and an appropriate amount A negative electrode mixture slurry was prepared by mixing with NMP.
 両面を粗面化加工した銅箔(厚み18μm)を、負極集電体として用い、この負極集電体の両面に、負極合剤スラリーを塗布し、乾燥させた。得られた乾燥した塗膜を有する負極集電体を圧延し、厚み118μmの負極板を作製した。
 なお、負極板の長手方向の一方の端部の電極群形成時に正極活物質と対向しない負極板の領域においては、両面に負極合剤スラリーの塗膜が形成されていない集電体露出部を形成した。
A copper foil (thickness: 18 μm) whose surfaces were roughened was used as a negative electrode current collector, and a negative electrode mixture slurry was applied to both sides of the negative electrode current collector and dried. The obtained negative electrode current collector having a dried coating film was rolled to prepare a negative electrode plate having a thickness of 118 μm.
In addition, in the region of the negative electrode plate that does not face the positive electrode active material when forming the electrode group at one end in the longitudinal direction of the negative electrode plate, the collector exposed portion where the negative electrode mixture slurry coating film is not formed on both sides Formed.
 次いで、3.2g/m2の蒸着量(Li金属の蒸着膜の厚みに換算すると6μm相当)になるように、負極の表面にリチウムを真空蒸着させた。Liの蒸着膜を両面に有する負極を、露点-30℃以下のドライエア環境下に置き、7日間放置させることにより、負極にリチウムを吸蔵させた。このような操作により、負極の不可逆容量を低減させた。
 得られた負極板を裁断することにより幅58.5mm、長さ750mmの負極を得た。
Subsequently, lithium was vacuum-deposited on the surface of the negative electrode so that the deposition amount was 3.2 g / m 2 (equivalent to 6 μm when converted to the thickness of the Li metal deposition film). A negative electrode having a deposited film of Li on both sides was placed in a dry air environment having a dew point of −30 ° C. or lower and allowed to stand for 7 days, whereby lithium was occluded in the negative electrode. By such an operation, the irreversible capacity of the negative electrode was reduced.
The obtained negative electrode plate was cut to obtain a negative electrode having a width of 58.5 mm and a length of 750 mm.
(電池17~20)
 真空蒸着の有無および蒸着後の放置期間を電池2~5と同様に変更する以外は、電池16と同様にして電池17~20を作製した。
 電池16~20について、実施例1と同様にして、初期放電容量および容量維持率を評価した。
 結果を、リチウムの蒸着の有無、蒸着後の放置期間とともに、表4に示す。
(Batteries 17-20)
Batteries 17 to 20 were produced in the same manner as the battery 16 except that the presence or absence of vacuum deposition and the standing period after the deposition were changed in the same manner as the batteries 2 to 5.
For the batteries 16 to 20, the initial discharge capacity and the capacity retention rate were evaluated in the same manner as in Example 1.
The results are shown in Table 4 together with the presence or absence of lithium deposition and the standing period after deposition.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以下に、表1~4に基づいて、実施例1~4について詳細に検討する。
 実施例1~4において、リチウムの蒸着もリチウム箔の貼り付けも行っていない電池5、電池10、電池15および電池20に比べて、リチウムの蒸着またはリチウム箔の貼り付けを行うことにより不可逆容量を低減させた負極を用いた他の電池では、高い容量が得られた。特に、負極活物質として一酸化ケイ素を用いた実施例3では負極の不可逆容量が非常に大きいため、リチウムの吸蔵により、不可逆容量の高い補填効果が得られた。
Hereinafter, Examples 1 to 4 will be examined in detail based on Tables 1 to 4.
In Examples 1 to 4, irreversible capacity can be obtained by depositing lithium or pasting lithium foil, compared to batteries 5, 10, 15, and 20, where neither lithium deposition nor lithium foil is applied. High capacity was obtained in other batteries using negative electrodes with reduced resistance. In particular, in Example 3 in which silicon monoxide was used as the negative electrode active material, the irreversible capacity of the negative electrode was very large, so that a high irreversible capacity filling effect was obtained by occlusion of lithium.
 実施例1~4では、リチウム蒸着またはリチウム箔の貼り付け後の放置期間が長くなるほど、容量維持率が大きくなった。この要因について下記の分析および解析を行った。
 初回充放電後の電池を分解して取り出した負極を用いて下記の評価を行った。
In Examples 1 to 4, the capacity retention ratio increased as the standing period after lithium deposition or lithium foil application increased. The following analysis and analysis were conducted for this factor.
The following evaluation was performed using the negative electrode taken out by disassembling the battery after the first charge / discharge.
(負極における皮膜の形成状態および皮膜の組成について)
 負極のX線光電子分光分析を行い、負極に形成された皮膜の組成を調べた。厚み方向の組成の変化については、スパッタリングにより負極表面から活物質層を削り取った状態で分析することにより評価した。
(About the formation state of the film and the composition of the film in the negative electrode)
X-ray photoelectron spectroscopic analysis of the negative electrode was performed, and the composition of the film formed on the negative electrode was examined. About the change of the composition of the thickness direction, it evaluated by analyzing in the state which scraped off the active material layer from the negative electrode surface by sputtering.
 その結果、皮膜は、負極活物質層の全体に亘って形成されていることが分かった。負極の表面側に形成された皮膜は、主として炭酸リチウム、水酸化リチウム、酸化リチウム、フッ化リチウムなどの無機リチウム化合物を含み、中でも、炭酸リチウムを多く含んでいた。 As a result, it was found that the film was formed over the entire negative electrode active material layer. The film formed on the surface side of the negative electrode mainly contains an inorganic lithium compound such as lithium carbonate, lithium hydroxide, lithium oxide, and lithium fluoride, and particularly contains a large amount of lithium carbonate.
 また、負極活物質層の厚み方向において、負極活物質層の表面(負極の表面)から集電体近傍に近づくにつれて、無機リチウム化合物を含む皮膜の量は減少し、有機リチウム化合物を含む皮膜の量が増加した。なお、有機リチウム化合物としては、アルキル炭酸リチウムなどが検出された。X線光電子分光分析によるピーク強度を比較したところ、リチウム蒸着後またはリチウム箔の貼り付け後の放置期間が長くなるほど、炭酸リチウムをはじめとする無機リチウム化合物を含む皮膜の割合が多くなった。 Further, in the thickness direction of the negative electrode active material layer, the amount of the film containing the inorganic lithium compound decreases as the surface of the negative electrode active material layer (the surface of the negative electrode) approaches the current collector, and the amount of the film containing the organic lithium compound decreases. The amount increased. In addition, alkyl lithium carbonate etc. were detected as an organolithium compound. When the peak intensities by X-ray photoelectron spectroscopy were compared, the proportion of the film containing an inorganic lithium compound including lithium carbonate increased as the standing period after lithium deposition or after the lithium foil was attached was longer.
(負極中の炭酸リチウム量について)
 次のようにして、負極に含まれる炭酸リチウム量を定量した。
 表面切削装置(例えば、ダイプラウィンテス(株)製、サイカス)を用いて、図3に示すように、負極活物質層の表面(負極の表面)から破線11で示す30%の深さまでの活物質層(B層)14を切りだして、B層14に含まれる炭酸リチウムの定量分析を行った。
(About the amount of lithium carbonate in the negative electrode)
The amount of lithium carbonate contained in the negative electrode was quantified as follows.
Using a surface cutting device (for example, Dyprawintes Co., Ltd., Psycus), as shown in FIG. 3, the active material from the surface of the negative electrode active material layer (the surface of the negative electrode) to a depth of 30% indicated by the broken line 11 is used. The material layer (B layer) 14 was cut out, and the lithium carbonate contained in the B layer 14 was quantitatively analyzed.
 また、B層14を切り出して残った負極活物質層(A層)13についても、同様に、炭酸リチウム量の定量分析を行った。
 なお、各層の定量分析は、各層を純水中に投入して、各層に含まれる炭酸イオンを純粋に溶出させ、イオンクロマトグラフィーにより炭酸イオンの含有量を求め、この含有量に基づいて、各層に含まれる炭酸リチウムの量を算出することにより行った。
Further, the negative electrode active material layer (A layer) 13 left after cutting out the B layer 14 was similarly subjected to quantitative analysis of the amount of lithium carbonate.
In addition, the quantitative analysis of each layer is carried out by putting each layer into pure water, eluting carbonate ions contained in each layer purely, obtaining the content of carbonate ions by ion chromatography, and based on this content, This was done by calculating the amount of lithium carbonate contained in the water.
 また、A層13とB層14とでは厚みが異なるため、同じ厚みに換算した比較も行った。具体的には、A層13に含まれる炭酸リチウム量に、A層に対するB層の厚み比30/70(=0.429)を乗ずることにより、B層14に含まれる炭酸リチウム量と直接比較できる値を算出した。 Moreover, since the thicknesses of the A layer 13 and the B layer 14 are different, a comparison in terms of the same thickness was also performed. Specifically, the amount of lithium carbonate contained in the A layer 13 is directly compared with the amount of lithium carbonate contained in the B layer 14 by multiplying by 30/70 (= 0.429) the thickness ratio of the B layer to the A layer. The possible values were calculated.
(負極の膨張量)
 負極の長手方向の10点において、負極の厚みをマイクロメータにより測定し、初回充放電後の平均厚みを算出した。そして、この平均厚みから、初期の負極厚み(電池の組み立て前の厚み)を差し引いた値を、初回充放電後の負極の膨張量として評価した。
(Expansion amount of negative electrode)
At 10 points in the longitudinal direction of the negative electrode, the thickness of the negative electrode was measured with a micrometer, and the average thickness after the first charge / discharge was calculated. Then, a value obtained by subtracting the initial negative electrode thickness (thickness before battery assembly) from this average thickness was evaluated as the amount of expansion of the negative electrode after the first charge / discharge.
(正極および負極中のリチウム量xと正極活物質に含まれる金属元素Mの量Mcとの比x/Mc
 これらの電池において正極および負極中に含まれるリチウム量xと正極材料に含まれる金属元素Mの量Mcとを、既述のように定量し、x/Mc比を算出した。
 結果を表5~表8に示す。
(The ratio x / M c between the amount M c of the metal element M contained in the lithium content x and the positive electrode active material in the positive electrode and the negative electrode)
And the amount M c of the metal element M contained in the lithium content x and the positive electrode material contained in the positive electrode and the negative electrode in these cells was quantified as described above, was calculated x / M c ratio.
The results are shown in Tables 5-8.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表5~表8に示されるように、負極活物質層の集電体側のA層と、表面側のB層とでは、明らかに、A層に含まれる炭酸リチウム量が多いことがわかる。また、リチウム蒸着またはリチウム箔の貼り付け後の放置期間が長くなるほど、負極活物質層中に含まれる炭酸リチウムの量が多くなり、炭酸リチウムを含む皮膜の形成量が多くなったことがわかる。当然のことながら、負極にリチウムの蒸着またはリチウム箔の貼り付けを行わない電池に比べて、負極にリチウムの蒸着またはリチウム箔の貼り付けを行った電池では、x/Mc比が大きくなり、その値は1.03を超えた。 As shown in Tables 5 to 8, it is apparent that the amount of lithium carbonate contained in the A layer is obviously large in the current collector side A layer and the surface side B layer of the negative electrode active material layer. In addition, it can be seen that the longer the standing period after lithium deposition or lithium foil attachment, the greater the amount of lithium carbonate contained in the negative electrode active material layer, and the greater the amount of coating film containing lithium carbonate. As a matter of course, the x / Mc ratio is larger in the battery in which lithium is vapor-deposited or attached to the negative electrode than in the battery in which lithium is not vapor-deposited or attached to the negative electrode. Its value exceeded 1.03.
 また、B層に含まれる炭酸リチウム量が多いほど、負極の膨張量は少なくなった。これは、負極活物質層の表面層近傍に炭酸リチウムなどの無機リチウム化合物を含む強固な皮膜が多く形成されることにより、負極の過度の膨張が抑制されたためと考えられる。そして、膨張が抑制されることにより、負極活物質の劣化が抑制されたため、良好な充放電サイクル特性が得られたと考えられる。 Moreover, the larger the amount of lithium carbonate contained in the B layer, the smaller the amount of expansion of the negative electrode. This is presumably because excessive expansion of the negative electrode was suppressed by the formation of many strong films containing an inorganic lithium compound such as lithium carbonate in the vicinity of the surface layer of the negative electrode active material layer. And since expansion | swelling was suppressed, since deterioration of the negative electrode active material was suppressed, it is thought that the favorable charging / discharging cycling characteristics were acquired.
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。 Although the present invention has been described in terms of the presently preferred embodiments, such disclosure should not be construed as limiting. Various changes and modifications will no doubt become apparent to those skilled in the art to which the present invention pertains after reading the above disclosure. Accordingly, the appended claims should be construed to include all variations and modifications without departing from the true spirit and scope of this invention.
 本発明の非水電解質二次電池は、高容量および高エネルギー密度であるとともに、充放電を繰り返しても高い容量維持率が得られる。そのため、非水電解質二次電池は、ハイブリッド電気自動車(特に、プラグインハイブリッド自動車用)、電気自動車などの自動車搭載用電源、携帯電話、ノート型パーソナルコンピュータ、ビデオカムコーダなどの各種民生用電源、大型工具用電源などの用途に有用である。 The non-aqueous electrolyte secondary battery of the present invention has a high capacity and a high energy density, and a high capacity retention rate can be obtained even after repeated charging and discharging. Therefore, non-aqueous electrolyte secondary batteries are used in hybrid electric vehicles (especially for plug-in hybrid vehicles), power sources for automobiles such as electric vehicles, various consumer power sources such as mobile phones, notebook personal computers, and video camcorders. Useful for applications such as power supplies for tools.
 1 電池ケース
 2 封口板
 3 ガスケット
 4 電極群
 5 正極
 5a 正極集電体
 5b 正極活物質層
 5c、5d 正極集電体露出部
 6 負極
 6a 負極集電体
 6b 負極活物質層
 6c、6d 負極集電体露出部
 7 セパレータ
 8a 上部絶縁リング
 8b 下部絶縁リング
 9 正極リード
 10 負極リード
 11 段部
 12 A層とB層との境界線
 13 A層
 14 B層
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Gasket 4 Electrode group 5 Positive electrode 5a Positive electrode collector 5b Positive electrode active material layer 5c, 5d Positive electrode collector exposed part 6 Negative electrode 6a Negative electrode collector 6b Negative electrode active material layer 6c, 6d Negative electrode collector Body exposed portion 7 Separator 8a Upper insulating ring 8b Lower insulating ring 9 Positive electrode lead 10 Negative electrode lead 11 Step portion 12 Boundary line between A layer and B layer 13 A layer 14 B layer

Claims (12)

  1.  正極、負極、ならびに正極および負極の間に介在するセパレータが捲回または積層された電極群と、非水電解質とを備え、
     前記正極が、正極集電体と、前記正極集電体の表面に付着したリチウムイオンを吸蔵および放出可能な正極活物質を含む正極活物質層とを含み、
     前記負極が、負極集電体と、前記負極集電体の表面に付着したリチウムイオンを吸蔵および放出可能な負極活物質を含む負極活物質層とを含み、
     前記負極活物質層が、前記負極活物質の表面に形成された皮膜を含み、
     前記皮膜のうち少なくとも一部が、無機リチウム化合物を含み、
     前記負極活物質層を、前記負極集電体側のA層と、前記負極活物質層の表面側のB層とに、厚み比で7:3に分割したとき、前記負極の面積当たりの、前記B層に含まれる無機リチウム化合物の含有量が、前記A層に含まれる無機リチウム化合物の含有量よりも多い、非水電解質二次電池。
    A positive electrode, a negative electrode, and an electrode group in which a separator interposed between the positive electrode and the negative electrode is wound or laminated, and a non-aqueous electrolyte,
    The positive electrode includes a positive electrode current collector, and a positive electrode active material layer including a positive electrode active material capable of inserting and extracting lithium ions attached to the surface of the positive electrode current collector,
    The negative electrode includes a negative electrode current collector, and a negative electrode active material layer including a negative electrode active material capable of occluding and releasing lithium ions attached to the surface of the negative electrode current collector,
    The negative electrode active material layer includes a film formed on the surface of the negative electrode active material,
    At least a part of the coating contains an inorganic lithium compound,
    When the negative electrode active material layer is divided into the A layer on the negative electrode current collector side and the B layer on the surface side of the negative electrode active material layer at a thickness ratio of 7: 3, the area per area of the negative electrode A nonaqueous electrolyte secondary battery in which the content of the inorganic lithium compound contained in the B layer is greater than the content of the inorganic lithium compound contained in the A layer.
  2.  前記皮膜が、前記無機リチウム化合物として、少なくとも炭酸リチウムを含む、請求項1記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the film contains at least lithium carbonate as the inorganic lithium compound.
  3.  前記A層に含まれる炭酸リチウムの含有量CAに対する前記B層に含まれる炭酸リチウムの含有量CBの割合CB/CAが、1.05~2である、請求項2記載の非水電解質二次電池。 The ratio C B / C A of the content C B of lithium carbonate contained in the B layer to the content C A of lithium carbonate contained in the A layer is 1.05 to 2. Water electrolyte secondary battery.
  4.  前記A層に含まれる炭酸リチウムの含有量CAに対する前記B層に含まれる炭酸リチウムの含有量CBの割合CB/CAが、1.1~1.5である、請求項2または3記載の非水電解質二次電池。 The ratio C B / C A of the content C B of lithium carbonate contained in the B layer to the content C A of lithium carbonate contained in the A layer is 1.1 to 1.5. 3. The nonaqueous electrolyte secondary battery according to 3.
  5.  前記皮膜のうち少なくとも一部が、有機リチウム化合物を含み、
     前記負極の面積当たりの、前記A層に含まれる有機リチウム化合物の含有量が、前記B層に含まれる有機リチウム化合物の含有量よりも多い、請求項1~4のいずれか1項記載の非水電解質二次電池。
    At least a portion of the coating contains an organolithium compound,
    The content of the organolithium compound contained in the A layer per area of the negative electrode is larger than the content of the organolithium compound contained in the B layer. Water electrolyte secondary battery.
  6.  前記有機リチウム化合物を含む皮膜が、前記有機リチウム化合物として、アルキル炭酸リチウムを含む、請求項5記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 5, wherein the film containing the organic lithium compound contains lithium alkyl carbonate as the organic lithium compound.
  7.  前記負極活物質が、ケイ素およびスズからなる群より選択される少なくとも一種を含む、請求項1~6のいずれか1項記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein the negative electrode active material includes at least one selected from the group consisting of silicon and tin.
  8.  前記正極活物質が、リチウムと、金属元素Mとを含む酸化物を含み、
     前記金属元素Mが、コバルト、ニッケル、マンガンおよび鉄からなる群より選択される少なくとも一種を含み、
     前記正極および前記負極に含まれるリチウム量の総和xと、前記酸化物に含まれる前記金属元素Mの量Mcとの比率x/Mcが、1.03より大きい、請求項1~6のいずれか1項記載の非水電解質二次電池。
    The positive electrode active material includes an oxide containing lithium and a metal element M;
    The metal element M includes at least one selected from the group consisting of cobalt, nickel, manganese and iron,
    The ratio x / M c between the total amount x of lithium contained in the positive electrode and the negative electrode and the amount M c of the metal element M contained in the oxide is greater than 1.03. The nonaqueous electrolyte secondary battery according to any one of the preceding claims.
  9.  前記負極活物質が、炭素質活物質を含み、前記比率x/Mcが、1.04より大きい、請求項8記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 8, wherein the negative electrode active material includes a carbonaceous active material, and the ratio x / M c is greater than 1.04.
  10.  前記負極活物質が、ケイ素およびスズからなる群より選択される少なくとも一種を含み、前記比率x/Mcが、1.05より大きい、請求項8記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 8, wherein the negative electrode active material includes at least one selected from the group consisting of silicon and tin, and the ratio x / M c is greater than 1.05.
  11.  前記負極が、前記電極群の形成の前に、前記負極活物質層にリチウムを吸蔵させることにより形成されている、請求項8~10のいずれか1項記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 8 to 10, wherein the negative electrode is formed by occluding lithium in the negative electrode active material layer before forming the electrode group.
  12.  前記リチウムの吸蔵が、前記負極活物質層の表面に、真空蒸着またはリチウム箔を貼り付けて、金属リチウム層を形成することにより行われる、請求項11記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 11, wherein the occlusion of lithium is performed by forming a metallic lithium layer by applying vacuum deposition or a lithium foil to the surface of the negative electrode active material layer.
PCT/JP2012/005835 2011-09-13 2012-09-13 Nonaqueous electrolyte secondary cell WO2013038672A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-199297 2011-09-13
JP2011199297A JP2014225324A (en) 2011-09-13 2011-09-13 Nonaqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
WO2013038672A1 true WO2013038672A1 (en) 2013-03-21

Family

ID=47882921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005835 WO2013038672A1 (en) 2011-09-13 2012-09-13 Nonaqueous electrolyte secondary cell

Country Status (2)

Country Link
JP (1) JP2014225324A (en)
WO (1) WO2013038672A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015198038A (en) * 2014-04-02 2015-11-09 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN110556590A (en) * 2018-05-31 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery
WO2020017515A1 (en) 2018-07-18 2020-01-23 旭化成株式会社 Lithium ion secondary cell
CN111755664A (en) * 2020-06-30 2020-10-09 蜂巢能源科技有限公司 Electrode of lithium ion battery and lithium ion battery
CN113380989A (en) * 2020-02-25 2021-09-10 广州天赐高新材料股份有限公司 Passivated lithium powder and preparation method and application thereof
US20210305633A1 (en) * 2018-12-12 2021-09-30 Contemporary Amperex Technology Co., Limited Wound electrode assembly, lithium-ion secondary battery and negative electrode plate
CN113614969A (en) * 2020-03-04 2021-11-05 宁德新能源科技有限公司 Electrochemical device and electronic device including the same
CN113646921A (en) * 2019-03-29 2021-11-12 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery
CN116103614A (en) * 2022-11-24 2023-05-12 广东金晟新能源股份有限公司 Zinc fluoride modified porous lithium metal composite anode material and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10128529B2 (en) * 2015-11-13 2018-11-13 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion secondary battery, fabricating method therof, and electronic device
KR20210063129A (en) 2019-11-22 2021-06-01 주식회사 엘지에너지솔루션 Cable type secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161779A (en) * 1995-12-13 1997-06-20 Japan Storage Battery Co Ltd Manufacture of nonaqueous electrolyte lithium secondary battery
JPH10284053A (en) * 1997-04-10 1998-10-23 Matsushita Electric Ind Co Ltd Electrode for secondary battery, secondary battery using it, and manufacture of electrode for secondary battery
JP2005038720A (en) * 2003-07-15 2005-02-10 Sony Corp Method of manufacturing negative electrode and method of manufacturing battery
JP2005166469A (en) * 2003-12-03 2005-06-23 Sanyo Electric Co Ltd Lithium secondary battery and manufacturing method of the same
JP2008117785A (en) * 2005-08-02 2008-05-22 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and its manufacturing method
JP2009076372A (en) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd Non-aqueous secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161779A (en) * 1995-12-13 1997-06-20 Japan Storage Battery Co Ltd Manufacture of nonaqueous electrolyte lithium secondary battery
JPH10284053A (en) * 1997-04-10 1998-10-23 Matsushita Electric Ind Co Ltd Electrode for secondary battery, secondary battery using it, and manufacture of electrode for secondary battery
JP2005038720A (en) * 2003-07-15 2005-02-10 Sony Corp Method of manufacturing negative electrode and method of manufacturing battery
JP2005166469A (en) * 2003-12-03 2005-06-23 Sanyo Electric Co Ltd Lithium secondary battery and manufacturing method of the same
JP2008117785A (en) * 2005-08-02 2008-05-22 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and its manufacturing method
JP2009076372A (en) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd Non-aqueous secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015198038A (en) * 2014-04-02 2015-11-09 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN110556590A (en) * 2018-05-31 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery
WO2020017515A1 (en) 2018-07-18 2020-01-23 旭化成株式会社 Lithium ion secondary cell
KR20200039742A (en) 2018-07-18 2020-04-16 아사히 가세이 가부시키가이샤 Lithium ion secondary battery
US11923541B2 (en) 2018-07-18 2024-03-05 Asahi Kasei Kabushiki Kaisha Lithium ion secondary battery
US20210305633A1 (en) * 2018-12-12 2021-09-30 Contemporary Amperex Technology Co., Limited Wound electrode assembly, lithium-ion secondary battery and negative electrode plate
US11824167B2 (en) * 2018-12-12 2023-11-21 Contemporary Amperex Technology Co., Limited Wound electrode assembly, lithium-ion secondary battery and negative electrode plate
CN113646921A (en) * 2019-03-29 2021-11-12 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery
CN113380989A (en) * 2020-02-25 2021-09-10 广州天赐高新材料股份有限公司 Passivated lithium powder and preparation method and application thereof
CN113614969A (en) * 2020-03-04 2021-11-05 宁德新能源科技有限公司 Electrochemical device and electronic device including the same
EP4102609A4 (en) * 2020-03-04 2023-04-05 Ningde Amperex Technology Limited Electrochemical device and electronic device comprising same
CN111755664A (en) * 2020-06-30 2020-10-09 蜂巢能源科技有限公司 Electrode of lithium ion battery and lithium ion battery
CN116103614A (en) * 2022-11-24 2023-05-12 广东金晟新能源股份有限公司 Zinc fluoride modified porous lithium metal composite anode material and preparation method and application thereof
CN116103614B (en) * 2022-11-24 2023-09-15 广东金晟新能源股份有限公司 Zinc fluoride modified porous lithium metal composite anode material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2014225324A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
WO2013038672A1 (en) Nonaqueous electrolyte secondary cell
JP5313761B2 (en) Lithium ion battery
JP5173181B2 (en) Lithium ion secondary battery and method for producing negative electrode plate for lithium ion secondary battery
JP5219387B2 (en) Nonaqueous electrolyte secondary battery
JP6258641B2 (en) Non-aqueous electrolyte secondary battery
US11824185B2 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5226128B2 (en) Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
WO2010131401A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2007220452A (en) Nonaqueous electrolytic solution secondary battery and separator fabricated therefore
JP2008300302A (en) Nonaqueous secondary battery, and manufacturing method of positive electrode for nonaqueous electrolyte secondary battery
WO2010134258A1 (en) Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPWO2016098708A1 (en) Lithium ion secondary battery
JP6917907B2 (en) A method for manufacturing and evaluating a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a positive electrode for a lithium ion secondary battery, and a method for manufacturing a lithium ion secondary battery.
JP2009266761A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
WO2015083262A1 (en) Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries, method for producing negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JPWO2017217407A1 (en) Lithium ion secondary battery
JP2016076342A (en) Electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011100694A (en) Nonaqueous electrolyte secondary battery
JP2010287470A (en) Nonaqueous secondary battery and its manufacturing method
JP2013131427A (en) Laminated battery
WO2015162885A1 (en) Nonaqueous electrolyte secondary cell
KR20180083432A (en) Negative electrode material for Li ion secondary battery and production method thereof, negative electrode for Li ion secondary battery and Li ion secondary battery
JP6627708B2 (en) Lithium ion secondary battery and method of manufacturing lithium ion secondary battery
US11600825B2 (en) Positive electrode for secondary lithium metal battery and method of making
JP5662746B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP