JP3200289B2 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP3200289B2
JP3200289B2 JP17830094A JP17830094A JP3200289B2 JP 3200289 B2 JP3200289 B2 JP 3200289B2 JP 17830094 A JP17830094 A JP 17830094A JP 17830094 A JP17830094 A JP 17830094A JP 3200289 B2 JP3200289 B2 JP 3200289B2
Authority
JP
Japan
Prior art keywords
graphite
copper oxide
negative electrode
electrode
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17830094A
Other languages
Japanese (ja)
Other versions
JPH0845499A (en
Inventor
哲也 米田
武仁 見立
直人 西村
和夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP17830094A priority Critical patent/JP3200289B2/en
Priority to US08/459,166 priority patent/US5591547A/en
Priority to DE69507094T priority patent/DE69507094T2/en
Priority to EP95305270A priority patent/EP0698934B1/en
Publication of JPH0845499A publication Critical patent/JPH0845499A/en
Application granted granted Critical
Publication of JP3200289B2 publication Critical patent/JP3200289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高容量の負極を有する
リチウム二次電池に関する。
The present invention relates to a lithium secondary battery having a high capacity negative electrode.

【0002】[0002]

【従来の技術】電子機器等の小型、省電力化に伴って、
リチウム等アルカリ金属を利用した二次電池が注目され
ている。負極にリチウムなどアルカリ金属を単体で用い
た場合、充放電の繰り返し、つまりアルカリ金属の溶解
−析出過程により、金属の溶解−析出面上にデンドライ
ト(樹枝状結晶)が生成し、成長することによってセパ
レータを貫通し、正極と接続することにより電池内部の
短絡を誘発するという問題があった。アルカリ金属のか
わりにアルカリ金属合金を二次電池用の負極に用いる
と、アルカリ金属単体の時に比べ、デンドライトの発生
が抑制され、充放電サイクル特性が向上することが判明
した。しかし、アルカリ金属合金を使用しても、完全に
デンドライトの生成がなくなるわけではなく、デンドラ
イトの生成による電池内部の短絡が起こることもある。
近年になって、負極にアルカリ金属やその合金のような
金属の溶解−析出過程、あるいは溶解−析出−固体内拡
散過程を利用するかわりに、アルカリ金属イオンの吸収
−放出過程を利用した炭素や導電性高分子等の有機材料
が開発された。これによりアルカリ金属やその合金を用
いた場合に発生したデンドライトの生成が原理上起こら
なくなり、電池内部の短絡の問題が激減するに至った。
2. Description of the Related Art With the miniaturization and power saving of electronic devices,
A secondary battery using an alkali metal such as lithium has attracted attention. When an alkali metal such as lithium is used alone for the negative electrode, dendrite (dendritic crystals) is generated and grown on the metal dissolution-precipitation surface by repeated charge and discharge, ie, the dissolution-precipitation process of the alkali metal. There is a problem that a short circuit inside the battery is induced by penetrating the separator and connecting to the positive electrode. It has been found that when an alkali metal alloy is used for a negative electrode for a secondary battery instead of an alkali metal, the generation of dendrites is suppressed and the charge / discharge cycle characteristics are improved as compared with the case of using an alkali metal alone. However, even if an alkali metal alloy is used, generation of dendrites does not completely disappear, and a short circuit inside the battery due to generation of dendrites may occur.
In recent years, instead of using a dissolution-precipitation process of a metal such as an alkali metal or an alloy thereof, or a dissolution-precipitation-diffusion process in a solid, a carbon using an absorption-release process of an alkali metal ion has been developed. Organic materials such as conductive polymers have been developed. As a result, generation of dendrite generated when an alkali metal or an alloy thereof is used does not occur in principle, and the problem of a short circuit inside the battery has been drastically reduced.

【0003】炭素を負極活物質に用いた場合、炭素の層
間に挿入されるリチウムの量は、炭素6原子に対してリ
チウム1原子、つまりC6Liが上限であり、そのとき
の炭素の単位重量当たりの容量は372mAh/gとな
る。炭素は無定形炭素といわれるものから黒鉛まで幅広
い構造をもち、また、炭素の六角網面の大きさ、並び方
も出発原料、製造方法等により様々なものがある。従来
負極活物質として用いられてきた炭素材料としては、例
えば、特開昭62−90863号公報、特開昭62−1
22066号公報、特開昭63−213267号公報、
特開平1−204361号公報、特開平2−82466
号公報、特開平3−252053号公報、特開平3−2
85273号公報、特開平3−289068号公報など
に開示されているものなどがあるが、これらの炭素類で
は上述の理論容量に達するものはなく、ある程度の大き
い容量をもっているものであってもリチウムのデインタ
ーカレーション時の対Li/Li+電位が直線的に上昇
し、実際に電池系を構成した場合に使用できる電位範囲
において充分な容量を示さないものがあり、電池を作成
するにあたって負極容量として満足いく負極を作製する
ことができない。また、負極を作成する場合、炭素材料
の真密度も考慮する必要があり、電池系と言った限られ
た容積での高容量化を目指す場合、単位体積あたりの充
填密度、つまり嵩密度が重要な因子となる。嵩密度を支
配するのは炭素粒子の形状、大きさであり、特開昭62
−90863の実施例中、特開平2−82466、特開
平3−285273、特開平3−289068に示され
るような繊維状炭素では、上述の理論容量に達するもの
はなく、電池を作成するにあたって満足いく負極容量を
もった負極を作製することができない。また、特開昭6
3−24555に示されるような気相法による熱分解炭
素は高い充放電安定性を示すが、この製法では厚膜の電
極を作製することが難しく、高容量の電極を得ることは
困難である。
When carbon is used as a negative electrode active material, the amount of lithium inserted between carbon layers is 1 lithium atom per 6 carbon atoms, that is, C 6 Li, and the unit of carbon at that time is The capacity per weight is 372 mAh / g. Carbon has a wide range of structures from what is called amorphous carbon to graphite, and the size and arrangement of carbon hexagonal planes vary depending on starting materials, production methods, and the like. Examples of carbon materials conventionally used as negative electrode active materials include, for example, JP-A-62-90863 and JP-A-62-1.
No. 22066, JP-A-63-213267,
JP-A-1-204361, JP-A-2-82466
JP, JP-A-3-25253, JP-A-3-2
No. 85273, Japanese Unexamined Patent Publication No. 3-289068, and the like. However, none of these carbons reach the above-mentioned theoretical capacity. The potential of Li / Li + at the time of deintercalation rises linearly, and does not show a sufficient capacity in a potential range that can be used when actually constructing a battery system. A negative electrode having a satisfactory capacity cannot be produced. Also, when creating the negative electrode, it is necessary to consider the true density of the carbon material, and when aiming for high capacity in a limited volume such as a battery system, the packing density per unit volume, that is, the bulk density is important. Factors. The bulk density governs the shape and size of the carbon particles.
Among the examples of -90863, none of the fibrous carbons disclosed in JP-A-2-82466, JP-A-3-285273, and JP-A-3-289068 satisfy the above-mentioned theoretical capacity, and are satisfactory in producing a battery. A negative electrode having a large negative electrode capacity cannot be manufactured. In addition, Japanese Unexamined Patent Publication
Pyrolytic carbon produced by a gas phase method as shown in 3-24555 shows high charge / discharge stability, but it is difficult to produce a thick-film electrode and to obtain a high-capacity electrode by this production method. .

【0004】同様に、黒鉛材料を負極活物質に用いたも
のとして特開平4−112455、特開平4−1154
57、特開平4−115458、特開平4−23797
1、特開平5−28996等が開示されているが、上述
の理論容量に達しておらず、電池を作製するにあたって
の負極容量として満足いく負極を作製することができな
い。
Similarly, Japanese Patent Application Laid-Open Nos. 4-112455 and 4-1154 disclose that a graphite material is used as a negative electrode active material.
57, JP-A-4-115458, JP-A-4-23797
1, Japanese Patent Application Laid-Open No. 5-28996, etc., does not reach the above-mentioned theoretical capacity, and it is not possible to produce a negative electrode having a satisfactory negative electrode capacity for producing a battery.

【0005】特開平3−216960、特開平4−39
864ではそれぞれ、リチウムを吸蔵した多孔質カーボ
ンと、その表面に孔部を塞がないよう形成したリチウム
との複合負極、および炭素質物の気孔内部に活物質であ
るアルカリ金属と合金を形成し得る金属を含浸させてな
る担持体を形成し、これにアルカリ金属を担持させてな
る負極が開示されている。また、特開平4−18486
3では集電性の向上のため、導伝性の高い金属で被膜を
形成した炭素材を焼結してなる炭素電極を有する非水電
解質電池が開示されている。
JP-A-3-216960, JP-A-4-39
864, respectively, can form an alloy with a composite negative electrode of porous carbon absorbing lithium and lithium formed so as not to block pores on its surface, and an alkali metal as an active material inside pores of the carbonaceous material. A negative electrode has been disclosed in which a support is formed by impregnating a metal, and an alkali metal is supported on the support. Also, Japanese Patent Application Laid-Open No.
No. 3 discloses a non-aqueous electrolyte battery having a carbon electrode formed by sintering a carbon material having a film formed of a highly conductive metal in order to improve current collection.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記に
記載のごとく、種々の炭素材料、黒鉛材料を負極活物質
に用いることによっても理論容量(372mAh/g)
に達することがなく、電池を作成するにあたっての負極
容量として満足のいく負極を作製することができない。
However, as described above, the theoretical capacity (372 mAh / g) can also be obtained by using various carbon materials and graphite materials for the negative electrode active material.
Therefore, a negative electrode having a satisfactory negative electrode capacity in producing a battery cannot be produced.

【0007】特開平3−216960のリチウムを吸蔵
した多孔質カーボンと、その表面に孔部を塞がないよう
に形成したリチウムとの複合負極、および特開平4−3
9864の炭素質物の気孔内部に活物質であるアルカリ
金属と合金を形成し得る金属を含浸させてなる担持体を
形成し、これにアルカリ金属を担持させてなる負極で
は、これらの電極の活物質はリチウム(アルカリ金属)
であり、電極ではアルカリ化合物またはアルカリ金属が
合成され、負極にアルカリ金属を用いた場合の不都合で
あったデンドライトの生成が完全になくなるわけではな
い、という問題がある。特開平4−184863の導電
性の高い金属で被膜を形成した炭素材を焼結してなる炭
素電極を有する非水電解質電池では、取り出せる電流は
それほど大きくなく、負極容量として満足のいく負極を
作製することができないという問題がある。
Japanese Patent Application Laid-Open No. HEI 3-216960 discloses a composite negative electrode of porous carbon having occluded lithium and lithium formed on the surface thereof so as not to block pores.
In a negative electrode in which a metal capable of forming an alloy with an alkali metal as an active material is impregnated inside pores of a carbonaceous material of 9864, and a negative electrode in which an alkali metal is supported, an active material of these electrodes is used. Is lithium (alkali metal)
In the electrode, an alkali compound or an alkali metal is synthesized, and there is a problem that generation of dendrite, which is a disadvantage when an alkali metal is used for a negative electrode, is not completely eliminated. In the non-aqueous electrolyte battery having a carbon electrode formed by sintering a carbon material coated with a highly conductive metal as disclosed in JP-A-4-184863, the current that can be taken out is not so large, and a negative electrode having a satisfactory negative electrode capacity is produced. There is a problem that you can not.

【0008】また、特願平5−112835の黒鉛と酸
化銅を混合した負極や、特願平5−136099の黒鉛
に銅メッキを施し酸化することにより作製した黒鉛−酸
化銅複合体を用いた負極等があるが、酸化銅を単に混合
しただけの電極を用いると、混合した酸化銅の全てが反
応に関与しているわけではなく、銅メッキを施した黒鉛
を酸化処理した酸化銅複合黒鉛材料を用いる場合には、
製造工程が煩雑化するという問題がある。
A negative electrode obtained by mixing graphite and copper oxide as disclosed in Japanese Patent Application No. 5-112835, and a graphite-copper oxide composite prepared by subjecting graphite of Japanese Patent Application No. 5-136099 to copper plating and oxidation are used. Although there is a negative electrode, etc., if an electrode that is simply mixed with copper oxide is used, not all of the mixed copper oxide is involved in the reaction, and copper oxide composite graphite obtained by oxidizing copper-plated graphite When using materials,
There is a problem that the manufacturing process becomes complicated.

【0009】これらの問題点に鑑み、本発明はリチウム
のインターカレーション・デインターカレーション可能
な黒鉛に酸化銅を接触存在させ、結着材と混合した電極
を提供することにより、高容量かつ電極製造における工
程を少なくできる複合黒鉛負極、さらには転極防止容量
の付与により高容量化した、高電圧のリチウム二次電池
を提供することを目的とする。
In view of these problems, the present invention provides a high-capacity and high-capacity electrode by providing copper oxide in contact with graphite capable of intercalating and deintercalating lithium and providing a mixed electrode with a binder. An object of the present invention is to provide a composite graphite negative electrode that can reduce the number of steps in electrode production, and a high-voltage lithium secondary battery that has a high capacity by imparting a reversal prevention capacity.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
め、本発明のリチウム二次電池が有する負極は、リチウ
ムのインターカレーション・デインターカレーション可
能な黒鉛粒子の全部あるいは一部の表面上に重点的に化
学的に酸化銅を生成(析出)させた後、液中で粒子の接
触対を生成させる製造方法により製造した複合体を使用
し、これと結着材を混合することにより作製される。こ
の時、負極と負極集電体と一体となったものを作製する
こともできる。
Means for Solving the Problems In order to solve the above-mentioned problems, the negative electrode of the lithium secondary battery of the present invention has a structure in which all or a part of the graphite particles capable of intercalating / deintercalating lithium are used. After chemically producing (depositing) copper oxide mainly on the top, using a composite produced by a production method of producing a contact pair of particles in a liquid, and mixing this with a binder It is made. At this time, an integrated product of the negative electrode and the negative electrode current collector can also be manufactured.

【0011】本発明で使用される負極活物質の主成分と
しての黒鉛は、X線広角回折法による(002)面の平
均面間隔(d002)が0.335〜0.340nm、
(002)面方向の結晶子厚み(Lc)が10nm以
上、(110)面方向の結晶子厚み(La)が10nm
以上である材料であり、これを用いることにより高容量
の電極を得ることができる。容量および充放電電位に影
響を及ぼす要因として、炭素の層状構造に関わる物性が
あげられる。炭素の層状構造に関わる物性には(00
2)面の面間隔(d002)、つまり層間距離と結晶子の
大きさがある。結晶化度が高くなることによりリチウム
のデインターカレーション時の電位がリチウムの電位に
近くなるため、より高容量の炭素体電極を得ることが期
待できるわけである。したがって、リチウム二次電池と
して組み上げる時に使用できる電池容量を考えに入れた
場合、X線広角回折法による(002)面方向の結晶子
厚み(Lc)においては、10nm以下のときは結晶性
が悪いため、リチウム二次電池として組み上げたときに
使用できる電池容量が小さくなり実用的でない。また、
(110)面方向の結晶子厚み(La)においては、1
0nm以下のときは結晶性が悪いため、リチウム二次電
池として組み上げたときに使用できる電池容量が小さく
なり実用的でない。
The graphite used as the main component of the negative electrode active material used in the present invention has an average spacing (d 002 ) of (002) planes by a wide angle X-ray diffraction method of 0.335 to 0.340 nm,
The crystallite thickness (Lc) in the (002) plane direction is 10 nm or more, and the crystallite thickness (La) in the (110) plane direction is 10 nm.
The above materials are used, and a high-capacity electrode can be obtained by using these materials. Factors affecting the capacity and charge / discharge potential include physical properties related to the layered structure of carbon. Physical properties related to the layered structure of carbon include (00
2) The plane spacing (d 002 ) of the planes, that is, the interlayer distance and the crystallite size. Since the potential at the time of deintercalation of lithium becomes closer to the potential of lithium by increasing the degree of crystallinity, it is possible to expect to obtain a higher capacity carbon body electrode. Therefore, when considering the battery capacity that can be used when assembled as a lithium secondary battery, the crystallinity is poor when the crystallite thickness (Lc) in the (002) plane direction by X-ray wide-angle diffraction is 10 nm or less. Therefore, the battery capacity that can be used when assembled as a lithium secondary battery becomes small, which is not practical. Also,
The crystallite thickness (La) in the (110) plane direction is 1
When the thickness is less than 0 nm, the crystallinity is poor, so that the battery capacity that can be used when assembled as a lithium secondary battery becomes small, which is not practical.

【0012】本発明で使用される負極活物質の主成分と
しての黒鉛において、アルゴンレーザーラマンによる1
580cm-1付近のピークに対する1360cm-1付近
のピークの強度比、つまりR値は0.4以下が好まし
い。0.4より大きいと結晶化度が低くなり、リチウム
のデインターカレーション時の電位がリチウムの電位に
対してより高くなるため、リチウム二次電池として組み
上げた時、その使用できる電池容量が小さくなり、実用
的ではない。
[0012] Graphite as a main component of the negative electrode active material used in the present invention was prepared using argon laser Raman.
580 cm -1 around 1360 cm -1 vicinity of the peak intensity ratio of the relative peak of, i.e. R value is preferably 0.4 or less. If it is larger than 0.4, the crystallinity will be low, and the potential at the time of deintercalation of lithium will be higher than the potential of lithium. Therefore, when assembled as a lithium secondary battery, the usable battery capacity is small. Is not practical.

【0013】また、用いることのできる黒鉛として、上
記の物性条件を満たすものであればよく、例えば天然黒
鉛、キッシュグラファイト、石油コークスまたは石炭ピ
ッチコークス等の易黒鉛化性炭素から得られる人造黒
鉛、あるいは膨張黒鉛などの黒鉛類が挙げられる。また
黒鉛の粒子の形状としては、球状、鱗片状、繊維状ある
いはそれらの粉砕物のいずれであってもよいが、球状、
鱗片状、あるいはそれらの粉砕物が好ましい。
[0013] The graphite which can be used is not limited as long as it satisfies the above-mentioned physical property conditions. For example, artificial graphite obtained from easily graphitizable carbon such as natural graphite, quiche graphite, petroleum coke or coal pitch coke; Alternatively, graphites such as expanded graphite can be used. The shape of the graphite particles may be spherical, flaky, fibrous, or any of their pulverized products.
A scaly shape or a crushed product thereof is preferred.

【0014】黒鉛を負極として作製する際に、黒鉛の粒
径は80μm以下であることが好ましい。粒径は体積基
準による粒度分布測定により求められた粒度分布におい
て、ピークをもつ粒径(体積基準測定におけるモード
径)として求められた値である。80μmより大きい粒
径の黒鉛を用いた場合、電解液との接触面積が小さくな
るため、粒子内のリチウムの拡散や、反応サイトの密度
減少等の現象が発生し、大きい電流での充放電に問題が
生じる。
When graphite is used as the negative electrode, the graphite preferably has a particle size of 80 μm or less. The particle size is a value obtained as a particle size having a peak (modal size in volume-based measurement) in a particle size distribution obtained by volume-based particle size distribution measurement. When graphite having a particle size of more than 80 μm is used, the contact area with the electrolyte becomes small, so that phenomena such as diffusion of lithium in the particles and a decrease in the density of reaction sites occur. Problems arise.

【0015】黒鉛粒子の表面上で酸化銅と接触している
複合体を製造する方法、つまり厳密に言うと、黒鉛粒子
表面上の少なくとも一部で酸化銅が黒鉛粒子と接触する
ような酸化銅もしくは水酸化銅の生成方法としては、次
のようなものがある。
A method for producing a composite in contact with copper oxide on the surface of graphite particles, ie, strictly speaking, a copper oxide in which the copper oxide contacts the graphite particles on at least a part of the surface of the graphite particles Alternatively, a method for producing copper hydroxide is as follows.

【0016】 共沈法 黒鉛粉末と銅塩類、例えば硫酸銅を混合し、水を加えて
硫酸銅を溶解させ、そこに対銅イオンの存在量に対して
モル比で2倍以上となるように過剰のアルカリ性化合物
を水溶液もしくは固体で加え、室温(20℃)以上の温
度、好ましくは60℃以上の温度で放置後、室温にてさ
らに放置し、その後吸引ろ過するという手法を用いる、
銅塩類を出発物質とする。
Coprecipitation method Graphite powder and a copper salt, for example, copper sulfate, are mixed, and water is added to dissolve the copper sulfate so that the molar ratio is twice or more the amount of copper ions present therein. A method in which an excess of an alkaline compound is added as an aqueous solution or a solid, left at a temperature of room temperature (20 ° C.) or higher, preferably 60 ° C. or higher, further left at room temperature, and then suction-filtered,
Starting materials are copper salts.

【0017】 蒸発(分解)法 酢酸銅等の高温で分解性の銅化合物を高減圧中に保って
加熱蒸発もしくは分解を利用する。
Evaporation (decomposition) method A high-temperature decomposable copper compound such as copper acetate is kept under a high vacuum to utilize heat evaporation or decomposition.

【0018】 加熱分解法 揮発分解性の銅化合物を黒鉛に混合し、空気や酸素存在
下等の酸化性雰囲気で加熱して銅化合物を分解する。
Thermal decomposition method A volatile copper compound is mixed with graphite and heated in an oxidizing atmosphere such as in the presence of air or oxygen to decompose the copper compound.

【0019】このように種々の方法が挙げられるが、こ
れらに限定されるものではない。このうちコストおよび
作業性の面から、の共沈法が好ましい。一般に水酸化
銅は酸化銅水和物のゲルであるといわれている。水酸化
銅が一部生成した場合は後で脱水処理を施す。
As described above, various methods can be used, but the present invention is not limited to these methods. Of these, the coprecipitation method is preferred in terms of cost and workability. Generally, copper hydroxide is said to be a gel of copper oxide hydrate. If copper hydroxide is partially generated, a dehydration treatment is performed later.

【0020】上述の水酸化銅を生成させた後に脱水処理
を施す方法として、酸化銅を生成させるのに有利な酸化
性雰囲気下で行う必要があるため、気体の酸化剤、例え
ば空気、酸素、オゾン等を用いて乾燥・脱水する方法、
液体の酸化剤、例えば過酸化水素、溶存酸素を持つ水、
オキソ酸(亜硝酸、過マンガン酸、クロム酸、重クロム
酸、塩素酸、次亜塩素酸など)の塩類等を用いて酸化し
つつ脱水・水洗する方法、熱水下の酸化性雰囲気で脱水
する方法等があげられるが、これらに限定されるもので
はない。
As a method of performing the dehydration treatment after the above-described copper hydroxide is formed, it is necessary to perform the dehydration treatment in an oxidizing atmosphere which is advantageous for forming copper oxide. Therefore, a gaseous oxidizing agent such as air, oxygen, Drying and dehydration using ozone, etc.
Liquid oxidants, such as hydrogen peroxide, water with dissolved oxygen,
A method of dehydration and washing with oxidizing using oxo acid (nitric acid, permanganic acid, chromic acid, dichromic acid, chloric acid, hypochlorous acid, etc.), dehydrating in an oxidizing atmosphere under hot water However, the present invention is not limited thereto.

【0021】前述の空気、酸素等のガスを用いた脱水処
理では、黒鉛の燃焼温度以下の温度で処理を行うべきで
ある。黒鉛の燃焼温度は、黒鉛の種類によっても異なる
が、おおよそ600℃以上である。したがって、600
℃以下の温度で行うことが好ましい。また、600℃以
下の空気、酸素を用いた酸化雰囲気下の脱水処理でも黒
鉛の種類、酸化時間、酸素分圧、黒鉛と銅との比率等に
よって異なるが、黒鉛表面が酸化されカルボキシル基、
ラクトン、水酸基、カルボニル基等の官能基が生成す
る。このことより400℃以下で脱水処理を行うほうが
より好ましい。
In the above-mentioned dehydration treatment using a gas such as air or oxygen, the treatment should be performed at a temperature lower than the combustion temperature of graphite. The combustion temperature of graphite varies depending on the type of graphite, but is about 600 ° C. or higher. Therefore, 600
It is preferable to carry out at a temperature of not more than ° C. In addition, in the dehydration treatment under an oxidizing atmosphere using air at 600 ° C. or lower, the graphite surface is oxidized and the carboxyl group varies depending on the type of graphite, oxidation time, oxygen partial pressure, ratio of graphite to copper, etc.
Functional groups such as lactone, hydroxyl group and carbonyl group are generated. Therefore, it is more preferable to perform the dehydration treatment at 400 ° C. or lower.

【0022】酸化銅付着黒鉛複合体を構成している黒鉛
と酸化銅との比率は、黒鉛の種類や粒径または酸化銅の
付着形態などによって異なるが、黒鉛と酸化銅との重量
比について98.5:1.5〜55:45であることが
好ましい。さらに98.5:1.5〜72:28である
とより好ましい。酸化銅成分の重量の比率が98.5よ
り小さいと付着した酸化銅の効果が顕著に現れなく、5
5:45より大きいと黒鉛の充放電時にリチウムイオン
の反応サイトの減少等がおこり、リチウム二次電池とし
て組み立てた時、その使用できる電池容量が小さくなり
実用的でない。
The ratio of graphite to copper oxide constituting the graphite composite with copper oxide varies depending on the type and particle size of graphite or the form of copper oxide deposition, but the weight ratio of graphite to copper oxide is 98%. 0.5: 1.5 to 55:45. More preferably, the ratio is 98.5: 1.5 to 72:28. If the weight ratio of the copper oxide component is less than 98.5, the effect of the attached copper oxide is not remarkably exhibited, and
If the ratio is larger than 5:45, the number of lithium ion reaction sites is reduced during charging and discharging of graphite, and when assembled as a lithium secondary battery, the usable battery capacity is reduced, which is not practical.

【0023】負極は上記に示された黒鉛粒子全部あるい
は一部分の表面上で酸化銅と接触している複合体と結着
材を混合して形成される。この結着材には、ポリテトラ
フルオロエチレン、ポリフッ化ビニリデン等のフッ素系
ポリマー、ポリエチレン、ポリプロピレン等のポリオレ
フィン系ポリマー、合成ゴム類等を用いることができる
がこれに限定されるものではない。この混合比は、黒鉛
粒子全部あるいは一部分の表面上に酸化銅が付着してい
る複合体と結着材との重量比で、99:1〜70:30
とすることができる。結着材が70:30より大きい
と、電極の抵抗あるいは分極等が大きくなり放電容量が
小さくなるため、実用的なリチウム二次電池が作製でき
ない。また、結着材が99:1より小さいと電極として
の形状を維持できない程度の結着能力しか有しなくなっ
てしまい、活物質の脱落発生や、ひいては機械的強度の
低下により電池の作製が困難になる。負極作製において
は、結着性を高めるためにそれぞれの結着材の融点前後
の温度で熱処理を行うことが好ましい。
The negative electrode is formed by mixing a composite and a binder in contact with copper oxide on the surface of all or a part of the graphite particles shown above. As the binder, a fluorine-based polymer such as polytetrafluoroethylene and polyvinylidene fluoride, a polyolefin-based polymer such as polyethylene and polypropylene, and synthetic rubbers can be used, but are not limited thereto. This mixing ratio is 99: 1 to 70:30 by weight ratio of the composite having the copper oxide adhered on the surface of all or a part of the graphite particles to the binder.
It can be. If the binder is larger than 70:30, the resistance or polarization of the electrode becomes large and the discharge capacity becomes small, so that a practical lithium secondary battery cannot be manufactured. On the other hand, if the binder is less than 99: 1, the battery has only a binding ability that cannot maintain the shape as an electrode, and it is difficult to manufacture a battery due to the occurrence of falling off of the active material and, consequently, a decrease in mechanical strength. become. In the production of the negative electrode, it is preferable to perform a heat treatment at a temperature around the melting point of each binder in order to enhance the binding property.

【0024】酸化銅付着黒鉛複合体の黒鉛と複合化処理
される酸化銅の粒径は、ガラスフィルターの特性からく
る製造工程の関係からおよそ1μm以上であることが好
ましく、かつ同時に存在する黒鉛の粒径以下の範囲にあ
ることが好ましい。本願の酸化銅付着黒鉛複合体での黒
鉛粒子と酸化銅粒子の接触状態は、混合状態にある黒鉛
粒子の傍らで析出を開始した酸化銅粒子が炭素を取り込
もうとしながら肥大するが、取り込みきらないうちに成
長が止まるため、多くの黒鉛粒子が酸化銅粒子と接触し
たいわゆる双粒状粒子の形態を取る。酸化銅の粒径が同
時に存在する黒鉛の粒径より大きい場合に不具合が生じ
る理由は、反応面積が粒径の増大に伴い減少し、電極反
応の特性上、酸化銅としての効果が相対的に減少するた
めで、同時に黒鉛との電極反応性の相対比較において
も、酸化銅としての効果が相対的に減少するからであ
る。また、黒鉛と酸化銅粒子との接着強度の点でも、比
重の相対的に大きい酸化銅粒子が小さいほうが有利とな
り、粒径が黒鉛に比較して相対的に大きい場合、電極反
応の繰り返し、つまり充放電による活物質としての酸化
銅成分の電極面からの遊離の発生頻度が増加し、ひいて
は電極特性が低下する原因の一つとなる。一方、ガラス
フィルターのポア径の小さいものを用いる等の他の分離
方法と水洗方法を用い、ガラスフィルターの特性による
粒径の下限規定がなくなった場合には、単に同時に存在
する黒鉛の粒径以下の範囲となることは明らかである。
The particle diameter of the copper oxide to be composited with the graphite of the graphite composite to which the copper oxide is attached is preferably about 1 μm or more from the viewpoint of the manufacturing process derived from the characteristics of the glass filter. It is preferable that the particle diameter is in the range of the particle size or less. The contact state between the graphite particles and the copper oxide particles in the copper oxide-adhered graphite composite of the present application is such that the copper oxide particles that have started to be deposited beside the graphite particles in the mixed state are enlarged while trying to take in carbon, but cannot be taken up. Since the growth stops beforehand, many graphite particles take the form of so-called twin particles in contact with copper oxide particles. The reason why the problem occurs when the particle size of copper oxide is larger than the particle size of graphite that exists at the same time is that the reaction area decreases as the particle size increases, and the effect as copper oxide is relatively small on the characteristics of the electrode reaction. This is because, at the same time, the effect as copper oxide is relatively reduced also in the relative comparison of the electrode reactivity with graphite. Also, from the viewpoint of the adhesive strength between graphite and copper oxide particles, it is more advantageous for copper oxide particles having a relatively large specific gravity to be small, and when the particle size is relatively large compared to graphite, repeated electrode reactions, that is, The frequency of liberation of the copper oxide component as an active material from the electrode surface due to charge and discharge increases, which is one of the causes of deterioration of electrode characteristics. On the other hand, if another separation method and a washing method such as using a glass filter having a small pore diameter are used, and the lower limit of the particle size by the characteristics of the glass filter is eliminated, the particle size of graphite that is present at the same time is simply reduced. It is clear that the range is as follows.

【0025】負極から集電を取るためには集電体が必要
である。集電体としては、金属箔や金属メッシュ、三次
元多孔体等がある。集電体に用いられる金属としては、
充放電サイクルを重ねた際の機械的強度の点からリチウ
ムと合金化しにくい金属がよい。特に鉄、ニッケル、コ
バルト、銅、チタン、バナジウム、クロム、マンガンの
単独、あるいはそれらの合金がよい。
In order to collect current from the negative electrode, a current collector is required. Examples of the current collector include a metal foil, a metal mesh, and a three-dimensional porous body. As the metal used for the current collector,
A metal that is difficult to alloy with lithium is preferable in terms of mechanical strength when charge and discharge cycles are repeated. In particular, iron, nickel, cobalt, copper, titanium, vanadium, chromium, and manganese alone or alloys thereof are preferable.

【0026】イオン伝導体は、例えば有機電解液、高分
子固体電解質、無機固体電解質、溶融塩等を用いること
ができる。この中でも有機電解液が好適に用いられる。
有機電解液は溶媒と溶質とからなり、溶媒に電解質を溶
解することによって電解液は調整される。有機電解液の
溶媒としてはプロピレンカーボネート、エチレンカーボ
ネート、ブチレンカーボネート、ジエチルカーボネー
ト、ジメチルカーボネート、メチルエチルカーボネー
ト、γ−ブチロラクトン等のエステル類や、テトラヒド
ロフラン、2−メチルテトラヒドロフランなどの置換テ
トラヒドロフラン、ジオキソラン、ジエチルエーテル、
ジメトキシエタン、ジエトキシエタン、メトキシエトキ
シエタン等のエーテル類、ジメチルスルホキシド、スル
ホラン、メチルスルホラン、アセトニトリル、ギ酸メチ
ル、酢酸メチル等が挙げられ、これらの1種あるいは2
種以上の混合溶媒として使用される。また電解質として
は過塩素酸リチウム、ホウフッ化リチウム、リンフッ化
リチウム、6フッ化砒素リチウム、トリフルオロメタン
スルホン酸リチウム、ハロゲン化リチウム、塩化アルミ
ン酸リチウム等のリチウム塩が挙げられ、これらの1種
あるいは2種以上を混合して使用される。電解液を調整
する際に使用する溶媒、電解質は上記に挙げたものに限
定されるものではない。
As the ion conductor, for example, an organic electrolyte, a solid polymer electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used. Among these, an organic electrolyte is preferably used.
The organic electrolyte is composed of a solvent and a solute, and the electrolyte is adjusted by dissolving the electrolyte in the solvent. As the solvent for the organic electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, esters such as γ-butyrolactone, tetrahydrofuran, substituted tetrahydrofuran such as 2-methyltetrahydrofuran, dioxolane, diethyl ether ,
Ethers such as dimethoxyethane, diethoxyethane, and methoxyethoxyethane; dimethylsulfoxide, sulfolane, methylsulfolane, acetonitrile, methyl formate, methyl acetate, and the like.
Used as a mixed solvent of more than one species. Examples of the electrolyte include lithium salts such as lithium perchlorate, lithium borofluoride, lithium phosphofluoride, lithium arsenide hexafluoride, lithium trifluoromethanesulfonate, lithium halide, and lithium aluminate. A mixture of two or more types is used. The solvent and the electrolyte used when preparing the electrolyte are not limited to those described above.

【0027】この発明のリチウム二次電池における正極
としては、LiCoO2、LiNiO2や、この系列のL
xyz2(ここでMはFe、Co、Niのいずれか
であり、Nは遷移金属、4B族、あるいは5B族の金属
を表す)、LiMn24およびLiMn2-xy4(こ
こでNは遷移金属、4B族、あるいは5B族の金属を表
す)等のリチウムを含有した酸化物を正極活物質とし
て、これに導電材、結着材および場合によっては固体電
解質等を混合して形成される。この混合比は、活物質1
00重量部に対して、導電材を5〜50重量部、結着材
を1〜30重量部とすることができる。この導電材には
カーボンブラック(アセチレンブラック、サーマルブラ
ック、チャンネルブラック等)などの炭素類や、グラフ
ァイト粉末、金属粉末等を用いることができるがこれに
限定されるものではない。また、この結着材にはポリテ
トラフルオロエチレン、ポリフッ化ビニリデン等のフッ
素系ポリマー、ポリエチレン、ポリプロピレン等のポリ
オレフェン系ポリマー、合成ゴム類などを用いることが
できるがこれに限定されるものではない。導電材が5重
量部より小さい、あるいは結着材が30重量部より大き
いと、電極の抵抗あるいは分極等が大きくなり放電容量
が小さくなるため実用的なリチウム二次電池が作製でき
ない。導電材が50重量部より多い(混合する導電材の
種類により重量部は変わる)と電極内に含まれる活物質
量が減るため正極としての放電容量が小さくなる。結着
材は、1重量部より小さいと結着能力がなくなってしま
い、30重量部より大きいと、導電材の場合と同様に、
電極内に含まれる活物質量が減り、さらに上記に記載の
ごとく、電極の抵抗あるいは分極等が大きくなり放電容
量が小さくなるため実用的ではない。正極作製におい
て、結着性を上げるためにそれぞれの結着材の融点前後
の温度で熱処理を行うことが好ましい。
As the positive electrode in the lithium secondary battery of the present invention, LiCoO 2 , LiNiO 2 and L
i x M y N z O 2 ( and a where M is Fe, Co, either Ni, N represents a transition metal, 4B group or 5B group metal,), LiMn 2 O 4 and LiMn 2-x An oxide containing lithium such as N y O 4 (where N represents a transition metal, a 4B group, or a 5B group metal) is used as a positive electrode active material, and a conductive material, a binder, and in some cases, a solid material. It is formed by mixing an electrolyte and the like. This mixing ratio depends on the active material 1
The conductive material can be 5 to 50 parts by weight and the binder can be 1 to 30 parts by weight with respect to 00 parts by weight. As the conductive material, carbons such as carbon black (acetylene black, thermal black, channel black, etc.), graphite powder, metal powder, and the like can be used, but are not limited thereto. The binder may be a fluorine-based polymer such as polytetrafluoroethylene or polyvinylidene fluoride, a polyolefin-based polymer such as polyethylene or polypropylene, or a synthetic rubber, but is not limited thereto. If the conductive material is less than 5 parts by weight or the binder is more than 30 parts by weight, the resistance or polarization of the electrode increases and the discharge capacity decreases, so that a practical lithium secondary battery cannot be manufactured. When the amount of the conductive material is more than 50 parts by weight (parts by weight vary depending on the type of the conductive material to be mixed), the amount of the active material contained in the electrode decreases, so that the discharge capacity as the positive electrode decreases. When the binder is smaller than 1 part by weight, the binding ability is lost. When the binder is larger than 30 parts by weight, as in the case of the conductive material,
This is not practical because the amount of active material contained in the electrode decreases, and as described above, the resistance or polarization of the electrode increases and the discharge capacity decreases. In producing the positive electrode, it is preferable to perform a heat treatment at a temperature around the melting point of each binder in order to improve the binding property.

【0028】[0028]

【作用】本発明による負極は、リチウムのインターカレ
ーション・デインターカレーション可能な黒鉛粒子全
部、あるいは一部分の表面上で酸化銅が接触している複
合体と結着材とを混合した電極であり高容量である。こ
れは、酸化銅が電気化学的に還元されたものに、可逆的
に変化するリチウムと銅の複合酸化物が生成したためで
ある。
The negative electrode according to the present invention is an electrode obtained by mixing a binder and a composite in which copper oxide is in contact with all or part of the graphite particles capable of intercalating / deintercalating lithium. There is high capacity. This is because the reversibly changing composite oxide of lithium and copper was formed in the electrochemically reduced copper oxide.

【0029】また、酸化銅と黒鉛の複合化処理により、
双粒状粒子の形態をとるため接触性が高く、粒子間の接
触に伴う抵抗成分が減少し、それに伴って酸化銅の電極
反応性が向上している。
In addition, by the composite treatment of copper oxide and graphite,
Since it takes the form of twin particles, the contact property is high, the resistance component associated with the contact between the particles is reduced, and the electrode reactivity of copper oxide is improved accordingly.

【0030】黒鉛−酸化銅複合体の作製法を比較した場
合、図1(a)のごとく、メッキ法では粉末湿式メッキ
法を行うため粉末の炭素(黒鉛)の表面を前処理液で処
理し、活性化させた上でメッキ液に浸漬し、活性化させ
た上で均一な被膜形成を行い後処理として水洗を行う、
という工程が用いられるため手間がかかることは必須で
ある。一方、本発明では図1(b)のごとく、単に混合
の上、熱処理と水洗/酸化処理を行うだけであり、工数
も減少し、装置の大きさ特に反応槽の大きさが小さくて
すむというメリットがある。
When the production method of the graphite-copper oxide composite is compared, as shown in FIG. 1 (a), in the plating method, the surface of the powdered carbon (graphite) is treated with a pretreatment liquid in order to perform the powder wet plating method. Activated, immersed in plating solution, activated to form a uniform film and rinsed with water as post-treatment,
It is indispensable that it takes time because the process is used. On the other hand, in the present invention, as shown in FIG. 1 (b), heat treatment and water washing / oxidation treatment are simply performed after mixing, so that the number of steps is reduced and the size of the apparatus, particularly the size of the reaction tank, can be reduced. There are benefits.

【0031】したがって、本発明による負極を使用した
リチウム二次電池は電極製造における工程を少なくで
き、高容量化した優れたリチウム二次電池を提供するこ
とができる。
Therefore, the lithium secondary battery using the negative electrode according to the present invention can reduce the number of steps in manufacturing the electrode, and can provide an excellent lithium secondary battery having a high capacity.

