JP4096438B2 - Secondary power supply - Google Patents

Secondary power supply Download PDF

Info

Publication number
JP4096438B2
JP4096438B2 JP04367299A JP4367299A JP4096438B2 JP 4096438 B2 JP4096438 B2 JP 4096438B2 JP 04367299 A JP04367299 A JP 04367299A JP 4367299 A JP4367299 A JP 4367299A JP 4096438 B2 JP4096438 B2 JP 4096438B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
secondary power
transition metal
same manner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04367299A
Other languages
Japanese (ja)
Other versions
JP2000106218A (en
Inventor
学 對馬
剛 森本
勇 車
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP04367299A priority Critical patent/JP4096438B2/en
Publication of JP2000106218A publication Critical patent/JP2000106218A/en
Application granted granted Critical
Publication of JP4096438B2 publication Critical patent/JP4096438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、抵抗が低く、耐電圧が高く、容量の大きい二次電源に関する。さらに、本発明は急速充放電サイクル信頼性の高い二次電源に関する。
【0002】
【従来の技術】
従来の電気二重層キャパシタの電極には、正極、負極ともに活性炭を主体とする分極性電極が使用されている。電気二重層キャパシタの耐電圧は、水系電解液を使用すると1.2V、有機系電解液を使用すると2.5〜3.3Vである。電気二重層キャパシタのエネルギは耐電圧の2乗に比例するので、耐電圧の高い有機電解液の方が水系電解液より高エネルギである。しかし、有機電解液を使用した電気二重層キャパシタでもそのエネルギ密度は鉛蓄電池等の二次電池の1/10以下であり、さらなるエネルギ密度の向上が必要とされている。
【0003】
これに対し、特開昭64−14882には、活性炭を主体とする電極を正極とし、X線回折による[002]面の面間隔が0.338〜0.356nmである炭素材料にあらかじめリチウムイオンを吸蔵させた電極を負極とする上限電圧3Vの二次電源が提案されている。また、特開平8−107048には、リチウムイオンを吸蔵、脱離しうる炭素材料にあらかじめ化学的方法又は電気化学的方法でリチウムイオンを吸蔵させた炭素材料を負極に用いる電池が提案されている。また、特開平9−55342には、リチウムイオンを吸蔵、脱離しうる炭素材料をリチウムと合金を形成しない多孔質集電体に担持させる負極を有する、上限電圧4Vの二次電源が提案されている。しかし、これらの二次電源にはあらかじめリチウムイオンを吸蔵させるという製造工程上の問題があった。
【0004】
また、電気二重層キャパシタ以外に大電流充放電可能な電源にはリチウムイオン二次電池がある。リチウムイオン二次電池は電気二重層キャパシタに比べて高電圧かつ高容量という性質を有するが、抵抗が高く、急速充放電サイクルによる寿命が電気二重層キャパシタに比べ著しく短い問題があった。
【0005】
【発明が解決しようとする課題】
そこで本発明は、急速充放電が可能で高耐電圧かつ高容量でエネルギ密度が高く、充放電サイクル信頼性の高い二次電源を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、活性炭とリチウム含有遷移金属酸化物とを含む正極と、リチウムイオンを吸蔵、脱離しうる炭素材料を含む負極と、リチウム塩を含む有機電解液と、を有し、リチウム含有遷移金属酸化物は前記正極中に0.1〜80重量%含まれることを特徴とする二次電源を提供する。
【0007】
本明細書において、リチウムイオンを吸蔵、脱離しうる炭素材料を主体とする負極と集電体とを接合して一体化させたものを負極体という。正極体についても同様の定義とする。また、二次電池も電気二重層キャパシタも二次電源の1種であるが、本明細書では、正極に活性炭を含み、負極にリチウムイオンを吸蔵、脱離しうる炭素材料を含む特定の構成の二次電源を単に二次電源という。
【0008】
本発明の二次電源では、充電したときに正極ではリチウム塩のアニオンの活性炭への吸着に加え、リチウム含有遷移金属酸化物からのリチウムイオンの脱離が起こる。負極では炭素材料にリチウムイオンが吸蔵される。ここで負極の炭素材料に吸蔵されるリチウムイオンは、電解液中のリチウム塩によるものとリチウム含有遷移金属酸化物からの脱離によるものの両方がある。
【0009】
したがって、リチウム含有遷移金属酸化物を含まず活性炭を主体とする正極を有する従来の二次電源に比べ、本発明の二次電源では負極の炭素材料に充分にリチウムイオンを吸蔵させることができる。そのため、前記従来の二次電源のように負極にあらかじめリチウムイオンを吸蔵させておかなくても、正極と負極をセパレータを介して対向させて電解液に含浸させた後に充電することにより負極に充分な量のリチウムイオンを吸蔵できる。そして負極の電位は卑になり、二次電源の電圧を高くできる。
【0010】
また、正極をリチウム含有遷移金属酸化物を主体とする電極、負極をリチウムイオンを吸蔵、脱離しうる炭素材料を主体とする電極とするリチウムイオン二次電池では、急速充放電サイクルを行うと、緩やかな充放電サイクルを行った場合に比べて劣化が著しい。この主な原因は、正極活物質であるリチウム含有遷移金属酸化物の充放電による酸化還元反応にともなう劣化である。
【0011】
一方、本発明の二次電源では、充分な量のリチウム含有遷移金属酸化物が正極に含まれている場合、大電流での急速充放電の場合は活性炭が関与し、比較的小さい電流の充放電の場合はリチウム含有遷移金属酸化物が関与する。そのため、正極のリチウム含有遷移金属酸化物は負担が小さくなり、充放電サイクルによる劣化を少なく抑えることができ、高電圧、高容量かつ充放電サイクルの寿命が長い二次電源が可能になる。
【0012】
また、本発明の二次電源において正極に含まれるリチウム含有遷移金属酸化物の量を少なくすると、正極では充放電には電流の大きさにかかわらず実質的に活性炭のみが関与する。この場合、リチウム含有遷移金属酸化物の実質的な役割は、初期の充電で負極の炭素材料に吸蔵させるためのリチウムイオンを提供する役割と、二次電源の使用により電解液中のリチウムイオンが減少した場合にリチウムイオンを補う役割となる。したがって、リチウム含有遷移金属酸化物の含有量が多い場合に比べ容量は小さくなるが、充放電サイクルによる容量劣化は特に小さくなる。
【0013】
正極中のリチウム含有遷移金属酸化物の量は0.1〜80重量%が好ましい。0.1重量%未満であると、初めの充電において脱離されるリチウムイオンの量が負極が吸蔵できるリチウムイオンの量に対して充分ではなく、二次電源の電圧を高くできない。80重量%を超えると、相対的に正極中の活性炭量が少なくなるため、充放電サイクルにおける容量減少が大きくなる。特に大容量化を重視し、小電流による充放電にリチウム含有遷移金属酸化物を関与させる場合、リチウム含有遷移金属酸化物の量は20〜70重量%であることが好ましい。また、特に充放電サイクルにおける容量減少を小さくし二次電源の耐久性を高めるには0.1〜15重量%、特に1〜10重量%が好ましい。
【0014】
正極に含まれるリチウム含有遷移金属酸化物としては、V、Mn、Fe、Co、Ni、Zn及びWからなる群から選ばれる1種以上の遷移金属とリチウムとの複合酸化物が好ましい。特に好ましいのは、Mn、Co及びNiからなる群から選ばれる1種以上とリチウムとの複合酸化物であり、さらにはLixCoyNi(1-y)2又はLizMn24(ただし、0<x<2、0≦y≦1、0<z<2。)が好ましい。
【0015】
正極に含まれる活性炭は、比表面積が800〜3000m2/g、特に900〜2100m2/gであることが好ましい。活性炭の原料、賦活条件は限定されないが、例えば原料としてはやしがら、フェノール樹脂、石油コークス等が挙げられ、賦活方法としては水蒸気賦活法、溶融アルカリ賦活法等が挙げられる。特に好ましいのはやしがらまたはフェノール樹脂を原料として水蒸気賦活して得られる活性炭である。正極の抵抗を低くするために、正極中に導電材として導電性のカーボンブラック又は黒鉛を含ませておくのも好ましく、このとき導電材は正極中に0.1〜20重量%であることが好ましい。
【0016】
正極体の作製方法としては、例えば活性炭粉末とリチウム含有遷移金属酸化物粉末との混合物にバインダとしてポリテトラフルオロエチレンを混合し、混練した後シート状に成形して正極とし、これを集電体に導電性接着剤を用いて固定する方法がある。また、バインダとしてポリフッ化ビニリデン、ポリアミドイミド、ポリイミド等を溶解したワニスに活性炭粉末とリチウム含有遷移金属酸化物粉末とを分散させ、この液をドクターブレード法等によって集電体上に塗工し、乾燥して得てもよい。正極中に含まれるバインダの量は、正極体の強度と容量等の特性とのバランスから1〜20重量%であることが好ましい。
【0017】
本発明におけるリチウムイオンを吸蔵、脱離しうる炭素材料は、X線回折の測定による[002]面の面間隔が0.335〜0.410nm、特に0.335〜0.338nmであることが好ましい。面間隔が0.410nm超の炭素材料は充放電サイクルにおいて劣化しやすい。具体的には石油コークス、メソフェーズピッチ系炭素材料又は気相成長炭素繊維を800〜3000℃で熱処理した材料、天然黒鉛、人造黒鉛、難黒鉛性炭素材料等が挙げられる。本発明ではこれらの材料はいずれも好ましく使用できる。
【0018】
難黒鉛性炭素材料又は石油コークス等を低温処理した炭素材料を使用する場合、例えば気相成長炭素を黒鉛化した材料等の黒鉛性の炭素材料と混合して使用すると抵抗を低減できるので好ましい。この場合、難黒鉛性炭素材料等と黒鉛性の炭素材料とは重量比で95:5〜70:30であることが好ましい。黒鉛性の炭素材料が5%未満では抵抗低減の効果が発揮できず、30%超では負極の容量が低下する。
【0019】
本発明における負極体は、活性炭を含む層の場合と同様に、リチウムイオンを吸蔵、脱離しうる材料にポリテトラフルオロエチレンをバインダとして混合し、混練してシート状に成形して負極を形成し、導電性接着剤を用いて集電体に接着させて得られる。また、ポリフッ化ビニリデン、ポリアミドイミド又はポリイミドをバインダとし、バインダとなる樹脂又はその前駆体を有機溶媒に溶解させた溶液に前記炭素材料を分散させ、集電体に塗工し、乾燥させて得る方法もある。これらの方法はいずれも好ましい。
【0020】
集電体に負極層を塗工して得られる方法において、バインダとなる樹脂又はその前駆体を溶解させる溶媒は限定されないが、バインダを構成する樹脂又はその前駆体を容易に溶解でき、入手も容易であることからN−メチル−2−ピロリドン(以下、NMPという)が好ましい。ここで、ポリフッ化ビニリデンの前駆体、ポリアミドイミドの前駆体又はポリイミドの前駆体とは、加熱することにより重合してそれぞれポリフッ化ビニリデン、ポリアミドイミド又はポリイミドとなるものをいう。
【0021】
上記のようにして得られるバインダは、加熱することにより硬化し、耐薬品性、機械的性質、寸法安定性に優れる。熱処理の温度は200℃以上であることが好ましい。200℃以上であれば、ポリアミドイミドの前駆体又はポリイミドの前駆体であっても通常重合して、それぞれポリアミドイミド又はポリイミドとなる。また、熱処理する雰囲気は窒素、アルゴン等の不活性雰囲気又は1torr以下の減圧下が好ましい。ポリアミドイミド又はポリイミドは、本発明で使用される有機電解液に対する耐性があり、また負極から水分を除去するために300℃程度の高温加熱又は減圧下の加熱をしても充分耐性がある。
【0022】
本発明において、負極と集電体の間にポリアミドイミド又はポリイミドからなる接着層を介在させると、負極と集電体の接着力はより強固になる。この場合、あらかじめ集電体にポリアミドイミド、ポリイミド又はこれらの前駆体を溶剤に溶解させたワニスを、ドクターブレード法等の塗工法で塗工し、乾燥して接着層を形成し、この上に負極を形成する。また、接着層を形成するワニスに銅、黒鉛等の導電材を分散させておくと、負極と集電体との接触抵抗を低減できるので好ましい。この導電材を含むワニスは、活性炭を含む層をシート状に成形した場合における該層と集電体との間にも導電性接着剤として介在させることもできる。
【0023】
本発明における有機電解液に含まれるリチウム塩は、LiPF6、LiBF4、LiClO4、LiN(SO2CF32、CF3SO3Li、LiC(SO2CF33、LiAsF6及びLiSbF6からなる群から選ばれる1種以上が好ましい。溶媒はエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン及びジメトキシエタンからなる群から選ばれる1種以上を含むことが好ましい。これらのリチウム塩と溶媒とからなる電解液は耐電圧が高く、電気伝導度も高い。リチウム塩の濃度は0.1〜2.5mol/L、さらには0.5〜2mol/Lが好ましい。
【0024】
【実施例】
次に、実施例(例1〜6、例9〜15)及び比較例(例7〜8、例16〜17)により本発明をさらに具体的に説明するが、本発明はこれらにより限定されない。なお、例1〜17におけるセルの作製及び測定はすべて露点が−60℃以下のアルゴングローブボックス中で行った。
【0025】
[例1]
フェノール樹脂を原料として水蒸気賦活法によって得られた比表面積2000m2/gの活性炭40重量%、LiCoO240重量%、導電性カーボンブラック10重量%、及びバインダとしてポリテトラフルオロエチレン10重量%からなる混合物をエタノールを加えて混練し、圧延した後、200℃で2時間真空乾燥して電極シートを得た。このシートをポリアミドイミドをバインダとする導電性接着剤を用いてアルミニウム箔に接合し、減圧下で300℃で2時間熱処理し、正極体とした。電極面積は1cm2、電極シートの厚さは180μmであった。
【0026】
次に、石油コークス系炭素材料を1000℃で熱処理することによりリチウムイオンを吸蔵、脱離しうる炭素材料を得た。この炭素材料のX線回折による[002]面の面間隔は0.341nmであった。正極と同様にポリテトラフルオロエチレンをバインダとしてシート状に成形し、銅からなる集電体に導電性接着剤を用いて接合した。電極面積は1cm2、電極シートの厚さは60μmであった。
【0027】
上記正極体と上記負極体とを、ポリプロピレン製セパレータを介して対向させて1cm角の素子を作製した。プロピレンカーボネートに1mol/LのLiBF4を溶解した溶液を電解液とし、該電解液に前記素子を充分に含浸させ、4.2Vから3Vまでの範囲で初期容量を測定した。その後、充放電電流10mAで、4.2Vから3Vまでの範囲で充放電サイクル試験を行い、1000サイクル後の容量を測定し、変化率を算出した。結果を表1に示す。
【0028】
[例2]
LiCoO2のかわりにLiMn24を用いた以外は例1と同様にして正極体を得た。この正極体を用いた以外は例1と同様にして容量を測定した。結果を表1に示す。
【0029】
[例3]
LiCoO2のかわりにLiNiO2を用いた以外は例1と同様にして正極体を得た。この正極体を用いた以外は例1と同様にして容量を測定した。結果を表1に示す。
【0030】
[例4]
LiCoO2のかわりにLiCo0.2Ni0.82を用いた以外は例1と同様にして正極体を得た。この正極体を用いた以外は例1と同様にして容量を測定した。結果を表1に示す。
【0031】
[例5]
混合物中の活性炭を60重量%かつLiCoO2を20重量%とした以外は例1と同様にして正極体を得た。この正極体を用いた以外は例1と同様にして容量を測定した。結果を表1に示す。
【0032】
[例6]
混合物中の活性炭を20重量%かつLiCoO2を60重量%とした以外は例1と同様にして正極体を得た。この正極体を用いた以外は例1と同様にして容量を測定した。結果を表1に示す。
【0033】
[例7]
混合物中にLiCoO2を加えずに活性炭を80重量%とした以外は例1と同様にして正極体を得た。この正極体を用いた以外は例1と同様にして容量を測定した。結果を表1に示す。
【0034】
[例8]
混合物中に活性炭を加えずにLiCoO2を80重量%とした以外は例1と同様にして正極体を得た。この正極体を用いた以外は例1と同様にして容量を測定した。結果を表1に示す。
【0035】
[例9]
フェノール樹脂のかわりに、やしがらを原料として水蒸気賦活法によって得られた比表面積2000m2/gの活性炭を用いた以外は例1と同様にして正極体を作製した。
【0036】
次に、メソフェーズピッチ系炭素材料を3000℃で熱処理することにより、[002]面の面間隔0.337nmのリチウムイオンを吸蔵、脱離しうる炭素材料を得た。ポリアミドイミドをNMPに溶解した溶液に上記炭素材料を分散させ、厚さ20μmのエッチングした銅箔にドクターブレード法で塗工し、空気中で120℃で2時間乾燥した後、0.2torrの減圧下で300℃で2時間熱処理し、負極体とした。乾燥後の塗工層の厚さは100μmであり、有効電極面積は1cm2、上記炭素材料とポリアミドイミドとの重量比は9:1であった。
【0037】
上記正極体と上記負極体を厚さ25μmのポリプロピレン製セパレータを介して対向させて1cm角の素子を作製した。エチレンカーボネートとプロピレンカーボネートとの混合溶媒(容積比で1:1)に1mol/LのLiBF4を溶解した溶液を電解液とし、該電解液に前記素子を充分に含浸させ、4.2Vから3Vまでの範囲で初期容量を測定した。その後、充放電電流10mAで、4.2Vから3Vまでの範囲で充放電サイクル試験を行い、1万サイクル後の容量を測定し、さらに変化率を算出した。結果を表2に示す。
【0038】
[例10]
LiCoO2のかわりにLiMn24を用いた以外は例9と同様にして正極体を得た。この正極体を用いた以外は例9と同様にして容量を測定した。結果を表2に示す。
【0039】
[例11]
LiCoO2のかわりにLiNiO2を用いた以外は例9と同様にして正極体を得た。この正極体を用いた以外は例9と同様にして容量を測定した。結果を表2に示す。
【0040】
[例12]
LiCoO2のかわりにLiCo0.2Ni0.82を用いた以外は例1と同様にして正極体を得た。この正極体を用いた以外は例9と同様にして容量を測定した。結果を表2に示す。
【0041】
[例13]
混合物中の活性炭を60重量%かつLiCoO2を20重量%とした以外は例9と同様にして正極体を得た。この正極体を用いた以外は例9と同様にして容量を測定した。結果を表2に示す。
【0042】
[例14]
混合物中の活性炭を20重量%かつLiCoO2を60重量%とした以外は例9と同様にして正極体を得た。この正極体を用いた以外は例9と同様にして容量を測定した。結果を表2に示す。
【0043】
[例15]
混合物中の活性炭を70重量%、かつLiCoO2を10重量%とした以外は例9と同様にして正極体を得た。また、塗工層の厚さを50μmとした以外は例9と同様にして負極体を得た。この正極体と負極体を用いた以外は例9と同様にして容量を測定した。結果を表2に示す。
【0044】
[例16]
混合物中にLiCoO2を加えずに活性炭を80重量%とした以外は例9と同様にして正極体を得た。この正極体を用いた以外は例9と同様にして容量を測定した。結果を表2に示す。
【0045】
[例17]
混合物中に活性炭を加えずにLiCoO2を80重量%とした以外は例9と同様にして正極体を得た。この正極体を用いた以外は例9と同様にして容量を測定した。結果を表2に示す。
【0046】
【表1】

Figure 0004096438
【0047】
【表2】
Figure 0004096438
【0048】
【発明の効果】
本発明の二次電源は、耐電圧が高く容量が大きい。また、正極では急速充放電には活性炭が関与し、リチウム含有遷移金属酸化物は基本的に低電流による充放電に関与するか又は実質的に充放電に関与しないため、充放電サイクル耐久性に優れている。
【0049】
また、二次電源の作製時の負極炭素材料へのリチウムイオンの吸蔵も、あらかじめ化学的方法又は電気化学的方法により行う必要がなく、二次電源として作製した後に充電により行うことができるため、二次電源の作製が容易である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary power source with low resistance, high withstand voltage, and large capacity. Furthermore, the present invention relates to a secondary power source with high rapid charge / discharge cycle reliability.
[0002]
[Prior art]
As an electrode of a conventional electric double layer capacitor, a polarizable electrode mainly composed of activated carbon is used for both the positive electrode and the negative electrode. The withstand voltage of the electric double layer capacitor is 1.2 V when an aqueous electrolyte is used, and 2.5 to 3.3 V when an organic electrolyte is used. Since the energy of the electric double layer capacitor is proportional to the square of the withstand voltage, the organic electrolyte having a higher withstand voltage has a higher energy than the aqueous electrolyte. However, even in an electric double layer capacitor using an organic electrolyte, its energy density is 1/10 or less that of a secondary battery such as a lead storage battery, and further improvement in energy density is required.
[0003]
On the other hand, Japanese Patent Laid-Open No. 64-14882 discloses that a lithium ion is previously applied to a carbon material having an electrode mainly composed of activated carbon as a positive electrode and having a [002] plane spacing of 0.338 to 0.356 nm by X-ray diffraction. A secondary power source with an upper limit voltage of 3 V has been proposed in which the electrode that has occluded is used as a negative electrode. Japanese Patent Laid-Open No. 8-107048 proposes a battery using, as a negative electrode, a carbon material in which lithium ions are occluded in advance by a chemical method or an electrochemical method in a carbon material that can occlude and desorb lithium ions. Japanese Patent Laid-Open No. 9-55342 proposes a secondary power supply with an upper limit voltage of 4 V having a negative electrode that supports a porous current collector that does not form an alloy with lithium on a carbon material capable of absorbing and desorbing lithium ions. Yes. However, these secondary power sources have a problem in the manufacturing process of storing lithium ions in advance.
[0004]
In addition to the electric double layer capacitor, there is a lithium ion secondary battery as a power source capable of charging and discharging a large current. Lithium ion secondary batteries have the properties of higher voltage and higher capacity than electric double layer capacitors, but they have high resistance and have a problem that their life due to rapid charge / discharge cycles is significantly shorter than electric double layer capacitors.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a secondary power source capable of rapid charge / discharge, high withstand voltage, high capacity, high energy density, and high charge / discharge cycle reliability.
[0006]
[Means for Solving the Problems]
The present invention includes a positive electrode and, occluding lithium ions, a negative electrode containing a carbon material capable desorbed have a, an organic electrolyte containing a lithium salt, a lithium-containing transition metal containing activated carbon and a lithium-containing transition metal oxides oxide provides a secondary power source, wherein Rukoto contains 0.1 to 80% by weight in the positive electrode.
[0007]
In this specification, a negative electrode body is formed by joining and integrating a negative electrode mainly composed of a carbon material capable of inserting and extracting lithium ions and a current collector. The same definition applies to the positive electrode body. A secondary battery and an electric double layer capacitor are both types of secondary power sources. In this specification, the positive electrode includes activated carbon, and the negative electrode includes a carbon material capable of inserting and extracting lithium ions. The secondary power source is simply called a secondary power source.
[0008]
In the secondary power source of the present invention, when charged, in addition to adsorption of lithium salt anions on activated carbon, lithium ions are desorbed from the lithium-containing transition metal oxide when charged. In the negative electrode, lithium ions are occluded in the carbon material. Here, the lithium ions occluded in the carbon material of the negative electrode are both due to the lithium salt in the electrolytic solution and due to desorption from the lithium-containing transition metal oxide.
[0009]
Therefore, compared with a conventional secondary power source having a positive electrode mainly composed of activated carbon that does not contain a lithium-containing transition metal oxide, the secondary power source of the present invention can sufficiently store lithium ions in the carbon material of the negative electrode. Therefore, even if the negative electrode is not previously occluded with lithium ions as in the conventional secondary power source, the negative electrode is sufficiently charged by charging after impregnating the electrolyte with the positive electrode and the negative electrode facing each other through a separator. A large amount of lithium ions can be occluded. And the electric potential of a negative electrode becomes base, and the voltage of a secondary power supply can be made high.
[0010]
Further, in a lithium ion secondary battery in which the positive electrode is an electrode mainly composed of a lithium-containing transition metal oxide and the negative electrode is an electrode mainly composed of a carbon material capable of occluding and desorbing lithium ions, when a rapid charge / discharge cycle is performed, Deterioration is remarkable compared to the case where a slow charge / discharge cycle is performed. The main cause is deterioration due to the oxidation-reduction reaction due to charging / discharging of the lithium-containing transition metal oxide as the positive electrode active material.
[0011]
On the other hand, in the secondary power source of the present invention, when a sufficient amount of a lithium-containing transition metal oxide is contained in the positive electrode, activated carbon is involved in the case of rapid charge / discharge at a large current, and charging of a relatively small current is performed. In the case of discharge, a lithium-containing transition metal oxide is involved. Therefore, the burden of the lithium-containing transition metal oxide of the positive electrode is reduced, the deterioration due to the charge / discharge cycle can be suppressed, and a secondary power source with a high voltage, a high capacity, and a long life of the charge / discharge cycle becomes possible.
[0012]
In addition, when the amount of the lithium-containing transition metal oxide contained in the positive electrode in the secondary power source of the present invention is reduced, only activated carbon is substantially involved in charge and discharge in the positive electrode regardless of the magnitude of the current. In this case, the substantial role of the lithium-containing transition metal oxide is to provide lithium ions for occlusion in the carbon material of the negative electrode in the initial charge, and to reduce the lithium ions in the electrolyte by using a secondary power source. When it decreases, it serves to supplement lithium ions. Therefore, the capacity is smaller than when the content of the lithium-containing transition metal oxide is large, but the capacity deterioration due to the charge / discharge cycle is particularly small.
[0013]
The amount of the lithium-containing transition metal oxide in the positive electrode is preferably 0.1 to 80% by weight. If it is less than 0.1% by weight, the amount of lithium ions desorbed in the first charge is not sufficient relative to the amount of lithium ions that can be occluded by the negative electrode, and the voltage of the secondary power source cannot be increased. If it exceeds 80% by weight, the amount of activated carbon in the positive electrode is relatively reduced, and thus the capacity reduction in the charge / discharge cycle is increased. In particular, when emphasizing the increase in capacity and involving the lithium-containing transition metal oxide in charging and discharging with a small current, the amount of the lithium-containing transition metal oxide is preferably 20 to 70% by weight. Moreover, 0.1 to 15 weight%, especially 1 to 10 weight% is preferable in order to reduce the capacity | capacitance reduction especially in a charging / discharging cycle and to improve durability of a secondary power supply.
[0014]
The lithium-containing transition metal oxide contained in the positive electrode is preferably a composite oxide of lithium and one or more transition metals selected from the group consisting of V, Mn, Fe, Co, Ni, Zn, and W. Particularly preferred is a composite oxide of lithium and at least one selected from the group consisting of Mn, Co and Ni, and Li x Co y Ni (1-y) O 2 or Li z Mn 2 O 4. (However, 0 <x <2, 0 ≦ y ≦ 1, 0 <z <2.) Is preferable.
[0015]
The activated carbon contained in the positive electrode preferably has a specific surface area of 800 to 3000 m 2 / g, particularly 900 to 2100 m 2 / g. Although the raw material of activated carbon and activation conditions are not limited, For example, as a raw material, a phenol resin, petroleum coke, etc. are mentioned, As a activation method, a steam activation method, a molten alkali activation method, etc. are mentioned. Particularly preferred is activated carbon obtained by steam activation using coconut or phenol resin as a raw material. In order to reduce the resistance of the positive electrode, it is also preferable to include conductive carbon black or graphite as a conductive material in the positive electrode. At this time, the conductive material should be 0.1 to 20% by weight in the positive electrode. preferable.
[0016]
As a method for producing the positive electrode, for example, a mixture of activated carbon powder and lithium-containing transition metal oxide powder is mixed with polytetrafluoroethylene as a binder, kneaded, and then molded into a sheet to obtain a positive electrode. There is a method of fixing using a conductive adhesive. In addition, activated carbon powder and lithium-containing transition metal oxide powder are dispersed in a varnish in which polyvinylidene fluoride, polyamideimide, polyimide, etc. are dissolved as a binder, and this liquid is applied onto a current collector by a doctor blade method or the like, It may be obtained by drying. The amount of the binder contained in the positive electrode is preferably 1 to 20% by weight from the balance between the strength of the positive electrode body and characteristics such as capacity.
[0017]
The carbon material capable of inserting and extracting lithium ions in the present invention preferably has a [002] plane spacing of 0.335 to 0.410 nm, particularly 0.335 to 0.338 nm as measured by X-ray diffraction. . A carbon material having an interplanar spacing of more than 0.410 nm is likely to deteriorate in a charge / discharge cycle. Specifically, petroleum coke, mesophase pitch-based carbon material or vapor-grown carbon fiber is heat-treated at 800 to 3000 ° C., natural graphite, artificial graphite, non-graphitizable carbon material, and the like. In the present invention, any of these materials can be preferably used.
[0018]
In the case of using a low-graphite carbon material or a carbon material obtained by subjecting petroleum coke or the like to a low temperature, it is preferable to mix vapor-grown carbon with a graphitic carbon material such as a graphitized material because the resistance can be reduced. In this case, the weight ratio of the non-graphitizable carbon material and the like to the graphitic carbon material is preferably 95: 5 to 70:30. If the graphitic carbon material is less than 5%, the effect of reducing the resistance cannot be exhibited, and if it exceeds 30%, the capacity of the negative electrode decreases.
[0019]
In the negative electrode body of the present invention, as in the case of the layer containing activated carbon, polytetrafluoroethylene is mixed as a binder with a material capable of inserting and extracting lithium ions, kneaded and formed into a sheet to form a negative electrode. It is obtained by adhering to a current collector using a conductive adhesive. In addition, polyvinylidene fluoride, polyamideimide, or polyimide is used as a binder, and the carbon material is dispersed in a solution in which a binder resin or its precursor is dissolved in an organic solvent, applied to a current collector, and dried. There is also a method. Any of these methods is preferred.
[0020]
In the method obtained by applying the negative electrode layer to the current collector, the solvent that dissolves the binder resin or its precursor is not limited, but the resin constituting the binder or its precursor can be easily dissolved and is also available. N-methyl-2-pyrrolidone (hereinafter referred to as NMP) is preferable because it is easy. Here, the precursor of polyvinylidene fluoride, the precursor of polyamideimide or the precursor of polyimide means a polymer which is polymerized by heating to become polyvinylidene fluoride, polyamideimide or polyimide, respectively.
[0021]
The binder obtained as described above is cured by heating and is excellent in chemical resistance, mechanical properties, and dimensional stability. It is preferable that the temperature of heat processing is 200 degreeC or more. If it is 200 degreeC or more, even if it is a polyamideimide precursor or a polyimide precursor, it will superpose | polymerize normally and it will become a polyamideimide or a polyimide, respectively. The atmosphere for the heat treatment is preferably an inert atmosphere such as nitrogen or argon, or a reduced pressure of 1 torr or less. Polyamideimide or polyimide is resistant to the organic electrolyte used in the present invention, and is sufficiently resistant to high temperature heating at about 300 ° C. or heating under reduced pressure in order to remove moisture from the negative electrode.
[0022]
In the present invention, when an adhesive layer made of polyamideimide or polyimide is interposed between the negative electrode and the current collector, the adhesive force between the negative electrode and the current collector becomes stronger. In this case, a varnish obtained by dissolving polyamideimide, polyimide or a precursor thereof in a current collector in a solvent in advance is applied by a coating method such as a doctor blade method, and dried to form an adhesive layer. A negative electrode is formed. In addition, it is preferable to disperse a conductive material such as copper or graphite in the varnish forming the adhesive layer because the contact resistance between the negative electrode and the current collector can be reduced. The varnish containing this conductive material can be interposed as a conductive adhesive also between the layer and the current collector when the layer containing activated carbon is formed into a sheet.
[0023]
The lithium salt contained in the organic electrolyte in the present invention includes LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2 , CF 3 SO 3 Li, LiC (SO 2 CF 3 ) 3 , LiAsF 6 and LiSbF. One or more selected from the group consisting of 6 are preferred. The solvent preferably contains one or more selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, and dimethoxyethane. Electrolytic solutions composed of these lithium salts and solvents have high withstand voltage and high electrical conductivity. The concentration of the lithium salt is preferably 0.1 to 2.5 mol / L, more preferably 0.5 to 2 mol / L.
[0024]
【Example】
Next, although an Example (Examples 1-6, Examples 9-15) and a comparative example (Examples 7-8, Examples 16-17) demonstrate this invention further more concretely, this invention is not limited by these. In addition, all the manufacture and measurement of the cell in Examples 1-17 were performed in the argon glove box whose dew point is -60 degrees C or less.
[0025]
[Example 1]
40% by weight of activated carbon having a specific surface area of 2000 m 2 / g obtained by a steam activation method using phenol resin as a raw material, 40% by weight of LiCoO 2, 10% by weight of conductive carbon black, and 10% by weight of polytetrafluoroethylene as a binder. The mixture was kneaded with ethanol, rolled, and then vacuum dried at 200 ° C. for 2 hours to obtain an electrode sheet. This sheet was bonded to an aluminum foil using a conductive adhesive containing polyamideimide as a binder, and heat treated at 300 ° C. for 2 hours under reduced pressure to obtain a positive electrode body. The electrode area was 1 cm 2 and the thickness of the electrode sheet was 180 μm.
[0026]
Next, the petroleum coke carbon material was heat-treated at 1000 ° C. to obtain a carbon material capable of inserting and extracting lithium ions. The surface spacing of the [002] plane by X-ray diffraction of this carbon material was 0.341 nm. In the same manner as the positive electrode, polytetrafluoroethylene was used as a binder to form a sheet and joined to a current collector made of copper using a conductive adhesive. The electrode area was 1 cm 2 and the thickness of the electrode sheet was 60 μm.
[0027]
The positive electrode body and the negative electrode body were opposed to each other through a polypropylene separator to produce a 1 cm square element. A solution in which 1 mol / L LiBF 4 was dissolved in propylene carbonate was used as an electrolytic solution, the device was sufficiently impregnated with the electrolytic solution, and the initial capacity was measured in the range from 4.2V to 3V. Thereafter, a charge / discharge cycle test was performed at a charge / discharge current of 10 mA in a range from 4.2 V to 3 V, the capacity after 1000 cycles was measured, and the rate of change was calculated. The results are shown in Table 1.
[0028]
[Example 2]
A positive electrode body was obtained in the same manner as in Example 1 except that LiMn 2 O 4 was used instead of LiCoO 2 . The capacity was measured in the same manner as in Example 1 except that this positive electrode was used. The results are shown in Table 1.
[0029]
[Example 3]
A positive electrode body was obtained in the same manner as in Example 1 except that LiNiO 2 was used instead of LiCoO 2 . The capacity was measured in the same manner as in Example 1 except that this positive electrode was used. The results are shown in Table 1.
[0030]
[Example 4]
A positive electrode body was obtained in the same manner as in Example 1 except that LiCo 0.2 Ni 0.8 O 2 was used instead of LiCoO 2 . The capacity was measured in the same manner as in Example 1 except that this positive electrode was used. The results are shown in Table 1.
[0031]
[Example 5]
A positive electrode body was obtained in the same manner as in Example 1 except that the activated carbon in the mixture was 60 wt% and LiCoO 2 was 20 wt%. The capacity was measured in the same manner as in Example 1 except that this positive electrode was used. The results are shown in Table 1.
[0032]
[Example 6]
A positive electrode body was obtained in the same manner as in Example 1 except that the activated carbon in the mixture was 20 wt% and LiCoO 2 was 60 wt%. The capacity was measured in the same manner as in Example 1 except that this positive electrode was used. The results are shown in Table 1.
[0033]
[Example 7]
A positive electrode was obtained in the same manner as in Example 1 except that the activated carbon was changed to 80% by weight without adding LiCoO 2 to the mixture. The capacity was measured in the same manner as in Example 1 except that this positive electrode was used. The results are shown in Table 1.
[0034]
[Example 8]
A positive electrode body was obtained in the same manner as in Example 1 except that the activated carbon was not added to the mixture and LiCoO 2 was changed to 80% by weight. The capacity was measured in the same manner as in Example 1 except that this positive electrode was used. The results are shown in Table 1.
[0035]
[Example 9]
A positive electrode body was prepared in the same manner as in Example 1 except that instead of the phenol resin, activated carbon having a specific surface area of 2000 m 2 / g obtained by steam activation using coconut palm as a raw material was used.
[0036]
Next, the mesophase pitch-based carbon material was heat-treated at 3000 ° C. to obtain a carbon material capable of inserting and extracting lithium ions having a [002] plane spacing of 0.337 nm. The above carbon material is dispersed in a solution of polyamideimide in NMP, coated on a 20 μm thick etched copper foil by the doctor blade method, dried in air at 120 ° C. for 2 hours, and then decompressed at 0.2 torr. Under heat treatment at 300 ° C. for 2 hours, a negative electrode body was obtained. The thickness of the coating layer after drying was 100 μm, the effective electrode area was 1 cm 2 , and the weight ratio of the carbon material to polyamideimide was 9: 1.
[0037]
The positive electrode body and the negative electrode body were opposed to each other through a polypropylene separator having a thickness of 25 μm to produce a 1 cm square element. A solution obtained by dissolving 1 mol / L LiBF 4 in a mixed solvent of ethylene carbonate and propylene carbonate (volume ratio of 1: 1) is used as an electrolytic solution. The electrolytic solution is sufficiently impregnated with the element, and 4.2V to 3V. The initial capacity was measured in the range up to. Thereafter, a charge / discharge cycle test was performed at a charge / discharge current of 10 mA in a range from 4.2 V to 3 V, the capacity after 10,000 cycles was measured, and the rate of change was further calculated. The results are shown in Table 2.
[0038]
[Example 10]
A positive electrode body was obtained in the same manner as in Example 9 except that LiMn 2 O 4 was used instead of LiCoO 2 . The capacity was measured in the same manner as in Example 9 except that this positive electrode was used. The results are shown in Table 2.
[0039]
[Example 11]
A positive electrode body was obtained in the same manner as in Example 9, except that LiNiO 2 was used instead of LiCoO 2 . The capacity was measured in the same manner as in Example 9 except that this positive electrode was used. The results are shown in Table 2.
[0040]
[Example 12]
A positive electrode body was obtained in the same manner as in Example 1 except that LiCo 0.2 Ni 0.8 O 2 was used instead of LiCoO 2 . The capacity was measured in the same manner as in Example 9 except that this positive electrode was used. The results are shown in Table 2.
[0041]
[Example 13]
A positive electrode body was obtained in the same manner as in Example 9 except that the activated carbon in the mixture was 60% by weight and LiCoO 2 was 20% by weight. The capacity was measured in the same manner as in Example 9 except that this positive electrode was used. The results are shown in Table 2.
[0042]
[Example 14]
A positive electrode body was obtained in the same manner as in Example 9 except that the activated carbon in the mixture was 20 wt% and LiCoO 2 was 60 wt%. The capacity was measured in the same manner as in Example 9 except that this positive electrode was used. The results are shown in Table 2.
[0043]
[Example 15]
A positive electrode body was obtained in the same manner as in Example 9, except that the activated carbon in the mixture was 70 wt% and LiCoO 2 was 10 wt%. Further, a negative electrode body was obtained in the same manner as in Example 9 except that the thickness of the coating layer was 50 μm. The capacity was measured in the same manner as in Example 9 except that this positive electrode body and negative electrode body were used. The results are shown in Table 2.
[0044]
[Example 16]
A positive electrode body was obtained in the same manner as in Example 9 except that LiCoO 2 was not added to the mixture and the activated carbon was changed to 80% by weight. The capacity was measured in the same manner as in Example 9 except that this positive electrode was used. The results are shown in Table 2.
[0045]
[Example 17]
A positive electrode body was obtained in the same manner as in Example 9 except that LiCoO 2 was changed to 80% by weight without adding activated carbon to the mixture. The capacity was measured in the same manner as in Example 9 except that this positive electrode was used. The results are shown in Table 2.
[0046]
[Table 1]
Figure 0004096438
[0047]
[Table 2]
Figure 0004096438
[0048]
【The invention's effect】
The secondary power supply of the present invention has a high withstand voltage and a large capacity. In the positive electrode, activated carbon is involved in rapid charge / discharge, and lithium-containing transition metal oxides are basically involved in charge / discharge due to low current or substantially not involved in charge / discharge. Are better.
[0049]
In addition, the insertion of lithium ions into the negative electrode carbon material during the production of the secondary power source does not need to be performed in advance by a chemical method or an electrochemical method, and can be performed by charging after the production of the secondary power source, A secondary power supply can be easily manufactured.

Claims (5)

活性炭とリチウム含有遷移金属酸化物とを含む正極と、リチウムイオンを吸蔵、脱離しうる炭素材料を含む負極と、リチウム塩を含む有機電解液と、を有し、リチウム含有遷移金属酸化物は前記正極中に0.1〜80重量%含まれることを特徴とする二次電源。A positive electrode containing a activated carbon and the lithium-containing transition metal oxide, absorb lithium ions, possess a negative electrode containing a carbon material capable of elimination, and an organic electrolyte containing a lithium salt, a lithium-containing transition metal oxide is the secondary power source, wherein Rukoto contains 0.1 to 80 wt% in the positive electrode. リチウム含有遷移金属酸化物が、V、Mn、Fe、Co、Ni、Zn及びWからなる群から選ばれる1種以上とリチウムとの複合酸化物である請求項1に記載の二次電源。  The secondary power supply according to claim 1, wherein the lithium-containing transition metal oxide is a composite oxide of lithium and at least one selected from the group consisting of V, Mn, Fe, Co, Ni, Zn, and W. リチウム含有遷移金属酸化物が、LiCoNi1−y又はLiMn(ただし、0<x<2、0≦y≦1、0<z<2。)である請求項1に記載の二次電源。The lithium-containing transition metal oxide is Li x Co y Ni 1-y O 2 or Li z Mn 2 O 4 (where 0 <x <2, 0 ≦ y ≦ 1, 0 <z <2). Item 2. The secondary power source according to Item 1. 正極の活性炭は、比表面積が800〜3000m/gである請求項1、2又は3に記載の二次電源。Activated carbon of the positive electrode, a secondary power supply having a specific surface area of claim 1, 2 or 3 is 800~3000m 2 / g. 前記炭素材料は、[002]面の面間隔が0.335〜0.410nmである請求項1、2、3又は4に記載の二次電源。The secondary power source according to claim 1, 2, 3, or 4 , wherein the carbon material has a [002] plane spacing of 0.335 to 0.410 nm.
JP04367299A 1998-03-17 1999-02-22 Secondary power supply Expired - Fee Related JP4096438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04367299A JP4096438B2 (en) 1998-03-17 1999-02-22 Secondary power supply

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP6738698 1998-03-17
JP21148698 1998-07-27
JP10-67386 1998-07-27
JP10-211486 1998-07-27
JP04367299A JP4096438B2 (en) 1998-03-17 1999-02-22 Secondary power supply

Publications (2)

Publication Number Publication Date
JP2000106218A JP2000106218A (en) 2000-04-11
JP4096438B2 true JP4096438B2 (en) 2008-06-04

Family

ID=27291629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04367299A Expired - Fee Related JP4096438B2 (en) 1998-03-17 1999-02-22 Secondary power supply

Country Status (1)

Country Link
JP (1) JP4096438B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050295A (en) * 2012-12-20 2013-04-17 上海奥威科技开发有限公司 Lithium ion capacitor
CN103050290A (en) * 2012-12-20 2013-04-17 上海奥威科技开发有限公司 Internally combined super capacitor

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69910480T2 (en) * 1998-03-17 2004-06-24 Asahi Glass Co., Ltd. Secondary battery power source
US6528212B1 (en) * 1999-09-13 2003-03-04 Sanyo Electric Co., Ltd. Lithium battery
JP4825344B2 (en) * 2000-06-07 2011-11-30 Fdk株式会社 Battery / capacitor composite element
JP2003168420A (en) * 2001-11-29 2003-06-13 Denso Corp Electrode for lithium battery and lithium battery
JP4977959B2 (en) * 2005-03-30 2012-07-18 Tdk株式会社 Electrochemical devices
JP5052145B2 (en) * 2007-01-24 2012-10-17 トヨタ自動車株式会社 Method for producing lithium ion secondary battery
JP2008252013A (en) * 2007-03-30 2008-10-16 Fuji Heavy Ind Ltd Lithium-ion capacitor
CN101847513B (en) * 2010-02-26 2013-08-07 上海奥威科技开发有限公司 Preparation process of long-lived negative pole piece and capacitor battery using negative pole piece
EP2597706B1 (en) * 2010-07-23 2020-11-18 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery
KR101155915B1 (en) * 2010-09-13 2012-06-20 삼성에스디아이 주식회사 Lithium secondary battery including same
US9583757B2 (en) 2010-12-22 2017-02-28 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
KR101683197B1 (en) 2012-04-30 2016-12-06 삼성에스디아이 주식회사 Electrolyte and lithium secondary battery including the same
WO2014163986A1 (en) * 2013-03-12 2014-10-09 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
CN103854876B (en) * 2013-12-23 2017-02-15 燕山大学 Preparation method for self-supporting graphene-manganese oxide composite electrode materials
WO2019113530A1 (en) 2017-12-07 2019-06-13 Enevate Corporation Silicon-based energy storage devices with ether containing electrolyte additives
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
CN109346332A (en) * 2018-10-17 2019-02-15 上海交通大学 Lithium ion mixed capacitor and preparation method thereof based on alginic acid cross-linked structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050295A (en) * 2012-12-20 2013-04-17 上海奥威科技开发有限公司 Lithium ion capacitor
CN103050290A (en) * 2012-12-20 2013-04-17 上海奥威科技开发有限公司 Internally combined super capacitor

Also Published As

Publication number Publication date
JP2000106218A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
JP4096438B2 (en) Secondary power supply
US6294292B1 (en) Secondary power source
EP0949702B1 (en) Secondary battery power source
JP5260887B2 (en) Nonaqueous electrolyte secondary battery
JP3658517B2 (en) Non-aqueous electrolyte secondary battery
JP2003031220A (en) Secondary power source
JP2000036325A (en) Secondary power supply
JP2000306609A (en) Secondary power supply
JP2000090971A (en) Secondary power source
JP2001345122A (en) Secondary power source and method of manufacturing secondary power source
JP2017188424A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery
JP4284934B2 (en) Secondary power supply
JP4099970B2 (en) Secondary power supply
JP6848363B2 (en) Negative electrode and non-aqueous electrolyte power storage element
JP5662746B2 (en) Lithium ion secondary battery
JP4352532B2 (en) Secondary power supply
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JPH11329492A (en) Secondary power source
JP2000223368A (en) Secondary power source
JP2001052749A (en) Manufacture of lithium secondary battery
JP2009130066A (en) Lithium ion capacitor
JP4039071B2 (en) Secondary power supply
JP2001236960A (en) Method of manufacturing secondary power supply
JP2002033102A (en) Secondary power source and method for manufacturing negative electrode for secondary power source
JP2001266872A (en) Secondary power source and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees