JP5731732B2 - Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery - Google Patents

Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery Download PDF

Info

Publication number
JP5731732B2
JP5731732B2 JP2008098291A JP2008098291A JP5731732B2 JP 5731732 B2 JP5731732 B2 JP 5731732B2 JP 2008098291 A JP2008098291 A JP 2008098291A JP 2008098291 A JP2008098291 A JP 2008098291A JP 5731732 B2 JP5731732 B2 JP 5731732B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
ion secondary
carbon
graphite particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008098291A
Other languages
Japanese (ja)
Other versions
JP2009117334A (en
Inventor
片山 宏一
宏一 片山
鈴木 清志
清志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008098291A priority Critical patent/JP5731732B2/en
Publication of JP2009117334A publication Critical patent/JP2009117334A/en
Application granted granted Critical
Publication of JP5731732B2 publication Critical patent/JP5731732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池用炭素被覆黒鉛負極材、その製造方法、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。さらに詳しくは、ポータブル電子機器、電気自動車、電力貯蔵用等に用いるのに好適な、放電負荷特性、サイクル特性、充電特性に優れたリチウムイオン二次電池用炭素被覆黒鉛負極材、その製造方法、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。   The present invention relates to a carbon-coated graphite negative electrode material for a lithium ion secondary battery, a production method thereof, a negative electrode for a lithium ion secondary battery using the negative electrode material, and a lithium ion secondary battery. More specifically, a carbon-coated graphite negative electrode material for lithium ion secondary batteries excellent in discharge load characteristics, cycle characteristics, and charging characteristics, suitable for use in portable electronic devices, electric vehicles, power storage, etc., a method for producing the same, The present invention relates to a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using the negative electrode material.

負極材として用いられる黒鉛質粒子には、例えば、天然黒鉛質粒子、コークス、有機系高分子材料、ピッチ等を黒鉛化した人造黒鉛質粒子、これら天然黒鉛質粒子や人造黒鉛質粒子を粉砕した黒鉛質粒子等がある。   The graphite particles used as the negative electrode material include, for example, natural graphite particles, coke, organic polymer materials, artificial graphite particles graphitized pitch, etc., and these natural graphite particles and artificial graphite particles are pulverized There are graphite particles.

これらの黒鉛質粒子は、負極材として有機系結着剤及び溶剤と混合して、黒鉛ペーストとし、この黒鉛ペーストが銅箔の表面に塗布され、溶剤を乾燥、成形させてリチウムイオン二次電池用負極として使用されている。例えば、負極材に黒鉛を使用することで、リチウム金属を負極材として用いた場合に起こる、リチウムのデンドライトによる内部短絡の問題を解消し、サイクル特性の改良を図ったことが知られている(例えば、特許文献1参照)。   These graphite particles are mixed with an organic binder and a solvent as a negative electrode material to form a graphite paste. This graphite paste is applied to the surface of the copper foil, and the solvent is dried and molded to form a lithium ion secondary battery. It is used as a negative electrode. For example, it is known that by using graphite as the negative electrode material, the problem of internal short circuit caused by lithium dendrite, which occurs when lithium metal is used as the negative electrode material, is solved, and cycle characteristics are improved ( For example, see Patent Document 1).

しかしながら、黒鉛結晶が発達している天然黒鉛質粒子及びコークスを黒鉛化した人造黒鉛質粒子は、c軸方向の結晶の層間の結合力が結晶の面方向の結合に比べて弱いため、負極材料に適した粒子径に調製するための粉砕により黒鉛層間の結合が切れ、アスペクト比の大きい、いわゆる鱗状の黒鉛質粒子となる。   However, natural graphite particles in which graphite crystals are developed and artificial graphite particles obtained by graphitizing coke have a weaker bonding force between crystal layers in the c-axis direction than the bonding in the crystal plane direction. By the pulverization to prepare a particle size suitable for the above, the bonds between the graphite layers are broken, and so-called scaly graphite particles having a large aspect ratio are obtained.

この鱗状の黒鉛質粒子はアスペクト比が大きいため、バインダと混練して集電体に塗布して電極を作製した時に鱗状の黒鉛質粒子が集電体の面方向に配向し、その結果、黒鉛質粒子へのリチウムの吸蔵・放出の繰り返しによって発生するc軸方向の歪みにより電極内部の破壊が生じ、サイクル特性が低下する問題があるばかりでなく、放電負荷特性が悪くなる傾向がある。   Since the scaly graphite particles have a large aspect ratio, the scaly graphite particles are oriented in the surface direction of the current collector when kneaded with a binder and applied to the current collector to produce an electrode. Distortion in the c-axis direction caused by repeated insertion and extraction of lithium into and from the porous particles causes destruction of the inside of the electrode, resulting in a problem that cycle characteristics are deteriorated, and discharge load characteristics tend to be deteriorated.

さらに、アスペクト比の大きな鱗状の黒鉛質粒子は比表面積が大きいため、集電体との密着性が悪く、多くのバインダが必要となる問題点がある。集電体との密着性が悪いと、集電効果が低下し、放電容量、放電負荷特性、サイクル特性等が低下する問題がある。   Furthermore, since the scaly graphite particles having a large aspect ratio have a large specific surface area, there is a problem that adhesion with the current collector is poor and a large amount of binder is required. If the adhesion with the current collector is poor, there is a problem that the current collecting effect is lowered and the discharge capacity, discharge load characteristics, cycle characteristics, etc. are lowered.

また、比表面積が大きな鱗状黒鉛質粒子は、電解液の分解を起こしやすく、これを用いたリチウムイオン二次電池は初回サイクルの不可逆容量が大きいという問題がある。
さらに、比表面積の大きな鱗状黒鉛質粒子は、リチウムイオンを吸蔵した状態での熱安定性が低く、リチウムイオン二次電池用負極材として用いた場合、安全性に問題がある。そこで、放電負荷特性、サイクル特性、初回サイクルの不可逆容量を改善できる黒鉛質粒子が要求されている。
In addition, scaly graphite particles having a large specific surface area are liable to cause decomposition of the electrolytic solution, and a lithium ion secondary battery using the same has a problem that the irreversible capacity of the first cycle is large.
Furthermore, scaly graphite particles having a large specific surface area have low thermal stability in a state where lithium ions are occluded, and there is a problem in safety when used as a negative electrode material for lithium ion secondary batteries. Therefore, there is a demand for graphitic particles that can improve discharge load characteristics, cycle characteristics, and irreversible capacity in the first cycle.

上記の要求を解決するものとして、扁平状の粒子を複数配向面が非平行となるように集合又は結合させた黒鉛質粒子(以下、「非配向性黒鉛質粒子」と称する)が提案されている(例えば、特許文献2参照)。この非配向性黒鉛質粒子を負極材として用いたリチウムイオン二次電池は、高い充放電容量を有し、且つ充放電負荷特性、サイクル特性、初回サイクルの充放電効率に優れるためリチウムイオン二次電池に好適に使用できるものである。   As a solution to the above requirement, there has been proposed a graphite particle (hereinafter referred to as “non-oriented graphite particle”) in which flat particles are aggregated or bonded so that a plurality of orientation planes are non-parallel. (For example, refer to Patent Document 2). The lithium ion secondary battery using the non-oriented graphite particles as a negative electrode material has a high charge / discharge capacity and is excellent in charge / discharge load characteristics, cycle characteristics, and charge / discharge efficiency in the first cycle. It can be suitably used for a battery.

しかしながら、上記非配向性黒鉛質粒子においては、充電初期に負極材表面に発生すると言われる導電性の高い被膜(SEI)が、充放電容量により影響するために、高速充電した場合、この被膜(SEI)の抵抗のため、充放電容量(充電負荷特性)が低いという課題がある。その課題を解決するものとして上記非配向性黒鉛質粒子のアスペクト比、細孔容積を規定し、それに炭素層を被覆した負極材が提案されている(例えば、特許文献3参照)。しかし、充電特性、特に低温における充電性能が十分に満足できるものではないため、より良い充電特性さらには低温における充電性能がリチウムイオン二次電池用負極材に求められている。   However, in the non-oriented graphite particles, a highly conductive coating (SEI) that is said to be generated on the surface of the negative electrode material in the initial stage of charging is affected by the charge / discharge capacity. Due to the resistance of SEI), there is a problem that the charge / discharge capacity (charge load characteristics) is low. In order to solve this problem, a negative electrode material in which the aspect ratio and pore volume of the non-oriented graphite particles are defined and a carbon layer is coated thereon has been proposed (see, for example, Patent Document 3). However, since charging characteristics, particularly charging performance at low temperatures, are not fully satisfactory, better charging characteristics and further charging performance at low temperatures are required for the negative electrode material for lithium ion secondary batteries.

また、黒鉛質粒子表面に低結晶性炭素を被覆することが、提案されている(例えば、特許文献4参照)。詳しくは、核となる炭素質物と、それを被覆する炭素表層からなる多相構造を有する炭素質物粒子と、単相構造を有する炭素質物粒子との混合物を用いた負極材料をリチウムイオン二次電池負極に用いることで、電極容量の大きい、充放電サイクル特性が向上したリチウムイオン二次電池が提案されている。しかし、多相構造を有する炭素質物粒子と、単相構造を有する炭素質物粒子との混合物を用いた負極材料では、初回サイクルの不可逆容量や充放電特性を十分に改善していない。   In addition, it has been proposed to coat the surface of graphite particles with low crystalline carbon (see, for example, Patent Document 4). Specifically, a negative electrode material using a mixture of a carbonaceous material as a nucleus, a carbonaceous material particle having a multiphase structure composed of a carbon surface layer covering the core, and a carbonaceous material particle having a single phase structure is used as a lithium ion secondary battery. A lithium ion secondary battery having a large electrode capacity and improved charge / discharge cycle characteristics has been proposed. However, the negative electrode material using a mixture of carbonaceous material particles having a multiphase structure and carbonaceous material particles having a single phase structure does not sufficiently improve the irreversible capacity and charge / discharge characteristics of the first cycle.

特公昭62−023433号公報Japanese Examined Patent Publication No. 62-023433 特開平10−158005号公報JP-A-10-158005 国際公開2005/024980号パンフレットInternational Publication No. 2005/024980 Pamphlet 特開平05−307977号公報Japanese Patent Laid-Open No. 05-307777

本発明は、非配向性黒鉛質粒子の特長を維持し、高速充放電負荷特性及び低温充電性能を向上させるリチウムイオン二次電池用負極材、その製造方法、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池を提供することを目的とするものである。   The present invention provides a negative electrode material for a lithium ion secondary battery that maintains the characteristics of non-oriented graphite particles and improves high-speed charge / discharge load characteristics and low-temperature charge performance, a method for producing the same, and lithium ion secondary using the negative electrode material. An object of the present invention is to provide a negative electrode for a secondary battery and a lithium ion secondary battery.

本発明者等は、上記非配向性黒鉛質粒子表面に低結晶性炭素を被覆して検討した結果、充電負荷特性が向上することを見出した。
しかしながら、単に非配向性黒鉛質粒子表面に低結晶性炭素を被覆しても、低結晶性炭素自体も不可逆容量が大きいため、初回サイクルの不可逆容量が大きいことに起因する初回充放電効率の低下が生ずる。また、低結晶性炭素により粒子が硬くなり、それによりプレス後の電極で剥離が生じやすいという問題が生じ、非配向性黒鉛質粒子の特長が失われ、得られるリチウムイオン二次電池の特性は低下することがわかった。
そこで、本発明者等は、不可逆容量を小さく、プレス後の電極での剥離を回避すべく、また低温充電性能を高めるべく鋭利検討した結果、窒素の存在により、集電体である金属、特にリチウムイオンとの親和性が強くなること、また、非配向性黒鉛質粒子表面に被覆する炭素層の割合、負極材全体の窒素元素濃度を特定の値とすることで、炭素層で被覆された黒鉛質粒子が硬くなりすぎるのを回避できることを見出し、上記問題を解決できる、本発明のリチウムイオン二次電池用炭素被覆黒鉛負極材に至った。
As a result of examining the surface of the non-oriented graphite particles covered with low crystalline carbon, the present inventors have found that the charge load characteristics are improved.
However, even if the surface of non-oriented graphite particles is simply coated with low crystalline carbon, the low crystalline carbon itself has a large irreversible capacity, so the initial charge / discharge efficiency is reduced due to the large irreversible capacity of the first cycle. Will occur. In addition, the problem is that the particles become hard due to the low crystalline carbon, which causes easy peeling at the electrode after pressing, the characteristics of the non-oriented graphite particles are lost, and the characteristics of the obtained lithium ion secondary battery are It turns out that it falls.
Therefore, the inventors of the present invention have studied sharply to reduce the irreversible capacity, avoid peeling at the electrode after pressing, and to improve the low-temperature charging performance. It was coated with a carbon layer by increasing the affinity with lithium ions, and by setting the ratio of the carbon layer covering the surface of non-oriented graphite particles and the nitrogen element concentration of the entire negative electrode material to a specific value. The inventors have found that the graphite particles can be prevented from becoming too hard, and arrived at the carbon-coated graphite negative electrode material for lithium ion secondary batteries of the present invention, which can solve the above problems.

本発明は、次の事項に関する。
(1)核となる黒鉛質粒子と、該黒鉛質粒子を被覆する炭素層と、を有する炭素被覆黒鉛負極材であり、
前記核となる黒鉛質粒子は、複数の扁平状粒子が互いに非平行に集合又は結合した構造を有しており、
ラマン分光スペクトルで測定される1300〜1400cm−1の範囲にあるピーク強度(ID)と1560〜1650cm−1の範囲にあるピーク強度(IG)の強度比であるR値(ID/IG)が0.3以下であり、
X線光電子分光スペクトル(XPS)で測定される炭素被覆黒鉛負極材表面の窒素元素濃度が1.5〜10at%であるリチウムイオン二次電池用炭素被覆黒鉛負極材。
The present invention relates to the following matters.
(1) A carbon-coated graphite negative electrode material having graphite particles as nuclei and a carbon layer covering the graphite particles,
The core graphite particles have a structure in which a plurality of flat particles are assembled or bonded non-parallel to each other,
R value is the intensity ratio of the peak intensity (IG) in the peak intensity in the range of 1300~1400Cm -1 as measured by Raman spectroscopy and (ID) in a range of 1560~1650cm -1 (ID / IG) is zero .3 or less,
A carbon-coated graphite negative electrode material for a lithium ion secondary battery, wherein the nitrogen element concentration on the surface of the carbon-coated graphite negative electrode material measured by X-ray photoelectron spectroscopy (XPS) is 1.5 to 10 at%.

(2)前記黒鉛質粒子に対する炭素の比率(質量比)は、0.001〜0.02であることを特徴とする上記(1)記載のリチウムイオン二次電池用炭素被覆黒鉛負極材。
(3)前記炭素被覆黒鉛負極材は、平均粒径が10〜30μm、真比重が2.10以上、窒素ガス吸着による比表面積が0.5〜10m/g、ラマン分光スペクトルで測定される1300〜1400cm−1の範囲にあるピーク強度(ID)と1560〜1650cm−1の範囲にあるピーク強度(IG)の強度比であるR値(ID/IG)が0.3以下である上記(1)又は(2)記載のリチウムイオン二次電池用炭素被覆黒鉛負極材。
(2) The carbon-coated graphite negative electrode material for a lithium ion secondary battery as described in (1) above, wherein a ratio (mass ratio) of carbon to the graphite particles is 0.001 to 0.02.
(3) The carbon-coated graphite negative electrode material has an average particle diameter of 10 to 30 μm, a true specific gravity of 2.10 or more, a specific surface area by nitrogen gas adsorption of 0.5 to 10 m 2 / g, and is measured by a Raman spectrum. the R value is the intensity ratio of the peak intensity (IG) in the peak intensity in the range of 1300~1400Cm -1 and (ID) in a range of 1560~1650cm -1 (ID / IG) is 0.3 or less ( The carbon-coated graphite negative electrode material for lithium ion secondary batteries according to 1) or (2).

(4)複数の扁平状粒子が互いに非平行に集合又は結合してなる塊状構造で、アスペクト比が5以下である黒鉛質粒子を、窒素含有高分子化合物とこれを溶解する溶媒の混合溶液に分散、混合する工程と、
前記溶媒を除去して、前記窒素含有高分子化合物に被覆された黒鉛質粒子を作製する工程と、
前記窒素含有高分子化合物に被覆された黒鉛質粒子を焼成して、リチウムイオン二次電池用炭素被覆黒鉛負極材を得る工程と、を含むことを特徴とするリチウムイオン二次電池用炭素被覆黒鉛負極材の製造方法。
(4) Agglomerated structure in which a plurality of flat particles are assembled or bonded non-parallel to each other, and graphite particles having an aspect ratio of 5 or less are mixed into a mixed solution of a nitrogen-containing polymer compound and a solvent for dissolving the same. Dispersing and mixing,
Removing the solvent to produce graphite particles coated with the nitrogen-containing polymer compound;
Calcining the graphite particles coated with the nitrogen-containing polymer compound to obtain a carbon-coated graphite negative electrode material for a lithium ion secondary battery, and carbon-coated graphite for a lithium ion secondary battery Manufacturing method of negative electrode material.

(5)前記(1)〜(3)のいずれか一つに記載のリチウムイオン二次電池用炭素被覆黒鉛負極材又は前記(4)記載の製造方法で作製されたリチウムイオン二次電池用炭素被覆黒鉛負極材を用いたリチウムイオン二次電池用黒鉛負極。
(6)前記(5)記載のリチウムイオン二次電池用黒鉛負極を用いたリチウムイオン二次電池。
(5) The carbon-coated graphite negative electrode material for a lithium ion secondary battery according to any one of (1) to (3) or the carbon for a lithium ion secondary battery produced by the production method according to (4). A graphite negative electrode for a lithium ion secondary battery using a coated graphite negative electrode material.
(6) A lithium ion secondary battery using the graphite negative electrode for lithium ion secondary batteries according to (5).

本発明になるリチウムイオン二次電池用黒鉛負極材は、放電容量、充放電効率及び充電負荷特性に優れるため、これを用いたリチウムイオン二次電池は、急速充電が必要なポータブル電子機器、電気自動車、電力貯蔵用等に好適である。   The graphite negative electrode material for a lithium ion secondary battery according to the present invention is excellent in discharge capacity, charge / discharge efficiency, and charge load characteristics. Therefore, a lithium ion secondary battery using the graphite negative electrode material is a portable electronic device, Suitable for automobiles, power storage and the like.

本発明のリチウムイオン二次電池用負極材は、核となる黒鉛質粒子と、該黒鉛質粒子を被覆する炭素層と、を有する炭素被覆黒鉛負極材であり、
前記核となる黒鉛質粒子は、複数の扁平状粒子が互いに非平行に集合又は結合した構造を有しており、ラマン分光スペクトルで測定される1300〜1400cm−1の範囲にあるピーク強度(ID)と1560〜1650cm−1の範囲にあるピーク強度(IG)の強度比であるR値(ID/IG)が0.3以下であり、
X線光電子分光スペクトル(XPS)で測定される炭素被覆黒鉛負極材表面の窒素元素濃度が1.5〜10at%であることを特徴とする。
また、前記黒鉛質粒子に対する炭素の比率(質量比)は、0.001〜0.02であることが好ましい。
The negative electrode material for a lithium ion secondary battery of the present invention is a carbon-coated graphite negative electrode material having graphite particles as cores and a carbon layer covering the graphite particles,
The graphite particles serving as the nucleus have a structure in which a plurality of flat particles are assembled or bonded non-parallel to each other, and have a peak intensity (ID) in a range of 1300 to 1400 cm −1 measured by a Raman spectrum. ) And the R value (ID / IG) which is the intensity ratio of the peak intensity (IG) in the range of 1560 to 1650 cm −1 is 0.3 or less,
The nitrogen element concentration on the surface of the carbon-coated graphite negative electrode material measured by X-ray photoelectron spectroscopy (XPS) is 1.5 to 10 at%.
Moreover, it is preferable that the ratio (mass ratio) of the carbon with respect to the said graphite particle is 0.001-0.02.

炭素層の炭素の比率が、前記黒鉛質粒子に対して0.001未満の場合、充電負荷特性の向上幅が小さい傾向がある。一方、炭素層の炭素比率が0.02を越える場合、初回充放電効率が低下する傾向がある。さらに、炭素被覆黒鉛負極材の粒子が硬くなり、電極プレス時に弾性変形によるスプリングバックが大きくなり、プレス後に電極の剥離が起こりやすくなる。炭素の比率は、0.005〜0.018がより好ましく、0.008〜0.016が更に好ましい。
炭素層の炭素の比率は、後に述べる炭素層の前駆体の炭素化率と黒鉛質粒子に被覆した炭素層の前駆体の質量より算出することができる。なお、「炭素層の前駆体」とは、炭素層となる窒素含有高分子化合物のことをさすが、詳細は後述する。
炭素層の前駆体の炭素化率は、以下のようにして測定する。炭素層の前駆体となる窒素含有高分子化合物単独を窒素気流中、20℃/hで900℃まで昇温、1時間保持した場合の炭素化率を測定する。
本発明において、「炭素の比率」とは、炭素層の炭素化された窒素含有高分子化合物の炭素量に対する、黒鉛質粒子の炭素量の質量比率である。
本発明の炭素被覆黒鉛負極材は、表面の窒素元素濃度が1.5〜10at%である。より好ましくは、1.5〜8at%である。炭素被覆黒鉛負極材表面の窒素元素濃度が1.5at%未満の場合、炭素層の割合が小さいことになるため、充電初期に負極材表面に発生する被膜(SEI)の影響を大きく受け、充電特性が低下する傾向がある。また、10at%を超える場合は、炭素層の割合が大きすぎることとなるため、初回充放電効率が低下する傾向がある。
炭素被覆黒鉛負極材表面の窒素元素濃度測定方法としては、X線光電子分光スペクトル(XPS)を用いて行うことが好ましい。本発明においては、例えば、(株)島津製作所/(株)クレイトスアナリティカル製の「AXIS165」を用いることができる。
When the carbon ratio of the carbon layer is less than 0.001 with respect to the graphite particles, the improvement width of the charge load characteristics tends to be small. On the other hand, when the carbon ratio of the carbon layer exceeds 0.02, the initial charge / discharge efficiency tends to decrease. Further, the particles of the carbon-coated graphite negative electrode material become hard, and the spring back due to elastic deformation becomes large when the electrode is pressed, and the electrode is likely to be peeled after pressing. The carbon ratio is more preferably 0.005 to 0.018, still more preferably 0.008 to 0.016.
The carbon ratio of the carbon layer can be calculated from the carbonization rate of the carbon layer precursor described later and the mass of the carbon layer precursor coated on the graphite particles. The “carbon layer precursor” refers to a nitrogen-containing polymer compound that becomes a carbon layer, and details will be described later.
The carbonization rate of the precursor of the carbon layer is measured as follows. The carbonization rate is measured when the nitrogen-containing polymer compound alone that is the precursor of the carbon layer is heated to 900 ° C. at 20 ° C./h in a nitrogen stream and held for 1 hour.
In the present invention, the “carbon ratio” is the mass ratio of the carbon content of the graphite particles to the carbon content of the carbonized nitrogen-containing polymer compound in the carbon layer.
The carbon-coated graphite negative electrode material of the present invention has a surface nitrogen element concentration of 1.5 to 10 at%. More preferably, it is 1.5-8 at%. When the concentration of nitrogen element on the surface of the carbon-coated graphite negative electrode material is less than 1.5 at%, the proportion of the carbon layer is small, so that it is greatly affected by the coating (SEI) generated on the surface of the negative electrode material at the initial stage of charging. There is a tendency for characteristics to deteriorate. Moreover, when it exceeds 10 at%, since the ratio of a carbon layer will be too large, there exists a tendency for a first time charge / discharge efficiency to fall.
As a method for measuring the nitrogen element concentration on the surface of the carbon-coated graphite negative electrode material, it is preferable to use X-ray photoelectron spectroscopy (XPS). In the present invention, for example, “AXIS165” manufactured by Shimadzu Corporation / Crates Analytical Co., Ltd. can be used.

前記核となる黒鉛質粒子としては、塊状の人造黒鉛であると、得られた黒鉛質粒子を用いたリチウムイオン二次電池の特性(サイクル性、放電負荷特性等)を高められることから好ましい。特に該塊状人造黒鉛質粒子は、複数の扁平状粒子が互いに非平行に集合又は結合した構造を有する黒鉛質粒子(以下、「非配向性黒鉛質粒子」ともいう)であることが好ましい。このような非配向性黒鉛質粒子の表面に、窒素元素が含有された炭素層を被覆処理すると、負極材としてより優れたサイクル特性及び放電負荷特性、充電特性が達成できる。   As the graphite particles serving as the core, it is preferable that the artificial graphite is a block because the characteristics (cycleability, discharge load characteristics, etc.) of the lithium ion secondary battery using the obtained graphite particles can be improved. In particular, the massive artificial graphite particles are preferably graphite particles having a structure in which a plurality of flat particles are aggregated or bonded non-parallel to each other (hereinafter also referred to as “non-oriented graphite particles”). When the surface of such non-oriented graphite particles is coated with a carbon layer containing nitrogen element, more excellent cycle characteristics, discharge load characteristics, and charge characteristics can be achieved as a negative electrode material.

本発明において、「扁平状粒子」とは、長軸と短軸を有する形状のことであり、完全な球状でないものをいう。例えば、鱗状、鱗片状、一部の塊状等の形状のものがこれに含まれる。本発明において、扁平状粒子は、例えば走査型電子顕微鏡(SEM)等により観察した際に認められる粒子単位をいう。
また、「複数の扁平状粒子が互いに非平行」とは、それぞれの扁平状粒子の形状において有する扁平した面、換言すれば最も平らに近い面を配向面として、複数の扁平状の一次的な粒子がそれぞれの配向面を一定の方向にそろうことなく集合し、黒鉛質粒子を形成している状態をいう。
In the present invention, the “flat particle” means a shape having a major axis and a minor axis and is not a perfect sphere. For example, those having a shape such as a scale shape, a scale shape, or a partial lump shape are included. In the present invention, a flat particle refers to a particle unit observed when observed with, for example, a scanning electron microscope (SEM).
In addition, “the plurality of flat particles are not parallel to each other” means that the flat surfaces of the respective flat particles, in other words, the surfaces that are closest to the flat surface are the alignment surfaces, and the plurality of flat primary particles A state in which the particles are aggregated without aligning their orientation planes in a certain direction to form graphite particles.

黒鉛質粒子において、扁平状粒子は互いに非平行に集合又は結合しているが、結合とは、互いの扁平状粒子が、後述の、黒鉛化可能な黒鉛質粒子用バインダを黒鉛化した炭素質を介して、化学的に結合している状態をいう。集合とは、互いの粒子が化学的に結合してはいないが、その形状等に起因して、その集合体としての形状を保っている状態をいう。機械的な強度の面から、結合しているものが好ましい。
また、塊状構造とは、上記のように扁平状粒子が非平行に集合又は結合している構造のことをいう。1つの炭素粒子において、扁平状粒子の集合又は結合する数としては、3個以上であることが好ましい。個々の扁平状粒子の大きさとしては、特に制限はないが、これらが集合又は結合した黒鉛質粒子の平均粒径の2/3以下であることが好ましい。
In the graphite particles, the flat particles are aggregated or bonded non-parallel to each other. The bond is a carbonaceous material in which the flat particles are graphitized with a graphitizable binder for graphite particles, which will be described later. It means a state of being chemically bonded via. The term “aggregate” refers to a state in which the particles are not chemically bonded but the shape of the aggregate is maintained due to the shape and the like. From the viewpoint of mechanical strength, those bonded are preferable.
The massive structure refers to a structure in which flat particles are gathered or bonded non-parallel as described above. In one carbon particle, the number of flat particles aggregated or bonded is preferably 3 or more. Although there is no restriction | limiting in particular as a magnitude | size of each flat particle, It is preferable that it is 2/3 or less of the average particle diameter of the graphite particle | grains which these aggregated or couple | bonded.

本発明における非配向性黒鉛質粒子は、アスペクト比が5以下であることが好ましい。
アスペクト比は、非配向性黒鉛質粒子の長軸方向の長さをA、短軸方向の長さをBとしたとき、A/Bで表される。本発明におけるアスペクト比は、電子顕微鏡で非配向性黒鉛質粒子を拡大し、任意に20個の非配向性黒鉛質粒子を選択し、A/Bを測定し、その平均値をとったものである。
ここで非配向性黒鉛質粒子の長軸と短軸を決定する際は、走査型電子顕微鏡(SEM)で非配向性黒鉛質粒子を拡大し、色々な方向から非配向性黒鉛質粒子を観察して非配向性黒鉛質粒子の三次元的な特徴を考慮した上で非配向性黒鉛質粒子の長軸方向の長さをA、短軸方向の長さをBとを決定する。
例えば、非配向性黒鉛質粒子が球状、球塊状、塊状等の様に近似的に球状をなす場合は、SEM画像で二次元視野内に投影された非配向性黒鉛質粒子について、最も長い部分の長さを長軸Aとし、上記長径に直交する最も長い部分の長さを短軸Bとする。
また、非配向性黒鉛質粒子が、鱗状、板状、ブロック状等のように薄く平たく厚さ方向を有する場合には、短軸Bは粒子の厚みとなる。また、棒状、針状等のような非配向性黒鉛質粒子の場合、長軸Aは非配向性黒鉛質粒子の長さであり、短軸Bは棒状(又は針状等)非配向性黒鉛質粒子の太さとなる。また、例えば、非配向性黒鉛質粒子を機械的な力等を加え形状を変化させたような場合は、色々な方向から非配向性黒鉛質粒子を観察して非配向性黒鉛質粒子の三次元的な特徴を考慮し近似的に非配向性黒鉛質粒子の形状を判断した上で上記のように長軸A及び長軸Bの値を決定する。
The non-oriented graphite particles in the present invention preferably have an aspect ratio of 5 or less.
The aspect ratio is represented by A / B, where A is the length in the major axis direction of the non-oriented graphite particles and B is the length in the minor axis direction. The aspect ratio in the present invention is obtained by enlarging non-oriented graphite particles with an electron microscope, arbitrarily selecting 20 non-oriented graphite particles, measuring A / B, and taking the average value. is there.
When determining the major and minor axes of non-oriented graphite particles, enlarge the non-oriented graphite particles with a scanning electron microscope (SEM) and observe the non-oriented graphite particles from various directions. Then, taking into consideration the three-dimensional characteristics of the non-oriented graphite particles, the length in the major axis direction of the non-oriented graphite particles is determined as A and the length in the minor axis direction is determined as B.
For example, when the non-oriented graphite particles are approximately spherical, such as spherical, spherical, and massive, the longest part of the non-oriented graphite particles projected in the two-dimensional field of view in the SEM image Is the long axis A, and the longest portion orthogonal to the long diameter is the short axis B.
Further, when the non-oriented graphite particles are thin, flat, and have a thickness direction such as a scale shape, a plate shape, or a block shape, the minor axis B is the thickness of the particle. In the case of non-oriented graphite particles such as rod-like and needle-like, the long axis A is the length of the non-oriented graphite particles, and the short axis B is the rod-like (or needle-like) non-oriented graphite. It becomes the thickness of the particle. In addition, for example, when the shape of non-oriented graphite particles is changed by applying mechanical force, etc., the non-oriented graphite particles are observed from various directions and the tertiary of non-oriented graphite particles is observed. Considering the original characteristics, the values of the major axis A and the major axis B are determined as described above after approximately determining the shape of the non-oriented graphite particles.

本発明における非配向性黒鉛質粒子は、真比重が2.2以上であることが好ましく、ラマンスペクトルピーク比は0.05以下が好ましく、窒素元素濃度は0.1at%以下です。   The non-oriented graphite particles in the present invention preferably have a true specific gravity of 2.2 or more, a Raman spectrum peak ratio of preferably 0.05 or less, and a nitrogen element concentration of 0.1 at% or less.

非配向性黒鉛質粒子は、例えば、特開平10−158005号公報に開示されている方法によって作製することができる。具体的には以下のとおりである。
即ち、非配向性黒鉛質粒子は、扁平状の黒鉛化可能な骨材又は扁平状の黒鉛と、黒鉛化可能な黒鉛質粒子用バインダの混合物に黒鉛化触媒を添加して混合し、焼成、黒鉛化して黒鉛化物を得、粉砕することにより得られる。
前記黒鉛化可能な骨材としては、フルードコークス、ニードルコークス等の各種コークス類が使用可能である。
また、天然黒鉛や人造黒鉛などの既に黒鉛化されている扁平状の骨材を使用しても良い。
骨材や黒鉛の粒径は、上記黒鉛化物を粉砕した後の粒径よりも小さいことが好ましい。
Non-oriented graphite particles can be produced, for example, by the method disclosed in JP-A-10-158005. Specifically, it is as follows.
That is, the non-oriented graphite particles are mixed by adding a graphitization catalyst to a mixture of a flat graphitizable aggregate or flat graphite and a graphitizable graphite particle binder, and firing. It is obtained by graphitization to obtain a graphitized product and pulverization.
As the graphitizable aggregate, various cokes such as fluid coke and needle coke can be used.
Further, already aggregated flat aggregates such as natural graphite and artificial graphite may be used.
The particle size of the aggregate or graphite is preferably smaller than the particle size after pulverizing the graphitized material.

黒鉛化可能な黒鉛質粒子用バインダとしては、石炭系、石油系、人造等の各種ピッチ、タールが使用可能である。
黒鉛化触媒としては、鉄、ニッケル、チタン、ホウ素等、これらの炭化物、酸化物、窒化物等が使用可能である。
As the binder for graphitizable particles that can be graphitized, various pitches and tars such as coal, petroleum, and artificial can be used.
As the graphitization catalyst, iron, nickel, titanium, boron and the like, carbides thereof, oxides, nitrides, and the like can be used.

黒鉛化触媒は、黒鉛化可能な骨材又は黒鉛と黒鉛化可能な黒鉛質粒子用バインダの合計量100質量部に対して1〜50質量部添加することが好ましい。1質量部未満であると黒鉛質粒子の結晶の発達が悪くなり、充放電容量が低下する傾向がある。一方、50質量部を超えると均一に混合することが困難となり、作業性が低下する傾向がある。   The graphitization catalyst is preferably added in an amount of 1 to 50 parts by mass with respect to 100 parts by mass of the aggregate of graphitizable aggregate or graphite and a graphitizable binder for graphite particles. If the amount is less than 1 part by mass, the development of the graphite particle crystals tends to deteriorate, and the charge / discharge capacity tends to decrease. On the other hand, when it exceeds 50 mass parts, it will become difficult to mix uniformly and workability | operativity will fall.

焼成は、前記混合物が酸化し難い雰囲気で行うことが好ましく、そのような雰囲気としては、例えば窒素雰囲気中、アルゴンガス中、真空中で焼成する方法が挙げられる。
黒鉛化の温度は2000℃以上が好ましく、2500℃以上であることがより好ましく、2800℃以上であることがさらに好ましい。黒鉛化の温度が2000℃未満では、黒鉛の結晶の発達が悪くなると共に、黒鉛化触媒が作製した黒鉛質粒子に残存し易くなり、得られた黒鉛質粒子をリチウムイオン二次電池として用いた際に、充放電容量低下やサイクル特性低下、安全性の低下といった傾向が出る。
The firing is preferably performed in an atmosphere in which the mixture is not easily oxidized. Examples of such an atmosphere include a method of firing in a nitrogen atmosphere, argon gas, and vacuum.
The graphitization temperature is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, and further preferably 2800 ° C. or higher. When the graphitization temperature is less than 2000 ° C., the development of graphite crystals deteriorates and the graphitization catalyst tends to remain in the produced graphite particles, and the obtained graphite particles were used as a lithium ion secondary battery. At the same time, there is a tendency that the charge / discharge capacity decreases, the cycle characteristics decrease, and the safety decreases.

次に、得られた黒鉛化物を粉砕して非配向性黒鉛質粒子を得る。黒鉛化物の粉砕方法については特に制限はないが、ジェットミル、振動ミル、ピンミル、ハンマーミル等の既知の方法を用いることができる。粉砕後の平均粒径(メディアン径)は10〜30μmとすることが好ましい。平均粒径の調整は、例えば、粉砕機や篩を用いて所望の大きさの粒子を得ればよい。
平均粒径は、例えば以下のように測定する。(株)島津製作所製のレーザー回折粒度分布装置「SALD−3000」を用い、50%Dでの粒径を平均粒径とする。
非配向性黒鉛質粒子のアスペクト比を5以下とするには、過激な粉砕を行わないようにする等、粉砕法を調整すればよい。
本発明において、非配向性黒鉛質粒子の真比重は、2.2以上が好ましく、ラマンスペクトルピーク比は0.05以下であることが好ましく、窒素元素濃度は0.1at%以下が好ましい。
非配向性黒鉛質粒子の真比重を2.2以上とするには、2000℃以上で熱処理を施せばよい。
また、ラマンスペクトルピーク比を0.05以下とするには、例えば、核となる黒鉛の黒鉛化温度と炭素層の被覆量及び炭素の比率の制御とにより調整すればよい。
窒素元素濃度0.1at%以下とするには、例えば、炭素層の被覆量及び炭素の比率の制御により調整すればよい。
Next, the graphitized material obtained is pulverized to obtain non-oriented graphite particles. The method for pulverizing the graphitized material is not particularly limited, and known methods such as a jet mill, a vibration mill, a pin mill, and a hammer mill can be used. The average particle diameter (median diameter) after pulverization is preferably 10 to 30 μm. The average particle size can be adjusted by obtaining particles having a desired size using, for example, a pulverizer or a sieve.
The average particle size is measured as follows, for example. Using a laser diffraction particle size distribution device “SALD-3000” manufactured by Shimadzu Corporation, the particle size at 50% D is defined as the average particle size.
In order to set the aspect ratio of the non-oriented graphite particles to 5 or less, the pulverization method may be adjusted such that extreme pulverization is not performed.
In the present invention, the true specific gravity of the non-oriented graphite particles is preferably 2.2 or more, the Raman spectrum peak ratio is preferably 0.05 or less, and the nitrogen element concentration is preferably 0.1 at% or less.
In order to set the true specific gravity of the non-oriented graphite particles to 2.2 or more, heat treatment may be performed at 2000 ° C. or more.
In order to set the Raman spectrum peak ratio to 0.05 or less, for example, it may be adjusted by controlling the graphitization temperature of graphite serving as a nucleus, the coating amount of the carbon layer, and the ratio of carbon.
In order to set the nitrogen element concentration to 0.1 at% or less, for example, it may be adjusted by controlling the carbon layer coverage and the carbon ratio.

本発明のリチウムイオン二次電池用炭素被覆黒鉛負極材は、窒素含有高分子化合物を溶解した溶液に、核となる上記非配向性黒鉛質粒子を分散、混合し、次いで溶媒を除去して、炭素層の前駆体となる窒素含有高分子化合物に被覆された黒鉛質粒子を作製し、これを焼成して炭素層に被覆された炭素被覆黒鉛負極材を作製することができる。
炭素被覆黒鉛負極材表面の窒素元素濃度を1.5〜10at%とするには、具体的には、炭素層の炭素の比率及び炭素層の被覆量を調整すればよい。
また、核である非配向性黒鉛質粒子に対する炭素の比率(質量比)が0.001〜0.02とするには、炭素層の前駆体となる窒素含有高分子化合物の炭素化率を考慮し、非配向性黒鉛質粒子に被覆する窒素含有高分子化合物の量を適宜調整すればよい。
The carbon-coated graphite negative electrode material for a lithium ion secondary battery of the present invention is prepared by dispersing and mixing the non-oriented graphite particles serving as nuclei in a solution in which a nitrogen-containing polymer compound is dissolved, and then removing the solvent. A carbon-coated graphite negative electrode material coated with a carbon layer can be prepared by preparing graphite particles coated with a nitrogen-containing polymer compound serving as a precursor of the carbon layer and firing the particles.
In order to adjust the nitrogen element concentration on the surface of the carbon-coated graphite negative electrode material to 1.5 to 10 at%, specifically, the carbon ratio of the carbon layer and the coating amount of the carbon layer may be adjusted.
In addition, in order for the carbon ratio (mass ratio) to the non-oriented graphite particles that are nuclei to be 0.001 to 0.02, the carbonization rate of the nitrogen-containing polymer compound that is the precursor of the carbon layer is considered. The amount of the nitrogen-containing polymer compound coated on the non-oriented graphite particles may be adjusted as appropriate.

本発明に用いられる窒素含有高分子化合物としては、ポリアクリロニトリル、ウレタン樹脂、ポリイミド、ポリアミド、フェノール樹脂、エポキシ樹脂、ウレア樹脂、ポリ(メタ)アクリレート等に、共重合体として又硬化剤として窒素含有物を用いた、窒素原子を含有する高分子化合物が挙げられる。   Nitrogen-containing polymer compounds used in the present invention include polyacrylonitrile, urethane resin, polyimide, polyamide, phenol resin, epoxy resin, urea resin, poly (meth) acrylate, etc., and nitrogen-containing as a curing agent. And a high molecular compound containing a nitrogen atom.

本発明では、窒素含有高分子化合物を核となる黒鉛質粒子表面に炭素層の前駆体として被覆するために溶液とする。このとき用いる溶媒としては高分子化合物を溶解するものであれば特に制限はない。例えば、水、テトラヒドロフラン、トルエン、キシレン、ベンゼン、キノリン、ピリジン、N−メチル−2−ピロリドン等を単独又は混合して用いることができる。また、石炭乾留の際に生成する比較的低沸点の液状物の混合物(クレオソート油)も使用することができる。   In the present invention, the nitrogen-containing polymer compound is used as a solution in order to coat the surface of graphite particles serving as a nucleus as a precursor of a carbon layer. The solvent used at this time is not particularly limited as long as it dissolves the polymer compound. For example, water, tetrahydrofuran, toluene, xylene, benzene, quinoline, pyridine, N-methyl-2-pyrrolidone and the like can be used alone or in combination. Moreover, the mixture (creosote oil) of the liquid substance of the comparatively low boiling point produced | generated in the case of coal dry distillation can also be used.

窒素含有高分子化合物を溶解した溶液に、核となる前記非配向性黒鉛質粒子を分散・混合し、次いで溶媒を除去して、炭素層の前駆体である窒素含有高分子化合物で被覆された黒鉛質粒子を作製する。水を溶媒とする場合、溶液中での黒鉛質粒子の分散を促進させ、窒素含有高分子化合物と黒鉛質粒子との密着性を向上させるため、界面活性剤を添加すると好適である。   The non-oriented graphite particles serving as nuclei were dispersed and mixed in a solution in which the nitrogen-containing polymer compound was dissolved, and then the solvent was removed, and the solution was coated with the nitrogen-containing polymer compound that is the precursor of the carbon layer. Graphite particles are produced. When water is used as a solvent, it is preferable to add a surfactant in order to promote the dispersion of the graphite particles in the solution and improve the adhesion between the nitrogen-containing polymer compound and the graphite particles.

溶媒の除去は、常圧又は減圧雰囲気で加熱することによって行うことができる。溶媒除去の際の温度は、雰囲気が大気の場合、200℃以下が好ましい。200℃を超えると、雰囲気中の酸素と窒素含有高分子化合物及び溶媒(特に、クレオソート油を用いた場合)
が反応し、焼成によって生成する炭素量が変動、また炭素層の多孔質化が進み、負極材としての本発明の特性範囲(炭素被覆黒鉛負極材表面の窒素元素濃度、ラマンスペクトルの強度比R値、炭素層の黒鉛質粒子に対する炭素比率)を逸脱し、所望の特性を発現できなくなる場合がある。
The removal of the solvent can be performed by heating in a normal pressure or reduced pressure atmosphere. The temperature at the time of removing the solvent is preferably 200 ° C. or lower when the atmosphere is air. Above 200 ° C, oxygen and nitrogen-containing polymer and solvent in the atmosphere (especially when creosote oil is used)
Reaction, the amount of carbon produced by firing fluctuates, and the carbon layer becomes more porous, the characteristic range of the present invention as a negative electrode material (nitrogen element concentration on the surface of the carbon-coated graphite negative electrode material, the intensity ratio R of the Raman spectrum) Value, the carbon ratio of the carbon layer to the graphite particles), and the desired characteristics may not be achieved.

溶媒除去後、次いで、窒素含有高分子化合物を炭素層前駆体として被覆した黒鉛質粒子を焼成し、窒素含有高分子化合物を炭素化することで、炭素層で被覆された炭素被覆黒鉛質粒子を得る。この焼成に先だって、窒素含有高分子化合物で被覆された黒鉛質粒子を150〜300℃の温度で加熱して前焼成処理しても良い。例えば、ポリアクリロニトリルを用いた場合、このような加熱処理により炭素層の炭素の比率を増加させることができ、炭素層の結晶性も向上させることができる。   After removing the solvent, the graphite particles coated with the nitrogen-containing polymer compound as a carbon layer precursor are then fired, and the nitrogen-containing polymer compound is carbonized to obtain carbon-coated graphite particles coated with the carbon layer. obtain. Prior to this firing, the graphite particles coated with the nitrogen-containing polymer compound may be pre-fired by heating at a temperature of 150 to 300 ° C. For example, when polyacrylonitrile is used, the carbon ratio of the carbon layer can be increased by such heat treatment, and the crystallinity of the carbon layer can be improved.

窒素含有高分子化合物で被覆された黒鉛質粒子の焼成は、非酸化性雰囲気で行うことが好ましい。このような雰囲気は、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気、真空雰囲気、循環された燃焼排ガス雰囲気等が挙げられる。   Firing of the graphite particles coated with the nitrogen-containing polymer compound is preferably performed in a non-oxidizing atmosphere. Examples of such an atmosphere include an inert gas atmosphere such as nitrogen, argon, and helium, a vacuum atmosphere, and a circulated combustion exhaust gas atmosphere.

焼成する際の最高温度は、700〜1400℃とすることが好ましく、800〜1200℃とすることがより好ましく、850〜1100℃がさらに好ましい。700℃未満では、負極材として用いた場合、初回サイクルの不可逆容量が大きくなる傾向がある。一方、1400℃を超えると含有していた窒素原子が脱離して、炭素被覆黒鉛負極材の窒素元素濃度が著しく減少することから好ましくない。   The maximum temperature for firing is preferably 700 to 1400 ° C, more preferably 800 to 1200 ° C, and still more preferably 850 to 1100 ° C. Below 700 ° C., when used as a negative electrode material, the irreversible capacity of the first cycle tends to increase. On the other hand, when the temperature exceeds 1400 ° C., the nitrogen atoms contained are desorbed, and the nitrogen element concentration of the carbon-coated graphite negative electrode material is remarkably reduced.

以上のようにして作製された炭素被覆黒鉛質粒子を、必要に応じて、解砕処理、分級処理、篩分け処理を施すことで本発明のリチウム二次電池用負極材を得ることができる。   The carbon-coated graphite particles produced as described above are subjected to a pulverization treatment, a classification treatment, and a sieving treatment as necessary, whereby the negative electrode material for a lithium secondary battery of the present invention can be obtained.

本発明のリチウムイオン二次電池用炭素被覆黒鉛負極材は、平均粒径10〜30μm、真比重が2.10以上、窒素ガス吸着による比表面積が0.5〜10m/g、ラマン分光スペクトルで測定される1300〜1400cm−1の範囲にあるピーク強度(ID)と1560〜1650cm−1の範囲にあるピーク強度(IG)の強度比であるR値(ID/IG)が0.3以下であるであることを特徴とする。 The carbon-coated graphite negative electrode material for a lithium ion secondary battery of the present invention has an average particle size of 10 to 30 μm, a true specific gravity of 2.10 or more, a specific surface area of 0.5 to 10 m 2 / g by nitrogen gas adsorption, and a Raman spectrum. in R value is the intensity ratio of the peak intensity in the range of 1300~1400Cm -1 measured (ID) and the peak intensity in the range of 1560~1650cm -1 (IG) (ID / IG) is 0.3 or less It is characterized by being.

平均粒径は、レーザー回折粒度分布測定装置(例えば、(株)島津製作所製の「SALD−3000」)を用い50%D(メディアン径)として測定される値である。炭素被覆黒鉛負極材の平均粒径が10μm未満の場合、比表面積が大きくなり初回充放電効率が低下する傾向がある。一方、炭素被覆黒鉛負極材の平均粒径が30μmを超える場合、粒径の大きさに起因して電極面に凸凹が発生し易くなり、電池の短絡の原因となることがある。
平均粒径の調整は、粉砕機や篩を用いて所望の大きさの粒子を得ればよい。
The average particle diameter is a value measured as 50% D (median diameter) using a laser diffraction particle size distribution analyzer (for example, “SALD-3000” manufactured by Shimadzu Corporation). When the average particle diameter of the carbon-coated graphite negative electrode material is less than 10 μm, the specific surface area tends to increase and the initial charge / discharge efficiency tends to decrease. On the other hand, when the average particle size of the carbon-coated graphite negative electrode material exceeds 30 μm, unevenness is likely to occur on the electrode surface due to the size of the particle size, which may cause a short circuit of the battery.
The average particle diameter can be adjusted by obtaining particles having a desired size using a pulverizer or a sieve.

炭素被覆黒鉛負極材の真比重が2.10未満の場合、黒鉛化が十分進行していないことを意味し、放電容量が低下する傾向がある。真比重を調整するには、例えば、2000℃以上で熱処理を施せばよい。
真比重の測定は、ブタノールピクノメーターを用いたブタノール置換法によって測定できる。
比表面積は液体窒素温度での窒素吸着量を測定し、BET法に従って算出される。炭素被覆黒鉛負極材の比表面積が0.5m/g未満の場合、黒鉛質粒子の炭素層が一般に過剰であり、初回サイクルの不可逆容量が増加、電極密着性が低下する傾向がある。一方、比表面積が10m/gを超えることは、炭素層が何らかの原因で多孔質化した場合に見られ、これは炭素層の結晶性が低下することとなるため初回サイクルの不可逆容量が増加する傾向があり、好ましくない。
When the true specific gravity of the carbon-coated graphite negative electrode material is less than 2.10, it means that graphitization has not progressed sufficiently, and the discharge capacity tends to decrease. In order to adjust the true specific gravity, for example, heat treatment may be performed at 2000 ° C. or higher.
The true specific gravity can be measured by a butanol substitution method using a butanol pycnometer.
The specific surface area is calculated according to the BET method by measuring the nitrogen adsorption amount at the liquid nitrogen temperature. When the specific surface area of the carbon-coated graphite negative electrode material is less than 0.5 m 2 / g, the carbon layer of the graphite particles is generally excessive, and the irreversible capacity of the first cycle tends to increase and the electrode adhesion tends to decrease. On the other hand, the specific surface area exceeding 10 m 2 / g is seen when the carbon layer is made porous for some reason, which increases the irreversible capacity of the first cycle because the crystallinity of the carbon layer is lowered. This is not preferable.

上記R値は、ラマン分光スペクトルで測定される1300〜1400cm−1の範囲にあるピーク強度(ID)と1560〜1650cm−1の範囲にあるピーク強度(IG)の強度比(ID/IG)である。
波長5145Åのアルゴンレーザー光を用いて測定されたラマンスペクトル中、1580〜1620cm−1の範囲のピークIGは高結晶性炭素、1350〜1370cm−1の範囲のピークIDは低結晶性炭素に対応する。
The R value is an intensity ratio of a peak intensity (IG) in the peak intensity in the range of 1300~1400Cm -1 as measured by Raman spectroscopy and (ID) in a range of 1560~1650cm -1 (ID / IG) is there.
During the Raman spectrum measured with an argon laser beam having a wavelength of 5145 Å, a peak IG ranging 1580~1620Cm -1 is highly crystalline carbon, the peak ID in the range of 1350 -1 corresponds to the low crystalline carbon .

本発明においてこれらのピーク高さの比(R=ID/IG)は0.3以下であることが好ましく、0.25以下であることがさらに好ましい。R値が0.3を超える場合、炭素層が過剰であり、初回サイクルの不可逆容量が増加、電極密着性が低下する傾向がある。
前記R値の測定は、例えば日本分光(株)製の「NRS−2100」を用い、アルゴンレーザー出力10mW、分光器Fシグナル、入射スリット幅800μm、積算回数2回、露光時間30秒にてIG、IDの測定を行い、算出する。
R値を0.3以下とするには、黒鉛質粒子の炭素層の、黒鉛質粒子に対する炭素の比率(質量比)が0.001〜0.02となるようにすればよい。
In the present invention, the ratio of these peak heights (R = ID / IG) is preferably 0.3 or less, and more preferably 0.25 or less. When the R value exceeds 0.3, the carbon layer is excessive, the irreversible capacity of the first cycle increases, and the electrode adhesion tends to decrease.
The R value is measured using, for example, “NRS-2100” manufactured by JASCO Corporation, an argon laser output of 10 mW, a spectroscope F signal, an incident slit width of 800 μm, an integration count of 2 times, and an exposure time of 30 seconds. The ID is measured and calculated.
In order to make the R value 0.3 or less, the carbon ratio of the carbon layer of the graphite particles to the graphite particles (mass ratio) may be 0.001 to 0.02.

本発明におけるリチウムイオン二次電池負極用炭素被覆黒鉛負極材は、有機系結着剤、溶剤又は水等の溶媒、及び必要により増粘剤と混合し、集電体に塗布し溶剤又は水を乾燥し、加圧成形することによりリチウム二次電池用負極とすることができる。
次に、リチウムイオン二次電池負極について説明する。本発明の炭素被覆黒鉛負極材は、一般に、有機系結着剤及び溶媒等と混練して、シート状、ペレット状等の形状に成形される。
The carbon-coated graphite negative electrode material for a negative electrode of a lithium ion secondary battery in the present invention is mixed with an organic binder, a solvent such as a solvent or water, and if necessary, a thickener, and is applied to a current collector to apply the solvent or water. It can be set as the negative electrode for lithium secondary batteries by drying and pressure-molding.
Next, the lithium ion secondary battery negative electrode will be described. The carbon-coated graphite negative electrode material of the present invention is generally kneaded with an organic binder and a solvent, and formed into a sheet shape, a pellet shape, or the like.

有機系結着剤としては、例えばスチレン−ブタジエン共重合体、メチル(メタ)アクリレー、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル、さらに、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸や、イオン導電性の大きな高分子化合物が使用できる。   Examples of organic binders include ethylenic polymers such as styrene-butadiene copolymer, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, and hydroxyethyl (meth) acrylate. Saturated carboxylic acid esters, ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic acid, and polymer compounds having high ionic conductivity can be used.

前記イオン導電率の大きな高分子化合物としては、ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリフォスファゼン、ポリアクリロニトリル等が使用できる。
有機系結着剤の含有量は、負極材と有機系結着剤等との原料混合物100質量部に対して1〜20質量部含有することが好ましい。
As the polymer compound having a high ionic conductivity, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile and the like can be used.
The content of the organic binder is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the raw material mixture of the negative electrode material and the organic binder and the like.

さらに、粘度を調整するための負極スラリーの増粘剤として、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼイン等を、前述した有機系結着剤と共に使用することも好ましい。
有機系結着剤の混合に使用する溶剤としては特に制限はないが、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、γ−ブチロラクトン等が用いられる。
Furthermore, as the thickener of the negative electrode slurry for adjusting the viscosity, carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, casein, etc. It is also preferable to use it together with a system binder.
Although there is no restriction | limiting in particular as a solvent used for mixing of an organic type binder, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, (gamma) -butyrolactone, etc. are used.

負極材は、有機系結着剤及び溶媒等と混練し、上記増粘剤で粘度を調整した後、これを例えば集電体に塗布し、乾燥し、加圧成形して該集電体と一体化してリチウムイオン二次電池用負極とされる。
本発明のリチウムイオン二次電池用負極の好ましい電極密度は、1.6〜1.9g/cmであり、より好ましくは1.65〜1.85/cmである。
集電体としては、例えばニッケル、銅等の箔、メッシュ等が使用できる。一体化は、例えばロール、プレス等の成形法で行うことができる。
The negative electrode material is kneaded with an organic binder, a solvent, etc., and after adjusting the viscosity with the above thickener, this is applied to, for example, a current collector, dried, and pressure-molded to form the current collector. It is made into the negative electrode for lithium ion secondary batteries by integrating.
The preferable electrode density of the negative electrode for lithium ion secondary batteries of the present invention is 1.6 to 1.9 g / cm 3 , more preferably 1.65 to 1.85 / cm 3 .
As the current collector, for example, a foil such as nickel or copper, a mesh, or the like can be used. The integration can be performed by a molding method such as a roll or a press.

このようにして得られた負極は、例えば、セパレータを介して正極を対向して配置し、電解液を注入することにより、リチウムイオン二次電池とすることができ、該リチウムイオン二次電池も本発明の範囲内である。
本発明のリチウムイオン二次電池は、従来の炭素材料を負極に用いたリチウムイオン二次電池と比較して、急速充放電特性、サイクル特性、充電特性に優れ、不可逆容量が小さく、安全性に優れたものとなる。
The negative electrode thus obtained can be made into a lithium ion secondary battery by, for example, disposing the positive electrode opposite to each other with a separator interposed therebetween and injecting an electrolytic solution. It is within the scope of the present invention.
The lithium ion secondary battery of the present invention is superior in quick charge / discharge characteristics, cycle characteristics, and charging characteristics, and has a small irreversible capacity and safety compared to a lithium ion secondary battery using a conventional carbon material as a negative electrode. It will be excellent.

本発明のリチウムイオン二次電池の正極に用いられる材料については、特に制限はなく、リチウム及び鉄、コバルト、ニッケル、マンガンから選ばれる一種類以上の金属を少なくとも含有するリチウム含有金属複合酸化物が好ましい。例えば、リチウムマンガン複合酸化物、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物等が用いられる。これらのリチウム含有複合酸化物としては、さらに、Al、V、Cr、Fe、Co、Sr、Mo、W、Mn、B、Mgから選ばれる少なくとも一種の金属でリチウムサイト又はマンガン、コバルト、ニッケル等のサイトを置換したリチウム含有金属複合体も使用することができる。   The material used for the positive electrode of the lithium ion secondary battery of the present invention is not particularly limited, and a lithium-containing metal composite oxide containing at least one kind of metal selected from lithium and iron, cobalt, nickel, and manganese. preferable. For example, lithium manganese composite oxide, lithium cobalt composite oxide, lithium nickel composite oxide, or the like is used. These lithium-containing composite oxides further include at least one metal selected from Al, V, Cr, Fe, Co, Sr, Mo, W, Mn, B, Mg, lithium sites, manganese, cobalt, nickel, etc. It is also possible to use a lithium-containing metal composite in which these sites are substituted.

リチウムイオン二次電池の正極に用いられる活物質は、好ましくは、一般式LiMn(xは0.2≦x≦2.5の範囲であり、yは0.8≦x≦1.25の範囲である)で表されるリチウムマンガン複合酸化物である。これらの活物質は単独で又は2種以上組み合わせて用いられる。なお、正極活物質は、導電助剤を組み合せて使用してもよい。 The active material used for the positive electrode of the lithium ion secondary battery is preferably a general formula Li x Mn y O 2 (x is in the range of 0.2 ≦ x ≦ 2.5, and y is in the range of 0.8 ≦ x ≦ Lithium manganese composite oxide represented by the following formula: These active materials are used alone or in combination of two or more. In addition, you may use a positive electrode active material combining a conductive support agent.

導電助剤としては、例えば、黒鉛粒子、カーボンブラック等が挙げられる。これらの導電助剤は、単独で又は2種類以上組み合せて使用してもよい。
正極は、上記の正極活物質と、負極で用いる有機系結着剤と同じポリ弗化ビニリデン等の有機系結着剤と、同じく負極で用いられる溶媒であるN−メチル−2−ピロリドン、γ−ブチルラクトン等の溶媒と、を混合して正極スラリーを調製し、この正極スラリーをアルミニウム箔等の集電体の少なくとも1面に塗布し、次いで溶媒を乾燥除去し、必要に応じて圧延して作製することができる。
Examples of the conductive assistant include graphite particles and carbon black. These conductive assistants may be used alone or in combination of two or more.
The positive electrode includes the above positive electrode active material, the same organic binder as the organic binder used in the negative electrode, such as polyvinylidene fluoride, and N-methyl-2-pyrrolidone, which is a solvent used in the negative electrode, γ -A positive electrode slurry is prepared by mixing with a solvent such as butyl lactone, this positive electrode slurry is applied to at least one surface of a current collector such as an aluminum foil, the solvent is then removed by drying, and rolling is performed as necessary. Can be produced.

電解液としては、LiClO、LiBF、LiI、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、LiCl、LiBr、LiB(C)、LiCHSO、LiCSO、Li(CFSON、Li{(CO等のリチウム塩を、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ビニレンカーボネート等のカーボネート類;γ−ブチルラクトン等のラクトン類;トリメトキシメタン、1、2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;アセトニトリル、ニトロメタン、N−メチル−2−ピロリドン等の含窒素類;ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸エチル、リン酸トリエステル等のエステル類;ジグライム、トリグライム、テトラグライム等のグライム類;アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;スルホラン等のスルホラン類、3−メチル−2−オキサゾリジノン等のオキサゾリジノン類;1、3−プロパンスルトン、4−ブタンスルトン、ナフタスルトン等のスルトン類;等の単体及び混合物等の非水系溶剤に溶解したいわゆる有機電解液を使用することができる。 As an electrolytic solution, LiClO 4, LiBF 4, LiI , LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5), LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, Li {(CO 2 ) 2 } 2 and other lithium salts such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate Carbonates such as methyl ethyl carbonate and vinylene carbonate; lactones such as γ-butyl lactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofura Ethers such as dimethyl sulfoxide; nitrogen-containing compounds such as acetonitrile, nitromethane, N-methyl-2-pyrrolidone; esters such as methyl formate, methyl acetate, butyl acetate, ethyl propionate, phosphate triester Glymes such as diglyme, triglyme and tetraglyme; ketones such as acetone, diethyl ketone, methyl ethyl ketone and methyl isobutyl ketone; sulfolanes such as sulfolane; oxazolidinones such as 3-methyl-2-oxazolidinone; 1,3-propane; A so-called organic electrolyte solution dissolved in a non-aqueous solvent such as a simple substance or a mixture of sultones such as sultone, 4-butane sultone, naphtha sultone, and the like can be used.

セパレータとしては、例えばポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はこれらを組み合せたものを使用することができる。   As the separator, for example, a nonwoven fabric, a cloth, a microporous film, or a combination thereof, which is mainly composed of polyolefin such as polyethylene or polypropylene, can be used.

本発明のリチウムイオン二次電池の作製方法については、本発明の炭素被覆黒鉛負極材又は本発明のリチウムイオン二次電池用負極を用いること以外は特に制限はなく、公知の正極、リチウムイオン二次電池用電解液、セパレータ等の材料を用い、また公知のリチウムイオン二次電池の製造方法を利用することにより作製することができる。   The method for producing the lithium ion secondary battery of the present invention is not particularly limited except that the carbon-coated graphite negative electrode material of the present invention or the negative electrode for lithium ion secondary batteries of the present invention is used. It can be produced by using a material such as an electrolyte solution for a secondary battery and a separator, and utilizing a known method for producing a lithium ion secondary battery.

リチウムイオン二次電池の製造方法については特に制約はないが、いずれも公知の方法が利用できる。例えば、まず、正極と負極の2つの電極を、ポリエチレン微多孔膜からなるセパレータを介して捲回する。得られたスパイラル状の捲回群を電池缶に挿入し、予め負極の集電体に溶接しておいたタブ端子を電池缶底に溶接する。得られた電池缶に電解液を注入し、さらに予め正極の集電体に溶接しておいたタブ端子を電池の蓋に溶接し、蓋を絶縁性のガスケットを介して電池缶の上部に配置し、蓋と電池缶とが接した部分をかしめて密閉することによって電池を得る。   Although there is no restriction | limiting in particular about the manufacturing method of a lithium ion secondary battery, All can use a well-known method. For example, first, two electrodes of a positive electrode and a negative electrode are wound through a separator made of a polyethylene microporous film. The obtained spiral wound group is inserted into a battery can, and a tab terminal previously welded to a negative electrode current collector is welded to the bottom of the battery can. Inject the electrolyte into the resulting battery can, weld the tab terminal that was previously welded to the positive electrode current collector to the battery lid, and place the lid on the top of the battery can via an insulating gasket A battery is obtained by caulking and sealing the part where the lid and the battery can are in contact.

以下、実施例により本発明をさらに詳しく説明するが、本発明をこれらによって制限するものではない。
(黒鉛質粒子の作製)
黒鉛質粒子の骨材として平均粒径が5μmのコークス粉末100質量部、黒鉛質粒子用バインダとしてタールピッチ40質量部及びコールタール20質量部、黒鉛化触媒として平均粒径が48μmの炭化珪素25質量部を混合し、270℃で1時間混合した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited by these.
(Preparation of graphite particles)
100 parts by mass of coke powder having an average particle diameter of 5 μm as an aggregate of graphite particles, 40 parts by mass of tar pitch and 20 parts by mass of coal tar as a binder for graphite particles, and silicon carbide 25 having an average particle diameter of 48 μm as a graphitization catalyst Mass parts were mixed and mixed at 270 ° C. for 1 hour.

得られた混合物を粉砕し、ペレット状に加圧成形、窒素中、900℃で焼成、アチソン炉を用いて3000℃で黒鉛化、ハンマーミルを用いて粉砕、200mesh標準篩を通過させ、黒鉛質粒子を作製した。   The obtained mixture is pulverized, pressed into pellets, calcined at 900 ° C. in nitrogen, graphitized at 3000 ° C. using an Atchison furnace, pulverized using a hammer mill, passed through a 200 mesh standard sieve, and graphitic. Particles were made.

得られた黒鉛質粒子の走査型電子顕微鏡(SEM)写真によれば、この黒鉛質粒子は、偏平状粒子が複数、配向面が非平行となるように集合又は結合した構造をしていた。得られた黒鉛質粒子の物性値を表1に示す。黒鉛質粒子の各物性値の測定方法は以下の通りである。   According to the scanning electron microscope (SEM) photograph of the obtained graphite particles, the graphite particles had a structure in which a plurality of flat particles were aggregated or bonded so that the orientation planes were non-parallel. Table 1 shows the physical property values of the obtained graphite particles. The measuring method of each physical property value of the graphite particles is as follows.

(1)平均粒径:(株)島津製作所製のレーザー回折粒度分布測定装置「SALD−3000」を用い、50%Dでの粒子径を平均粒径とした。試料を界面活性材(ポリオキシエチレン(20)ソルビタンモノラウレート)を添加したイオン交換水に混合し、超音波を1分照射して分散させた後、測定を行った。 (1) Average particle diameter: A laser diffraction particle size distribution measuring device “SALD-3000” manufactured by Shimadzu Corporation was used, and the particle diameter at 50% D was defined as the average particle diameter. The sample was mixed with ion-exchanged water to which a surfactant (polyoxyethylene (20) sorbitan monolaurate) was added and dispersed by irradiation with ultrasonic waves for 1 minute, followed by measurement.

(2)真比重:ブタノール置換法によって測定した。
(3)比表面積:maicromeritics社製、ASAP 2010を用い、液体窒素温度での窒素吸着を多点法で測定、BET法に従って算出した。
(2) True specific gravity: measured by a butanol substitution method.
(3) Specific surface area: Nitrogen adsorption at liquid nitrogen temperature was measured by a multipoint method using ASAP 2010 manufactured by Micromeritics, and calculated according to the BET method.

(4)ラマンスペクトルピーク強度比:日本分光株式会社製の「NRS−2100」を用い、アルゴンレーザー出力10mW、分光器Fシングル、入射スリット幅800μm、積算回数2回、露光時間30秒にて測定を行った。
(5)アスペクト比:走査型電子顕微鏡(SEM)で黒鉛質粒子を拡大した画像を得、任意に20個の黒鉛質粒子を選択し、A/Bを測定し、その平均値をとった。
(4) Raman spectrum peak intensity ratio: measured using “NRS-2100” manufactured by JASCO Corporation, argon laser output 10 mW, spectrometer F single, incident slit width 800 μm, number of integrations 2 times, exposure time 30 seconds. Went.
(5) Aspect ratio: An image obtained by enlarging the graphite particles with a scanning electron microscope (SEM) was obtained, 20 graphite particles were arbitrarily selected, A / B was measured, and an average value thereof was taken.

Figure 0005731732
Figure 0005731732

(実施例1)
まず、ポリアクリロニトリルを以下の方法で合成した。
攪拌機、温度計、冷却管を装着した1.0リットルのセパラブルフラスコ内に、窒素雰囲気下、ニトリル基含有単量体のアクリロニトリル(和光純薬工業株式会社製)45.0g、ラウリルアクリレート(Aldrich社製)5.0g(アクリロニトリル1モルに対して0.0232モルの割合)、重合開始剤の過硫酸カリウム(和光純薬工業株式会社製)1.175mg、連鎖移動剤のα−メチルスチレンダイマー(和光純薬工業株式会社製)135mg、精製水(和光純薬工業株式会社製)450mlを加えて反応液を調製した。反応液を激しく攪拌しながら、60℃で3時間、80℃で3時間攪拌した。室温に冷却後、反応液を吸引ろ過し、析出した樹脂をろ別した。ろ別した樹脂を精製水(和光純薬工業株式会社製)300ml、アセトン(和光純薬工業株式会社製)300mlで順に洗浄した。洗浄した樹脂を60℃/1torrの真空管乾燥機で24時間乾燥して、ポリアクリロニトリルを得た。
上記で得られたポリアクリロニトリル10gを溶解したN−メチル−2−ピロリドン溶液900gを凝縮器を取り付けたフラスコに入れ、これに表1に示した黒鉛質粒子500gを添加した。攪拌しながらオイルバスにて200℃に加熱し、1時間、混合した。
Example 1
First, polyacrylonitrile was synthesized by the following method.
In a 1.0-liter separable flask equipped with a stirrer, a thermometer, and a condenser, 45.0 g of nitrile group-containing monomer acrylonitrile (manufactured by Wako Pure Chemical Industries, Ltd.), lauryl acrylate (Aldrich) under a nitrogen atmosphere 5.0 g (0.0232 mol ratio relative to 1 mol of acrylonitrile), 1.175 mg of polymerization initiator potassium persulfate (manufactured by Wako Pure Chemical Industries, Ltd.), α-methylstyrene dimer as a chain transfer agent A reaction solution was prepared by adding 135 mg (manufactured by Wako Pure Chemical Industries, Ltd.) and 450 ml of purified water (manufactured by Wako Pure Chemical Industries, Ltd.). The reaction solution was stirred at 60 ° C. for 3 hours and at 80 ° C. for 3 hours while stirring vigorously. After cooling to room temperature, the reaction solution was suction filtered, and the precipitated resin was filtered off. The filtered resin was sequentially washed with 300 ml of purified water (manufactured by Wako Pure Chemical Industries, Ltd.) and 300 ml of acetone (manufactured by Wako Pure Chemical Industries, Ltd.). The washed resin was dried for 24 hours with a vacuum tube dryer at 60 ° C./1 torr to obtain polyacrylonitrile.
900 g of N-methyl-2-pyrrolidone solution in which 10 g of polyacrylonitrile obtained above was dissolved was put in a flask equipped with a condenser, and 500 g of graphite particles shown in Table 1 were added thereto. While stirring, the mixture was heated to 200 ° C. in an oil bath and mixed for 1 hour.

次いで、黒鉛質粒子を含む溶液をロータリーエバポレータに移し、N−メチル−2−ピロリドンを除去、さらに真空乾燥機を用いて120℃で1時間、乾燥して、炭素層前駆体としてポリアクリロニトリルで被覆された黒鉛質粒子を得た。   Next, the solution containing the graphite particles is transferred to a rotary evaporator to remove N-methyl-2-pyrrolidone, and further dried at 120 ° C. for 1 hour using a vacuum dryer, and coated with polyacrylonitrile as a carbon layer precursor. Graphite particles were obtained.

得られたポリアクリロニトリル被覆黒鉛質粒子を170℃で5時間熱処理した後、窒素流通下、20℃/hの昇温速度で900℃まで昇温し、1時間保持して、黒鉛質粒子が炭素層で被覆された炭素被覆黒鉛質粒子とした。   The obtained polyacrylonitrile-coated graphite particles were heat-treated at 170 ° C. for 5 hours, then heated to 900 ° C. at a rate of temperature increase of 20 ° C./h under nitrogen flow and held for 1 hour. Carbon-coated graphite particles coated with a layer were obtained.

得られた炭素被覆黒鉛質粒子をカッターミルで解砕、250meshの標準篩を通し、炭素被覆黒鉛負極材1とした。
なお、核としての黒鉛質粒子に対する炭素層の炭素比率を求めるために、ポリアクリロニトリル単独を窒素気流中、20℃/hで900℃まで昇温、1時間保持した場合の炭素化率を測定した。炭素化率は52%であった。この値及びポリアクリロニトリル被覆量より炭素層の黒鉛質粒子に対する炭素率を計算したところ、0.01であった。
炭素被覆黒鉛負極材1の平均粒径、真比重、比表面積、R値(ラマンスペクトルピーク比)、窒素元素濃度を上記の黒鉛質粒子と同様に測定した。その結果を表2に示す。
The obtained carbon-coated graphite particles were pulverized with a cutter mill and passed through a 250 mesh standard sieve to obtain a carbon-coated graphite negative electrode material 1.
In order to determine the carbon ratio of the carbon layer to the graphite particles as the nucleus, the carbonization rate was measured when polyacrylonitrile alone was heated to 900 ° C. at 20 ° C./h in a nitrogen stream and held for 1 hour. . The carbonization rate was 52%. Was calculated carbon ratios for graphite particles of this value and polyacrylonitrile coating amount of carbon layer, it was 0.01.
The average particle diameter, true specific gravity, specific surface area, R value (Raman spectrum peak ratio), and nitrogen element concentration of the carbon-coated graphite negative electrode material 1 were measured in the same manner as the above graphite particles. The results are shown in Table 2.

(実施例2)
ポリイミド(日立化成工業(株)製の商品名「HCI−7000」)10gを溶解したN−メチル−2−ピロリドン溶液900gを凝縮器を取り付けたフラスコに入れ、これに表1に示した黒鉛質粒子500gを添加した。攪拌しながらオイルバスにて200℃に加熱し、1時間、混合した。
(Example 2)
900 g of N-methyl-2-pyrrolidone solution in which 10 g of polyimide (trade name “HCI-7000” manufactured by Hitachi Chemical Co., Ltd.) was dissolved was placed in a flask equipped with a condenser, and the graphite shown in Table 1 500 g of particles were added. While stirring, the mixture was heated to 200 ° C. in an oil bath and mixed for 1 hour.

次いで、黒鉛質粒子を含む溶液をロータリーエバポレータに移し、N−メチル−2−ピロリドンを除去、さらに真空乾燥機を用いて120℃で1時間、乾燥して、炭素層前駆体としてポリイミドが被覆された黒鉛質粒子を得た。   Next, the solution containing the graphite particles is transferred to a rotary evaporator to remove N-methyl-2-pyrrolidone, and further dried at 120 ° C. for 1 hour using a vacuum dryer, so that the polyimide is coated as a carbon layer precursor. Graphite particles were obtained.

得られたポリイミド被覆黒鉛質粒子を窒素流通下、20℃/hの昇温速度で900℃まで昇温し、1時間保持して炭素被覆黒鉛質粒子とした。
次に、得られた炭素被覆黒鉛質粒子をカッターミルで解砕、250meshの標準篩を通し、炭素被覆黒鉛負極材2とした。
The obtained polyimide-coated graphite particles were heated to 900 ° C. at a rate of temperature increase of 20 ° C./h under nitrogen flow, and held for 1 hour to obtain carbon-coated graphite particles.
Next, the obtained carbon-coated graphite particles were pulverized with a cutter mill and passed through a 250 mesh standard sieve to obtain a carbon-coated graphite negative electrode material 2.

核としての黒鉛質粒子に対する炭素層の炭素比率を求めるために、ポリイミド単独を窒素気流中、20℃/hで900℃まで昇温、1時間保持した場合の炭素化率を測定した。炭素化率は50%であった。この値及びポリイミド被覆量より炭素層の黒鉛質粒子に対する炭素率を計算したところ、0.01であった。
炭素被覆黒鉛負極材2の平均粒径、真比重、比表面積、R値(ラマンスペクトルピーク比)、窒素元素濃度を上記の黒鉛質粒子と同様に測定した。その結果を表2に示す。
In order to obtain the carbon ratio of the carbon layer to the graphite particles as the nucleus, the carbonization rate was measured when the polyimide alone was heated to 900 ° C. at 20 ° C./h in a nitrogen stream and held for 1 hour. The carbonization rate was 50%. It was calculated carbon ratios than this value, and polyimide coating amount relative to graphite particles in the carbon layer, was 0.01.
The average particle diameter, true specific gravity, specific surface area, R value (Raman spectrum peak ratio), and nitrogen element concentration of the carbon-coated graphite negative electrode material 2 were measured in the same manner as the above graphite particles. The results are shown in Table 2.

(比較例1)
比較例1として、炭素被覆黒鉛負極材の代わりに表1に示した黒鉛質粒子を負極材1aとした。
負極材1aの平均粒径、真比重、比表面積、R値(ラマンスペクトルピーク比)、窒素元素濃度を上記の黒鉛質粒子と同様に測定した。その結果を表2に示す。
(比較例2)
比較例2として、炭素層の前駆体としてポリアクリロニトリル10gの代わりにコールタールピッチ添加量を10gとし、溶媒をテトラヒドロフランに変えた以外は、実施例1と同様にして負極材2aを作製した。
核としての黒鉛質粒子に対する炭素層の炭素比率を求めるために、コールタールピッチ単独を窒素気流中、20℃/hで900℃まで昇温、1時間保持した場合の炭素化率を測定した。炭素化率は54%であった。この値及びコールタールピッチ被覆量より炭素層の黒鉛質粒子に対する炭素率を計算したところ、0.01であった。
負極材2aの平均粒径、真比重、比表面積、R値(ラマンスペクトルピーク比)、窒素元素濃度を上記の黒鉛質粒子と同様に測定した。その結果を表2に示す。
(比較例3)
比較例3として、炭素層の前駆体としてポリイミド10gの代わりにコールタールピッチ添加量を10gとし、溶媒をテトラヒドロフランに変えた以外は、実施例2と同様にして負極材3aを作製した。
黒鉛質粒子に対する炭素層の炭素比率を求めるために、コールタールピッチ単独を窒素気流中、20℃/hで900℃まで昇温、1時間保持した場合の炭素化率を測定した。炭素化率は52%であった。この値及びコールタールピッチ被覆量より炭素層の黒鉛質粒子に対する炭素率を計算したところ、0.01であった。
負極材3aの平均粒径、真比重、比表面積、R値(ラマンスペクトルピーク比)、窒素元素濃度を上記の黒鉛質粒子と同様に測定した。その結果を表2に示す。
(Comparative Example 1)
As Comparative Example 1, the graphite particles shown in Table 1 were used as the negative electrode material 1a instead of the carbon-coated graphite negative electrode material.
The average particle diameter, true specific gravity, specific surface area, R value (Raman spectrum peak ratio), and nitrogen element concentration of the negative electrode material 1a were measured in the same manner as the above graphite particles. The results are shown in Table 2.
(Comparative Example 2)
As Comparative Example 2, a negative electrode material 2a was produced in the same manner as in Example 1 except that the amount of coal tar pitch added was changed to 10 g instead of 10 g of polyacrylonitrile as the carbon layer precursor, and the solvent was changed to tetrahydrofuran.
In order to determine the carbon ratio of the carbon layer to the graphite particles as the nucleus, the carbonization rate was measured when coal tar pitch alone was heated to 900 ° C. at 20 ° C./h in a nitrogen stream and held for 1 hour. The carbonization rate was 54%. Was calculated carbon ratios for graphite particles of this value and coal tar pitch-coated amount of carbon layer, it was 0.01.
The average particle diameter, true specific gravity, specific surface area, R value (Raman spectrum peak ratio), and nitrogen element concentration of the negative electrode material 2a were measured in the same manner as the above graphite particles. The results are shown in Table 2.
(Comparative Example 3)
As Comparative Example 3, a negative electrode material 3a was produced in the same manner as in Example 2 except that the amount of coal tar pitch added was changed to 10 g instead of 10 g of polyimide as the carbon layer precursor, and the solvent was changed to tetrahydrofuran.
In order to determine the carbon ratio of the carbon layer to the graphite particles, coal tar pitch alone was heated to 900 ° C. at 20 ° C./h in a nitrogen stream, and the carbonization rate was maintained for 1 hour. The carbonization rate was 52%. Was calculated carbon ratios for graphite particles of this value and coal tar pitch-coated amount of carbon layer, it was 0.01.
The average particle diameter, true specific gravity, specific surface area, R value (Raman spectrum peak ratio), and nitrogen element concentration of the negative electrode material 3a were measured in the same manner as the above graphite particles. The results are shown in Table 2.

Figure 0005731732
Figure 0005731732

(負極材の評価)
上記で得られた負極材1、2及び1a〜3aを以下の方法で評価した。
(1)負極材スラリーの調製
実施例1、2及び比較例1〜3で得られた各負極材1、2、1a〜3a98質量部に対し、増粘材としてカルボキシメチルセルロース(CMC2200)1質量部をイオン交換水222質量部で混ぜ合わせ、さらに有機系結着剤としてスチレン−ブタジエン−ラバー(日本ゼオン株式会社製の「BM−400B」)1質量部を加えて各負極材スラリーを調製した。
(Evaluation of negative electrode material)
The negative electrode materials 1, 2 and 1a to 3a obtained above were evaluated by the following methods.
(1) Preparation of negative electrode material slurry 1 part by mass of carboxymethyl cellulose (CMC2200) as a thickener with respect to 98 parts by mass of each negative electrode material 1, 2, 1a to 3a obtained in Examples 1 and 2 and Comparative Examples 1 to 3. Were mixed with 222 parts by mass of ion-exchanged water, and 1 part by mass of styrene-butadiene-rubber (“BM-400B” manufactured by Nippon Zeon Co., Ltd.) as an organic binder was added to prepare each negative electrode material slurry.

(2)負極の作製
上記のように調製した各負極材スラリーを、圧延銅箔(厚さ11μm)上に連続塗布し、大気中130℃の乾燥帯中を15cm/分の速度で乾燥させた後、120℃の乾燥機で1時間乾燥した。
次に、ロールプレスを用いて電極の密度が1.75g/cmとなるように調整し、直径14mm(φ)の円形に打ち抜き、実施例1、2及び比較例1〜3の各負極を得た。
(2) Production of negative electrode Each of the negative electrode material slurries prepared as described above was continuously applied on a rolled copper foil (thickness 11 μm) and dried in a dry zone at 130 ° C. in the air at a rate of 15 cm / min. Then, it dried for 1 hour with 120 degreeC drying machine.
Next, it adjusted so that the density of an electrode might be set to 1.75 g / cm < 3 > using a roll press, and it punched in the circle of diameter 14mm ((phi)), and each negative electrode of Examples 1, 2 and Comparative Examples 1-3 was used. Obtained.

(3)2016型コインセルの作製
得られた各負極について、対極にリチウム金属、電解液に1M LiPF/エチレンカーボネート:エチルメチルカーボネート(3:7体積比)、セパレータに厚さ25μmのポリエチレン製微孔膜、スペーサーとして厚さの適した銅板を用いて2016型コインセルを作製した。
(3) Production of 2016 type coin cell About each obtained negative electrode, lithium metal is used for the counter electrode, 1M LiPF 6 / ethylene carbonate: ethyl methyl carbonate (3: 7 volume ratio) is used for the electrolyte, and a 25 μm thick polyethylene micro separator is used for the separator. A 2016-type coin cell was produced using a copper plate having a suitable thickness as a pore film and a spacer.

(4)充放電試験条件
<充放電容量及び初回充放電効率の評価>
充放電試験方法は、始めに0.434mA/cmの定電流密度で電池電圧が0Vになるまで充電を行った後、0Vの定電圧で電流密度が0.043mA/cmに減衰するまでさらに充電した。充電後、30分間の休止を入れた後放電を行った。放電は0.433mA/cmの定電流密度で電池電圧が1.5Vに達するまで行った。
(4) Charging / discharging test conditions <Evaluation of charging / discharging capacity and initial charging / discharging efficiency>
How the charge and discharge test, after the battery voltage at a constant current density of 0.434mA / cm 2 at the beginning has been charged to a 0V, a constant voltage of 0V to the current density decreased to 0.043mA / cm 2 Charged further. After charging, the battery was discharged after a 30-minute pause. Discharging was performed at a constant current density of 0.433 mA / cm 2 until the battery voltage reached 1.5V.

放電終了後、30分間の休止を行った後再び充放電試験を行った。なお、初回充放電効率は、初回充電容量に対する初回放電容量の比率((初回放電容量)/(初回充電容量)×100)として算出した。   After the end of discharge, a charge / discharge test was performed again after a 30-minute pause. The initial charge / discharge efficiency was calculated as the ratio of the initial discharge capacity to the initial charge capacity ((initial discharge capacity) / (initial charge capacity) × 100).

<充電負荷特性の評価>
充電負荷特性は、0.434mA/cmの定電流から4.34mA/cmに増加させた時の定電流充電容量の比率((4.3mA/cmの定電流充電容量)/(0.434mA/cmの定電流充電容量)×100)として算出した。
<Evaluation of charging load characteristics>
Charging load characteristic, the ratio of the constant current charge capacity when increased from a constant current of 0.434mA / cm 2 to 4.34mA / cm 2 ((constant current charge capacity of 4.3 mA / cm 2) / ( 0.434 mA / cm 2 constant current charge capacity) × 100).

<低温充電特性の評価>
低温充電特性は、0.434mA/cmの定電流において25℃充電時の定電流充電容量と0℃充電時の定電流充電容量の比率((0℃の定電流充電容量)/(25℃の定電流充電容量)×100)として算出した。
各負極の特性を表3に示す。
<Evaluation of low-temperature charging characteristics>
Low temperature charging characteristics, constant current charge capacity of 0.434MA / constant-current charging capacity of 25 ° C. during charging at a constant current of cm 2 and 0 ℃ ratio of the constant current charge capacity during charge ((0 ℃) / (25 ℃ Constant current charge capacity) × 100).
Table 3 shows the characteristics of each negative electrode.

Figure 0005731732
Figure 0005731732

表3に示されるように、本発明(実施例1、2)は放電容量、充放電効率及び充電負荷特性に優れることが明らかである。   As shown in Table 3, it is clear that the present invention (Examples 1 and 2) is excellent in discharge capacity, charge / discharge efficiency, and charge load characteristics.

また、本発明のリチウムイオン二次電池負極用炭素被覆黒鉛負極材又は本発明のリチウムイオン二次電池用負極を用いることにより、高容量で、低温充電性能に優れ、かつサイクル性に優れたリチウムイオン二次電池とすることができる。   Further, by using the carbon-coated graphite negative electrode material for a lithium ion secondary battery negative electrode of the present invention or the negative electrode for a lithium ion secondary battery of the present invention, lithium having high capacity, excellent low-temperature charging performance, and excellent cycleability. It can be set as an ion secondary battery.

Claims (3)

複数の扁平状粒子が互いに非平行に集合又は結合した塊状構造を有し、アスペクト比が5以下である黒鉛質粒子を、窒素含有高分子化合物とこれを溶解する溶媒の混合溶液に分散、混合する工程と、
前記溶媒を除去して、前記窒素含有高分子化合物に被覆された黒鉛質粒子を作製する工程と、
前記窒素含有高分子化合物に被覆された黒鉛質粒子を焼成して、ラマン分光スペクトルで測定される1300〜1400cm −1 の範囲にあるピーク強度(ID)と1560〜1650cm −1 の範囲にあるピーク強度(IG)の強度比であるR値(ID/IG)が0.3以下であり、X線光電子分光スペクトル(XPS)で測定される表面の窒素元素濃度が1.5〜10at%である炭素被覆黒鉛負極材を得る工程と、を含む、
リチウムイオン二次電池用炭素被覆黒鉛負極材の製造方法。
Disperse and mix graphite particles having a block structure in which a plurality of flat particles are aggregated or bonded non-parallel to each other and having an aspect ratio of 5 or less in a mixed solution of a nitrogen-containing polymer compound and a solvent for dissolving the same. And a process of
Removing the solvent to produce graphite particles coated with the nitrogen-containing polymer compound;
Firing the graphite particles coated with the nitrogen-containing polymer compound, peaks at a peak intensity in the range of 1300~1400Cm -1 as measured by Raman spectroscopy and (ID) in a range of 1560~1650Cm -1 R value (ID / IG), which is the intensity ratio of intensity (IG), is 0.3 or less, and the concentration of nitrogen element on the surface measured by X-ray photoelectron spectroscopy (XPS) is 1.5 to 10 at% Obtaining a carbon-coated graphite negative electrode material,
A method for producing a carbon-coated graphite negative electrode material for a lithium ion secondary battery.
請求項1に記載の製造方法で作製されたリチウムイオン二次電池用黒鉛負極材を用いたリチウムイオン二次電池用黒鉛負極。   The graphite negative electrode for lithium ion secondary batteries using the graphite negative electrode material for lithium ion secondary batteries produced with the manufacturing method of Claim 1. 請求項2に記載のリチウムイオン二次電池用黒鉛負極を用いたリチウムイオン二次電池。   The lithium ion secondary battery using the graphite negative electrode for lithium ion secondary batteries of Claim 2.
JP2008098291A 2007-10-17 2008-04-04 Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery Active JP5731732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008098291A JP5731732B2 (en) 2007-10-17 2008-04-04 Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007270075 2007-10-17
JP2007270075 2007-10-17
JP2008098291A JP5731732B2 (en) 2007-10-17 2008-04-04 Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014053634A Division JP5831579B2 (en) 2007-10-17 2014-03-17 Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2009117334A JP2009117334A (en) 2009-05-28
JP5731732B2 true JP5731732B2 (en) 2015-06-10

Family

ID=40784217

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008098291A Active JP5731732B2 (en) 2007-10-17 2008-04-04 Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP2014053634A Active JP5831579B2 (en) 2007-10-17 2014-03-17 Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014053634A Active JP5831579B2 (en) 2007-10-17 2014-03-17 Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery

Country Status (1)

Country Link
JP (2) JP5731732B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7345145B2 (en) 2018-12-26 2023-09-15 パナソニックIpマネジメント株式会社 heating cooker

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504614B2 (en) * 2008-11-12 2014-05-28 三菱化学株式会社 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material
JP2011210666A (en) * 2010-03-30 2011-10-20 Mitsubishi Chemicals Corp Resin coated active material for nonaqueous secondary battery electrode
KR101117624B1 (en) 2010-05-07 2012-02-29 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery
CN102569804B (en) * 2010-12-21 2016-04-13 上海杉杉科技有限公司 A kind of graphite composite material and its production and use
CN102074692B (en) * 2010-12-31 2013-10-30 深圳大学 Preparation method for similar graphene doped lithium ion battery positive electrode material
CN103493276A (en) * 2011-04-13 2014-01-01 日本电气株式会社 Lithium secondary cell
CN103518279B (en) * 2011-05-13 2016-02-17 三菱化学株式会社 Non-aqueous secondary battery material with carbon element, the negative pole using this material with carbon element and non-aqueous secondary battery
KR101349066B1 (en) * 2011-12-01 2014-01-08 지에스칼텍스 주식회사 Anode active material comprising graphite particle with modified surface and litium secondary battery employed with the same
JP6093553B2 (en) * 2012-11-08 2017-03-08 旭化成株式会社 Carbon material, method for producing the same, and composite material
JP5949798B2 (en) * 2013-03-25 2016-07-13 住友大阪セメント株式会社 Electrode material, method for producing electrode material, electrode and lithium ion battery
CN105580184B (en) 2013-09-25 2019-03-12 国立大学法人东京大学 Non-aqueous electrolyte secondary battery
JP5965445B2 (en) 2013-09-25 2016-08-03 国立大学法人 東京大学 Nonaqueous electrolyte secondary battery
JP5817001B2 (en) * 2013-09-25 2015-11-18 国立大学法人 東京大学 Non-aqueous secondary battery
US10122018B2 (en) 2014-03-25 2018-11-06 Hitachi Chemical Company, Ltd. Negative electrode material for lithium-ion secondary battery,method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP6759586B2 (en) * 2015-03-27 2020-09-23 三菱ケミカル株式会社 Carbon material and non-aqueous secondary battery
KR20190003554A (en) * 2016-05-02 2019-01-09 히타치가세이가부시끼가이샤 Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018067455A (en) * 2016-10-19 2018-04-26 トヨタ自動車株式会社 Lithium ion secondary battery
KR102171095B1 (en) 2017-06-09 2020-10-28 주식회사 엘지화학 Negative electrode active material, negative electrode and lithium secondary battery comprising the same
CN112786878B (en) * 2019-11-11 2022-05-24 恒大新能源技术(深圳)有限公司 Graphite negative electrode material, preparation method thereof and battery
JP7285816B2 (en) * 2020-12-04 2023-06-02 プライムプラネットエナジー&ソリューションズ株式会社 Negative electrode active material and lithium ion secondary battery comprising said negative electrode active material
JPWO2022131262A1 (en) * 2020-12-16 2022-06-23
CN115849368A (en) * 2022-12-23 2023-03-28 宁波杉杉新材料科技有限公司 Phosphorus-boron modified carbon-coated artificial graphite negative electrode material, and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195197A (en) * 1995-01-17 1996-07-30 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP3807691B2 (en) * 1997-06-02 2006-08-09 株式会社ジーエス・ユアサコーポレーション Negative electrode for lithium secondary battery and method for producing the same
JP3711726B2 (en) * 1998-01-20 2005-11-02 日立化成工業株式会社 Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
JP4446510B2 (en) * 1998-05-21 2010-04-07 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery and lithium secondary battery
JP4130048B2 (en) * 1999-05-25 2008-08-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US7947394B2 (en) * 2003-09-05 2011-05-24 Hitachi Chemical Co., Ltd. Non-aqueous electrolyte secondary battery-use cathode material, production method therefor, non-aqueous electrolyte secondary battery-use cathode and non-aqueous electrolyte secondary battery using the cathode material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7345145B2 (en) 2018-12-26 2023-09-15 パナソニックIpマネジメント株式会社 heating cooker

Also Published As

Publication number Publication date
JP5831579B2 (en) 2015-12-09
JP2014139942A (en) 2014-07-31
JP2009117334A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP5831579B2 (en) Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP4751138B2 (en) Graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6511726B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2008112710A (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery
JP4866611B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery using the negative electrode material, and non-aqueous electrolyte secondary battery
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP3711726B2 (en) Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
JP2008277231A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP5563743B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery and lithium ion secondary battery using the same
KR20230016213A (en) Composite carbon particles and their uses
JP2007294374A (en) Negative electrode material for nonaqueous electrolytic liquid secondary battery, negative electrode for nonaqueous electrolytic liquid secondary battery using negative electrode material, and nonaqueous electrolytic liquid secondary battery
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6584975B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and method for producing lithium ion secondary battery
JP2013187016A (en) Composite material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP4996827B2 (en) Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019186828A1 (en) Negative electrode material for lithium ion secondary battery, production method for negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6939880B2 (en) Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries
JP5990872B2 (en) Lithium secondary battery negative electrode material, lithium secondary battery negative electrode and lithium secondary battery
JP6218348B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2009263160A (en) Method of producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP5885919B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6319260B2 (en) Lithium ion secondary battery and manufacturing method thereof
TW201937785A (en) Carbonaceous particles, anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
JP7424555B1 (en) Negative active materials and secondary batteries
JP4265111B2 (en) Material suitable for negative electrode for non-aqueous secondary battery, negative electrode, method for producing the same, and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140410

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150410

R150 Certificate of patent or registration of utility model

Ref document number: 5731732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350