【0032】[0032]

【実施例】以下、この発明を実施例により、詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments.

【0033】なお、X線広角回折法による結晶子の大き
さ(Lc、La)を測定する方法は公知の方法、例えば
“炭素材料実験技術 1 p55〜63 炭素材料学会
編(科学技術社)”や特開昭61−111907に記載
された方法によって行うことができる。また、結晶子の
大きさを求める形状因子Kは0.9を用いた。また、粒
径はレーザー回折式粒度分布計を用いて測定を行い、粒
度分布においてピークをもつ粒径(体積基準測定におけ
るモード径)として求めた。
A method for measuring the crystallite size (Lc, La) by the X-ray wide-angle diffraction method is a known method, for example, "Carbon Materials Experimental Techniques 1 p55-63, edited by the Society of Carbon Materials (Science and Technology Corporation)". And the method described in JP-A-61-111907. Further, 0.9 was used as the shape factor K for obtaining the size of the crystallite. The particle size was measured using a laser diffraction type particle size distribution meter, and determined as a particle size having a peak in the particle size distribution (modal size in volume-based measurement).

【0034】実施例1 ・酸化銅付着黒鉛複合体の作製 負極活物質として用いる黒鉛粒子全部あるいは一部分の
表面上に酸化銅が付着している複合体の黒鉛粒子にマダ
ガスカル産の天然黒鉛(鱗片状、粒径11μm、d002
は0.337nm、Lcは27nm、Laは17nm、
R値は0、比表面積8m2/g)を用い、これに酸化銅
複合化処理を施した。酸化銅複合化処理は次の方法で行
った。
Example 1 Preparation of Graphite Composite with Copper Oxide Attached to graphite particles of a composite having copper oxide adhered on the surface of all or a part of graphite particles used as a negative electrode active material, natural graphite (scale-like) made in Madagascar was used. , Particle size 11 μm, d 002
Is 0.337 nm, Lc is 27 nm, La is 17 nm,
The R value was 0 and the specific surface area was 8 m 2 / g), and this was subjected to a copper oxide composite treatment. The copper oxide composite treatment was performed by the following method.

【0035】まず、上述の黒鉛粉末120重量部と硫酸
銅5水和物(CuSO4・5H2O)97重量部(モル比
で100:3.88)をビーカーに計り取りよく混合す
る。この中に水酸化リチウム(LiOH・H2O)16
3重量部(Cu2+に対してモル比で10倍)を加えよく
かき混ぜ、イオン交換水を1000ml加え撹拌し、C
uSO4・5H2OおよびLiOH・H2Oが溶解後、9
0℃に保持したホットプレート上にて20時間加熱す
る。蒸発に伴い適宜イオン交換水は補給する。その後、
加熱を終了し12時間室温(約20℃)で放置後、ガラ
スセパレータろ紙(気孔径1μm)にて吸引ろ過し、ろ
液が中性になるまで水洗し、得られた酸化銅複合黒鉛複
合体の固形物を真空乾燥(乾燥中の酸化の進行を防ぐた
め85℃で実施)し、粉砕を行う。こうして作製した酸
化銅付着黒鉛粉末の黒鉛と酸化銅との重量比は79.
6:20.4であった。この酸化銅付着黒鉛複合体の粉
末X線広角回折測定を行ったところ、黒鉛に由来する回
折線と酸化第二銅CuOに由来する回折線が観察され
た。
First, 120 parts by weight of the above graphite powder and 97 parts by weight of copper sulfate pentahydrate (CuSO 4 .5H 2 O) (molar ratio: 100: 3.88) are measured and mixed well in a beaker. Lithium hydroxide (LiOH.H 2 O) 16
Add 3 parts by weight (10 times the molar ratio to Cu 2+ ), mix well, add 1000 ml of ion-exchanged water, stir, add C
After uSO 4 · 5H 2 O and LiOH · H 2 O is dissolved, 9
Heat for 20 hours on a hot plate maintained at 0 ° C. Replenish ion-exchanged water as needed with evaporation. afterwards,
After heating was completed and left at room temperature (about 20 ° C.) for 12 hours, the solution was suction-filtered with a glass separator filter paper (pore size: 1 μm), washed with water until the filtrate became neutral, and the obtained copper oxide composite graphite composite was obtained. Is dried in a vacuum (implemented at 85 ° C. to prevent the progress of oxidation during drying) and pulverized. The weight ratio of graphite to copper oxide in the copper oxide-adhered graphite powder thus produced was 79.
6: 20.4. When the powder X-ray wide-angle diffraction measurement of the graphite composite attached with copper oxide was performed, a diffraction line derived from graphite and a diffraction line derived from cupric oxide CuO were observed.

【0036】・負極の作製 上述した方法で作製した酸化銅付着黒鉛複合体にノニオ
ン系の分散剤を添加し、ポリテトラフルオロエチレン
(乾燥後、酸化銅付着黒鉛複合体とポリテトラフルオロ
エチレンとの重量比は87:13である)のディスパー
ジョン液を加えてペースト状にしたものを、銅箔集電体
上両面に塗布した。これを60℃で乾燥、240℃で真
空中もしくは窒素ガス中熱処理し、室温まで冷却後プレ
スし、さらに水分除去のため200℃で減圧乾燥したも
のを負極として用いた。この負極は表面積8cm2、電
極の厚みが74μm(集電体の厚みが50μm)であ
る。
Preparation of Negative Electrode A nonionic dispersant was added to the copper oxide-deposited graphite composite prepared by the above-described method, and polytetrafluoroethylene (after drying, the copper oxide-deposited graphite composite and polytetrafluoroethylene were mixed together). A dispersion liquid having a weight ratio of 87:13) was added to form a paste, which was applied to both surfaces of a copper foil current collector. This was dried at 60 ° C., heat-treated at 240 ° C. in vacuum or in a nitrogen gas, cooled to room temperature, pressed, and further dried at 200 ° C. under reduced pressure to remove moisture, and used as a negative electrode. This negative electrode has a surface area of 8 cm 2 and an electrode thickness of 74 μm (a current collector thickness of 50 μm).

【0037】・負極の評価 銅集電体からリード線で集電を取り、評価用の電極とし
た。評価は3極法を用い、対極および参照極にリチウム
を用いた。電解液は、エチレンカーボネートとジエチル
カーボネートとの1:1混合溶媒に1mol/lの過塩
素酸リチウムを溶解したものである。充放電試験は、
0.1mA/cm2の電流密度で初めに0Vまで充電を
行い、続いて同じ電流で1.5Vまで放電を行った。2
回目以降も同じ電位の範囲、電流密度で充放電を繰り返
し、放電容量にて負極の評価を行った。
Evaluation of Negative Electrode Current was collected from the copper current collector with a lead wire, and used as an electrode for evaluation. The evaluation was performed using a three-electrode method, and lithium was used as a counter electrode and a reference electrode. The electrolytic solution is obtained by dissolving 1 mol / l of lithium perchlorate in a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate. The charge / discharge test is
The battery was initially charged to 0 V at a current density of 0.1 mA / cm 2 , and subsequently discharged to 1.5 V at the same current. 2
The charge and discharge were repeated in the same potential range and current density after the first time, and the negative electrode was evaluated by the discharge capacity.

【0038】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり456mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり420mAhであった。
As a result, the discharge capacity in the second cycle was 456 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 420 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0039】実施例2 黒鉛粒子として変性黒鉛(鱗片状、粒径8μm、d002
は0.337nm、Lcは17nm、Laは12nm、
R値は0.1、比表面積9m2/g)を用い、これに酸
化銅複合化処理を施した。酸化銅複合化処理は次の方法
で行った。
Example 2 Modified graphite (flaky, particle size 8 μm, d 002) was used as graphite particles.
Is 0.337 nm, Lc is 17 nm, La is 12 nm,
An R value of 0.1 and a specific surface area of 9 m 2 / g) were used and subjected to a copper oxide composite treatment. The copper oxide composite treatment was performed by the following method.

【0040】まず、上述の黒鉛粉末120重量部と酢酸
銅水和物(Cu(CH3COO)2・H2O)66.7重
量部(モル比で100:3.33)をビーカーに計り取
り、よく混合する。この中に水酸化リチウム(LiOH
・H2O)140重量部(Cu2+に対してモル比で10
倍)を加えよくかき混ぜ、イオン交換水を2000ml
加え撹拌し、Cu(CH3COO)2・H2OおよびLi
OH・H2Oが溶解後、90℃に保持したホットプレー
ト上にて20時間加熱する。蒸発に伴い適宜イオン交換
水は補給する。その後、加熱を終了し12時間室温(約
20℃)で放置後、ガラスセパレータろ紙(気孔径1μ
m)にて吸引ろ過し、ろ液が中性になるまで水洗し、得
られた酸化銅複合黒鉛複合体の固形物を真空乾燥(乾燥
中の酸化の進行を防ぐため85℃で実施)し、粉砕を行
う。こうして作製した酸化銅付着黒鉛粉末の黒鉛と酸化
銅との重量比は82:18であった。この酸化銅付着黒
鉛複合体の粉末X線広角回折測定を行ったところ、黒鉛
に由来する回折線と酸化第二銅CuOに由来する回折線
が観察された。
First, 120 parts by weight of the above graphite powder and 66.7 parts by weight (molar ratio: 100: 3.33) of copper acetate hydrate (Cu (CH 3 COO) 2 .H 2 O) were measured in a beaker. Take and mix well. In this, lithium hydroxide (LiOH
140 parts by weight of H 2 O (10 parts by mole relative to Cu 2+ )
2 times), stir well, and add 2000 ml of ion-exchanged water.
Add and stir Cu (CH 3 COO) 2 .H 2 O and Li
After OH · H 2 O is dissolved, the mixture is heated on a hot plate kept at 90 ° C. for 20 hours. Replenish ion-exchanged water as needed with evaporation. Thereafter, the heating was terminated, and the mixture was allowed to stand at room temperature (about 20 ° C.) for 12 hours.
m), suction-filtered, washed with water until the filtrate became neutral, and vacuum-dried the obtained solid substance of the copper oxide composite graphite composite (implemented at 85 ° C. to prevent the progress of oxidation during drying). And pulverize. The weight ratio of graphite to copper oxide of the graphite oxide-adhered graphite powder thus produced was 82:18. When the powder X-ray wide-angle diffraction measurement of the graphite composite attached with copper oxide was performed, a diffraction line derived from graphite and a diffraction line derived from cupric oxide CuO were observed.

【0041】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは71μm(集電体の厚みが5
0μm)である。
A negative electrode was prepared by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 71 μm (the current collector had a thickness of 5 μm).
0 μm).

【0042】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0043】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり459mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり433mAhであった。
As a result, the discharge capacity in the second cycle was 459 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 433 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0044】実施例3 黒鉛粒子として変性黒鉛(鱗片状、粒径17μm、d
002は0.337nm、Lcは22nm、Laは15n
m、R値は0.1、比表面積9m2/g)を用い、これ
に酸化銅複合化処理を施した。酸化銅複合化処理は次の
方法で行った。
Example 3 Modified graphite (flaky, particle size 17 μm, d
002 is 0.337 nm, Lc is 22 nm, La is 15 n
m and R values were 0.1, and the specific surface area was 9 m 2 / g), and this was subjected to a copper oxide composite treatment. The copper oxide composite treatment was performed by the following method.

【0045】まず、上述の黒鉛粉末120重量部と硫酸
銅5水和物(CuSO4・5H2O)46.7重量部(モ
ル比で100:1.87)をビーカーに計り取りよく混
合する。この中に水酸化リチウム(LiOH・H2O)
157重量部(Cu2+に対してモル比で20倍)を加え
よくかき混ぜ、イオン交換水を2000ml加え撹拌
し、CuSO4・5H2OおよびLiOH・H2Oが溶解
後、90℃に保持したホットプレート上にて20時間加
熱する。蒸発に伴い適宜イオン交換水は補給する。その
後、加熱を終了し12時間室温(約20℃)で放置後、
ガラスセパレータろ紙(気孔径1μm)にて吸引ろ過
し、ろ液が中性になるまで水洗し、得られた酸化銅複合
黒鉛複合体の固形物を真空乾燥(乾燥中の酸化の進行を
防ぐため85℃で実施)し、粉砕を行う。こうして作製
した酸化銅付着黒鉛粉末の黒鉛と酸化銅との重量比は8
9:11であった。この酸化銅付着黒鉛複合体の粉末X
線広角回折測定を行ったところ、黒鉛に由来する回折線
と酸化第二銅CuOに由来する回折線が観察された。
[0045] First, the above-described graphite powder 120 parts by weight of copper sulfate pentahydrate (CuSO 4 · 5H 2 O) 46.7 parts by weight (molar ratio 100: 1.87) and mixed well weighed into a beaker . Lithium hydroxide (LiOH / H 2 O)
157 Stir well added (20-fold by molar ratio with respect to Cu 2+) parts by weight, was added and stirred 2000ml deionized water, after CuSO 4 · 5H 2 O and LiOH · H 2 O is dissolved, hold the 90 ° C. Heat on a hot plate for 20 hours. Replenish ion-exchanged water as needed with evaporation. Thereafter, the heating is terminated, and after leaving at room temperature (about 20 ° C.) for 12 hours,
Suction-filtered with a glass separator filter paper (pore diameter 1 μm), washed with water until the filtrate is neutral, and the obtained solid of the copper oxide composite graphite composite is vacuum dried (to prevent the progress of oxidation during drying). (Implemented at 85 ° C.) and pulverized. The weight ratio of graphite to copper oxide in the copper oxide-adhered graphite powder thus produced was 8%.
9:11. The powder X of the graphite composite adhering to copper oxide
When the line wide-angle diffraction measurement was performed, a diffraction line derived from graphite and a diffraction line derived from cupric oxide CuO were observed.

【0046】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは89μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 89 μm (the current collector had a thickness of 5 μm).
0 μm).

【0047】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0048】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり440mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり414mAhであった。
As a result, the discharge capacity in the second cycle was 440 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 414 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0049】実施例4 黒鉛粒子として人造黒鉛(鱗片状、粒径35μm、d
002は0.336nm、Lcは22nm、Laは13n
m、R値は0、比表面積4m2/g)を用い、これに酸
化銅複合化処理を施した。酸化銅複合化処理は次の方法
で行った。
Example 4 As graphite particles, artificial graphite (flaky, particle size 35 μm, d
002 is 0.336 nm, Lc is 22 nm, La is 13 n
m and R values were 0, and the specific surface area was 4 m 2 / g), and this was subjected to a copper oxide composite treatment. The copper oxide composite treatment was performed by the following method.

【0050】まず、上述の黒鉛粉末120重量部と硫酸
銅5水和物(CuSO4・5H2O)58.4重量部(モ
ル比で200:4.67)をビーカーに計り取りよく混
合する。この中に水酸化リチウム(LiOH・H2O)
98重量部(Cu2+に対してモル比で10倍)を加えよ
くかき混ぜ、イオン交換水を2000ml加え撹拌し、
CuSO4・5H2OおよびLiOH・H2Oが溶解後、
90℃に保持したホットプレート上にて20時間加熱す
る。蒸発に伴い適宜イオン交換水は補給する。その後、
加熱を終了し12時間室温(約20℃)で放置後、ガラ
スセパレータろ紙(気孔径1μm)にて吸引ろ過し、ろ
液が中性になるまで水洗し、得られた酸化銅複合黒鉛複
合体の固形物を真空乾燥(乾燥中の酸化の進行を防ぐた
め85℃で実施)し、粉砕を行う。こうして作製した酸
化銅付着黒鉛粉末の黒鉛と酸化銅との重量比は86.
6:13.4であった。この酸化銅付着黒鉛複合体の粉
末X線広角回折測定を行ったところ、黒鉛に由来する回
折線と酸化第二銅CuOに由来する回折線が観察され
た。
Firstly, the above-described graphite powder 120 parts by weight of copper sulfate pentahydrate (CuSO 4 · 5H 2 O) 58.4 parts by weight (molar ratio 200: 4.67) and mixed well weighed into a beaker . Lithium hydroxide (LiOH / H 2 O)
Add 98 parts by weight (10 times in molar ratio to Cu 2+ ), mix well, add 2,000 ml of ion-exchanged water and stir,
After CuSO 4 · 5H 2 O and LiOH · H 2 O is dissolved,
Heat on a hot plate maintained at 90 ° C. for 20 hours. Replenish ion-exchanged water as needed with evaporation. afterwards,
After heating was completed and left at room temperature (about 20 ° C.) for 12 hours, the solution was suction-filtered with a glass separator filter paper (pore size: 1 μm), washed with water until the filtrate became neutral, and the obtained copper oxide composite graphite composite was obtained. Is dried in a vacuum (implemented at 85 ° C. to prevent the progress of oxidation during drying) and pulverized. The weight ratio of graphite to copper oxide in the graphite oxide-adhered graphite powder thus prepared was 86.
6: 13.4. When the powder X-ray wide-angle diffraction measurement of the graphite composite attached with copper oxide was performed, a diffraction line derived from graphite and a diffraction line derived from cupric oxide CuO were observed.

【0051】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは130μm(集電体の厚みが
50μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 130 μm (the thickness of the current collector was 50 μm).

【0052】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0053】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり400mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり385mAhであった。
As a result, the discharge capacity in the second cycle was 400 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 385 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0054】実施例5 黒鉛粒子として人造黒鉛(球状、粒径6μm、d002
0.339nm、Lcは25nm、Laは13nm、R
値は0.4、比表面積8m2/g)を用い、これに酸化
銅複合化処理を施した。酸化銅複合化処理は次の方法で
行った。
Example 5 As graphite particles, artificial graphite (spherical, particle diameter 6 μm, d 002 0.339 nm, Lc 25 nm, La 13 nm, R
A value of 0.4 and a specific surface area of 8 m 2 / g) were used and subjected to a copper oxide composite treatment. The copper oxide composite treatment was performed by the following method.

【0055】まず、上述の黒鉛粉末120gと硫酸銅5
水和物(CuSO4・5H2O)19.7g(モル比で1
00:0.79)をビーカーに計り取りよく混合する。
この中に特級28%アンモニア水(NH4OH)600
ml(Cu2+に対してアンモニアのモル比で約10倍)
を加えよくかき混ぜ、イオン交換水を1400ml加え
撹拌し、CuSO4・5H2Oが溶解後、70℃に保持し
たホットプレート上にて10時間加熱する。蒸発に伴い
適宜イオン交換水は補給する。その後、加熱を終了し1
2時間室温(約20℃)で放置後、ガラスセパレータろ
紙(気孔径1μm)にて吸引ろ過し、ろ液が中性になる
まで水洗し、得られた酸化銅複合黒鉛複合体の固形物を
真空乾燥(乾燥中の酸化の進行を防ぐため85℃で実
施)し、粉砕を行う。こうして作製した酸化銅付着黒鉛
粉末の黒鉛と酸化銅との重量比は95:5であった。こ
の酸化銅付着黒鉛複合体の粉末X線広角回折測定を行っ
たところ、黒鉛に由来する回折線と酸化第二銅CuOに
由来する回折線が観察された。
First, 120 g of the above-mentioned graphite powder and copper sulfate 5
19.7 g of hydrate (CuSO 4 .5H 2 O)
00: 0.79) into a beaker and mix well.
Among them, special grade 28% ammonia water (NH 4 OH) 600
ml (about 10 times the molar ratio of ammonia to Cu 2+ )
Is added and stirred well, and 1400 ml of ion-exchanged water is added and stirred. After CuSO 4 .5H 2 O is dissolved, the mixture is heated on a hot plate kept at 70 ° C. for 10 hours. Replenish ion-exchanged water as needed with evaporation. After that, heating is finished and 1
After leaving at room temperature (about 20 ° C.) for 2 hours, the mixture was suction-filtered with a glass separator filter paper (pore size: 1 μm), washed with water until the filtrate became neutral, and the obtained solid of the copper oxide composite graphite composite was removed. Vacuum drying (implemented at 85 ° C. to prevent the progress of oxidation during drying) and pulverization. The weight ratio of graphite to copper oxide in the copper oxide-adhered graphite powder thus produced was 95: 5. When the powder X-ray wide-angle diffraction measurement of the graphite composite attached with copper oxide was performed, a diffraction line derived from graphite and a diffraction line derived from cupric oxide CuO were observed.

【0056】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは70μm(集電体の厚みが5
0μm)である。
A negative electrode was prepared by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 70 μm (the current collector had a thickness of 5 μm).
0 μm).

【0057】この負極を、電解液にエチレンカーボネー
トとプロピレンンカーボネート、ジエチルカーボネート
の2:1:2混合溶媒に1mol/lの過塩素酸リチウ
ムを溶解したものを用いた以外、実施例1に記載された
方法で評価した。
This negative electrode was described in Example 1, except that 1 mol / l of lithium perchlorate dissolved in a 2: 1: 2 mixed solvent of ethylene carbonate, propylene carbonate, and diethyl carbonate was used as the electrolyte. Was evaluated in the manner described.

【0058】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり421mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり395mAhであった。
As a result, the discharge capacity in the second cycle was 421 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 395 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0059】実施例6 黒鉛粒子として実施例5と同じ人造黒鉛(球状、粒径6
μm、d002は0.339nm、Lcは25nm、La
は13nm、R値は0.4、比表面積8m2/g)を用
い、これに酸化銅複合化処理を施した。酸化銅複合化処
理は次の方法で行った。
Example 6 The same artificial graphite (spherical, particle size 6) as in Example 5 was used as graphite particles.
μm, d 002 is 0.339 nm, Lc is 25 nm, La
Was 13 nm, the R value was 0.4, and the specific surface area was 8 m 2 / g). The copper oxide composite treatment was performed by the following method.

【0060】まず、上述の黒鉛粉末120重量部と硫酸
銅5水和物(CuSO4・5H2O)19.7重量部(モ
ル比で100:1)をビーカーに計り取りよく混合す
る。この中に尿素(NH2CONH2)95重量部(Cu
2+に対してモル比で約10倍)を加えよくかき混ぜ、イ
オン交換水を2000ml加え撹拌し、CuSO4・5
2OおよびNH2CONH2が溶解後、90℃に保持し
たホットプレート上にて20時間加熱する。蒸発に伴い
適宜イオン交換水は補給する。その後、加熱を終了し1
2時間室温(約20℃)で放置後、ガラスセパレータろ
紙(気孔径1μm)にて吸引ろ過し、ろ液が中性になる
まで水洗し、得られた酸化銅複合黒鉛複合体の固形物を
真空乾燥(乾燥中の酸化の進行を防ぐため85℃で実
施)し、粉砕を行う。こうして作製した酸化銅付着黒鉛
粉末の黒鉛と酸化銅との重量比は95:5であった。こ
の酸化銅付着黒鉛複合体の粉末X線広角回折測定を行っ
たところ、黒鉛に由来する回折線と酸化第二銅CuOに
由来する回折線が観察された。
[0060] First, graphite powder 120 parts by weight of copper sulfate pentahydrate (CuSO 4 · 5H 2 O) of the above 19.7 parts by weight (molar ratio 100: 1) and mixed well weighed into a beaker. 95 parts by weight of urea (NH 2 CONH 2 ) (Cu
2+ stirring well was added approximately 10-fold) in a molar ratio with respect to, and stirred added 2000ml of deionized water, CuSO 4 · 5
After H 2 O and NH 2 CONH 2 are dissolved, the mixture is heated on a hot plate maintained at 90 ° C. for 20 hours. Replenish ion-exchanged water as needed with evaporation. After that, heating is finished and 1
After leaving at room temperature (about 20 ° C.) for 2 hours, the mixture was suction-filtered with a glass separator filter paper (pore size: 1 μm), washed with water until the filtrate became neutral, and the obtained solid of the copper oxide composite graphite composite was removed. Vacuum drying (implemented at 85 ° C. to prevent the progress of oxidation during drying) and pulverization. The weight ratio of graphite to copper oxide in the copper oxide-adhered graphite powder thus produced was 95: 5. When the powder X-ray wide-angle diffraction measurement of the graphite composite attached with copper oxide was performed, a diffraction line derived from graphite and a diffraction line derived from cupric oxide CuO were observed.

【0061】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは72μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 72 μm (the current collector had a thickness of 5 μm).
0 μm).

【0062】この負極を、電解液にエチレンカーボネー
トとプロピレンンカーボネート、ジエチルカーボネート
との2:1:2混合溶媒に1mol/lの過塩素酸リチ
ウムを溶解したものを用いた以外、実施例1に記載され
た方法で評価した。
Example 1 was repeated except that this negative electrode was prepared by dissolving 1 mol / l lithium perchlorate in a 2: 1: 2 mixed solvent of ethylene carbonate, propylene carbonate and diethyl carbonate in the electrolyte. Evaluation was performed by the method described.

【0063】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり424mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり396mAhであった。
As a result, the discharge capacity in the second cycle was 424 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 396 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0064】比較例1 黒鉛粒子として実施例1で用いたマダガスカル産の天然
黒鉛を用い、これに無電解銅メッキを施した。無電解銅
メッキは次の方法で行った。
Comparative Example 1 Natural graphite produced in Madagascar used in Example 1 was used as graphite particles, and electroless copper plating was applied to the natural graphite. Electroless copper plating was performed by the following method.

【0065】まず、黒鉛粉末をエチルアルコールに浸漬
し、乾燥後感応化処理液(30g/lのSnCl2・2
2Oと20ml/lの濃塩酸の混合液)に浸漬し、さ
らに活性化処理液(0.4g/lのPbCl2・2H2
と3ml/lの濃塩酸の混合液)に浸漬することにより
前処理を行った。次に、前処理を終えた黒鉛粉末を10
g/lのCuSO4・5H2O、50g/lの酒石酸ナト
リウムカリウム、10g/lの水酸化ナトリウム、10
ml/lの37%ホルマリンを溶解させた溶液を水酸化
ナトリウムでpH12.0に調整した無電解銅メッキ浴
中に加え、溶液をスターラーで撹拌しながら室温にて黒
鉛粉末に銅メッキを行った。これを60℃で乾燥した。
できた銅被覆黒鉛粉末の黒鉛と銅との重量比は83:1
7であった。この銅被覆黒鉛粉末を空気中250℃にて
5時間酸化することによって酸化銅が付着した黒鉛複合
体を得た。こうして得られた酸化銅付着黒鉛複合体の粉
末X線広角回折測定を行ったところ、黒鉛に由来する回
折線と酸化第二銅に由来する回折線が観察された。さら
に、この酸化銅付着黒鉛複合体の黒鉛と酸化銅との重量
比は79.6:20.4であった。
First, the graphite powder was immersed in ethyl alcohol, dried and sensitized (30 g / l SnCl 2 .2).
H 2 O and a mixed solution of 20 ml / l concentrated hydrochloric acid), and further activated (0.4 g / l PbCl 2 .2H 2 O)
And 3 ml / l of concentrated hydrochloric acid) to carry out pretreatment. Next, 10 g of the pretreated graphite powder was
g / l CuSO 4 .5H 2 O, 50 g / l sodium potassium tartrate, 10 g / l sodium hydroxide, 10 g / l
A solution in which 37% formalin (ml / l) was dissolved was added to an electroless copper plating bath adjusted to pH 12.0 with sodium hydroxide, and the graphite powder was copper-plated at room temperature while stirring the solution with a stirrer. . This was dried at 60 ° C.
The weight ratio of graphite to copper in the resulting copper-coated graphite powder was 83: 1.
It was 7. This copper-coated graphite powder was oxidized in air at 250 ° C. for 5 hours to obtain a graphite composite to which copper oxide had adhered. When a powder X-ray wide-angle diffraction measurement of the thus-obtained graphite composite attached with copper oxide was performed, diffraction lines derived from graphite and diffraction lines derived from cupric oxide were observed. Further, the weight ratio of graphite to copper oxide in the copper oxide-adhered graphite composite was 79.6: 20.4.

【0066】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは75μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The surface area of the prepared negative electrode was 8 cm 2 , and the thickness was 75 μm (the thickness of the current collector was 5 μm).
0 μm).

【0067】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0068】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり458mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり421mAhであった。
As a result, the discharge capacity in the second cycle was 458 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 421 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0069】比較例2 黒鉛粒子として実施例2で用いた変性黒鉛を使用し、
0.06mol/lのCuSO4・5H2O、0.3mo
l/lのEDTA、0.4mol/lのホルムアルデヒ
ド、170mg/lの7−ヨード−8−ヒドロキシキノ
リン−5−スルホン酸とを溶解させた溶液を水酸化ナト
リウムでpH12.8に調整した無電解銅メッキ浴で7
5℃でメッキを行った以外は実施例1に記載された方法
で実施し、できた銅被覆黒鉛粉末の黒鉛と銅との重量比
は85:15であった。この銅被覆黒鉛粉末を空気中4
00℃にて30分間酸化処理し、酸化銅付着黒鉛複合体
を作製した。こうして得られた酸化銅付着黒鉛複合体の
粉末X線広角回折測定を行ったところ、黒鉛に由来する
回折線および酸化第二銅に由来する回折線が観察され、
黒鉛および酸化第二銅であることがわかった。さらに、
この酸化銅付着黒鉛複合体の黒鉛と酸化銅との重量比は
82:18であった。
Comparative Example 2 The modified graphite used in Example 2 was used as graphite particles.
CuSO 4 · 5H 2 O of 0.06mol / l, 0.3mo
1 / l EDTA, 0.4 mol / l formaldehyde, 170 mg / l solution of 7-iodo-8-hydroxyquinoline-5-sulfonic acid dissolved in sodium hydroxide adjusted to pH 12.8 7 in copper plating bath
Except that plating was performed at 5 ° C., the procedure was performed as described in Example 1, and the weight ratio of graphite to copper of the resulting copper-coated graphite powder was 85:15. This copper-coated graphite powder is placed in air 4
Oxidation treatment was performed at 00 ° C. for 30 minutes to produce a graphite composite with copper oxide. When the powder X-ray wide-angle diffraction measurement of the thus obtained copper oxide-adhered graphite composite was performed, diffraction lines derived from graphite and diffraction lines derived from cupric oxide were observed,
It was found to be graphite and cupric oxide. further,
The weight ratio of graphite to copper oxide in the graphite composite with copper oxide was 82:18.

【0070】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは71μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The surface area of the produced negative electrode was 8 cm 2 , and the thickness was 71 μm (the thickness of the current collector was 5 μm).
0 μm).

【0071】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0072】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり462mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり435mAhであった。
As a result, the discharge capacity in the second cycle was 462 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 435 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0073】比較例3 黒鉛粒子として実施例3で用いた変性黒鉛を使用し、1
5g/lのCu(NO32・3H2O、10g/lの炭
酸水素ナトリウム、30g/lの酒石酸ナトリウムカリ
ウム、20g/lの水酸化ナトリウム、100ml/l
の37%ホルマリンとを溶解させた溶液を水酸化ナトリ
ウムでpH11.5に調整した無電解銅メッキ浴を用い
メッキを行った以外は実施例1に記載された方法で実施
し、できた銅被覆黒鉛粉末の黒鉛と銅との重量比は9
1:9であった。この銅被覆黒鉛粉末を酸素中200℃
にて24時間酸化処理し、酸化銅付着黒鉛複合体を作製
した。こうして得られた酸化銅付着黒鉛複合体の粉末X
線広角回折測定を行ったところ、黒鉛に由来する回折線
および酸化第二銅に由来する回折線が観察され、黒鉛お
よび酸化第二銅であることがわかった。さらに、この酸
化銅付着黒鉛複合体の黒鉛と酸化銅との重量比は89:
11であった。
Comparative Example 3 The modified graphite used in Example 3 was used as graphite particles.
5 g / l Cu (NO 3 ) 2 .3H 2 O, 10 g / l sodium bicarbonate, 30 g / l sodium potassium tartrate, 20 g / l sodium hydroxide, 100 ml / l
Was prepared in the same manner as in Example 1 except that plating was performed using an electroless copper plating bath adjusted to pH 11.5 with sodium hydroxide by dissolving a solution in which 37% formalin was dissolved. The weight ratio of graphite to copper in the graphite powder is 9
1: 9. This copper-coated graphite powder is placed in oxygen at 200 ° C.
For 24 hours to produce a copper oxide-adhered graphite composite. The powder X of the copper oxide-adhered graphite composite thus obtained
When the line wide angle diffraction measurement was performed, diffraction lines derived from graphite and diffraction lines derived from cupric oxide were observed, and it was found that the particles were graphite and cupric oxide. Further, the weight ratio of graphite to copper oxide in the graphite composite with copper oxide attached was 89:
It was 11.

【0074】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは88μm(集電体の厚みが5
0μm)である。
A negative electrode was prepared by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 88 μm (the current collector had a thickness of 5 μm).
0 μm).

【0075】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0076】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり439mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり415mAhであった。
As a result, the discharge capacity in the second cycle was 439 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 415 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0077】比較例4 黒鉛粒子として実施例4で用いた人造黒鉛を使用し、6
0g/lのCu・SO4・5H2O、15g/lのNiS
4・7H2O、45g/lの硫酸ヒドラジンとを溶解さ
せた溶液と、180g/lの酒石酸ナトリウムカリウ
ム、45g/lの水酸化ナトリウム、15g/lの炭酸
ナトリウムとを溶解させた溶液を使用直前に混合した無
電解銅メッキ浴を用いメッキを行った以外は実施例1に
記載された方法で実施し、できた銅被覆黒鉛粉末の黒鉛
と銅との重量比は89:11であった。この銅被覆黒鉛
粉末を空気中350℃にて1時間酸化処理し、酸化銅付
着黒鉛複合体を作製した。こうして得られた酸化銅付着
黒鉛複合体の粉末X線広角回折測定を行ったところ、黒
鉛に由来する回折線および酸化第二銅に由来する回折線
が観察され、黒鉛および酸化第二銅であることがわかっ
た。さらに、この酸化銅付着黒鉛複合体の黒鉛と酸化銅
との重量比は86.6:13.4であった。
Comparative Example 4 The artificial graphite used in Example 4 was used as graphite particles.
Cu · SO 4 · 5H 2 O of 0 g / l, NiS of 15 g / l
O 4 · 7H 2 O, and the solution prepared by dissolving the hydrazine sulfate in 45 g / l, sodium potassium tartrate 180 g / l, sodium hydroxide 45 g / l, a 15 g / l solution obtained by dissolving sodium carbonate Except that plating was performed using an electroless copper plating bath mixed immediately before use, the method was carried out in the same manner as described in Example 1, and the weight ratio of graphite to copper in the resulting copper-coated graphite powder was 89:11. Was. This copper-coated graphite powder was oxidized in air at 350 ° C. for 1 hour to prepare a copper oxide-adhered graphite composite. When a powder X-ray wide-angle diffraction measurement of the thus obtained copper oxide-adhered graphite composite was performed, diffraction lines derived from graphite and diffraction lines derived from cupric oxide were observed, which were graphite and cupric oxide. I understand. Further, the weight ratio of graphite to copper oxide in the graphite composite with copper oxide was 86.6: 13.4.

【0078】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは132μm(集電体の厚みが
50μm)である。
A negative electrode was manufactured by the method described in Example 1 using the copper oxide-adhered graphite composite. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 132 μm (the thickness of the current collector was 50 μm).

【0079】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0080】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり402mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり388mAhであった。
As a result, the discharge capacity in the second cycle was 402 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 388 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0081】比較例5 黒鉛粒子として実施例5で用いた人造黒鉛を使用し、前
処理液としてMAC−100(奥野製薬工業株式会社
製)およびMAC−200(奥野製薬工業株式会社製)
を用い、MAC−500AとMAC−500Bの2液タ
イプの無電解銅メッキ浴(奥野製薬工業株式会社製)を
用いた以外は比較例1に記載された方法でメッキを施
し、できた銅被覆黒鉛粉末の黒鉛と銅との重量比は9
6:4であった。この銅被覆黒鉛粉末を溶存酸素を含ん
だ水中70℃にて15時間酸化処理し、酸化銅付着黒鉛
複合体を作製した。こうして得られた酸化銅付着黒鉛複
合体の粉末X線広角回折測定を行ったところ、黒鉛に由
来する回折線および酸化第一銅、酸化第二銅に由来する
回折線が観察され、黒鉛および酸化第一銅、酸化第二銅
の混合物であることがわかった。さらに、この酸化銅付
着黒鉛複合体の黒鉛と酸化銅との重量比は95.2:
4.8であった。
Comparative Example 5 The artificial graphite used in Example 5 was used as graphite particles, and MAC-100 (manufactured by Okuno Pharmaceutical Co., Ltd.) and MAC-200 (manufactured by Okuno Pharmaceutical Co., Ltd.) were used as pretreatment liquids.
, And plating was performed by the method described in Comparative Example 1 except that a two-component type electroless copper plating bath (manufactured by Okuno Pharmaceutical Co., Ltd.) of MAC-500A and MAC-500B was used, and the resulting copper coating was formed. The weight ratio of graphite to copper in the graphite powder is 9
6: 4. This copper-coated graphite powder was oxidized at 70 ° C. in water containing dissolved oxygen for 15 hours to prepare a copper oxide-adhered graphite composite. When a powder X-ray wide-angle diffraction measurement of the thus obtained copper oxide-adhered graphite composite was performed, diffraction lines derived from graphite and diffraction lines derived from cuprous oxide and cupric oxide were observed. It turned out to be a mixture of cuprous oxide and cupric oxide. Further, the weight ratio of graphite to copper oxide in the graphite composite with copper oxide was 95.2:
4.8.

【0082】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは71μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The surface area of the produced negative electrode was 8 cm 2 , and the thickness was 71 μm (the thickness of the current collector was 5 μm).
0 μm).

【0083】この負極を、電解液にエチレンカーボネー
トとプロピレンカーボネート、ジエチルカーボネートと
の2:1:2混合溶媒に1mol/lの過塩素酸リチウ
ムを溶解したものを用いた以外、実施例1に記載された
方法で評価した。
This negative electrode was described in Example 1 except that 1 mol / l of lithium perchlorate dissolved in a 2: 1: 2 mixed solvent of ethylene carbonate, propylene carbonate and diethyl carbonate was used as the electrolyte. Was evaluated in the manner described.

【0084】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり425mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり398mAhであった。
As a result, the discharge capacity in the second cycle was 425 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 398 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0085】実施例1〜6と比較例1〜5の結果を表1
に示す。これらから酸化銅付着黒鉛複合体を含む負極を
用いた場合、メッキによる場合と遜色ない高容量の放電
容量が得られることが判明した。また、工程の簡便さを
比較すると、図1に示すごとく本発明では実質2工程の
省略が可能となり、作業性が向上することがわかる。
Table 1 shows the results of Examples 1 to 6 and Comparative Examples 1 to 5.
Shown in From these results, it was found that when a negative electrode containing a graphite composite with copper oxide was used, a high-capacity discharge capacity comparable to that obtained by plating was obtained. Also, comparing the simplicity of the steps, it can be seen that, as shown in FIG. 1, substantially two steps can be omitted in the present invention, and the workability is improved.

【0086】[0086]

【表1】 [Table 1]

【0087】比較例6 実施例1で用いたマダガスカル産の天然黒鉛のみを用い
て実施例1に記載された方法で負極を作製した。作製し
た負極の表面積は8cm2、厚みは85μm(集電体の
厚みが50μm)である。
Comparative Example 6 A negative electrode was produced in the same manner as in Example 1 except that only the natural graphite produced in Madagascar used in Example 1 was used. The surface area of the produced negative electrode was 8 cm 2 , and the thickness was 85 μm (the thickness of the current collector was 50 μm).

【0088】この負極を30mA/gの電流密度にした
以外は実施例1に記載された方法で評価した。
The negative electrode was evaluated by the method described in Example 1 except that the current density was 30 mA / g.

【0089】その結果、2サイクル目の放電容量は電極
の単位体積(集電体の体積は除く)あたり358mA
h、10サイクル目の放電容量は電極の単位体積(集電
体の体積は除く)あたり344mAhであった。
As a result, the discharge capacity in the second cycle was 358 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 344 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0090】比較例7 主要負極活物質として実施例1で用いたマダガスカル産
の天然黒鉛を用い、これと市販の試薬である酸化第二銅
(粒径27μm)とを重量比80:20で乳鉢にて混合
し、ノニオン系の分散剤を添加し、ポリテトラフルオロ
エチレン(乾燥後、黒鉛と酸化第二銅と合わせたもの
と、ポリテトラフルオロエチレンとの重量比は87:1
3である)のディスパージョン液を加えてペースト状に
したものを銅箔集電体上両面に塗布した。これを60℃
で乾燥、240℃で熱処理後プレスし、さらに水分除去
のために200℃で減圧乾燥したものを負極として用い
た。この負極は表面積8cm2、電極の厚みが138μ
m(集電体の厚みが50μm)である。
Comparative Example 7 The natural graphite produced in Madagascar used in Example 1 was used as the main negative electrode active material, and this was mixed with a commercially available reagent cupric oxide (particle diameter 27 μm) in a mortar at a weight ratio of 80:20. , A nonionic dispersant is added, and the weight ratio of polytetrafluoroethylene (a mixture of graphite and cupric oxide after drying and polytetrafluoroethylene is 87: 1)
(3) was added into a paste by adding the dispersion liquid to the copper foil current collector. 60 ℃
, Heat-treated at 240 ° C., pressed, and further dried at 200 ° C. under reduced pressure to remove moisture, and used as a negative electrode. This negative electrode has a surface area of 8 cm 2 and an electrode thickness of 138 μm.
m (the thickness of the current collector is 50 μm).

【0091】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0092】その結果、2サイクル目の放電容量は電極
の単位体積(集電体の体積は除く)あたり371mA
h、10サイクル目の放電容量は電極の単位体積(集電
体の体積は除く)あたり335mAhであった。
As a result, the discharge capacity in the second cycle was 371 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 335 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0093】比較例8 炭素粒子として1000℃で炭化したメソカーボンマイ
クロビーンズ(球状、粒径6μm、d002は0.349
nm、Lcは1.3nm、Laは計算不可能、R値は
1.3、比表面積1m2/g)を用い、前処理液として
MAC−100(奥野製薬工業株式会社製)およびMA
C−200(奥野製薬工業株式会社製)を用い、MAC
−500AとMAC−500Bの2液タイプの無電解銅
メッキ浴(奥野製薬工業株式会社製)を用い、メッキ浴
を行った以外は実施例1に記載された方法で実施し、で
きた銅被覆炭素粉末の炭素と銅との重量比は81:19
であった。この銅被覆炭素粉末をさらに実施例1に記載
された方法で酸化し、酸化銅付着炭素複合体を作製し
た。こうして得られた酸化銅付着炭素複合体の粉末X線
広角回折測定を行ったところ、炭素に由来する回折線お
よび酸化第二銅に由来する回折線が観察され、炭素およ
び酸化第二銅であることがわかった。さらに、この酸化
銅付着炭素複合体の炭素と酸化銅との重量比は77.
3:22.7であった。
Comparative Example 8 Mesocarbon microbeans carbonized at 1000 ° C. as carbon particles (spherical, particle diameter 6 μm, d 002 0.349)
nm and Lc are 1.3 nm, La cannot be calculated, R value is 1.3, specific surface area is 1 m 2 / g), and MAC-100 (manufactured by Okuno Pharmaceutical Co., Ltd.) and MA are used as pretreatment liquids.
MAC using C-200 (manufactured by Okuno Pharmaceutical Co., Ltd.)
Using a two-liquid type electroless copper plating bath (manufactured by Okuno Pharmaceutical Co., Ltd.) of -500A and MAC-500B, the copper coating was performed by the method described in Example 1 except that the plating bath was performed. The weight ratio of carbon to copper in the carbon powder is 81:19.
Met. This copper-coated carbon powder was further oxidized by the method described in Example 1 to produce a copper oxide-adhered carbon composite. When a powder X-ray wide-angle diffraction measurement of the thus obtained copper oxide-adhered carbon composite was performed, diffraction lines derived from carbon and diffraction lines derived from cupric oxide were observed, which were carbon and cupric oxide. I understand. Further, the weight ratio of carbon to copper oxide in the copper oxide-adhered carbon composite was 77.
3: 22.7.

【0094】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは68μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 68 μm (the current collector had a thickness of 5 μm).
0 μm).

【0095】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0096】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり176mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり159mAhであった。
As a result, the discharge capacity in the second cycle was 176 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 159 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0097】実施例1〜6と比較例6〜8の結果を表1
に示す。これらから実施例に示した方法で作製した酸化
銅付着黒鉛複合体が黒鉛の酸化銅との複合体からなる負
極である場合には、比較例に示した方法で作製した酸化
銅付着複合体電極と何ら遜色の無い高容量の放電容量が
得られることが判明した。また、黒鉛との複合体でない
場合(比較例8)には容量は低いことがわかった。
Table 1 shows the results of Examples 1 to 6 and Comparative Examples 6 to 8.
Shown in From these, when the copper oxide-adhered graphite composite produced by the method shown in the examples is a negative electrode composed of a composite of graphite and copper oxide, the copper oxide-adhered composite electrode produced by the method shown in the comparative example It was found that a high-capacity discharge capacity comparable to that obtained was obtained. When the composite was not a composite with graphite (Comparative Example 8), the capacity was found to be low.

【0098】実施例7 黒鉛粒子として人造黒鉛(鱗片状、粒径77μm、d
002は0.337nm、Lcは26nm、Laは14n
m、R値は0.1、比表面積2m2/g)を用い、実施
例1と同様の方法で同様の試薬を用い、配合比は変更
し、酸化銅付着黒鉛複合体を作製した。この時できた酸
化銅付着黒鉛複合体粉末の黒鉛と酸化銅との重量比は8
4.3:15.7であった。また、作製した酸化銅付着
黒鉛複合体の粉末X線広角回折測定を行ったところ、黒
鉛および酸化第二銅であることがわかった。
Example 7 As graphite particles, artificial graphite (flaky, particle size 77 μm, d
002 is 0.337 nm, Lc is 26 nm, La is 14 n
The m and R values were 0.1, the specific surface area was 2 m 2 / g), the same reagents were used in the same manner as in Example 1, the mixing ratio was changed, and a graphite composite with copper oxide was prepared. The weight ratio of graphite to copper oxide in the resulting graphite composite powder with copper oxide was 8%.
4.3: 15.7. Further, when the powdered X-ray wide-angle diffraction measurement of the produced graphite composite attached with copper oxide was performed, it was found to be graphite and cupric oxide.

【0099】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは225μm(集電体の厚みが
50μm)である。
A negative electrode was prepared by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 225 μm (the thickness of the current collector was 50 μm).

【0100】この負極を0.05mA/cm2の電流密
度にした以外は実施例1に記載された方法で評価した。
Evaluation was made by the method described in Example 1 except that the current density of this negative electrode was 0.05 mA / cm 2 .

【0101】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり370mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり349mAhであった。
As a result, the discharge capacity in the second cycle was 370 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 349 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0102】比較例9 黒鉛粒子として人造黒鉛(鱗片状、粒径117μm、d
002は0.337nm、Lcは25nm、Laは17n
m、R値は0.1、比表面積1m2/g)を用い、比較
例5に記載された方法でメッキを実施し、できた銅被覆
黒鉛粉末の黒鉛と銅との重量比は88:12であった。
Comparative Example 9 As graphite particles, artificial graphite (flaky, particle size 117 μm, d
002 is 0.337 nm, Lc is 25 nm, La is 17 n
The plating was performed by the method described in Comparative Example 5 using m and R values of 0.1 and a specific surface area of 1 m 2 / g), and the weight ratio of graphite to copper of the resulting copper-coated graphite powder was 88: It was 12.

【0103】この銅被覆黒鉛粉末を比較例1に記載され
た方法で酸化し、酸化銅付着黒鉛複合体を作製した。こ
うして得られた酸化銅付着黒鉛複合体の粉末X線広角回
折測定を行ったところ、黒鉛に由来する回折線および酸
化第二銅に由来する回折線が観察され、黒鉛および酸化
第二銅であることがわかった。さらに、この酸化銅付着
黒鉛複合体の黒鉛と酸化銅との重量比は、85.4:1
4.6であった。
This copper-coated graphite powder was oxidized by the method described in Comparative Example 1 to produce a copper oxide-adhered graphite composite. When a powder X-ray wide-angle diffraction measurement of the thus obtained copper oxide-adhered graphite composite was performed, diffraction lines derived from graphite and diffraction lines derived from cupric oxide were observed, which were graphite and cupric oxide. I understand. Further, the weight ratio of graphite to copper oxide in the copper oxide-adhered graphite composite was 85.4: 1.
4.6.

【0104】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積が8cm2、厚みは305μm(集電体の厚みが
50μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The surface area of the produced negative electrode was 8 cm 2 , and the thickness was 305 μm (the thickness of the current collector was 50 μm).

【0105】この負極を0.05mA/cm2の電流密
度にした以外は実施例1に記載された方法で評価した。
Evaluation was made by the method described in Example 1 except that the current density of this negative electrode was 0.05 mA / cm 2 .

【0106】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり361mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり337mAhであった。
As a result, the discharge capacity in the second cycle was 361 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 337 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0107】実施例1〜7と比較例9の結果を表1に示
す。これから黒鉛の粒径は80μm以下のものがよいと
判明した。
Table 1 shows the results of Examples 1 to 7 and Comparative Example 9. This proved that graphite having a particle size of 80 μm or less was good.

【0108】実施例8 黒鉛粒子としてマダガスカル産の天然黒鉛を用いた以外
は実施例4に記載された方法かつ配合比で酸化銅付着黒
鉛複合体を作製した。このときできた酸化銅付着黒鉛複
合体粉末の黒鉛と酸化銅との重量比は86.6:13:
4であった。また、作製した酸化銅付着黒鉛複合体の粉
末X線広角回折測定を行ったところ、黒鉛および酸化第
二銅であることがわかった。
Example 8 A graphite composite with copper oxide was prepared in the same manner as in Example 4 except that natural graphite produced in Madagascar was used as the graphite particles. The weight ratio of graphite to copper oxide in the resulting copper oxide-adhered graphite composite powder was 86.6: 13:
It was 4. Further, when the powdered X-ray wide-angle diffraction measurement of the produced graphite composite attached with copper oxide was performed, it was found to be graphite and cupric oxide.

【0109】上述した方法で作製した酸化銅付着黒鉛複
合体にノニオン系の分散剤を添加し、ポリテトラフルオ
ロエチレン(乾燥後、酸化銅付着黒鉛複合体とポリテト
ラフルオロエチレンとの重量比は77:23である)の
ディスパージョン液を加えてペースト状にしたものを、
銅箔集電体上両面に塗布した。これを60℃で乾燥、2
40℃で真空中もしくは窒素ガス中熱処理し、室温まで
冷却後プレスし、さらに水分除去のため200℃で減圧
乾燥したものを負極として用いた。この負極は表面積8
cm2、電極の厚みが83μm(集電体の厚みが50μ
m)である。
A nonionic dispersant was added to the copper oxide-deposited graphite composite produced by the above-described method, and polytetrafluoroethylene (after drying, the weight ratio of the copper oxide-deposited graphite composite to polytetrafluoroethylene was 77%). : 23) to obtain a paste.
It was applied on both sides of the copper foil current collector. This is dried at 60 ° C., 2
Heat treatment was performed at 40 ° C. in a vacuum or in nitrogen gas, cooled to room temperature, pressed, and dried at 200 ° C. under reduced pressure to remove moisture. This negative electrode has a surface area of 8
cm 2 , the thickness of the electrode is 83 μm (the thickness of the current collector is 50 μm).
m).

【0110】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0111】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり386mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり358mAhであった。
As a result, the discharge capacity in the second cycle was 386 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 358 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0112】比較例10 酸化銅付着黒鉛複合体は実施例8に記載された材料を用
いた。
Comparative Example 10 The material described in Example 8 was used for the copper oxide-adhered graphite composite.

【0113】乾燥後、酸化銅付着黒鉛複合体とポリテト
ラフルオロエチレンとの重量比を63:37にした以外
は実施例1に記載された方法で負極を作製した。作製し
た負極の表面積は8cm2、電極の厚みは88μm(集
電体の厚みが50μm)である。
After drying, a negative electrode was prepared in the same manner as in Example 1 except that the weight ratio of the graphite composite with copper oxide and polytetrafluoroethylene was changed to 63:37. The surface area of the produced negative electrode was 8 cm 2 , and the thickness of the electrode was 88 μm (the thickness of the current collector was 50 μm).

【0114】この負極を実施例1に記載された方法で評
価した。
This negative electrode was evaluated by the method described in Example 1.

【0115】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり362mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり344mAhであった。
As a result, the discharge capacity in the second cycle was 362 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 344 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0116】実施例9 酸化銅付着黒鉛複合体は実施例8に記載された材料を用
いた。
Example 9 The material described in Example 8 was used for a graphite composite with copper oxide.

【0117】乾燥後、酸化銅付着黒鉛複合体とポリテト
ラフルオロエチレンとの重量比を97:3にした以外は
実施例1に記載された方法で負極を作製した。作製した
負極の表面積は8cm2、電極の厚みは76μm(集電
体の厚みが50μm)である。
After drying, a negative electrode was prepared in the same manner as in Example 1, except that the weight ratio of the graphite composite with copper oxide and polytetrafluoroethylene was changed to 97: 3. The surface area of the produced negative electrode was 8 cm 2 , and the thickness of the electrode was 76 μm (the thickness of the current collector was 50 μm).

【0118】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0119】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり413mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり350mAhであった。
As a result, the discharge capacity in the second cycle was 413 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 350 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0120】比較例11 酸化銅付着黒鉛複合体は実施例8に記載された材料を用
いた。
Comparative Example 11 The material described in Example 8 was used as the graphite composite attached with copper oxide.

【0121】乾燥後、酸化銅付着黒鉛複合体とポリテト
ラフルオロエチレンとの重量比を99.5:0.5にし
た以外は実施例1に記載された方法で負極を作製したと
ころ、集電体から剥離した。
After drying, a negative electrode was prepared in the same manner as in Example 1 except that the weight ratio of the graphite composite with copper oxide to polytetrafluoroethylene was 99.5: 0.5. Peeled from the body.

【0122】実施例8、9と比較例10、11の結果を
表2に示す。これと実施例1〜7から、酸化銅付着黒鉛
複合体と結着材との重量比は99:1〜70:30が最
適であることが判明した。
Table 2 shows the results of Examples 8 and 9 and Comparative Examples 10 and 11. From this and Examples 1 to 7, it was found that the optimal weight ratio of the graphite composite with copper oxide to the binder was 99: 1 to 70:30.

【0123】[0123]

【表2】 [Table 2]

【0124】実施例10 黒鉛粒子として人造黒鉛(鱗片状、粒径7μm、d002
は0.336nm、Lcは22nm、Laは13nm、
R値は0.1、比表面積10m2/g)を用いた以外は
実施例4に記載された方法かつ配合比で酸化銅付着黒鉛
複合体を作製した。このときできた酸化銅付着黒鉛複合
体粉末の黒鉛と酸化銅との重量比は86.6:13.4
であった。また、作製した酸化銅付着黒鉛複合体の粉末
X線広角回折測定を行ったところ、黒鉛および酸化第二
銅であることがわかった。
Example 10 As graphite particles, artificial graphite (flaky, particle size 7 μm, d 002)
Is 0.336 nm, Lc is 22 nm, La is 13 nm,
An R-value of 0.1 and a specific surface area of 10 m 2 / g) were used in the same manner as in Example 4 except that a specific surface area of 10 m 2 / g was used, and a graphite composite with a copper oxide was prepared. The weight ratio of graphite to copper oxide in the graphite composite powder with copper oxide attached at this time was 86.6: 13.4.
Met. Moreover, when the powdered X-ray wide-angle diffraction measurement of the produced graphite composite with copper oxide was performed, it was found to be graphite and cupric oxide.

【0125】上述した方法で作製した酸化銅付着黒鉛複
合体に、あらかじめN,N−ジメチルホルムアミドにポ
リフッ化ビニリデンを溶解させたもの(N,N−ジメチ
ルホルムアミドとポリフッ化ビニリデンの重量比は1.
5:0.05である)に加え、ペースト状にした。この
時、酸化銅付着黒鉛複合体とポリフッ化ビニリデンとの
乾燥後の重量比は、91:9であるように混合した。こ
のペーストをステンレス箔集電体上両面に塗布した。こ
れを65℃で乾燥、155℃で熱処理後プレスし、さら
に水分除去のために160℃で減圧乾燥したものを負極
として用いた。この負極は表面積が8cm2、電極の厚
みが72μm(集電体の厚みが50μm)である。
[0125] The copper oxide-adhered graphite composite prepared by the above-described method is prepared by dissolving polyvinylidene fluoride in N, N-dimethylformamide in advance (the weight ratio of N, N-dimethylformamide to polyvinylidene fluoride is 1.
5: 0.05) and made into a paste. At this time, the weight ratio after drying of the graphite composite with copper oxide and polyvinylidene fluoride was mixed so as to be 91: 9. This paste was applied on both surfaces of a stainless steel foil current collector. This was dried at 65 ° C., heat-treated at 155 ° C., and pressed, and further dried at 160 ° C. under reduced pressure to remove moisture, and used as a negative electrode. This negative electrode has a surface area of 8 cm 2 and an electrode thickness of 72 μm (a current collector thickness of 50 μm).

【0126】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0127】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり440mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり414mAhであった。
As a result, the discharge capacity in the second cycle was 440 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 414 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0128】実施例11 黒鉛粒子として変性黒鉛(鱗片状、粒径7μm、d002
は0.336nm、Lcは22nm、Laは13nm、
R値は0.1、比表面積10m2/g)を用いた。この
黒鉛粉末と硫酸銅5水和物と水酸化リチウムをそれぞれ
120重量部、9.3重量部、15.5重量部、イオン
交換水は2000mlを使用した以外は実施例1に記載
された方法で酸化銅付着黒鉛複合体を作製した。このと
きできた酸化銅付着黒鉛複合体粉末の黒鉛と酸化銅との
重量比は97.6:2.4(黒鉛/(黒鉛+酸化銅)=
0.976)であった。また、作製した酸化銅付着黒鉛
複合体の粉末X線広角回折測定を行ったところ、黒鉛お
よび酸化第二銅であることがわかった。
Example 11 Modified graphite (flaky, particle size 7 μm, d 002) was used as graphite particles.
Is 0.336 nm, Lc is 22 nm, La is 13 nm,
An R value of 0.1 and a specific surface area of 10 m 2 / g) were used. A method described in Example 1 except that 120 parts by weight, 9.3 parts by weight, and 15.5 parts by weight of this graphite powder, copper sulfate pentahydrate, and lithium hydroxide were used, and 2000 ml of ion-exchanged water was used. Thus, a graphite composite with copper oxide was prepared. The weight ratio of graphite to copper oxide in the copper oxide-adhered graphite composite powder thus obtained was 97.6: 2.4 (graphite / (graphite + copper oxide) =
0.976). Moreover, when the powdered X-ray wide-angle diffraction measurement of the produced graphite composite with copper oxide was performed, it was found to be graphite and cupric oxide.

【0129】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは70μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 70 μm (the current collector had a thickness of 5 μm).
0 μm).

【0130】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0131】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり396mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり372mAhであった。
As a result, the discharge capacity in the second cycle was 396 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 372 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0132】実施例12 酸化銅付着黒鉛複合体粉末の黒鉛と酸化銅との重量比が
93.8:6.2(黒鉛/(黒鉛+酸化銅)=0.93
8)となるように原料調合をした以外は実施例11に記
載された材料と方法で酸化銅付着黒鉛複合体を作製し
た。
Example 12 The weight ratio of graphite to copper oxide in the graphite composite powder with copper oxide was 93.8: 6.2 (graphite / (graphite + copper oxide) = 0.93).
A graphite composite to which copper oxide was attached was prepared using the materials and methods described in Example 11, except that the raw materials were prepared so as to satisfy 8).

【0133】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは78μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 78 μm (the current collector had a thickness of 5 μm).
0 μm).

【0134】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0135】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり535mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり499mAhであった。
As a result, the discharge capacity in the second cycle was 535 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 499 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0136】実施例13 酸化銅付着黒鉛複合体粉末の黒鉛と酸化銅との重量比が
89:11(黒鉛/(黒鉛+酸化銅)=0.89)とな
るように原料調合をした以外は実施例11に記載された
材料と方法で酸化銅付着黒鉛複合体を作製した。
Example 13 A raw material was prepared so that the weight ratio of graphite to copper oxide in the graphite composite powder with copper oxide was 89:11 (graphite / (graphite + copper oxide) = 0.89). A copper oxide-adhered graphite composite was produced using the materials and methods described in Example 11.

【0137】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは76μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The surface area of the produced negative electrode was 8 cm 2 , and the thickness was 76 μm (the thickness of the current collector was 5 μm).
0 μm).

【0138】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0139】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり424mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり410mAhであった。
As a result, the discharge capacity in the second cycle was 424 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 410 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0140】実施例14 酸化銅付着黒鉛複合体粉末の黒鉛と酸化銅との重量比が
79.6:20.4(黒鉛/(黒鉛+酸化銅)=0.7
96)となるように原料調合をした以外は実施例11に
記載された材料と方法で酸化銅付着黒鉛複合体を作製し
た。
Example 14 The weight ratio of graphite to copper oxide in the graphite composite powder adhering to copper oxide was 79.6: 20.4 (graphite / (graphite + copper oxide) = 0.7).
Except that the raw materials were prepared so as to satisfy 96), a graphite composite with copper oxide was prepared by using the materials and methods described in Example 11.

【0141】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは80μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 80 μm (the current collector had a thickness of 5 μm).
0 μm).

【0142】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0143】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり420mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり403mAhであった。
As a result, the discharge capacity in the second cycle was 420 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 403 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0144】実施例15 酸化銅付着黒鉛複合体粉末の黒鉛と酸化銅との重量比が
72.8:27.2(黒鉛/(黒鉛+酸化銅)=0.7
28)となるように原料調合をした以外は実施例11に
記載された材料と方法で酸化銅付着黒鉛複合体を作製し
た。
Example 15 The weight ratio of graphite to copper oxide in the graphite composite powder with copper oxide was 72.8: 27.2 (graphite / (graphite + copper oxide) = 0.7).
Except that the raw materials were prepared so as to satisfy 28), a graphite composite with copper oxide was prepared using the materials and methods described in Example 11.

【0145】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは79μm(集電体の厚みが5
0μm)である。
A negative electrode was produced by the method described in Example 1 using the graphite composite with copper oxide. The surface area of the prepared negative electrode was 8 cm 2 , and the thickness was 79 μm (the thickness of the current collector was 5 μm).
0 μm).

【0146】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0147】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり380mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり366mAhであった。
As a result, the discharge capacity in the second cycle was 380 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 366 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0148】実施例16 酸化銅付着黒鉛複合体粉末の黒鉛と酸化銅との重量比が
59.3:40.7(黒鉛/(黒鉛+酸化銅)=0.5
93)となるように原料調合をした以外は実施例11に
記載された材料と方法で酸化銅付着黒鉛複合体を作製し
た。
Example 16 The weight ratio of graphite to copper oxide in the graphite composite powder with copper oxide attached was 59.3: 40.7 (graphite / (graphite + copper oxide) = 0.5).
Except that the raw materials were prepared so as to satisfy 93), a graphite composite attached with copper oxide was produced using the materials and methods described in Example 11.

【0149】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは83μm(集電体の厚みが5
0μm)である。
A negative electrode was prepared by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 83 μm (the current collector had a thickness of 5 μm).
0 μm).

【0150】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0151】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり372mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり355mAhであった。
As a result, the discharge capacity in the second cycle was 372 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 355 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0152】実施例17 酸化銅付着黒鉛複合体粉末の黒鉛と酸化銅との重量比が
61.9:38.1(黒鉛/(黒鉛+酸化銅)=0.6
19)となるように原料調合をした以外は実施例11に
記載された材料と方法で酸化銅付着黒鉛複合体を作製し
た。
Example 17 The weight ratio of graphite to copper oxide in the graphite composite powder to which copper oxide was attached was 61.9: 38.1 (graphite / (graphite + copper oxide) = 0.6).
A graphite composite to which copper oxide was attached was prepared using the materials and methods described in Example 11 except that the raw materials were prepared so as to satisfy 19).

【0153】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは81μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The surface area of the produced negative electrode was 8 cm 2 and the thickness was 81 μm (the thickness of the current collector was 5 μm).
0 μm).

【0154】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0155】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり375mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり347mAhであった。
As a result, the discharge capacity in the second cycle was 375 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 347 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0156】実施例18 酸化銅付着黒鉛複合体粉末の黒鉛と酸化銅との重量比が
57:43(黒鉛/(黒鉛+酸化銅)=0.57)とな
るように原料調合をした以外は実施例11に記載された
材料と方法で酸化銅付着黒鉛複合体を作製した。
Example 18 A raw material was prepared so that the weight ratio of graphite to copper oxide in the graphite composite powder with copper oxide was 57:43 (graphite / (graphite + copper oxide) = 0.57). A copper oxide-adhered graphite composite was produced using the materials and methods described in Example 11.

【0157】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは85μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 85 μm (the current collector had a thickness of 5 μm).
0 μm).

【0158】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0159】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり369mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり344mAhであった。
As a result, the discharge capacity in the second cycle was 369 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 344 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0160】比較例12 変性黒鉛(鱗片状、粒径7μm、d002は0.336n
m、Lcは22nm、Laは13nm、R値は0.1、
比表面積10m2/g)のみ、つまり重量比が1(黒鉛
/(黒鉛+酸化銅)=1)を用いて実施例1に記載され
た方法で負極を作製した。作製した負極の表面積は8c
2、厚みは77μm(集電体の厚みが50μm)であ
る。
Comparative Example 12 Modified graphite (flaky, particle size 7 μm, d 002 0.336 n
m, Lc is 22 nm, La is 13 nm, R value is 0.1,
A negative electrode was produced by the method described in Example 1 using only the specific surface area of 10 m 2 / g, that is, the weight ratio was 1 (graphite / (graphite + copper oxide) = 1). The surface area of the prepared negative electrode is 8c
m 2 , and the thickness is 77 μm (the thickness of the current collector is 50 μm).

【0161】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0162】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり361mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり340mAhであった。
As a result, the discharge capacity in the second cycle was 361 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 340 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0163】比較例13 酸化銅付着黒鉛複合体粉末の黒鉛と酸化銅との重量比が
98.8:1.2(黒鉛/(黒鉛+酸化銅)=0.98
8)となるように原料調合をした以外は実施例11に記
載された材料と方法で酸化銅付着黒鉛複合体を作製し
た。
Comparative Example 13 The weight ratio of graphite to copper oxide in the graphite composite powder with copper oxide attached was 98.8: 1.2 (graphite / (graphite + copper oxide) = 0.98).
A graphite composite to which copper oxide was attached was prepared using the materials and methods described in Example 11, except that the raw materials were prepared so as to satisfy 8).

【0164】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは72μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The produced negative electrode had a surface area of 8 cm 2 and a thickness of 72 μm (the current collector had a thickness of 5 μm).
0 μm).

【0165】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0166】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり363mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり331mAhであった。
As a result, the discharge capacity in the second cycle was 363 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 331 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0167】比較例14 酸化銅付着黒鉛複合体粉末の黒鉛と酸化銅との重量比が
53.5:46.5(黒鉛/(黒鉛+酸化銅)=0.5
35)となるように原料調合をした以外は実施例11に
記載された材料と方法で酸化銅付着黒鉛複合体を作製し
た。
Comparative Example 14 The weight ratio of graphite to copper oxide in the graphite composite powder with copper oxide attached was 53.5: 46.5 (graphite / (graphite + copper oxide) = 0.5).
Except that the raw materials were blended so as to satisfy 35), a graphite composite with copper oxide was prepared using the materials and methods described in Example 11.

【0168】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは87μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The surface area of the prepared negative electrode was 8 cm 2 , and the thickness was 87 μm (the thickness of the current collector was 5 μm).
0 μm).

【0169】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0170】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり351mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり314mAhであった。
As a result, the discharge capacity in the second cycle was 351 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 314 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0171】比較例15 酸化銅付着黒鉛複合体粉末の黒鉛と酸化銅との重量比が
47.5:52.5(黒鉛/(黒鉛+酸化銅)=0.4
75)となるように原料調合をした以外は実施例11に
記載された材料と方法で酸化銅付着黒鉛複合体を作製し
た。
Comparative Example 15 The weight ratio of graphite to copper oxide in the graphite composite powder with copper oxide attached was 47.5: 52.5 (graphite / (graphite + copper oxide) = 0.4).
Except that the raw materials were prepared so as to satisfy the condition (75), a graphite composite with copper oxide was prepared by using the materials and methods described in Example 11.

【0172】この酸化銅付着黒鉛複合体を用いて実施例
1に記載された方法で負極を作製した。作製した負極の
表面積は8cm2、厚みは86μm(集電体の厚みが5
0μm)である。
A negative electrode was manufactured by the method described in Example 1 using the graphite composite with copper oxide. The surface area of the prepared negative electrode was 8 cm 2 , and the thickness was 86 μm (the thickness of the current collector was 5 μm).
0 μm).

【0173】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0174】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり319mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり302mAhであった。
As a result, the discharge capacity in the second cycle was 319 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 302 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0175】実施例10〜18と比較例7、12〜15
の結果を表3に示す。これらについて、酸化銅付着黒鉛
複合体の黒鉛と複合化処理された酸化銅との重量比およ
び混合物に対する重量比と、2サイクル目の電極の単位
体積(集電体の体積は除く)あたりの放電容量の関係を
図2に示す。これより、黒鉛と複合化された酸化銅との
重量比が98.5:1.5〜55:45の範囲にあるこ
とが好ましく、98.5:1.5〜72:28の範囲に
あることが特に好ましいと判明した。さらに、単なる試
薬等の混合では放電容量は相対的に小さくなりあまり特
性はよくない。
Examples 10 to 18 and Comparative Examples 7, 12 to 15
Table 3 shows the results. Regarding these, the weight ratio of the graphite composite adhering to the copper oxide and the weight ratio of the composite and the treated copper oxide to the mixture, and the discharge per unit volume (excluding the volume of the current collector) of the electrode in the second cycle FIG. 2 shows the relationship between the capacitances. Accordingly, it is preferable that the weight ratio of the graphite and the composited copper oxide is in the range of 98.5: 1.5 to 55:45, and is in the range of 98.5: 1.5 to 72:28. Has proven to be particularly preferred. Further, when a mere reagent or the like is mixed, the discharge capacity becomes relatively small and the characteristics are not so good.

【0176】[0176]

【表3】 [Table 3]

【0177】実施例19 黒鉛粒子として人造黒鉛(鱗片状、粒径7μm、d002
は0.336nm、Lcは22nm、Laは13nm、
R値は0.1、比表面積10m2/g)を用い、これに
酸化銅複合化処理を施した。酸化銅複合化処理は次の方
法で行った。
Example 19 As graphite particles, artificial graphite (flaky, particle size 7 μm, d 002)
Is 0.336 nm, Lc is 22 nm, La is 13 nm,
An R value of 0.1 and a specific surface area of 10 m 2 / g) were used and subjected to a copper oxide composite treatment. The copper oxide composite treatment was performed by the following method.

【0178】まず、上述の黒鉛粉末を実施例3に記載さ
れた材料と方法に沿って加工する。異なる点は、溶解物
を80℃に保持したホットプレート上にて20時間加熱
後に28時間室温(約20℃)で放置する点で、こうし
て作製した酸化銅付着黒鉛粉末の黒鉛と酸化銅との重量
比は89:11であった。この酸化銅付着黒鉛複合体の
粉末X線広角回折測定を行ったところ、黒鉛に由来する
回折線と酸化第二銅CuOに由来する回折線が観察され
た。
First, the above-mentioned graphite powder is processed according to the material and method described in Example 3. The difference is that the melt is heated on a hot plate maintained at 80 ° C. for 20 hours and then left at room temperature (about 20 ° C.) for 28 hours, and the graphite and copper oxide of the copper oxide-adhered graphite powder thus produced is The weight ratio was 89:11. When the powder X-ray wide-angle diffraction measurement of the graphite composite attached with copper oxide was performed, a diffraction line derived from graphite and a diffraction line derived from cupric oxide CuO were observed.

【0179】また、SEMによって酸化銅付着黒鉛複合
体粉末の黒鉛と酸化銅の粒径を測定したところ、平均粒
径でそれぞれ7.5μmと2.5μmであった。
When the particle diameters of graphite and copper oxide in the graphite composite powder with copper oxide were measured by SEM, the average particle diameters were 7.5 μm and 2.5 μm, respectively.

【0180】上述した方法で作製した酸化銅付着黒鉛複
合体を、あらかじめN,N−ジメチルホルムアミドにポ
リフッ化ビニリデンを溶解させたもの(N,N−ジメチ
ルホリムアミドとポリフッ化ビニリデンの重量比は、
1.5:0.05である)に加え、ペースト状にした。
この時、酸化銅付着黒鉛複合体とポリフッ化ビニリデン
との乾燥後の重量比が91:9であるように混合した。
このペーストをステンレス箔集電体上、両面に塗布し
た。これを65℃で乾燥、155℃で熱処理後プレス
し、さらに水分除去のため160℃で減圧乾燥したもの
を負極として用いた。この負極は、表面積8cm2、電
極の厚みが85μm(集電体の厚みが50μm)であ
る。
The copper oxide-adhered graphite composite prepared by the above-described method is prepared by dissolving polyvinylidene fluoride in N, N-dimethylformamide in advance (the weight ratio of N, N-dimethylfolimamide to polyvinylidene fluoride is ,
1.5: 0.05) and made into a paste.
At this time, the graphite oxide-adhered graphite composite and polyvinylidene fluoride were mixed so that the weight ratio after drying was 91: 9.
This paste was applied on both sides of a stainless steel foil current collector. This was dried at 65 ° C., heat-treated at 155 ° C., pressed, and further dried at 160 ° C. under reduced pressure to remove moisture, and used as a negative electrode. This negative electrode has a surface area of 8 cm 2 and an electrode thickness of 85 μm (a current collector thickness of 50 μm).

【0181】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0182】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり451mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり427mAhであった。
As a result, the discharge capacity in the second cycle was 451 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 427 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0183】実施例20 黒鉛粒子として実施例19の人造黒鉛を用い、これに酸
化銅複合化処理を施した。酸化銅複合化処理は次の方法
で行った。
Example 20 The artificial graphite of Example 19 was used as graphite particles, and this was subjected to a copper oxide composite treatment. The copper oxide composite treatment was performed by the following method.

【0184】まず、上述の黒鉛粉末を実施例3に記載さ
れた材料と方法に沿って加工する。異なる点は、溶解物
を80℃に保持した恒温槽中にて20時間加熱後に24
時間室温(約20℃)で放置する点で、こうして作製し
た酸化銅付着黒鉛粉末の黒鉛と酸化銅との重量比は8
9:11であった。この酸化銅付着黒鉛複合体の粉末X
線広角回折測定を行ったところ、黒鉛に由来する回折線
と酸化第二銅CuOに由来する回折線が観察された。
First, the above-mentioned graphite powder is processed according to the materials and methods described in Example 3. The difference is that after heating the melt in a thermostat at 80 ° C. for 20 hours,
The weight ratio of graphite to copper oxide in the copper oxide-adhered graphite powder prepared in this way was 8 hours at room temperature (about 20 ° C.).
9:11. The powder X of the graphite composite adhering to copper oxide
When the line wide-angle diffraction measurement was performed, a diffraction line derived from graphite and a diffraction line derived from cupric oxide CuO were observed.

【0185】また、SEMによって酸化銅付着黒鉛複合
体粉末の黒鉛と酸化銅の粒径を測定したところ、平均粒
径でそれぞれ7.5μmと3μmであった。
When the particle diameters of graphite and copper oxide in the graphite composite powder with copper oxide were measured by SEM, the average particle diameters were 7.5 μm and 3 μm, respectively.

【0186】上述した方法で作製した酸化銅付着黒鉛複
合体を用いて、実施例19と同様の方法で負極を作製し
た。この負極は、表面積8cm2、電極の厚みが86μ
m(集電体の厚みが50μm)である。
A negative electrode was produced in the same manner as in Example 19, using the graphite composite adhering to copper oxide produced by the above-described method. This negative electrode has a surface area of 8 cm 2 and an electrode thickness of 86 μm.
m (the thickness of the current collector is 50 μm).

【0187】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0188】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり448mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり426mAhであった。
As a result, the discharge capacity in the second cycle was 448 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 426 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0189】実施例21 黒鉛粒子として実施例19の人造黒鉛を用い、これに酸
化銅複合化処理を施した。酸化銅複合化処理は次の方法
で行った。
Example 21 The artificial graphite of Example 19 was used as graphite particles, and this was subjected to a copper oxide composite treatment. The copper oxide composite treatment was performed by the following method.

【0190】まず、上述の黒鉛粉末を実施例3に記載さ
れた材料と方法に沿って加工する。異なる点は、溶解物
を直火にて10時間煮た後に24時間室温(約20℃)
で放置する点で、こうして作製した酸化銅付着黒鉛粉末
の黒鉛と酸化銅との重量比は89:11であった。この
酸化銅付着黒鉛複合体の粉末X線広角回折測定を行った
ところ、黒鉛に由来する回折線と酸化第二銅CuOに由
来する回折線が観察された。
First, the above-mentioned graphite powder is processed according to the materials and methods described in Example 3. The difference is that the lysate is cooked for 10 hours on a direct heat and then for 24 hours at room temperature (about 20 ° C).
The weight ratio of graphite to copper oxide in the copper oxide-adhered graphite powder thus produced was 89:11. When the powder X-ray wide-angle diffraction measurement of the graphite composite attached with copper oxide was performed, a diffraction line derived from graphite and a diffraction line derived from cupric oxide CuO were observed.

【0191】また、SEMによって酸化銅付着黒鉛複合
体粉末の黒鉛と酸化銅の粒径を測定したところ、平均粒
径でそれぞれ7.5μmと1.8μmであった。
When the particle diameters of graphite and copper oxide in the graphite composite powder with copper oxide were measured by SEM, the average particle diameters were 7.5 μm and 1.8 μm, respectively.

【0192】上述した方法で作製した酸化銅付着黒鉛複
合体を用いて、実施例19と同様の方法で負極を作製し
た。この負極は、表面積8cm2、電極の厚みが85μ
m(集電体の厚みが50μm)である。
A negative electrode was produced in the same manner as in Example 19, using the graphite composite with copper oxide produced in the manner described above. This negative electrode had a surface area of 8 cm 2 and an electrode thickness of 85 μm.
m (the thickness of the current collector is 50 μm).

【0193】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0194】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり453mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり421mAhであった。
As a result, the discharge capacity in the second cycle was 453 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 421 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0195】実施例22 黒鉛粒子として実施例19の人造黒鉛を用い、これに酸
化銅複合化処理を施した。酸化銅複合化処理は次の方法
で行った。
Example 22 The artificial graphite of Example 19 was used as graphite particles, and this was subjected to a copper oxide composite treatment. The copper oxide composite treatment was performed by the following method.

【0196】まず、上述の黒鉛粉末を実施例3に記載さ
れた材料と方法に沿って加工する。異なる点は、溶解物
を120℃に保持した恒温槽中にて10時間加熱後に2
4時間室温(約20℃)で放置する点で、こうして作製
した酸化銅付着黒鉛粉末の黒鉛と酸化銅の重量比は8
9:11であった。この酸化銅付着黒鉛複合体の粉末X
線広角回折測定を行ったところ、黒鉛に由来する回折線
と酸化第二銅CuOに由来する回折線が観察された。
First, the above-mentioned graphite powder is processed according to the materials and methods described in Example 3. The difference is that after heating the melt in a thermostat at 120 ° C. for 10 hours,
The weight ratio of graphite to copper oxide in the thus-prepared graphite powder with copper oxide is 8 in that it is left at room temperature (about 20 ° C.) for 4 hours.
9:11. The powder X of the graphite composite adhering to copper oxide
When the line wide-angle diffraction measurement was performed, a diffraction line derived from graphite and a diffraction line derived from cupric oxide CuO were observed.

【0197】また、SEMによって酸化銅付着黒鉛複合
体粉末の黒鉛と酸化銅の粒径を測定したところ、平均粒
径でそれぞれ7.5μmと1.5μmであった。
The particle diameters of graphite and copper oxide in the graphite composite powder with copper oxide were measured by SEM to find that the average particle diameters were 7.5 μm and 1.5 μm, respectively.

【0198】上述した方法で作製した酸化銅付着黒鉛複
合体を用いて、実施例19と同様の方法で負極を作製し
た。この負極は、表面積8cm2、電極の厚みが84μ
m(集電体の厚みが50μm)である。
A negative electrode was produced in the same manner as in Example 19, using the graphite composite with copper oxide produced in the manner described above. This negative electrode had a surface area of 8 cm 2 and an electrode thickness of 84 μm.
m (the thickness of the current collector is 50 μm).

【0199】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0200】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり455mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり423mAhであった。
As a result, the discharge capacity in the second cycle was 455 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 423 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0201】実施例23 黒鉛粒子として実施例19の人造黒鉛を用い、これに酸
化銅複合化処理を施した。酸化銅複合化処理は次の方法
で行った。
Example 23 As the graphite particles, the artificial graphite of Example 19 was used and subjected to a copper oxide composite treatment. The copper oxide composite treatment was performed by the following method.

【0202】まず、上述の黒鉛粉末を実施例3に記載さ
れた材料と方法に沿って加工する。異なる点は、溶解物
を80℃に保持した恒温槽中にて20時間加熱後に40
℃の恒温槽中で24時間静置する点で、こうして作製し
た酸化銅付着黒鉛粉末の黒鉛と酸化銅との重量比は8
9:11であった。この酸化銅付着黒鉛複合体の粉末X
線広角回折測定を行ったところ、黒鉛に由来する回折線
と酸化第二銅CuOに由来する回折線が観察された。
First, the above-mentioned graphite powder is processed according to the material and method described in Example 3. The difference is that after heating the melt in a thermostat at 80 ° C. for 20 hours,
The weight ratio of graphite to copper oxide in the copper oxide-adhered graphite powder thus produced was 8 points at 24 hours in a constant temperature bath at a constant temperature of 8 ° C.
9:11. The powder X of the graphite composite adhering to copper oxide
When the line wide-angle diffraction measurement was performed, a diffraction line derived from graphite and a diffraction line derived from cupric oxide CuO were observed.

【0203】また、SEMによって酸化銅付着黒鉛複合
体粉末の黒鉛と酸化銅の粒径を測定したところ、平均粒
径でそれぞれ7.5μmと3.9μmであった。
When the particle diameters of graphite and copper oxide in the graphite composite powder with copper oxide were measured by SEM, the average particle diameters were 7.5 μm and 3.9 μm, respectively.

【0204】上述した方法で作製した酸化銅付着黒鉛複
合体を用いて、実施例19と同様の方法で負極を作製し
た。この負極は、表面積8cm2、電極の厚みが88μ
m(集電体の厚みが50μm)である。
A negative electrode was produced in the same manner as in Example 19, using the graphite composite adhering to copper oxide produced by the above-described method. This negative electrode has a surface area of 8 cm 2 and an electrode thickness of 88 μm.
m (the thickness of the current collector is 50 μm).

【0205】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0206】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり445mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり418mAhであった。
As a result, the discharge capacity in the second cycle was 445 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 418 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0207】実施例24 黒鉛粒子として実施例19の人造黒鉛を用い、これに酸
化銅複合化処理を施した。酸化銅複合化処理は次の方法
で行った。
Example 24 The artificial graphite of Example 19 was used as graphite particles, and this was subjected to a copper oxide composite treatment. The copper oxide composite treatment was performed by the following method.

【0208】まず、上述の黒鉛粉末を実施例3に記載さ
れた材料と方法に沿って加工する。異なる点は、溶解物
を80℃に保持したホットプレート上にて20時間加熱
後、直ちにガラスセパレータろ紙(気孔径1μm)にて
吸引ろ過する点で、ろ紙の目を通過してろ液中に多量の
茶褐色の微粒子が流出したが、ろ液が中性になるまで水
洗した。この間、微粒子の流出は続いた。得られた酸化
銅複合黒鉛複合体の固形物を真空乾燥(乾燥中の酸化の
進行を防ぐため85℃で実施)し、粉砕を行う。こうし
て作製した酸化銅付着黒鉛粉末の黒鉛と酸化銅との重量
比は95:5であった。この酸化銅付着黒鉛複合体の粉
末X線広角回折測定を行ったところ、黒鉛に由来する回
折線と酸化第二銅CuOに由来する回折線が観察され
た。念のため、微粒子部分も乾燥固化し、粉末X線広角
回折測定を行ったところ、酸化第二銅に由来する回折線
が観察された。
First, the above-mentioned graphite powder is processed according to the material and method described in Example 3. The difference is that the melt is heated on a hot plate maintained at 80 ° C. for 20 hours and then immediately suction-filtered with a glass separator filter paper (pore diameter 1 μm). Was washed out with water until the filtrate became neutral. During this time, the outflow of fine particles continued. The obtained solid material of the copper oxide composite graphite composite is vacuum-dried (implemented at 85 ° C. in order to prevent the progress of oxidation during drying) and pulverized. The weight ratio of graphite to copper oxide in the copper oxide-adhered graphite powder thus produced was 95: 5. When the powder X-ray wide-angle diffraction measurement of the graphite composite attached with copper oxide was performed, a diffraction line derived from graphite and a diffraction line derived from cupric oxide CuO were observed. As a precautionary measure, the fine particle portion was also dried and solidified, and a powder X-ray wide-angle diffraction measurement was performed. As a result, a diffraction line derived from cupric oxide was observed.

【0209】また、SEMによって酸化銅付着黒鉛複合
体粉末の黒鉛と酸化銅の粒径を測定したところ、平均粒
径でそれぞれ7.5μmと1.2μmであり、流出した
微粒子を同様に測定すると0.3μmであった。
When the particle diameters of graphite and copper oxide of the graphite composite powder with copper oxide were measured by SEM, the average particle diameters were 7.5 μm and 1.2 μm, respectively. It was 0.3 μm.

【0210】このように原料の仕込み量から考えられる
酸化銅の生成量と掛け離れたものが得られることにな
り、複合化量の制御が困難となることがわかった。
As described above, the amount of copper oxide produced far from the amount of copper oxide expected from the charged amount of raw materials was obtained, and it was found that it was difficult to control the amount of compounding.

【0211】しかしながら、上述した方法で作製した酸
化銅付着黒鉛複合体を用いて、実施例19と同様の方法
で負極(表面積8cm2、電極の厚みが71μm(集電
体の厚みが50μm)である)を作製し、実施例1に記
載された方法で評価した。
However, the negative electrode (surface area: 8 cm 2 , electrode thickness: 71 μm (current collector thickness: 50 μm)) was prepared in the same manner as in Example 19, using the copper oxide-adhered graphite composite produced by the above method. Was prepared and evaluated by the method described in Example 1.

【0212】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり411mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり396mAhで、酸化銅付着
黒鉛粉末の黒鉛と酸化銅との重量比から予想される特性
であった。
As a result, the discharge capacity in the second cycle was 411 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 396 mAh per unit volume of the electrode (excluding the volume of the current collector), and was a characteristic expected from the weight ratio of graphite to copper oxide in the copper oxide-adhered graphite powder.

【0213】比較例16 黒鉛粒子として実施例19の人造黒鉛を用い、これに酸
化銅複合化処理を施した。酸化銅複合化処理は次の方法
で行った。
Comparative Example 16 As the graphite particles, the artificial graphite of Example 19 was used and subjected to a copper oxide composite treatment. The copper oxide composite treatment was performed by the following method.

【0214】まず、上述の黒鉛粉末を実施例3に記載さ
れた材料と方法に沿って加工する。異なる点は、溶解物
を80℃に保持した恒温槽中にて20時間加熱後に40
℃の恒温槽中で120時間静置する点で、こうして作製
した酸化銅付着黒鉛粉末の黒鉛と酸化銅との重量比は8
9:11であった。この酸化銅付着黒鉛複合体の粉末X
線広角回折測定を行ったところ、黒鉛に由来する回折線
と酸化第二銅CuOに由来する回折線が観察された。
First, the above-mentioned graphite powder is processed according to the materials and methods described in Example 3. The difference is that after heating the melt in a thermostat at 80 ° C. for 20 hours,
The weight ratio of graphite to copper oxide in the copper oxide-adhered graphite powder thus produced was 8 points at 120 ° C. in a constant temperature bath.
9:11. The powder X of the graphite composite adhering to copper oxide
When the line wide-angle diffraction measurement was performed, a diffraction line derived from graphite and a diffraction line derived from cupric oxide CuO were observed.

【0215】また、SEMによって酸化銅付着黒鉛複合
体粉末の黒鉛と酸化銅の粒径を測定したところ、平均粒
径でそれぞれ7.5μmと9μmであった。
Further, when the particle diameters of graphite and copper oxide of the graphite composite powder with copper oxide were measured by SEM, the average particle diameters were 7.5 μm and 9 μm, respectively.

【0216】上述した方法で作製した酸化銅付着黒鉛複
合体を用いて、実施例19と同様の方法で負極を作製し
た。この負極は、表面積8cm2、電極の厚みが90μ
m(集電体の厚みが50μm)である。
A negative electrode was produced in the same manner as in Example 19, using the graphite composite with copper oxide produced by the above method. This negative electrode has a surface area of 8 cm 2 and an electrode thickness of 90 μm.
m (the thickness of the current collector is 50 μm).

【0217】この負極を実施例1に記載された方法で評
価した。
The negative electrode was evaluated by the method described in Example 1.

【0218】その結果、2サイクル目の放電容量は、電
極の単位体積(集電体の体積は除く)あたり408mA
h、10サイクル目の放電容量は、電極の単位体積(集
電体の体積は除く)あたり395mAhであった。
As a result, the discharge capacity in the second cycle was 408 mA per unit volume of the electrode (excluding the volume of the current collector).
h, the discharge capacity at the 10th cycle was 395 mAh per unit volume of the electrode (excluding the volume of the current collector).

【0219】実施例19〜24と比較例16の結果を表
4に示す。これによって、酸化銅付着黒鉛複合体の黒鉛
と複合化処理される酸化銅の粒径が、ガラスフィルター
の特性からくる製造工程の関係からおよそ1μm以上で
あることが好ましく、かつ同時に存在する黒鉛の粒径以
下の範囲にあることが好ましいと判明した。しかし、他
の分離方法と水洗方法を用い、ガラスフィルターの特性
による粒径の下限規定がなくなった場合は単に、同時に
存在する黒鉛の粒径以下の範囲となることは明らかであ
る。
The results of Examples 19 to 24 and Comparative Example 16 are shown in Table 4. Thereby, it is preferable that the particle diameter of the copper oxide to be composited with the graphite of the copper oxide-adhered graphite composite is about 1 μm or more in view of the manufacturing process derived from the characteristics of the glass filter, It has been found that it is preferable to be within the range of the particle size or less. However, when other separation methods and water washing methods are used and the lower limit of the particle size is not defined by the characteristics of the glass filter, it is apparent that the range is simply smaller than the particle size of the graphite that is present at the same time.

【0220】[0220]

【表4】 [Table 4]

【0221】実施例25 ・負極の作製 酸化銅付着黒鉛複合体は実施例8に記載された材料を用
いた。
Example 25 Production of Negative Electrode The material described in Example 8 was used for the graphite composite with copper oxide.

【0222】上述した方法で作製した酸化銅付着黒鉛複
合体に、ノニオン系の分散剤を添加し、ポリテトラフル
オロエチレン(乾燥後、酸化銅付着黒鉛複合体とポリテ
トラフルオロエチレンとの重量比は91:9である)の
ディスパージョン液を加えてペースト状にしたものをニ
ッケル3次元多孔質集電体に塗布し、孔中にペーストを
塗り込んだ。これを60℃で乾燥、240℃で熱処理後
プレスし、さらに水分除去のために200℃で減圧乾燥
したものを負極として用いた。この負極は、直径14.
5mm、電極の厚みが0.41mmのペレットである。
A nonionic dispersant was added to the copper oxide-deposited graphite composite produced by the above method, and polytetrafluoroethylene (after drying, the weight ratio of the copper oxide-deposited graphite composite to polytetrafluoroethylene was calculated as follows: (91: 9) was applied to a nickel three-dimensional porous current collector, and the paste was applied to the pores. This was dried at 60 ° C., heat treated at 240 ° C., pressed, and further dried at 200 ° C. under reduced pressure to remove moisture, and used as a negative electrode. This negative electrode has a diameter of 14.
It is a pellet with a thickness of 5 mm and an electrode thickness of 0.41 mm.

【0223】・正極の作製 炭酸リチウムと炭酸コバルト、三酸化アンチモンをリチ
ウム原子とコバルト原子、アンチモン原子の比で1:
0.95:0.05になるようにそれぞれ秤量し、これ
を乳鉢で混合した後空気中900℃で20時間焼成し、
その後乳鉢で粉砕することにより活物質の粉末を得た。
この活物質は、Li0.98Co0.95Sb0.052の組成を
有していた。このようにして得られた正極活物質をアセ
チレンブラックと混合し、ノニオン系の分散剤を添加
し、ポリテトラフルオロエチレン(乾燥後、正極活物質
とアセチレンブラック、ポリテトラフルオロエチレンと
の重量比は、100:10:5である)のディスパージ
ョン液を加えてペースト状にしたものを、チタンメッシ
ュ集電体上に塗布した。これを60℃で乾燥、240℃
で熱処理後プレスし、さらに水分除去のために200℃
で減圧乾燥したものを正極として用いた。この正極は、
直径14.5mm、電極の厚みが0.93mmのペレッ
トである。
Preparation of Positive Electrode Lithium carbonate and cobalt carbonate and antimony trioxide were mixed at a ratio of lithium atom to cobalt atom and antimony atom of 1:
0.95: 0.05 each was weighed, mixed in a mortar, and baked in air at 900 ° C for 20 hours.
Then, the powder of the active material was obtained by crushing in a mortar.
This active material had a composition of Li 0.98 Co 0.95 Sb 0.05 O 2 . The thus obtained positive electrode active material is mixed with acetylene black, a nonionic dispersant is added, and polytetrafluoroethylene (after drying, the weight ratio of the positive electrode active material to acetylene black and polytetrafluoroethylene is , 100: 10: 5), and the mixture was made into a paste by applying a dispersion liquid onto a titanium mesh current collector. This is dried at 60 ° C, 240 ° C
Press after heat treatment at 200 ° C.
The dried under reduced pressure was used as a positive electrode. This positive electrode
It is a pellet having a diameter of 14.5 mm and an electrode thickness of 0.93 mm.

【0224】・電池の組み立て 図2に示すように、あらかじめ内底面に正極集電体2が
溶接によって取り付けられ、絶縁パッキン8が載置され
た正極缶1に正極3を圧着した。次に、この上に微多孔
性ポリプロピレンのセパレータ7を載置し、エチレンカ
ーボネートとプロピレンカーボネート、ジエチルカーボ
ネートとの2:1:3の混合溶媒に1mol/lのLi
PF6を溶解した電解液を含浸させる。一方、負極缶4
の内面に、負極集電体5を溶接し、この負極集電体に負
極6を圧着させる。次に、前記セパレータ7の上に前記
負極6を重ね、正極缶1と負極缶4を絶縁パッキン8を
介在させてかしめ、コイン型電池を作製する。
Assembling of Battery As shown in FIG. 2, the positive electrode current collector 2 was previously attached to the inner bottom surface by welding, and the positive electrode 3 was crimped to the positive electrode can 1 on which the insulating packing 8 was placed. Next, a separator 7 of microporous polypropylene was placed on this, and 1 mol / l of Li was added to a mixed solvent of ethylene carbonate, propylene carbonate, and diethyl carbonate in a ratio of 2: 1: 3.
Impregnated with an electrolytic solution in which PF 6 is dissolved. On the other hand, the negative electrode can 4
The negative electrode current collector 5 is welded to the inner surface of the substrate, and the negative electrode 6 is press-bonded to the negative electrode current collector. Next, the negative electrode 6 is overlaid on the separator 7, and the positive electrode can 1 and the negative electrode can 4 are caulked with the insulating packing 8 interposed therebetween, thereby producing a coin-type battery.

【0225】・電池の評価 作製したコイン型電池を充放電電流2mA、充電上限電
圧4.2Vで4.2Vに達した後4.2Vの定電圧充電
を行い、充電時間を12時間とした。放電の下限電圧を
2.5Vとして容量を測定した。評価は電池の放電容量
で行った。
Evaluation of Battery The produced coin-type battery reached 4.2 V at a charging / discharging current of 2 mA and a charging upper limit voltage of 4.2 V, and was then charged at a constant voltage of 4.2 V, for a charging time of 12 hours. The capacity was measured with the lower limit voltage of the discharge being 2.5 V. The evaluation was performed on the discharge capacity of the battery.

【0226】その結果、放電における平均電圧が3.7
Vであり、2サイクル目の放電容量は19mAh、10
サイクル目の放電容量は17mAhであった。
As a result, the average voltage in the discharge was 3.7
V, and the discharge capacity at the second cycle was 19 mAh, 10
The discharge capacity at the cycle was 17 mAh.

【0227】比較例17 マダガスカル産の天然黒鉛のみを用いて実施例25に記
載された方法で負極を作製した。作製した負極の大き
さ、厚み共に同じである。正極および電池も実施例25
に記載された方法で作製した。
Comparative Example 17 A negative electrode was produced by the method described in Example 25 using only natural graphite produced in Madagascar. The size and thickness of the produced negative electrode are the same. The positive electrode and the battery were also prepared in Example 25.
Was prepared by the method described in (1).

【0228】この電池を実施例25に記載された方法で
評価した。
The battery was evaluated by the method described in Example 25.

【0229】その結果、放電における平均電圧が3.7
Vであり、2サイクル目の放電容量は14mAh、10
サイクル目の放電容量は13mAhであった。
As a result, the average voltage in the discharge was 3.7
V and the discharge capacity in the second cycle was 14 mAh, 10
The discharge capacity at the cycle was 13 mAh.

【0230】実施例26 ・負極の作製 酸化銅付着黒鉛複合体は実施例12に記載された材料を
用いた。
Example 26 Preparation of Negative Electrode The material described in Example 12 was used for a graphite composite with copper oxide.

【0231】上述した方法で作製した酸化銅付着黒鉛複
合体に、ノニオン系の分散剤を添加し、ポリテトラフル
オロエチレン(乾燥後、酸化銅付着黒鉛複合体とポリテ
トラフルオロエチレンとの重量比は91:9である)の
ディスパージョン液を加えてペースト状にしたものを、
ニッケル3次元多孔質集電体に塗布し、孔中にペースト
を塗り込んだ。これを60℃で乾燥、240℃で熱処理
後プレスし、さらに水分除去のために200℃で減圧乾
燥したものを負極として用いた。この負極は、直径1
4.5mm、電極の厚みが0.37mmのペレットであ
る。
A nonionic dispersant was added to the copper oxide-deposited graphite composite produced by the above-described method, and the mixture was dried with polytetrafluoroethylene (after drying, the weight ratio of the copper oxide-deposited graphite composite to polytetrafluoroethylene was changed to 91: 9) to form a paste.
The paste was applied to a nickel three-dimensional porous current collector, and a paste was applied to the holes. This was dried at 60 ° C., heat treated at 240 ° C., pressed, and further dried at 200 ° C. under reduced pressure to remove moisture, and used as a negative electrode. This negative electrode has a diameter of 1
It is a 4.5 mm pellet with an electrode thickness of 0.37 mm.

【0232】・正極の作製 炭酸リチウムと二酸化マンガンを、リチウム原子とマン
ガン原子の比で1.1:2になるようにそれぞれ秤量
し、これを乳鉢で混合した後、空気中900℃で3日間
焼成し、その後乳鉢で粉砕することにより活物質LiM
24の粉末を得た。このようにして得られた正極活物
質を導電材(アセチレンブラックと膨張黒鉛との重量比
2:1の混合物)と混合し、ノニオン系の分散剤を添加
し、ポリテトラフルオロエチレン(乾燥後、正極活物質
と導電材、ポリテトラフルオロエチレンとの重量比は、
100:10:5である)のディスパージョン液を加え
てペースト状にしたものを、チタンメッシュ集電体上に
塗布した。これを60℃で乾燥、240℃で熱処理後プ
レスし、さらに水分除去のために200℃で減圧乾燥し
たものを正極として用いた。この正極は、直径14.5
mm、電極の厚みが1.0mmのペレットである。
Preparation of Positive Electrode Lithium carbonate and manganese dioxide were each weighed so that the ratio of lithium atoms to manganese atoms was 1.1: 2, mixed in a mortar, and then in air at 900 ° C. for 3 days. The active material LiM is fired and then crushed in a mortar.
A powder of n 2 O 4 was obtained. The positive electrode active material thus obtained is mixed with a conductive material (a mixture of acetylene black and expanded graphite at a weight ratio of 2: 1), a nonionic dispersant is added, and polytetrafluoroethylene (after drying, The weight ratio between the positive electrode active material and the conductive material, polytetrafluoroethylene,
(100: 10: 5) was added to form a paste by adding a dispersion liquid to a titanium mesh current collector. This was dried at 60 ° C., heat-treated at 240 ° C., pressed, and dried at 200 ° C. under reduced pressure to remove moisture, and used as a positive electrode. This positive electrode has a diameter of 14.5.
mm, and the thickness of the electrode is 1.0 mm.

【0233】・電池の組み立て 電解液にエチレンカーボネートとγーブチロラクトン、
ジエチルカーボネートとの3:1:3の混合溶媒に1m
ol/lのLiPF6を溶解したものを用いた以外、実
施例18に記載された方法でコイン型電池を作製した。
Battery assembly Ethylene carbonate and γ-butyrolactone were used in the electrolyte.
1m in a 3: 1: 3 mixed solvent with diethyl carbonate
A coin-type battery was produced by the method described in Example 18 except that a solution in which ol / l of LiPF 6 was dissolved was used.

【0234】・電池の評価 作製したコイン型電池を、充放電電流1mA、充電上限
電圧4.2Vで4.2Vに達した後4.2Vの定電圧充
電を行い、充電時間を24時間とした。放電の下限電圧
を2.5Vとして容量を測定した。評価は電池の放電容
量で行った。
Evaluation of Battery The produced coin-type battery reached 4.2 V at a charging / discharging current of 1 mA and a charging upper limit voltage of 4.2 V, and was then charged at a constant voltage of 4.2 V. The charging time was set to 24 hours. . The capacity was measured with the lower limit voltage of the discharge being 2.5 V. The evaluation was performed on the discharge capacity of the battery.

【0235】その結果、放電における平均電圧が3.7
Vであり、2サイクル目の放電容量は20mAh、10
サイクル目の放電容量は15mAhであった。
As a result, the average voltage in the discharge was 3.7
V, and the discharge capacity at the second cycle is 20 mAh, 10
The discharge capacity at the cycle was 15 mAh.

【0236】比較例18 変性黒鉛(鱗片状、粒径7μm、d002は0.336n
m、Lcは22nm、Laは13nm、R値は0.1、
比表面積10m2/g)のみを用いて実施例25に記載
された方法で負極を作製した。作製した負極の大きさ、
厚み共に同じである。正極および電池も実施例25に記
載された方法で作製した。
Comparative Example 18 Modified graphite (flaky, particle size 7 μm, d 002 0.336 n
m, Lc is 22 nm, La is 13 nm, R value is 0.1,
A negative electrode was prepared by the method described in Example 25 using only the specific surface area (10 m 2 / g). The size of the prepared negative electrode,
The thickness is the same. A positive electrode and a battery were also prepared by the method described in Example 25.

【0237】この電池を実施例26に記載された方法で
評価した。
This battery was evaluated by the method described in Example 26.

【0238】その結果、放電における平均電圧が3.7
Vであり、2サイクル目の放電容量は13mAh、10
サイクル目の放電容量は12mAhであった。
As a result, the average voltage in the discharge was 3.7
V, and the discharge capacity in the second cycle was 13 mAh, 10
The discharge capacity at the cycle was 12 mAh.

【0239】実施例25、26と比較例17、18の結
果を表5に示す。これより、酸化銅付着黒鉛複合体を含
む負極を用いると、高容量のリチウム二次電池を作製す
ることが可能である。
The results of Examples 25 and 26 and Comparative Examples 17 and 18 are shown in Table 5. Thus, a high-capacity lithium secondary battery can be manufactured using the negative electrode including the graphite composite with copper oxide.

【0240】[0240]

【表5】 [Table 5]

【0241】[0241]

【発明の効果】本発明による負極、つまりリチウムのイ
ンターカレーション・デインターカレーション可能な黒
鉛に酸化銅が付着した酸化銅付着黒鉛複合体と結着材と
を混合した電極は大きい放電容量を示す。また、負極の
より低い電位を用いることができることより、電池電圧
の高いリチウム二次電池を提供することができる。した
がって、本発明による負極を使用し、優れたリチウム二
次電池を提供することができる。
The negative electrode according to the present invention, that is, an electrode obtained by mixing a binder and a copper oxide-deposited graphite composite in which copper oxide is deposited on graphite capable of intercalating and deintercalating lithium has a large discharge capacity. Show. Further, since a lower potential of the negative electrode can be used, a lithium secondary battery with a high battery voltage can be provided. Therefore, an excellent lithium secondary battery can be provided using the negative electrode according to the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】製造工程の比較を表す図である。FIG. 1 is a diagram showing a comparison of manufacturing steps.

【図2】黒鉛と酸化銅の重量比と放電容量との関係を表
す図である。
FIG. 2 is a diagram illustrating a relationship between a weight ratio of graphite and copper oxide and a discharge capacity.

【図3】実施例25、26と比較例17、18で製作し
た電池の構造図である。
FIG. 3 is a structural diagram of batteries manufactured in Examples 25 and 26 and Comparative Examples 17 and 18.

【符号の説明】[Explanation of symbols]

1 正極缶 2 正極集電体 3 正極 4 負極缶 5 負極集電体 6 負極 7 セパレータ 8 絶縁パッキン REFERENCE SIGNS LIST 1 positive electrode can 2 positive electrode current collector 3 positive electrode 4 negative electrode can 5 negative electrode current collector 6 negative electrode 7 separator 8 insulating packing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 和夫 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (56)参考文献 特開 平6−349482(JP,A) 特開 平6−325753(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/36 - 4/62 H01M 4/02 - 4/04 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kazuo Yamada 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (56) References JP-A-6-349482 (JP, A) JP-A-6-349 325753 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/36-4/62 H01M 4/02-4/04 H01M 10/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウムイオンのインターカレーション
・デインターカレーション可能な黒鉛粒子の全部または
一部の表面上に、銅イオンを含む化合物を分解すること
により表面上に生成させた酸化銅を生成させる方法によ
り製造した酸化銅付着黒鉛複合体と、結着材とからなる
負極を有することを特徴とするリチウム二次電池。
1. All or all of graphite particles capable of intercalating / deintercalating lithium ions
Decompose compounds containing copper ions on some surfaces
A lithium secondary battery comprising: a negative electrode comprising a copper oxide-adhered graphite composite produced by a method for producing copper oxide produced on a surface by the method and a binder.
【請求項2】 化学反応による酸化銅の生成は、黒鉛粒
子と混合させた銅イオンを含む塩の溶液中における中和
反応によって水酸化銅を生成し、黒鉛粒子と共に沈殿
後、脱水処理する方法によることを特徴とする請求項1
記載のリチウム二次電池。
2. A method of producing copper oxide by a chemical reaction, comprising producing copper hydroxide by a neutralization reaction in a solution of a salt containing copper ions mixed with graphite particles, precipitating together with the graphite particles, and then dehydrating. 2. The method according to claim 1, wherein
The lithium secondary battery according to the above.
【請求項3】 前記酸化銅付着黒鉛複合体を構成する黒
鉛粒子の粒径が80μm以下で、かつ生成する酸化銅単
独の粒径より大なることを特徴とする請求項1記載のリ
チウム二次電池。
3. The secondary lithium battery according to claim 1, wherein the particle size of the graphite particles constituting the graphite composite attached to copper oxide is 80 μm or less and larger than the particle size of the generated copper oxide alone. battery.
【請求項4】 前記酸化銅付着黒鉛複合体で、黒鉛と接
触させている酸化銅の比率が、黒鉛と酸化銅の重量比で
98.5:1.5〜55:45であることを特徴とする
請求項1記載のリチウム二次電池。
4. The copper oxide-adhered graphite composite, wherein a ratio of copper oxide in contact with graphite is 98.5: 1.5 to 55:45 in weight ratio of graphite to copper oxide. The lithium secondary battery according to claim 1, wherein
【請求項5】 負極を構成する酸化銅付着黒鉛複合体と
結着材の比率が、重量比で99:1〜70:30である
ことを特徴とする請求項1記載のリチウム二次電池。
5. The lithium secondary battery according to claim 1, wherein the weight ratio of the copper oxide-adhered graphite composite and the binder constituting the negative electrode is 99: 1 to 70:30.
JP17830094A 1994-07-29 1994-07-29 Lithium secondary battery Expired - Fee Related JP3200289B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17830094A JP3200289B2 (en) 1994-07-29 1994-07-29 Lithium secondary battery
US08/459,166 US5591547A (en) 1994-07-29 1995-06-02 Method of manufacturing a negative electrode for lithium secondary battery
DE69507094T DE69507094T2 (en) 1994-07-29 1995-07-28 Process for producing a negative electrode for lithium secondary battery
EP95305270A EP0698934B1 (en) 1994-07-29 1995-07-28 A method of manufacturing a negative electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17830094A JP3200289B2 (en) 1994-07-29 1994-07-29 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0845499A JPH0845499A (en) 1996-02-16
JP3200289B2 true JP3200289B2 (en) 2001-08-20

Family

ID=16046068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17830094A Expired - Fee Related JP3200289B2 (en) 1994-07-29 1994-07-29 Lithium secondary battery

Country Status (4)

Country Link
US (1) US5591547A (en)
EP (1) EP0698934B1 (en)
JP (1) JP3200289B2 (en)
DE (1) DE69507094T2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322908B1 (en) 1997-07-09 2001-11-27 Nec Corporation Organic electroluminescent device
US6329083B1 (en) 1997-11-05 2001-12-11 Nec Corporation Organic electroluminescent device containing a benzoperylene compound
US6465116B1 (en) 1998-06-08 2002-10-15 Nec Corporation Organic electroluminescent device
US6670051B2 (en) 1998-10-23 2003-12-30 Nec Corporation Organic electroluminescent device using hole-injectable, light-emitting material
US6699594B1 (en) 1998-06-08 2004-03-02 Nec Corporation Organic electroluminescent device
US6759144B2 (en) 1998-12-16 2004-07-06 Samsung Sdi Co., Ltd. Organic electroluminescence device

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776610A (en) * 1993-02-03 1998-07-07 Sharp Kabushiki Kaisha Carbon composite electrode material and method of making thereof
US5795680A (en) * 1995-11-30 1998-08-18 Asahi Glass Company Ltd. Non-aqueous electrolyte type secondary battery
WO1998024134A1 (en) * 1996-11-26 1998-06-04 Kao Corporation Negative electrode material for nonaqueous secondary battery
US5965297A (en) * 1997-10-20 1999-10-12 Mitsubhish Chemical Corporation Electrode materials having carbon particles with nano-sized inclusions therewithin and an associated electrochemical and fabrication process
US6143448A (en) * 1997-10-20 2000-11-07 Mitsubishi Chemical Corporation Electrode materials having carbon particles with nano-sized inclusions therewithin and an associated electrolytic and fabrication process
KR19990057611A (en) * 1997-12-30 1999-07-15 조정래 Lithium-ion Secondary Battery
US6287694B1 (en) 1998-03-13 2001-09-11 Superior Graphite Co. Method for expanding lamellar forms of graphite and resultant product
JP4187347B2 (en) * 1998-04-02 2008-11-26 三星エスディアイ株式会社 Method for producing negative electrode active material for lithium ion battery
US6304426B1 (en) * 1998-09-29 2001-10-16 General Electric Company Method of making an ultracapacitor electrode
US6989137B1 (en) * 1998-10-09 2006-01-24 Showa Denko K.K. Carbonaceous material for cell and cell containing the carbonaceous material
JP3103357B1 (en) * 1999-09-28 2000-10-30 株式会社サムスン横浜研究所 Method for producing negative electrode material for lithium secondary battery
KR100326465B1 (en) 1999-12-08 2002-02-28 김순택 Negative active material slurry composition for lithium secondary battery and method of preparing negative electrode by using same
JP4904639B2 (en) * 2001-06-14 2012-03-28 新神戸電機株式会社 Method for producing non-aqueous electrolyte secondary battery
US6808847B2 (en) * 2001-09-17 2004-10-26 The Gillette Company Alkaline cell with improved cathode including copper hydroxide and a sulfur additive
US8501858B2 (en) * 2002-09-12 2013-08-06 Board Of Trustees Of Michigan State University Expanded graphite and products produced therefrom
US20040127621A1 (en) * 2002-09-12 2004-07-01 Board Of Trustees Of Michigan State University Expanded graphite and products produced therefrom
US20060241237A1 (en) * 2002-09-12 2006-10-26 Board Of Trustees Of Michigan State University Continuous process for producing exfoliated nano-graphite platelets
US7662424B2 (en) * 2003-08-29 2010-02-16 Tdk Corporation Method of making composite particle for electrode, method of making electrode, method of making electrochemical device, apparatus for making composite particle for electrode, apparatus for making electrode, and apparatus for making electrochemical device
JP4937737B2 (en) * 2004-03-30 2012-05-23 株式会社クレハ Negative electrode material for non-aqueous electrolyte secondary battery, its production method, negative electrode and battery
US20080029395A1 (en) * 2006-08-01 2008-02-07 Gas Technology Institute Multi-functional filtration and ultra-pure water generator
US20080073288A1 (en) * 2006-04-21 2008-03-27 Qinbai Fan Multifunctional filtration and water purification systems
US20080035548A1 (en) * 2006-08-01 2008-02-14 Quos, Inc. Multi-functional filtration and ultra-pure water generator
US8017228B2 (en) * 2006-05-16 2011-09-13 Board Of Trustees Of Michigan State University Conductive composite compositions with fillers
US20080280031A1 (en) * 2006-05-16 2008-11-13 Board Of Trustees Of Michigan State University Conductive coatings produced by monolayer deposition on surfaces
US20090311436A1 (en) * 2006-05-16 2009-12-17 Board Of Trustees Of Michigan State University Conductive composite materials with graphite coated particles
US8088261B2 (en) * 2007-05-15 2012-01-03 Gas Technology Institute CuC1 thermochemical cycle for hydrogen production
CN103326002B (en) * 2013-06-26 2015-11-04 国网浙江嵊州市供电公司 The preparation method of a kind of Graphene-ferrous disulfide composite positive pole
CN103811759A (en) * 2014-02-20 2014-05-21 深圳市贝特瑞新能源材料股份有限公司 Modification method of natural graphite ball-milling machinery and modified natural graphite anode material
CN106299253B (en) * 2015-12-29 2019-01-25 山东精工电子科技有限公司 A kind of preparation method of lithium ion battery negative electrode
US11260373B2 (en) * 2020-02-04 2022-03-01 King Fahd University Of Petroleum And Minerals Colloidal-copper based water oxidation electrocatalyst
CN113860351A (en) * 2021-08-23 2021-12-31 中南大学 Preparation method and application of CuO-graphite composite material prepared from waste graphite

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122066A (en) 1985-04-30 1987-06-03 Mitsubishi Petrochem Co Ltd Nonaqueous solvent battery
JPS6290863A (en) 1985-05-10 1987-04-25 Asahi Chem Ind Co Ltd Secondary cell
JPS63213267A (en) 1987-02-27 1988-09-06 Asahi Glass Co Ltd Nonaqueous electrolyte secondary cell
US4939049A (en) * 1987-11-20 1990-07-03 Sanyo Electric Co., Ltd. Non-aqueous electrolyte cell and method of producing the same
JP2621294B2 (en) 1988-02-09 1997-06-18 ソニー株式会社 Rechargeable battery
JP2612320B2 (en) 1988-09-20 1997-05-21 新日本製鐵株式会社 Lithium secondary battery using carbon fiber for both electrodes
JPH03216960A (en) 1990-01-19 1991-09-24 Honda Motor Co Ltd Negative electrode for lithium battery
JP3136594B2 (en) 1990-02-28 2001-02-19 ソニー株式会社 Non-aqueous electrolyte secondary battery
JPH03285273A (en) 1990-03-30 1991-12-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH03289068A (en) 1990-04-05 1991-12-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP3053844B2 (en) 1990-06-05 2000-06-19 三菱化学株式会社 Secondary battery electrode
JP3070936B2 (en) 1990-08-31 2000-07-31 三洋電機株式会社 Rechargeable battery
JP2884746B2 (en) 1990-09-03 1999-04-19 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JP2943287B2 (en) 1990-09-04 1999-08-30 株式会社ブリヂストン Manufacturing method of non-aqueous electrolyte secondary battery
JPH04184863A (en) * 1990-11-19 1992-07-01 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JPH04259764A (en) * 1991-02-12 1992-09-16 Yuasa Corp Lithium secondary battery
JP3135613B2 (en) * 1991-07-11 2001-02-19 株式会社東芝 Lithium secondary battery
JP3233417B2 (en) 1991-07-25 2001-11-26 富士写真フイルム株式会社 Organic electrolyte secondary battery
JP3707801B2 (en) * 1992-03-13 2005-10-19 Fdk株式会社 Non-aqueous electrolyte secondary battery
DE69404901T2 (en) * 1993-05-14 1998-03-12 Sharp Kk Lithium secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322908B1 (en) 1997-07-09 2001-11-27 Nec Corporation Organic electroluminescent device
US6329083B1 (en) 1997-11-05 2001-12-11 Nec Corporation Organic electroluminescent device containing a benzoperylene compound
US6753097B2 (en) 1997-11-05 2004-06-22 Samsung Sdi Co., Ltd. Organic electroluminescent device
US6465116B1 (en) 1998-06-08 2002-10-15 Nec Corporation Organic electroluminescent device
US6699594B1 (en) 1998-06-08 2004-03-02 Nec Corporation Organic electroluminescent device
US6670051B2 (en) 1998-10-23 2003-12-30 Nec Corporation Organic electroluminescent device using hole-injectable, light-emitting material
US6759144B2 (en) 1998-12-16 2004-07-06 Samsung Sdi Co., Ltd. Organic electroluminescence device

Also Published As

Publication number Publication date
DE69507094T2 (en) 1999-06-24
EP0698934B1 (en) 1999-01-07
EP0698934A3 (en) 1996-10-16
DE69507094D1 (en) 1999-02-18
EP0698934A2 (en) 1996-02-28
US5591547A (en) 1997-01-07
JPH0845499A (en) 1996-02-16

Similar Documents

Publication Publication Date Title
JP3200289B2 (en) Lithium secondary battery
JP2960834B2 (en) Lithium secondary battery
JP3262704B2 (en) Carbon electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
KR101241810B1 (en) A production process for lithium-silicate-system compound, a positive-electrode active material comprising the lithium-silicate-system compound obtained by the production process for lithium-ion secondary battery, a positive electrode including the lithium-silicate-system compound for lithium-ion secondary battery, and lithium secondary battery
US5432029A (en) Lithium secondary battery
US5965296A (en) Nonaqueous secondary battery and a method of manufacturing a negative electrode active material
JP3994238B2 (en) Nonaqueous electrolyte lithium secondary battery
JP5731276B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
KR20170048211A (en) Negative electrode active particle and method for manufacturing the same
JP3304267B2 (en) Non-aqueous secondary battery and method for producing negative electrode active material
JPWO2008105490A1 (en) Particles containing compound having olivine structure, method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
WO2012147767A1 (en) Method for producing positive electrode active material for lithium secondary battery
JP6841362B1 (en) Positive electrode material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries and lithium ion secondary batteries
US20150243975A1 (en) Manufacturing method for electrode material, electrode material, and electric storage device provided with the electrode material
KR20130040252A (en) Method for producing lithium metal phosphate
WO2012144469A1 (en) Process for producing positive electrode active material for lithium secondary battery
JP2000149948A (en) Positive active material, lithium ion secondary battery and manufacture of its positive active material
JP2019149356A (en) Electrode material and manufacturing method thereof, electrode and lithium ion battery
KR20150050403A (en) Lithium battery
JP5760871B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, lithium ion secondary battery, and method for producing positive electrode material for lithium ion secondary battery
KR20200107732A (en) Electrode material, method for manufacturing electrode material, electrode, and lithium ion battery
WO2021199587A1 (en) Negative electrode active material for secondary batteries, and secondary battery using same
JP3340337B2 (en) Non-aqueous secondary battery and method for producing negative electrode active material
JPH11204145A (en) Lithium secondary battery
JP3140880B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees