JP3807691B2 - Negative electrode for lithium secondary battery and method for producing the same - Google Patents

Negative electrode for lithium secondary battery and method for producing the same Download PDF

Info

Publication number
JP3807691B2
JP3807691B2 JP14430197A JP14430197A JP3807691B2 JP 3807691 B2 JP3807691 B2 JP 3807691B2 JP 14430197 A JP14430197 A JP 14430197A JP 14430197 A JP14430197 A JP 14430197A JP 3807691 B2 JP3807691 B2 JP 3807691B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium secondary
graphite
secondary battery
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14430197A
Other languages
Japanese (ja)
Other versions
JPH10334916A (en
Inventor
寿 塚本
中島  剛
朋仁 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP14430197A priority Critical patent/JP3807691B2/en
Publication of JPH10334916A publication Critical patent/JPH10334916A/en
Application granted granted Critical
Publication of JP3807691B2 publication Critical patent/JP3807691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は活物質を炭素質材料から構成したリチウム二次電池用負極及びその製造方法に関する。
【0002】
【従来の技術】
この種のリチウム二次電池は、負極の炭素質材料にリチウムイオンが出入りして充放電がなされるため、安全性が高いという利点があり、近年、多くの種類のものが開発されている。負極の炭素質材料としては充放電容量の面からグラファイトが最も好ましいとされているが、これはプロピレンカーボネート(PC)を主体とする電解液に対して反応性があるため、低温特性が悪いエチレンカーボネート(EC)等を使用せざるを得ず、この点の改良が待たれていた。
【0003】
グラファイトのPCに対する反応性を抑制する技術としては、例えば特開平5−121066号公報に記載された発明が公知である。これは、グラファイト粒子を石油ピッチ等と混合した後に焼成することにより、グラファイト粒子の表面に無定型炭素の被覆を形成するものである。このような無定形炭素被覆のグラファイトを活物質として使用した負極では、PCとの反応性が抑えられて低温特性に優れたリチウム二次電池を構成することができる。
【0004】
【発明が解決しようとする課題】
しかしながら、上述の炭素質材料を使用した負極では、電池として構成したときの高温保存特性が悪いという問題があった。すなわち、電池を高温度に保存した場合に、電池容量が著しく低下してしまうのである。これは、次のような原因によると推定される。
【0005】
すなわち、従来の方法で製造した負極の活物質では、グラファイトと無定形炭素或いは低結晶性炭素からなる皮膜との界面においてグラファイト層と皮膜層との間で十分な化学結合が持たれておらず、グラファイトのエッジ面の炭素原子が不飽和結合の状態で多く残留している。従って、この残留不飽和結合炭素が、高温度になると電解液中のリチウムイオンと反応して充放電に寄与するリチウムイオン量を減らしてしまうのである。
【0006】
しかも、従来製法では、グラファイトを覆う皮膜の厚さが相当に厚くなってしまうため、充放電容量の少ない皮膜成分が不必要に増えて活物質のエネルギー密度を低下させてしまうという問題もあった。
【0007】
かかる事情にあるから、無定形炭素や低結晶性炭素などによる耐PC性皮膜を形成するためには、エッジ面の不飽和炭素のほとんどと化学的に結合し、しかも、できるだけ薄い皮膜を形成することが望ましい。しかし、グラファイト粒子の表面にいわは物理的なコーティングによって低結晶性炭素の被覆を形成するという特開平5−121066号公報に記載された従来の製造方法では、低結晶性炭素の膜厚を十分に薄くすることは困難である。また、本発明者らは、グラファイトを高温の不活性雰囲気において炭化水素を導入し、炭化水素の熱分解によってグラファイト表面に低結晶性炭素の皮膜を成長させることも試みたが、これでは薄い膜厚の被覆を形成できるものの、電解液との反応性の抑制が十分に行われないという問題が生ずるものであった。
【0008】
本発明は上記事情に鑑みてなされたもので、その目的は、低温性能及び高温保存特性を改良でき、しかも、容量増大も可能にできるリチウム二次電池用負極及びその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段及びその作用・効果】
請求項1の発明は、負極の活物質の製造に際し、グラファイトを非酸化雰囲気で加熱して表面の酸素を取り除く活性化処理を行い、その後、高温不活性雰囲気下で有機物を導入して活性化グラファイトの表面に低結晶性炭素又は炭素化合物の皮膜を形成するところに特徴を有する。
上記発明において、グラファイトを非酸化雰囲気で高温度に加熱すると、表面に結合している酸素がCO又はCO2 の形で除去され、活性化された炭素原子が露出する。その加熱温度については、グラファイト表面の汚れ状態や生産性等を考慮して種々設定することができるが、800℃〜1200℃程度とすることが好ましい。
【0010】
この後、高温不活性雰囲気下で例えば炭化水素等の有機物を導入すると、その有機物の熱分解により生成した炭素がグラファイト粒子の表面に析出して低結晶性炭素又は炭素化合物の薄膜が形成される。この場合の加熱温度及び加熱時間も生産性等を考慮して設定することができるが、600℃〜1200℃程度で30分から90分程度が好ましく、有機物は例えば窒素ガス等の不活性ガスと共に炉内に導入することが好ましい。
【0011】
このようにして低結晶性炭素又は炭素化合物により被覆されたグラファイトを活物質とし、例えばこれにバインダを添加して集電体に塗布して乾燥させることによりリチウム二次電池の負極を構成することができる。この負極によれば、グラファイトの表面が低結晶性炭素又は炭素化合物の皮膜により覆われており、グラファイト部分にまでPC電解液が侵入できないため、PCの反応を抑えることができる。また、グラファイト表面の炭素をいったん活性化してから有機物の熱分解によって低結晶性炭素又は炭素化合物をグラファイト表面に結合させるから、化学結合が強固で均一な皮膜を形成することができ、さらにグラファイト表面の未結合の炭素原子(不対電子を有する炭素原子)の数を大幅に減らしてグラファイトと低結晶性炭素又は炭素化合物との間のC−C結合を増大させることができる。このことは、低結晶性炭素又は炭素化合物の被覆の膜厚を薄くしても電解液との反応性を十分に抑えることができることを意味し、充放電容量が少ない部分の膜厚が薄い分、活物質のエネルギー密度を高めて充放電容量を増大させることができる。
しかも、この方法で製造された低結晶性炭素又は炭素化合物の皮膜で覆ったグラファイトでは、上述のようにグラファイト層と低結晶性炭素層又は炭素化合物との間の結合度が高まるから、サイクル特性も大きく向上する。
【0012】
請求項2の発明は、上記発明の活性化処理に先だってグラファイト表面を酸又はアルカリ液により洗浄する清浄化処理を行うところに特徴を有する。この清浄化処理を行うと、グラファイト表面に付着・吸着或いは結合している不純物が除去されるから、活性化処理がより効率的に行われて一層の好結果が得られる。なお、洗浄液としては、硝酸や硫酸等の強酸が最も好ましい。
【0013】
ところで、本発明者らの研究によれば、低結晶性炭素被覆を構成する炭素原子の一部を窒素原子で置換した炭素化合物であるCxNの皮膜とすると、化学的により安定となって高温保存特性が改善されることが発見された。
【0014】
このCxNの皮膜は、上述した請求項1又は2の発明において、有機物として窒素を含有する有機物を使用すると効率的に形成することができ(請求項3の発明)、特にアセトニトリル蒸気を窒素ガスと共に導入することが最も好ましい。なお、グラファイト粒子の表面に形成されたCxNの皮膜は、XPS分析(X線光電子分光法)によって確認することができる。XPS分析によっては表面がCxO,CyNOzという成分として分析されるが、測定深度を深めて行くとO,Nの相対量が減少してゆくから、CxNの表面皮膜が形成されていることが明らかである。
【0015】
【実施例】
以下、本発明のいくつかの実施例を比較例とともに説明する。ここで、グラファイト粒子は平均粒径7μmの天然黒鉛を使用している。
【0016】
[実施例1]
まず、グラファイト粒子を94%硝酸によって洗浄してその表面の不純物を除去するとともに、表面を酸化させた(清浄化処理)。次に、そのグラファイトを非酸化雰囲気で加熱して表面の酸素を取り除く活性化処理を行った。これは高温還元炉又は高温真空炉にグラファイトを収容して950℃に加熱することにより行い、これにてグラファイト表面の酸素原子がCO又はCO2 の形で取り除かれて活性な炭素原子が表面に露出する。
【0017】
次に、その活性化グラファイトを外気に触れさせることなく窒素雰囲気炉に導入して950℃に加熱しておき、ここにアセトニトリル蒸気を窒素ガスとともに導入した。このときアセトニトリルの分圧は0.9×104Paで、全圧は1×105Paであり、処理時間は30分から1時間30分であった。これにより、活性化グラファイトの表面にCxNの皮膜が形成された。
【0018】
このグラファイト粒子の92重量部に対して、N−メチルピロリドンを溶媒とした10重量%濃度のポリ弗化ビニリデン溶液をポリ弗化ビニリデンが8重量部となるように加えて攪拌し、これを負極ペーストとした。この負極ペーストを厚さ30μmの銅箔に厚みが100μmとなるように塗布した後、100℃で2時間真空乾燥した。これを2cm角に切り出して多孔度が25%となるようにプレスして試験極とした。
相手極には金属リチウム板を用い、これらを例えばポリエチレン製の微孔膜セパレータを挟んで周知の電池構造とし、ここにプロピレンカーボネート(PC)とエチレンカーボネート(EC)との体積比1:1の混合物に1モルLi PF6を混合した電解液を注液してリチウム二次電池を構成した。
【0019】
[実施例2]
上述のアセトニトリル蒸気に代えて炭化水素(ベンゼン又はフェノール)を使用したところが相違し、その他は同一条件である。
【0020】
[比較例]
キノリン15重量部に3重量部のバインダーピッチを溶解させ、実施例1,2と同一のグラファイト粒子を1重量部浸漬し、次いでキノリンを蒸発させた後に、窒素ガス中で400℃で焼成した。このようにして製造したグラファイトを使用したところが相違し、その他は実施例1と同一条件である。
【0021】
[高温保存特性の評価]
上記3種のリチウム二次電池を0.2mA/cm2 の定電流で負極電位が金属リチウム正極に対して0Vになるまで充電した後に、45℃で30日間放置した。その後、室温で0.2mA/cm2 の放電電流によって放電させて測定した場合の残存容量と、初期容量との比率(容量保持率%)を計算した。測定結果は、次の表1のようであり、特にCxN皮膜を形成した実施例1が格段に優れた高温保存性を示した。
【0022】
【表1】

Figure 0003807691
ちなみに、上述の実施例1及び実施例2において製造したCxN及び低結晶性炭素被覆のグラファイトのXPS分析結果を次表に示す。実施例1では、測定深度を深めて行くと(照射角度が大きいほど表面から深い部分の組成を表す)、O,Nの相対量が減少してゆき、CxNの表面皮膜が形成されていることが判る。
【0023】
【表2】
Figure 0003807691
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode for a lithium secondary battery in which an active material is composed of a carbonaceous material and a method for producing the same.
[0002]
[Prior art]
This type of lithium secondary battery has the advantage of high safety because lithium ions enter and leave the carbonaceous material of the negative electrode and is charged and discharged. In recent years, many types of lithium secondary batteries have been developed. As the carbonaceous material for the negative electrode, graphite is most preferable from the viewpoint of charge / discharge capacity, but this is reactive to electrolytes mainly composed of propylene carbonate (PC), so that ethylene has poor low-temperature characteristics. Carbonate (EC) or the like had to be used, and improvement of this point was awaited.
[0003]
As a technique for suppressing the reactivity of graphite to PC, for example, an invention described in Japanese Patent Laid-Open No. 5-121066 is known. In this method, the graphite particles are mixed with petroleum pitch or the like and then fired to form an amorphous carbon coating on the surface of the graphite particles. A negative electrode using such amorphous carbon-coated graphite as an active material can constitute a lithium secondary battery that has low reactivity with PC and is excellent in low-temperature characteristics.
[0004]
[Problems to be solved by the invention]
However, the negative electrode using the above-mentioned carbonaceous material has a problem that the high-temperature storage characteristics when it is configured as a battery are poor. That is, when the battery is stored at a high temperature, the battery capacity is significantly reduced. This is presumed to be caused by the following causes.
[0005]
That is, the negative electrode active material manufactured by the conventional method does not have a sufficient chemical bond between the graphite layer and the coating layer at the interface between the graphite and the coating made of amorphous carbon or low crystalline carbon. Many carbon atoms on the edge surface of graphite remain in an unsaturated bond state. Therefore, when the residual unsaturated bonded carbon reaches a high temperature, it reacts with the lithium ions in the electrolytic solution to reduce the amount of lithium ions contributing to charge / discharge.
[0006]
Moreover, in the conventional manufacturing method, the thickness of the film covering the graphite is considerably increased, so that there is a problem that the film component having a small charge / discharge capacity is unnecessarily increased and the energy density of the active material is lowered. .
[0007]
Under such circumstances, in order to form a PC-resistant film made of amorphous carbon, low crystalline carbon, etc., it is chemically bonded to most of the unsaturated carbon on the edge surface, and as thin as possible. It is desirable. However, in the conventional manufacturing method described in Japanese Patent Laid-Open No. 5-121066 in which the surface of the graphite particle is formed with a low crystalline carbon coating by physical coating, the film thickness of the low crystalline carbon is sufficiently increased. It is difficult to make it thinner. In addition, the present inventors tried to grow a low crystalline carbon film on the graphite surface by introducing hydrocarbons into graphite in a high-temperature inert atmosphere and thermally decomposing the hydrocarbons. Although a thick coating could be formed, there was a problem that the reactivity with the electrolytic solution was not sufficiently suppressed.
[0008]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a negative electrode for a lithium secondary battery that can improve low-temperature performance and high-temperature storage characteristics and can also increase capacity, and a method for manufacturing the same. Objective.
[0009]
[Means for solving the problems and their functions and effects]
According to the first aspect of the present invention, in the production of the negative electrode active material, the graphite is heated in a non-oxidizing atmosphere to carry out an activation treatment to remove surface oxygen, and then activated by introducing an organic substance under a high-temperature inert atmosphere. It is characterized in that a film of low crystalline carbon or a carbon compound is formed on the surface of graphite.
In the above invention, when graphite is heated to a high temperature in a non-oxidizing atmosphere, oxygen bonded to the surface is removed in the form of CO or CO2, and activated carbon atoms are exposed. The heating temperature can be variously set in consideration of the dirt state of the graphite surface, productivity, and the like, but is preferably about 800 ° C to 1200 ° C.
[0010]
Thereafter, when an organic substance such as hydrocarbon is introduced under a high-temperature inert atmosphere, carbon generated by thermal decomposition of the organic substance is deposited on the surface of the graphite particles, and a thin film of low crystalline carbon or carbon compound is formed. . In this case, the heating temperature and the heating time can also be set in consideration of productivity and the like, but it is preferably about 600 to 1200 ° C. and about 30 to 90 minutes, and the organic matter is a furnace together with an inert gas such as nitrogen gas. It is preferable to introduce into the inside.
[0011]
Thus, a negative electrode of a lithium secondary battery is formed by using graphite coated with low crystalline carbon or a carbon compound as an active material, for example, adding a binder to the active material, and applying and drying the current collector. Can do. According to this negative electrode, the surface of the graphite is covered with a film of low crystalline carbon or a carbon compound, and the PC electrolyte cannot penetrate into the graphite portion, so that the PC reaction can be suppressed. In addition, the carbon on the graphite surface is activated once, and the low crystalline carbon or carbon compound is bonded to the graphite surface by pyrolysis of organic matter, so that a uniform film with a strong chemical bond can be formed. The number of unbonded carbon atoms (carbon atoms with unpaired electrons) can be greatly reduced to increase the CC bond between graphite and low crystalline carbon or carbon compounds. This means that the reactivity with the electrolyte can be sufficiently suppressed even if the film thickness of the low crystalline carbon or carbon compound coating is reduced. In addition, the energy density of the active material can be increased to increase the charge / discharge capacity.
Moreover, in the graphite covered with the film of low crystalline carbon or carbon compound produced by this method, since the degree of bonding between the graphite layer and the low crystalline carbon layer or carbon compound is increased as described above, the cycle characteristics are increased. Is greatly improved.
[0012]
The invention of claim 2 is characterized in that, prior to the activation treatment of the above-described invention, a cleaning treatment for washing the graphite surface with an acid or an alkali solution is performed. When this cleaning process is performed, impurities adhering, adsorbing, or bonding to the graphite surface are removed, so that the activation process is performed more efficiently and a better result is obtained. The cleaning liquid is most preferably a strong acid such as nitric acid or sulfuric acid.
[0013]
By the way, according to the study by the present inventors, when a film of CxN, which is a carbon compound in which a part of carbon atoms constituting the low crystalline carbon coating is substituted with nitrogen atoms, is chemically stable and stored at high temperature. It has been discovered that the properties are improved.
[0014]
This CxN film can be formed efficiently when an organic substance containing nitrogen is used as the organic substance in the invention of claim 1 or 2 described above (invention of claim 3), and particularly acetonitrile vapor together with nitrogen gas. Most preferably, it is introduced. The CxN film formed on the surface of the graphite particles can be confirmed by XPS analysis (X-ray photoelectron spectroscopy). Depending on the XPS analysis, the surface is analyzed as CxO, CyNOz, but the relative amount of O and N decreases as the measurement depth increases, so it is clear that a CxN surface film is formed. is there.
[0015]
【Example】
Hereinafter, some examples of the present invention will be described together with comparative examples. Here, natural graphite having an average particle diameter of 7 μm is used as the graphite particles.
[0016]
[Example 1]
First, the graphite particles were washed with 94% nitric acid to remove impurities on the surface, and the surface was oxidized (cleaning treatment). Next, the graphite was heated in a non-oxidizing atmosphere to perform activation treatment for removing oxygen on the surface. This is done by placing graphite in a high-temperature reduction furnace or high-temperature vacuum furnace and heating to 950 ° C., whereby oxygen atoms on the graphite surface are removed in the form of CO or CO 2 and active carbon atoms are exposed on the surface. To do.
[0017]
Next, the activated graphite was introduced into a nitrogen atmosphere furnace without being exposed to the outside air and heated to 950 ° C., and acetonitrile vapor was introduced into the furnace together with nitrogen gas. At this time, the partial pressure of acetonitrile was 0.9 × 10 4 Pa, the total pressure was 1 × 10 5 Pa, and the treatment time was 30 minutes to 1 hour 30 minutes. As a result, a CxN film was formed on the surface of the activated graphite.
[0018]
To 92 parts by weight of the graphite particles, a polyvinylidene fluoride solution having a concentration of 10% by weight using N-methylpyrrolidone as a solvent was added to 8 parts by weight of polyvinylidene fluoride, and the resulting mixture was stirred. A paste was used. This negative electrode paste was applied to a copper foil having a thickness of 30 μm so as to have a thickness of 100 μm, and then vacuum-dried at 100 ° C. for 2 hours. This was cut into 2 cm squares and pressed to a porosity of 25% to obtain test electrodes.
A metal lithium plate is used for the counter electrode, and these are made into a well-known battery structure with, for example, a polyethylene microporous membrane separator interposed therebetween, and the volume ratio of propylene carbonate (PC) and ethylene carbonate (EC) is 1: 1. An electrolytic solution in which 1 mol LiPF 6 was mixed with the mixture was injected to constitute a lithium secondary battery.
[0019]
[Example 2]
The difference is that a hydrocarbon (benzene or phenol) is used instead of the above-mentioned acetonitrile vapor, and the other conditions are the same.
[0020]
[Comparative example]
3 parts by weight of binder pitch was dissolved in 15 parts by weight of quinoline, 1 part by weight of the same graphite particles as in Examples 1 and 2 was immersed, and then the quinoline was evaporated, followed by firing at 400 ° C. in nitrogen gas. The use of the graphite thus produced is different, and the other conditions are the same as in Example 1.
[0021]
[Evaluation of high-temperature storage characteristics]
The three lithium secondary batteries were charged at a constant current of 0.2 mA / cm @ 2 until the negative electrode potential was 0 V with respect to the metal lithium positive electrode, and then allowed to stand at 45 DEG C. for 30 days. Thereafter, the ratio (capacity retention%) between the residual capacity and the initial capacity when measured by discharging with a discharge current of 0.2 mA / cm @ 2 at room temperature was calculated. The measurement results are as shown in Table 1 below, and in particular, Example 1 in which the CxN film was formed showed remarkably excellent high-temperature storage stability.
[0022]
[Table 1]
Figure 0003807691
Incidentally, the XPS analysis results of the CxN and low crystalline carbon-coated graphite produced in Example 1 and Example 2 described above are shown in the following table. In Example 1, as the measurement depth is increased (the larger the irradiation angle, the deeper the composition from the surface), the relative amounts of O and N decrease, and a CxN surface film is formed. I understand.
[0023]
[Table 2]
Figure 0003807691

Claims (5)

リチウム二次電池の非水電解質とともに使用されるリチウム二次電池用負極の製造方法であって、
負極の活物質は、グラファイトを非酸化雰囲気で加熱して表面の酸素を取り除く活性化処理を行い、その後、高温の不活性雰囲気下で有機物を導入して活性化グラファイトの表面に炭素又は炭素化合物からなる皮膜を形成することを特徴とするリチウム二次電池用負極の製造方法。
A method for producing a negative electrode for a lithium secondary battery used together with a non-aqueous electrolyte of a lithium secondary battery,
Active material of the negative electrode, performs activation processing for removing oxygen surface by heating the graphite in a non-oxidizing atmosphere, then charcoal Motomata the surface of activated graphite to introduce organics under high-temperature inert atmosphere carbon The manufacturing method of the negative electrode for lithium secondary batteries characterized by forming the membrane | film | coat consisting of a compound.
前記活性化処理に先だってグラファイト表面を酸又はアルカリ液により洗浄する清浄化処理を行うことを特徴とする請求項1記載のリチウム二次電池用負極の製造方法。  The method for producing a negative electrode for a lithium secondary battery according to claim 1, wherein a cleaning process is performed to wash the graphite surface with an acid or an alkali solution prior to the activation process. 前記有機物は窒素を含有する有機物であることを特徴とする請求項1又は2に記載のリチウム二次電池用負極の製造方法。  The method for producing a negative electrode for a lithium secondary battery according to claim 1, wherein the organic substance is an organic substance containing nitrogen. 前記有機物はアセトニトリルであって、これを窒素ガスと共に導入することを特徴とする請求項3に記載のリチウム二次電池用負極の製造方法。  The method for producing a negative electrode for a lithium secondary battery according to claim 3, wherein the organic substance is acetonitrile, which is introduced together with nitrogen gas. リチウム二次電池の非水電解質とともに使用されるものであって、負極の活物質が、グラファイトの表面にCxNの被覆が形成されたものであることを特徴とするリチウム二次電池用負極。  A negative electrode for a lithium secondary battery, which is used together with a non-aqueous electrolyte of a lithium secondary battery, wherein the active material of the negative electrode has a CxN coating formed on the surface of graphite.
JP14430197A 1997-06-02 1997-06-02 Negative electrode for lithium secondary battery and method for producing the same Expired - Fee Related JP3807691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14430197A JP3807691B2 (en) 1997-06-02 1997-06-02 Negative electrode for lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14430197A JP3807691B2 (en) 1997-06-02 1997-06-02 Negative electrode for lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10334916A JPH10334916A (en) 1998-12-18
JP3807691B2 true JP3807691B2 (en) 2006-08-09

Family

ID=15358898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14430197A Expired - Fee Related JP3807691B2 (en) 1997-06-02 1997-06-02 Negative electrode for lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3807691B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104276566A (en) * 2014-09-09 2015-01-14 刘剑洪 Graphene and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5731732B2 (en) * 2007-10-17 2015-06-10 日立化成株式会社 Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
WO2018070423A1 (en) 2016-10-13 2018-04-19 国立研究開発法人産業技術総合研究所 Lithium ion secondary battery and electric device using same
CN116081615A (en) * 2021-11-08 2023-05-09 湖南中科星城石墨有限公司 Artificial graphite negative electrode material, preparation method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104276566A (en) * 2014-09-09 2015-01-14 刘剑洪 Graphene and preparation method thereof

Also Published As

Publication number Publication date
JPH10334916A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
CN112151762B (en) Lithium-sulfur battery positive electrode material and preparation method thereof, lithium-sulfur battery positive electrode and preparation method thereof, and lithium-sulfur battery
KR101965773B1 (en) Negative active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising thereof
KR20110100221A (en) Process for making fluorinated lithium vanadium polyanion powders for batteries
CN114420938B (en) Metal oxide amorphous carbon coated hard carbon composite material and preparation method and application thereof
CN112768688B (en) Lithium iron phosphate material, preparation method thereof and lithium ion battery
WO2007069562A1 (en) Nonaqueous electrolyte secondary battery
CN111033871B (en) Aqueous secondary battery
CN111755690A (en) Alkali metal composite negative electrode material and preparation method thereof
JP3204291B2 (en) Carbon body electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
CA2658741C (en) New electrode materials with high surface conductivity
JP5071171B2 (en) Lithium secondary battery
JP2000173619A (en) Lithium-ion battery
JP2011060541A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using it
JP3807691B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP4973892B2 (en) Capacitors
JP4973882B2 (en) Capacitors
JP2703350B2 (en) Rechargeable battery
JP4771725B2 (en) Non-aqueous electrolyte secondary battery
CN115050920A (en) Antimony-based integrated electrode and preparation method and application thereof
CN114361433A (en) Lithium battery negative electrode material MXene and preparation method and application thereof
CN112794312A (en) Nitrogen-doped graphene material, composite cathode material, and preparation methods and applications of nitrogen-doped graphene material and composite cathode material
EP3327832B1 (en) Method of manufacturing a positive electrode for a lithium-sulfur battery
Tashenov et al. Polyvinylidene fluoride based cathode produced by electrospinning of the lifepo4 based electrodes
US20230282806A1 (en) Zinc metal anode including a protective layer and zinc metal battery using the same
JP2002134103A (en) Method of producing electrode for polymer lithium secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees