JPH03216960A - Negative electrode for lithium battery - Google Patents
Negative electrode for lithium batteryInfo
- Publication number
- JPH03216960A JPH03216960A JP2010334A JP1033490A JPH03216960A JP H03216960 A JPH03216960 A JP H03216960A JP 2010334 A JP2010334 A JP 2010334A JP 1033490 A JP1033490 A JP 1033490A JP H03216960 A JPH03216960 A JP H03216960A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- porous carbon
- negative electrode
- layer
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 128
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 125
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 64
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 63
- 239000010410 layer Substances 0.000 claims abstract description 49
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 35
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000002344 surface layer Substances 0.000 claims abstract description 13
- 239000002131 composite material Substances 0.000 claims abstract description 9
- 239000011148 porous material Substances 0.000 claims description 9
- 230000006866 deterioration Effects 0.000 abstract description 7
- 239000000758 substrate Substances 0.000 abstract description 7
- 239000000463 material Substances 0.000 description 32
- 238000007599 discharging Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 5
- 239000007773 negative electrode material Substances 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- 210000001787 dendrite Anatomy 0.000 description 3
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 3
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、リチウム電池用負極に関し、特に大電流の取
り出しが可能で、充放電の繰り返しに対しても耐久性が
高いリチウム電池を与える負極に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a negative electrode for lithium batteries, and in particular to a negative electrode that provides a lithium battery that can draw a large current and has high durability against repeated charging and discharging. Regarding.
〔従来の技術及び発明が解決しようとする課題〕一般に
、負極活物質としてリチウムを用いた電池は、高エネル
ギー密度(大容量)で、軽量小型化することができる等
の利点を有し、一次電池として広く実用に供されている
。[Prior art and problems to be solved by the invention] In general, batteries using lithium as a negative electrode active material have advantages such as high energy density (large capacity), being lightweight and compact, and It is widely used as a battery.
また、リチウム二次電池も開発されつつあるが、以下の
ような問題点があり、まだ十分な性能を有するリチウム
二次電池は得られていない。In addition, lithium secondary batteries are also being developed, but there are the following problems, and a lithium secondary battery with sufficient performance has not yet been obtained.
まず、適切な負極活物質が開発されていない。First, suitable negative electrode active materials have not been developed.
例えば、従来の一次電池に用いられている負極活物質を
二次電池に使用した場合、充放電サイクルの再現性が悪
く、十分な特性を有する二次電池とならない。これは、
負極活物質として用いるリチウムが、充放電の繰り返し
により樹枝状結晶を生成しやすく、またそれが電解液と
反応しやすいので、負極が容易に劣化するからである。For example, when a negative electrode active material used in conventional primary batteries is used in a secondary battery, the reproducibility of charge/discharge cycles is poor and the secondary battery does not have sufficient characteristics. this is,
This is because the lithium used as the negative electrode active material tends to generate dendrites due to repeated charging and discharging, and these dendrites tend to react with the electrolyte, so that the negative electrode easily deteriorates.
また、リチウム電池は一般には高エネルギー密度(大容
量》とすることができるが、微弱電流しか取り出せず、
その用途が限られてしまう。In addition, although lithium batteries can generally have a high energy density (large capacity), they can only draw a weak current.
Its uses are limited.
さらに負極活物質としてリチウム金属をそのまま用いよ
うとすると、その高い反応性のために安全性の点で間頚
が残る。Furthermore, if lithium metal were to be used as it is as a negative electrode active material, there would be a problem with safety due to its high reactivity.
そこで、このようなリチウム電池の欠点を克服するため
のさまざまな試みがなされている。例えば、負極として
、リチウムの代わりにリチウムーアルミニウム合金を用
いて安全性及び充放電サイクルの耐久性を向上させる方
法があるが、このリチウムーアルミニウム合金からなる
負極を用いても充放電の繰り返しを受けるとやはり劣化
が起こり、十分なリサイクル寿命が得られない。また、
特定の格子面間隔を有する炭素繊維又は炭素粉末からな
る成型体にリチウムを吸蔵させた負極を有するリチウム
二次電池(特開昭62−268058号及び特開昭63
−102166号)もあるが、これらの二次電池から取
り出せる電流はそれほど大きくなく、大電流を取り出す
という目的には合致しない。Therefore, various attempts have been made to overcome these drawbacks of lithium batteries. For example, there is a method to improve safety and durability of charge/discharge cycles by using a lithium-aluminum alloy instead of lithium as a negative electrode, but even if a negative electrode made of this lithium-aluminum alloy is used, repeated charging and discharging is not possible. If the material is subjected to such damage, it will still deteriorate and will not have a sufficient recycling life. Also,
A lithium secondary battery having a negative electrode in which lithium is occluded in a molded body made of carbon fiber or carbon powder having a specific lattice spacing (Japanese Patent Application Laid-open Nos. 62-268058 and 63)
-102166), but the current that can be extracted from these secondary batteries is not so large and does not meet the purpose of extracting a large current.
従って本発明の目的は、大電流の取り出しが可能である
とともに、充放電の繰り返しを行っても負極の劣化が起
こらず、もってリサイクル寿命が長く、かつ安全性も向
上したリチウム電池を与えることのできる負極を提供す
ることである。Therefore, an object of the present invention is to provide a lithium battery that can draw a large current, does not cause deterioration of the negative electrode even after repeated charging and discharging, has a long recycling life, and has improved safety. The purpose is to provide a negative electrode that can be used.
上記目的に鑑み鋭意研究の結果、本発明者は、多孔質カ
ーボンを基材として用い、その表面に、実質的に基材の
孔部を塞がないリチウム層及び/又はリチウムを含有す
るアルミニウム層を形成するとともに、多孔質カーボン
基材の少なくとも表層部にはリチウムを吸蔵した負極と
すれば、大電流を取り出すことができるとともに充放電
の繰り返しに供しても十分な寿命を有することができ、
また安全性も向上したリチウム電池とすることができる
ことを発見し、本発明を完成した。As a result of intensive research in view of the above objectives, the present inventors have discovered that using porous carbon as a base material, a lithium layer and/or a lithium-containing aluminum layer that does not substantially block the pores of the base material on the surface thereof. By forming a negative electrode with lithium occluded in at least the surface layer of the porous carbon base material, a large current can be extracted and it can have a sufficient lifespan even after repeated charging and discharging.
They also discovered that it is possible to make a lithium battery with improved safety, and completed the present invention.
すなわち、本発明の第1のリチウム電池用負極は、少な
くとも表層部にリチウムが吸蔵してなるリチウム/カー
ボン層を有する多孔質カーボンと、実質的に前記多孔質
カーボンの孔部を塞がないようにその表面に形成された
リチウム層とからなる複合構造を有することを特徴とす
る。That is, the first negative electrode for lithium batteries of the present invention includes porous carbon having a lithium/carbon layer in which lithium is occluded at least in the surface layer, and a carbon material that does not substantially block the pores of the porous carbon. and a lithium layer formed on its surface.
また本発明の第2のリチウム電池用負極は、少なくとも
表層部にリチウムが吸蔵してなるリチウム/カーボン層
を有する多孔質カーボンと、実質的に前記多孔質カーボ
ンの孔部を塞がないようにその表面に形成されたリチウ
ムを含有するアルミニウム層とからなる複合構造を有す
ることを特徴とする。Further, the second negative electrode for a lithium battery of the present invention includes porous carbon having a lithium/carbon layer in which lithium is occluded at least in the surface layer, and a porous carbon having a lithium/carbon layer in which lithium is occluded at least in the surface layer, and a porous carbon that does not substantially block the pores of the porous carbon. It is characterized by having a composite structure consisting of an aluminum layer containing lithium formed on its surface.
さらに、本発明の第3のリチウム電池用負極は、少なく
とも表層邪にリチウムが吸蔵してなるリチウム/カーボ
ン層を有する多孔質カーボンと、実質的に前記多孔質カ
ーボンの孔部を塞がないようにその表面に形成されたリ
チウム層及びリチウムを含有するアルミニウム層とから
なる複合構造を有することを特徴とする。Furthermore, the third negative electrode for a lithium battery of the present invention includes porous carbon having a lithium/carbon layer in which lithium is occluded at least in the surface layer, and a structure that does not substantially block the pores of the porous carbon. It is characterized by having a composite structure consisting of a lithium layer formed on its surface and an aluminum layer containing lithium.
以下本発明を詳細に説明する。The present invention will be explained in detail below.
本発明で用いる多孔質カーボンは、例えば炭素繊維、炭
素ブロック又は人造黒鉛などから製造されたものであり
、特にその由来に限定されないが、以下に示す範囲の多
孔質となるカーボン材である。The porous carbon used in the present invention is produced, for example, from carbon fibers, carbon blocks, or artificial graphite, and is not particularly limited to its origin, but is a carbon material that is porous within the range shown below.
すなわちこの多孔質カーボンの空孔率は30〜95%、
好ましくは50〜90%で、見かけの密度は0.05〜
1.2glcd,好ましくは0. 1 〜0. 8 g
/cd ,また孔径は10JJI〜1闘、好ましくは2
0〜300虜である。That is, the porosity of this porous carbon is 30 to 95%,
Preferably 50-90%, apparent density 0.05-90%
1.2 glcd, preferably 0. 1 ~ 0. 8g
/cd, and the pore diameter is 10JJI to 1, preferably 2
0-300 prisoners.
本発明の第1のリチウム電池用負極は、上記の多孔質カ
ーボンを基材として、その表面に実質的に基材の孔部を
塞がないリチウム層を有し、また基材の少なくとも表層
部にはリチウムを吸蔵してなる複合体である。The first negative electrode for a lithium battery of the present invention uses the above porous carbon as a base material, has a lithium layer on its surface that does not substantially block the pores of the base material, and has at least a surface layer of the base material. is a complex formed by absorbing lithium.
多孔質カーボンの表面にリチウム層を形成するとともに
、多孔質カーボン基材の内部にリチウムを吸蔵させる方
法は種々考えられ、特に限定されないが、多孔質カーボ
ン基材及び金属リチウムを正負両極とし、リチウム金属
塩を有機溶媒等により溶解した電解液を用いた電解法や
、基材上で加熱によりリチウムを溶かすメルト法、また
は溶融状態のリチウム金属中に基材を浸漬するディッピ
ング法などを適用することができる。Various methods can be considered for forming a lithium layer on the surface of porous carbon and occluding lithium inside the porous carbon base material. Although not particularly limited, the porous carbon base material and metallic lithium are used as positive and negative electrodes, and lithium Applications include an electrolysis method using an electrolytic solution in which a metal salt is dissolved in an organic solvent, a melting method in which lithium is melted by heating on the substrate, or a dipping method in which the substrate is immersed in molten lithium metal. I can do it.
上記各方法で多孔質カーボン基材表面にリチウム層を形
成する際に、リチウムは原子の状態で基材の内部まで拡
敗し、基材表面にリチウム層を形成するだけではなく、
基材内部にリチウムを吸蔵することになる。なおリチウ
ムは多孔質カーボン基材全体に吸蔵されているのが最も
好ましいが、基材表面からある程度の深さとなる部分ま
でリチウムが吸蔵されていればよい。また多孔質カーボ
ン基材表面に形成されるリチウム層は、金属リチウムの
みならずリチウムーアルミニウムといった合金でもよく
、金属リチウムを含有する物質であればよい。When forming a lithium layer on the surface of a porous carbon substrate using each of the above methods, lithium spreads to the inside of the substrate in an atomic state, and not only forms a lithium layer on the surface of the substrate.
Lithium is occluded inside the base material. It is most preferable that lithium is occluded throughout the porous carbon base material, but it is sufficient that lithium is occluded to a certain depth from the surface of the base material. Further, the lithium layer formed on the surface of the porous carbon base material may be not only metallic lithium but also an alloy such as lithium-aluminum, and any material containing metallic lithium may be used.
本発明の第2のリチウム電池用負極は、上述の多孔質カ
ーボン基材表面に、リチウムを含有するアルミニウム層
を有するとともに、多孔質カーボン基材の少なくとも表
層部にはリチウムを吸蔵している。The second negative electrode for a lithium battery of the present invention has an aluminum layer containing lithium on the surface of the above-mentioned porous carbon base material, and lithium is occluded in at least the surface layer of the porous carbon base material.
リチウムを含有するアルミニウム層は、あらかじめアル
ミニウム層を蒸着や溶射等の方法で形成しておき、それ
にリチウムを吸蔵させたものであってもよいし、リチウ
ムーアルミニウム合金であってもよい。The aluminum layer containing lithium may be one in which an aluminum layer is formed in advance by a method such as vapor deposition or thermal spraying, and lithium is occluded therein, or it may be a lithium-aluminum alloy.
アルミニウム層にリチウムを吸蔵させる方法には、例え
ばアルミニウム層を非水溶媒中で過塩素酸リチウムの存
在下で還元する方法や、溶融リチウムに浸漬する方法な
どがある。アルミニウム中でのリチウムの拡散性は良好
であるので、基材表面にアルミニウム層を設けてこれを
溶融リチウムに浸漬することで、リチウムはアルミニウ
ム層を通って基材内邪にまで到達することができる。Methods for occluding lithium in the aluminum layer include, for example, reducing the aluminum layer in a non-aqueous solvent in the presence of lithium perchlorate, and immersing the aluminum layer in molten lithium. Lithium has good diffusivity in aluminum, so by providing an aluminum layer on the surface of the base material and immersing it in molten lithium, lithium can pass through the aluminum layer and reach the interior of the base material. can.
アルミニウムの導入により、基材であるカーポンとリチ
ウムとのぬれ性が向上し、リチウムと基材との結合力が
大きくなるとともに、リチウムの樹枝状結晶の生成を有
効に防止でき、電極の安定性が向上する。またアルミニ
ウムの存在により、カーボンからなる基材へのリチウム
の吸着、吸蔵がより容易になる。The introduction of aluminum improves the wettability of the base material carbon and lithium, increasing the bonding strength between lithium and the base material, and effectively preventing the formation of lithium dendrites, improving the stability of the electrode. will improve. Furthermore, the presence of aluminum makes it easier to adsorb and occlude lithium into the base material made of carbon.
本発明の第3のリチウム電池用負極は、上述の多孔質カ
ーボンからなる基材の表面に、リチウム層と、リチウム
を含有するアルミニウムとを有しており、この2つの層
は実質的に基材の孔部を塞がない。The third negative electrode for lithium batteries of the present invention has a lithium layer and aluminum containing lithium on the surface of the above-mentioned porous carbon base material, and these two layers are substantially based on the base material. Do not block the holes in the material.
このような負極は、例えばあらかじめ表面にアルミニウ
ムをコーティングした多孔質カーボンを溶融リチウム中
に浸漬することで得られる。前述の通り、アルミニウム
はリチウムを拡散しやすいので、アルミニウムコーティ
ング層を有する多孔質カーボンを溶融リチウム中に浸漬
すれば、リチウムは容易にアルミニウム層内を拡散して
いき、カーボン基材にまでリチウムが到達し、基村内部
(少なくとも基材表層部)にリチウムが吸蔵される。Such a negative electrode can be obtained, for example, by immersing porous carbon whose surface is coated with aluminum in advance in molten lithium. As mentioned above, aluminum easily diffuses lithium, so if porous carbon with an aluminum coating layer is immersed in molten lithium, lithium will easily diffuse into the aluminum layer, and lithium will reach the carbon base material. lithium is absorbed into the base layer (at least in the surface layer of the base material).
このようなリチウム層と、リチウムを含有するアルミニ
ウム層と、リチウムを吸蔵した多孔質カーボンとの複合
体とすることで、充放電サイクル性能の向上をより高め
ることができる。またリチウムの吸着、吸蔵をより容易
にすることができる。By forming a composite of such a lithium layer, an aluminum layer containing lithium, and porous carbon that occludes lithium, the charge/discharge cycle performance can be further improved. In addition, adsorption and storage of lithium can be made easier.
本発明のリチウム電池用負極は、多孔質カーボンをその
基材として用いており、これによって電極としての実効
表面積が増大することになり、大電流の取り出しが可能
となる。The negative electrode for lithium batteries of the present invention uses porous carbon as its base material, which increases the effective surface area of the electrode and enables extraction of a large current.
またリチウムそのものを負極として用いるのではなく、
多孔質カーボンを基材としてその上にリチウム層及び/
又は、リチウムを含有するアルミニウム層を設けるとと
もに、基材の少なくとも表層部にリチウムを吸蔵した複
合体としているので、充放電サイクルによる電極の劣化
を防止することができる。Also, instead of using lithium itself as a negative electrode,
Porous carbon is used as a base material, and a lithium layer and/or
Alternatively, since an aluminum layer containing lithium is provided and a composite is formed in which lithium is occluded in at least the surface layer of the base material, deterioration of the electrode due to charge/discharge cycles can be prevented.
さらにリチウムはアルミニウム層又は基材のカーボンと
複合化されることになるので、負極の空気中での反応、
又は水系溶液との接触による反応が起こったとしてもそ
れは穏やかとなり、安全性も向上する。Furthermore, since lithium will be composited with the aluminum layer or the carbon of the base material, the reaction in the air of the negative electrode,
Or even if a reaction occurs due to contact with an aqueous solution, it will be milder and safety will be improved.
本発明を以下の実施例によりさらに詳細に説明する。 The present invention will be explained in further detail by the following examples.
実施例1
40mmX40mmlご切り出した厚さ2 mmの多孔
質カーボン板(SG−200. 昭和電工■製)を、
300 ℃に溶融したリチウム中に30分間浸漬した。Example 1 A porous carbon plate (SG-200, manufactured by Showa Denko ■) with a thickness of 2 mm was cut out from a 40 mm x 40 mm sheet.
It was immersed in molten lithium at 300°C for 30 minutes.
これを引き上げる際に、表面についている余分なリチウ
ムを取り除いて、多孔質カーボン板上にリチウム層を有
し、多孔質カーボン板内部にリチウムを吸蔵するリチウ
ム電池用負極を得た。When this was pulled up, excess lithium on the surface was removed to obtain a lithium battery negative electrode having a lithium layer on the porous carbon plate and occluding lithium inside the porous carbon plate.
上記の負極と、対極として白金板を用い、また電解液と
して過塩素酸リチウムを1モル/1の濃度になるように
溶解したプロビレンカーボネート/エチレングリコール
ジメチルエーテル1対I溶液を用いた。The above negative electrode and a platinum plate were used as a counter electrode, and a 1:I solution of propylene carbonate/ethylene glycol dimethyl ether in which lithium perchlorate was dissolved at a concentration of 1 mol/1 was used as an electrolyte.
上記の条件下で、リチウム電極についてポテンシャル掃
引法により、電位の変化(△V)に対する電流量の変化
(△I)を調べた。そして、両者の比ΔI/△Vを、後
述する比較例1の電池(負極としてリチウム金属を用い
、他は実施例lと同様とした電池》の△I/△Vと比較
した。結果を第1表に示す。Under the above conditions, the change in current amount (ΔI) with respect to the change in potential (ΔV) was investigated using the potential sweep method for the lithium electrode. Then, the ratio ΔI/ΔV between the two was compared with ΔI/ΔV of a battery of Comparative Example 1 (a battery using lithium metal as the negative electrode and the other things being the same as in Example 1), which will be described later. It is shown in Table 1.
また、この電池について、50m^の定電流放電と充電
とを交互に繰り返す操作を50回行ったところ、電位の
再現性もよく、充放電のサイクル性能は良好であった。Further, when this battery was subjected to an operation of alternately repeating constant current discharging and charging at 50 m^ 50 times, the reproducibility of the potential was good and the charging/discharging cycle performance was good.
比較例1
負極として金属リチウムを用いた以外は実施例lと同様
にした電池を作製した。Comparative Example 1 A battery was produced in the same manner as in Example 1 except that metallic lithium was used as the negative electrode.
得られた電池について、実施例1と同様にしてΔ【/△
Vの値を求めた。また実施例1と同様に50mAの定電
流放電により充放電の繰り返しを行ったところ、16回
の充放電の繰り返しを超えると再現性がなくなった。Regarding the obtained battery, Δ[/△
The value of V was determined. Further, when charging and discharging were repeated by constant current discharge at 50 mA in the same manner as in Example 1, reproducibility was lost after 16 repetitions of charging and discharging.
実施例2
実施例1と同一の多孔質カーボン板を、350℃に溶解
したリチウム/アルミニウム(アルミニウム30重量%
)中に60分間浸漬し、引き上げ時に多孔質カーボン板
の表面についた余分なリチウム/アルミニウムを除去し
て、多孔質カーボン板上にリチウムを含有するアルミニ
ウム層を有し、内部にリチウムを吸蔵するリチウム電池
用負極を得た。Example 2 The same porous carbon plate as in Example 1 was prepared using lithium/aluminum (30% by weight aluminum) dissolved at 350°C.
) for 60 minutes to remove excess lithium/aluminum attached to the surface of the porous carbon plate when pulled up, resulting in an aluminum layer containing lithium on the porous carbon plate, which occludes lithium inside. A negative electrode for a lithium battery was obtained.
この負極を用いた以外は実施例lと同様の仕様で電池を
作製した。A battery was produced with the same specifications as Example 1 except for using this negative electrode.
得られた電池について実施例lと同様に△I/△Vを求
め、比較例lにおける電池の△r/ΔVと比較した。結
果を第1表に示す。For the obtained battery, ΔI/ΔV was determined in the same manner as in Example 1, and compared with Δr/ΔV of the battery in Comparative Example 1. The results are shown in Table 1.
また実施例1と同様に50回の充放電を繰り返したが、
充放電サイクル性能の低下は見られなかった。In addition, charging and discharging were repeated 50 times in the same manner as in Example 1, but
No deterioration in charge/discharge cycle performance was observed.
実施例3
実施例1と同一の多孔質カーボン板にアルミニウム層を
蒸着により形成した。Example 3 An aluminum layer was formed on the same porous carbon plate as in Example 1 by vapor deposition.
これを過塩素酸リチウム溶液(溶媒としてブロビレンカ
ーボネート/エチレングリコールジメチルエーテル1対
1溶液を用いる)により還元し、リチウムを含有するア
ルミニウム層を表面に有し、多孔質カーボン板内部にリ
チウムを吸蔵するリチウム電池用負極を得た。This is reduced with a lithium perchlorate solution (a 1:1 solution of brobylene carbonate/ethylene glycol dimethyl ether is used as a solvent), and an aluminum layer containing lithium is formed on the surface, and lithium is occluded inside the porous carbon plate. A negative electrode for a lithium battery was obtained.
この負極を用いた以外は実施例1と同様の仕様とした電
池を作製した。A battery was produced with the same specifications as in Example 1 except that this negative electrode was used.
得られた電池について実施例1と同様にΔI/△Vを求
め、評価した。結果を第1表に示す。Regarding the obtained battery, ΔI/ΔV was determined and evaluated in the same manner as in Example 1. The results are shown in Table 1.
実施例4
実施例lと同一の多孔買カーボン板の表面に蒸着により
アルミニウム層を形成した。Example 4 An aluminum layer was formed by vapor deposition on the surface of the same porous carbon plate as in Example 1.
これを溶融リチウムに30分間浸漬し、引き上げ時に表
面に付着した余分なリチウムを除去して、表面に上から
順に、リチウム層と、リチウムを含有するアルミニウム
層とを有し、内部にリチウムを吸蔵する多孔質カーボン
板からなるリチウム用とした電池を作製した。This is immersed in molten lithium for 30 minutes to remove excess lithium that adhered to the surface when pulled up.The surface has a lithium layer and an aluminum layer containing lithium in order from the top, and lithium is occluded inside. A lithium battery was fabricated using a porous carbon plate.
得られた電池について実施例1と同様に△I/ΔVを求
め、評価した。結果を第1表に示す。The obtained battery was evaluated by determining ΔI/ΔV in the same manner as in Example 1. The results are shown in Table 1.
また実施例lと同様にして50回の充放電を繰り返した
が、充放電サイクル性能の低下は見られなかった。Further, charging and discharging was repeated 50 times in the same manner as in Example 1, but no deterioration in charge/discharge cycle performance was observed.
比較例2、3
比較として、負極にリチウムーアルミニウム合金(重量
比1:1)を用いたもの(比較例2)、アルミニウム板
に電解によりリチウムを付加したもの(比較例3)を用
い、他は実施例lと同様にした電池を作製し、やはり実
施例1と同様に△■/△Vの値を求めた。これを比較例
lのそれと比べて評価した。結果を第1表に示す。Comparative Examples 2 and 3 For comparison, a negative electrode using a lithium-aluminum alloy (weight ratio 1:1) (Comparative Example 2), an aluminum plate with lithium added by electrolysis (Comparative Example 3), and others A battery was prepared in the same manner as in Example 1, and the value of Δ■/ΔV was determined in the same manner as in Example 1. This was evaluated by comparing it with that of Comparative Example 1. The results are shown in Table 1.
第 1 表
注
1》比較例1における△I/△Vを1とした場合の相対
値。Table 1 Note 1》Relative value when △I/△V in Comparative Example 1 is set to 1.
2) 50mAの定電流放電と充電との繰り返しの回数
。2) Number of repetitions of 50 mA constant current discharge and charge.
3)測定せず。3) Not measured.
本発明によれば多孔質カーボンを負極基材として用いて
いるために、電極としての実効表面積が増大し、もって
大電流の取り出しが可能となる。According to the present invention, since porous carbon is used as the negative electrode base material, the effective surface area of the electrode increases, thereby making it possible to extract a large current.
また基材がカーボンであり、これに直接又はアルミニウ
ムを介してリチウムが付加されているので、充放電の繰
り返しを行っても負極の劣化が防止でき、充放電のサイ
クル性能が向上する。また上記構造を有しているので、
電極が空気もしくは水に触れた場合においても、リチウ
ムの反応性が低くなり、安全性も向上する。Furthermore, since the base material is carbon and lithium is added to it either directly or via aluminum, deterioration of the negative electrode can be prevented even when charging and discharging are repeated, and the charging and discharging cycle performance is improved. Also, since it has the above structure,
Even when the electrode comes into contact with air or water, the reactivity of lithium is reduced, improving safety.
従って本発明の負極は、大電流を取り出すことができ、
充放電のサイクル性能及び安全性が向上したリチウム二
次電池を与えることができる。Therefore, the negative electrode of the present invention can extract a large current,
A lithium secondary battery with improved charge/discharge cycle performance and safety can be provided.
Claims (3)
ウム/カーボン層を有する多孔質カーボンと、実質的に
前記多孔質カーボンの孔部を塞がないようにその表面に
形成されたリチウム層とからなる複合構造を有すること
を特徴とするリチウム電池用負極。(1) Porous carbon having a lithium/carbon layer in which lithium is occluded at least in the surface layer, and a lithium layer formed on the surface so as not to substantially block the pores of the porous carbon. A negative electrode for a lithium battery, characterized by having a composite structure.
ウム/カーボン層を有する多孔質カーボンと、実質的に
前記多孔質カーボンの孔部を塞がないようにその表面に
形成されたリチウムを含有するアルミニウム層とからな
る複合構造を有することを特徴とするリチウム電池用負
極。(2) Contains porous carbon having a lithium/carbon layer in which lithium is occluded at least in the surface layer, and lithium formed on the surface so as not to substantially block the pores of the porous carbon. A negative electrode for a lithium battery characterized by having a composite structure consisting of an aluminum layer.
ウム/カーボン層を有する多孔質カーボンと、実質的に
前記多孔質カーボンの孔部を塞がないようにその表面に
形成されたリチウム層及びリチウムを含有するアルミニ
ウム層とからなる複合構造を有することを特徴とするリ
チウム電池用負極。(3) Porous carbon having a lithium/carbon layer in which lithium is occluded at least in the surface layer, and a lithium layer and lithium formed on the surface so as not to substantially block the pores of the porous carbon. A negative electrode for a lithium battery, characterized by having a composite structure consisting of an aluminum layer containing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010334A JPH03216960A (en) | 1990-01-19 | 1990-01-19 | Negative electrode for lithium battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010334A JPH03216960A (en) | 1990-01-19 | 1990-01-19 | Negative electrode for lithium battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03216960A true JPH03216960A (en) | 1991-09-24 |
Family
ID=11747303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010334A Pending JPH03216960A (en) | 1990-01-19 | 1990-01-19 | Negative electrode for lithium battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03216960A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5432029A (en) * | 1993-05-14 | 1995-07-11 | Sharp Kabushiki Kaisha | Lithium secondary battery |
EP0698934A2 (en) | 1994-07-29 | 1996-02-28 | SHARP Corporation | A method of manufacturing a negative electrode for lithium secondary battery |
EP0713256A1 (en) | 1994-10-27 | 1996-05-22 | Sharp Kabushiki Kaisha | Lithium secondary battery and process for preparing negative-electrode active material for use in the same |
US6287933B1 (en) * | 1988-07-15 | 2001-09-11 | Nippondenso Co., Ltd. | Semiconductor device having thin film resistor and method of producing same |
US20150286140A1 (en) * | 2012-08-08 | 2015-10-08 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Substrate for high-resolution electronic lithography and corresponding lithography method |
US20190097212A1 (en) * | 2017-09-27 | 2019-03-28 | Toyota Jidosha Kabushiki Kaisha | Metal negative electrode secondary battery and method of manufacturing same |
WO2020250816A1 (en) * | 2019-06-10 | 2020-12-17 | マクセルホールディングス株式会社 | Non-aqueous electrolyte battery and production method for same |
WO2024071175A1 (en) * | 2022-09-29 | 2024-04-04 | マクセル株式会社 | Multilayer sheet for alloy formation, method for producing negative electrode for nonaqueous electrolyte batteries, and method for producing nonaqueous electrolyte battery |
-
1990
- 1990-01-19 JP JP2010334A patent/JPH03216960A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6287933B1 (en) * | 1988-07-15 | 2001-09-11 | Nippondenso Co., Ltd. | Semiconductor device having thin film resistor and method of producing same |
US5432029A (en) * | 1993-05-14 | 1995-07-11 | Sharp Kabushiki Kaisha | Lithium secondary battery |
EP0698934A2 (en) | 1994-07-29 | 1996-02-28 | SHARP Corporation | A method of manufacturing a negative electrode for lithium secondary battery |
EP0713256A1 (en) | 1994-10-27 | 1996-05-22 | Sharp Kabushiki Kaisha | Lithium secondary battery and process for preparing negative-electrode active material for use in the same |
US20150286140A1 (en) * | 2012-08-08 | 2015-10-08 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Substrate for high-resolution electronic lithography and corresponding lithography method |
US20190097212A1 (en) * | 2017-09-27 | 2019-03-28 | Toyota Jidosha Kabushiki Kaisha | Metal negative electrode secondary battery and method of manufacturing same |
US10873087B2 (en) * | 2017-09-27 | 2020-12-22 | Toyota Jidosha Kabushiki Kaisha | Metal negative electrode secondary battery and method of manufacturing same |
WO2020250816A1 (en) * | 2019-06-10 | 2020-12-17 | マクセルホールディングス株式会社 | Non-aqueous electrolyte battery and production method for same |
CN113950762A (en) * | 2019-06-10 | 2022-01-18 | 麦克赛尔株式会社 | Nonaqueous electrolyte battery and method for manufacturing same |
WO2024071175A1 (en) * | 2022-09-29 | 2024-04-04 | マクセル株式会社 | Multilayer sheet for alloy formation, method for producing negative electrode for nonaqueous electrolyte batteries, and method for producing nonaqueous electrolyte battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100250860B1 (en) | Current collector for lithium ion batteries and a method of preparing the same | |
EP0848435B1 (en) | Lithium battery and production method thereof | |
JP4629902B2 (en) | Method for manufacturing lithium secondary battery | |
US20150037672A1 (en) | Anode active material-containing slurry, anode using the slurry and electrochemical device comprising the anode | |
WO2017190584A1 (en) | Secondary battery of zinc-lithium-manganese water system and preparation method therefor | |
CN108550859A (en) | Porous current collector and preparation method thereof and lithium battery | |
JPWO2015030230A1 (en) | Protective film, separator and secondary battery using the same | |
JP4096438B2 (en) | Secondary power supply | |
JP2002015771A (en) | Nonaqueous electrolyte and nonaqueous electrlyte secondary cell | |
JPH03216960A (en) | Negative electrode for lithium battery | |
KR20220129653A (en) | Anode pole piece, battery and electronic device using the pole piece | |
EP1248306A2 (en) | The process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same | |
JP4973882B2 (en) | Capacitors | |
JPH06215765A (en) | Alkaline storage battery and manufacture thereof | |
JP5565114B2 (en) | Capacitor using porous metal | |
US9705135B2 (en) | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
JP2545216B2 (en) | Electric double layer capacitor | |
JP2014187383A (en) | Capacitor arranged by use of metal porous body | |
CN114566393A (en) | Composite positive electrode material for lithium ion capacitor and application thereof | |
JP3644427B2 (en) | Cadmium negative electrode and nickel cadmium storage battery containing the same | |
KR100384384B1 (en) | Lithium ion polymer battery having superior temperatrure property and process for preparing the same | |
JP2003272592A (en) | Battery separator, battery using the same, and manufacturing method of battery separator | |
KR20220057564A (en) | Improved lead acid battery separator incorporating carbon, and improved battery, system, vehicle, and related methods | |
JP5565112B2 (en) | Capacitor using porous metal | |
JP3807691B2 (en) | Negative electrode for lithium secondary battery and method for producing the same |