JP2017188424A - Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery - Google Patents

Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery Download PDF

Info

Publication number
JP2017188424A
JP2017188424A JP2016250327A JP2016250327A JP2017188424A JP 2017188424 A JP2017188424 A JP 2017188424A JP 2016250327 A JP2016250327 A JP 2016250327A JP 2016250327 A JP2016250327 A JP 2016250327A JP 2017188424 A JP2017188424 A JP 2017188424A
Authority
JP
Japan
Prior art keywords
compound
positive electrode
active material
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016250327A
Other languages
Japanese (ja)
Inventor
秀明 関
Hideaki Seki
秀明 関
昭信 野島
Akinobu Nojima
昭信 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to US15/438,011 priority Critical patent/US10211456B2/en
Priority to CN201710193768.9A priority patent/CN107275584A/en
Publication of JP2017188424A publication Critical patent/JP2017188424A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/08Intercalated structures, i.e. with atoms or molecules intercalated in their structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery excellent in discharge capacity and cycle characteristics.SOLUTION: A positive electrode active material for a lithium ion secondary battery contains: a first compound represented by chemical formula Li(NiMa)O(where 0.95≤x≤1.05 and 0.70≤y≤0.95 are satisfied, and Ma represents at least one element selected from Co, Mn, V, Ti, Fe, Zr, Nb, Mo, Al, and W); and a second compound represented by chemical formula LiVOPO. In the positive electrode active material, W>5.0°C is satisfied where W is a full width at half maximum of an exothermic peak obtained between 150°C and 260°C by differential scanning calorimetry (DSC) performed on a mixture of the first compound and the second compound under a condition of 5°C/min.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池用正極活物質、及びそれを用いたリチウムイオン二次電池用正極並びにリチウムイオン二次電池に関する。   The present invention relates to a positive electrode active material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery using the same, and a lithium ion secondary battery.

リチウムイオン二次電池の代表的な既存の活物質であるコバルト酸リチウムLiCoOと比較して、Ni、Co、MnやNi、Co、Al等を用いたリチウムニッケル複合酸化物はより大きな充放電容量を得られることが知られている。 Compared with lithium cobalt oxide LiCoO 2 , which is a typical existing active material for lithium ion secondary batteries, lithium nickel composite oxides using Ni, Co, Mn, Ni, Co, Al, etc. are more charged and discharged. It is known that capacity can be obtained.

しかしながらリチウムニッケル複合酸化物は熱分解開始温度がコバルト酸リチウムと比較して低く、更に充電時にNiの価数が4価となり結晶構造の安定性が低くなるためにサイクルによる劣化が大きくなる。また、充電中の正極活物質はLiイオンの脱離,電子の発生を生じるため、活物質周辺では多量の熱を発生し、部分的には熱分解開始温度に相当するエネルギーが生じるものと推測され、熱による劣化も予想される。   However, the lithium-nickel composite oxide has a lower thermal decomposition starting temperature than lithium cobaltate, and furthermore, the Ni valence becomes tetravalent at the time of charging and the stability of the crystal structure is lowered, so that the deterioration due to the cycle increases. In addition, since the positive electrode active material during charging causes desorption of Li ions and generation of electrons, a large amount of heat is generated in the vicinity of the active material, and it is assumed that energy corresponding to the thermal decomposition start temperature is partially generated. In addition, deterioration due to heat is also expected.

このようなリチウムニッケル複合酸化物の不安定性の問題点を改善するために、LiMnのようなスピネル化合物やLiFePOのようなリン酸化合物など熱安定性に優れる材料と組み合わせる技術が知られている。 In order to improve the instability problem of such lithium-nickel composite oxides, a technique for combining with a material having excellent thermal stability such as a spinel compound such as LiMn 2 O 4 and a phosphate compound such as LiFePO 4 is known. It has been.

特許文献1ではリチウムニッケル複合酸化物と熱安定性に優れるスピネル化合物あるいはリン酸化合物を組合せ、重層化することで信頼性を向上させる取り組みがなされている。しかしながら、特許文献1の手法では電極全体の熱安定性は高められるものの、活物質周辺などの微細領域ではその効果は大幅に弱まるため、サイクル特性の改善には至っていない。また、特許文献1では電極全体におけるスピネル化合物やリン酸化合物の占有率が比較的高いため、放電容量が低くなるという課題もある。そのため、リチウムニッケル複合酸化物と熱安定性に優れる材料とを含む混合系正極活物質のさらなる高容量化とサイクル特性の改善が求められている。   In Patent Document 1, an effort is made to improve reliability by combining a lithium nickel composite oxide and a spinel compound or a phosphoric acid compound having excellent thermal stability and forming a multilayer. However, although the thermal stability of the entire electrode can be improved by the method of Patent Document 1, the effect is greatly weakened in a fine region around the active material and the cycle characteristics are not improved. Moreover, in patent document 1, since the occupation rate of the spinel compound and phosphoric acid compound in the whole electrode is comparatively high, there also exists a subject that discharge capacity becomes low. Therefore, further increase in capacity and improvement in cycle characteristics of a mixed positive electrode active material including a lithium nickel composite oxide and a material having excellent thermal stability are required.

特開2007−48744号公報JP 2007-48744 A

本発明は上記従来技術の有する課題に鑑みてなされたものであり,放電容量及びサイクル特性に優れた正極活物質、及びそれを用いた正極並びにリチウムイオン二次電池を提供することを目的とする。   This invention is made | formed in view of the subject which the said prior art has, and aims at providing the positive electrode active material excellent in discharge capacity and cycling characteristics, the positive electrode using the same, and a lithium ion secondary battery. .

上記目的を達成するために、本発明に係るリチウムイオン二次電池用正極活物質は、化学式Li(NiMa1-y)O(0.95≦x≦1.05、0.70≦y≦0.95、MaはCo、Mn、V、Ti、Fe、Zr、Nb、Mo、Al、Wから選ばれる少なくとも1種の元素)で表される第一の化合物と、化学式LiVOPOで表される第二の化合物と、を含有し、前記第一の化合物と第二の化合物の混合物を5℃/分の条件で測定したDSC分析(示差走査熱分析)において、150℃から260℃の発熱ピークの半値幅をWとした場合、W>5.0℃であることを特徴とする。 In order to achieve the above object, a positive electrode active material for a lithium ion secondary battery according to the present invention has a chemical formula Li x (Ni y Ma 1-y ) O 2 (0.95 ≦ x ≦ 1.05, 0.70). ≦ y ≦ 0.95, Ma is at least one element selected from Co, Mn, V, Ti, Fe, Zr, Nb, Mo, Al, and W), and a chemical formula LiVOPO 4 In a DSC analysis (differential scanning calorimetry) in which a mixture of the first compound and the second compound was measured under the condition of 5 ° C./min, When the half-value width of the exothermic peak at 0 ° C. is W, W> 5.0 ° C.

係る構成の正極活物質は熱安定性に優れる前記第二の化合物が混在することにより、充電時における急激な発熱が抑制されるため、結晶構造の歪みが抑制され、NiやCoなどの遷移金属の価数変動が小さくなり、活物質の結晶構造を安定化することができる。その結果、遷移金属の溶出や酸素の脱離が抑制され、優れたサイクル特性を発揮する事ができると推察される。   In the positive electrode active material having such a structure, since the second compound having excellent thermal stability is mixed, rapid heat generation during charging is suppressed, so that distortion of the crystal structure is suppressed, and transition metals such as Ni and Co are suppressed. Thus, the valence fluctuation of the active material becomes small, and the crystal structure of the active material can be stabilized. As a result, it is speculated that elution of transition metals and desorption of oxygen are suppressed, and excellent cycle characteristics can be exhibited.

本発明に係る前記第二の化合物は、第一の化合物の重量と第二の化合物の重量の総和に対して1〜30wt%含有することが好ましい。   The second compound according to the present invention is preferably contained in an amount of 1 to 30 wt% with respect to the sum of the weight of the first compound and the weight of the second compound.

前記第二の化合物の含有量が上記範囲を満たす場合、容量の高い前記第一の化合物と熱安定性に優れる前記第二の化合物がバランス良く混在するため、高いサイクル特性と優れた放電容量を両立することができる。   When the content of the second compound satisfies the above range, the first compound having a high capacity and the second compound having excellent thermal stability are mixed in a well-balanced manner, so that high cycle characteristics and an excellent discharge capacity are obtained. It can be compatible.

本発明に係る前記第一の化合物の一次粒子の表面の少なくとも一部が前記第二の化合物で被覆され、被覆層を形成していることが好ましい。   It is preferable that at least a part of the surface of the primary particles of the first compound according to the present invention is coated with the second compound to form a coating layer.

前記第一の化合物は前記第二の化合物に比べ、DSC分析(示差走査熱分析)において、低温側で発熱しやすく、且つその発熱量も多く、更に発熱速度も高い傾向にある。前記第一の化合物の表面に前記第二の化合物が被覆されていると、前記第一の化合物が持つ不安定要因が、前記第二の化合物の特殊な機能により直接作用し、急激な熱発生を抑制するものと考えられる。その結果活物質の構造不安定化が更に抑制され、優れたサイクル特性を示す。このメカニズムは必ずしも明確ではないが、第二の化合物であるLiVOPOのV(バナジウム)が様々な価数を取り得ることによる柔軟性に起因していると推定している。 Compared with the second compound, the first compound tends to generate heat on the low temperature side in DSC analysis (differential scanning calorimetry), has a large amount of heat generation, and tends to have a high heat generation rate. When the surface of the first compound is coated with the second compound, the instability factor of the first compound acts directly by the special function of the second compound, and rapid heat generation It is thought that it suppresses. As a result, structural destabilization of the active material is further suppressed, and excellent cycle characteristics are exhibited. Although this mechanism is not necessarily clear, it is assumed that V (vanadium) of the second compound, LiVOPO 4 , is caused by flexibility due to its ability to take various valences.

前記第一の化合物の一次粒子は、凝集して二次粒子を形成し、且つ前記二次粒子の表面の少なくとも一部が前記第二の化合物で被覆され、被覆層を形成していることが好ましい。   The primary particles of the first compound aggregate to form secondary particles, and at least a part of the surface of the secondary particles is coated with the second compound to form a coating layer. preferable.

前記第一の化合物が二次粒子を形成し、その二次粒子表面の少なくとも一部に前記第二の化合物が存在することでエネルギー密度及びサイクル特性に優れた正極活物質を得る事ができる。   When the first compound forms secondary particles and the second compound is present on at least a part of the surface of the secondary particles, a positive electrode active material excellent in energy density and cycle characteristics can be obtained.

前記リチウムイオン二次電池用正極活物質は、正極に含有されていることが好ましい。   The positive electrode active material for a lithium ion secondary battery is preferably contained in a positive electrode.

かかる構成によればサイクル特性に優れた正極を得ることができる。   According to this configuration, a positive electrode having excellent cycle characteristics can be obtained.

本発明に係るリチウムイオン二次電池は、正極と、負極活物質を有する負極と、前記正極と前記負極との間に介在されるセパレータと非水電解質と、を備えることが好ましい。   The lithium ion secondary battery according to the present invention preferably includes a positive electrode, a negative electrode having a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.

かかる構成によればサイクル特性に優れたリチウムイオン二次電池を得ることができる。   According to such a configuration, a lithium ion secondary battery having excellent cycle characteristics can be obtained.

本発明によれば、放電容量とサイクル特性に優れた正極活物質、及びそれを用いた正極並びにリチウムイオン二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material excellent in discharge capacity and cycling characteristics, the positive electrode using the same, and a lithium ion secondary battery can be provided.

本発明の一実施形態に係る正極及び負極を備えるリチウムイオン二次電池の模式断面図である。It is a schematic cross section of a lithium ion secondary battery provided with the positive electrode and negative electrode which concern on one Embodiment of this invention. 本発明の一実施形態に係る正極活物質のDSC測定結果である。It is a DSC measurement result of the positive electrode active material which concerns on one Embodiment of this invention.

以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.

(リチウムイオン二次電池)
図1は、本実施形態とするリチウムイオン二次電池を示す模式断面図である。図1に示すように、リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60、62を備えている。
(Lithium ion secondary battery)
FIG. 1 is a schematic cross-sectional view showing a lithium ion secondary battery according to this embodiment. As shown in FIG. 1, the lithium ion secondary battery 100 mainly includes a laminate 30, a case 50 that accommodates the laminate 30 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 30. ing.

積層体30は、一対の正極10、負極20が、セパレータ18を挟んで対向配置されたものである。正極10は、板状(膜状)の正極集電体12上に正極活物質層14が設けられたものである。負極20は、板状(膜状)の負極集電体22上に負極活物質層24が設けられたものである。正極活物質層14の主面及び負極活物質層24の主面が、セパレータ18の主面にそれぞれ接触している。正極集電体12及び負極集電体22の端部には、それぞれリード62、60が接続されており、リード60、62の端部はケース50の外部にまで延びている。   The laminated body 30 is configured such that a pair of a positive electrode 10 and a negative electrode 20 are disposed to face each other with a separator 18 interposed therebetween. The positive electrode 10 is obtained by providing a positive electrode active material layer 14 on a plate-like (film-like) positive electrode current collector 12. The negative electrode 20 is obtained by providing a negative electrode active material layer 24 on a plate-like (film-like) negative electrode current collector 22. The main surface of the positive electrode active material layer 14 and the main surface of the negative electrode active material layer 24 are in contact with the main surface of the separator 18. Leads 62 and 60 are connected to the end portions of the positive electrode current collector 12 and the negative electrode current collector 22, respectively, and the end portions of the leads 60 and 62 extend to the outside of the case 50.

なお、以降の明細書中の説明として、正極活物質及び負極活物質のいずれか一方又は両方を総称として活物質と呼び、正極活物質層及び負極活物質層のいずれか一方又は両方を総称して活物質層と呼び、正極及び負極のいずれか一方又は両方を総称して電極と呼ぶことがある。   In the following description, either one or both of the positive electrode active material and the negative electrode active material are collectively referred to as an active material, and either one or both of the positive electrode active material layer and the negative electrode active material layer are collectively referred to. In some cases, one or both of the positive electrode and the negative electrode is collectively referred to as an electrode.

(正極活物質層)
正極活物質層14は、正極活物質、バインダー、及び、必要に応じた量の正極導電助剤から主に構成されるものである。
(Positive electrode active material layer)
The positive electrode active material layer 14 is mainly composed of a positive electrode active material, a binder, and an amount of the positive electrode conductive additive as required.

(正極活物質)
本実施形態の正極活物質は、化学式Li(NiMa1-y)O(0.95≦x≦1.05、0.70≦y≦0.95、MaはCo、Mn、V、Ti、Fe、Zr、Nb、Mo、Al、Wから選ばれる少なくとも1種の元素)で表される第一の化合物と、化学式LiVOPOで表される第二の化合物と、を含有し、前記第一の化合物と第二の化合物の混合物を5℃/分の条件で測定したDSC分析(示差走査熱分析)において、150℃から260℃の発熱ピークの半値幅をWとした場合、W>5.0℃であることを特徴とする。
(Positive electrode active material)
The positive electrode active material of this embodiment has the chemical formula Li x (Ni y Ma 1-y ) O 2 (0.95 ≦ x ≦ 1.05, 0.70 ≦ y ≦ 0.95, Ma is Co, Mn, V And at least one element selected from Ti, Fe, Zr, Nb, Mo, Al, and W), and a second compound represented by the chemical formula LiVOPO 4 , In DSC analysis (differential scanning calorimetry) in which the mixture of the first compound and the second compound was measured under the condition of 5 ° C./min, when the half-value width of the exothermic peak from 150 ° C. to 260 ° C. is W, W > 5.0 ° C.

本構成の正極活物質は熱安定性に優れる前記第二の化合物が混在することにより、充電時における急激な発熱が抑制されるため、結晶構造の歪みが抑制され、NiやCoなどの遷移金属の価数変動が小さくなり、活物質の結晶構造を安定化することができる。その結果、遷移金属の溶出や酸素の脱離が抑制され、優れたサイクル特性を発揮する事ができると推察される。   In the positive electrode active material of this configuration, since the second compound having excellent thermal stability is mixed, rapid heat generation during charging is suppressed, so that distortion of the crystal structure is suppressed, and transition metals such as Ni and Co are suppressed. Thus, the valence fluctuation of the active material becomes small, and the crystal structure of the active material can be stabilized. As a result, it is speculated that elution of transition metals and desorption of oxygen are suppressed, and excellent cycle characteristics can be exhibited.

(DSC分析(示差走査熱分析)の測定)
DSC分析(示差走査熱分析)は以下の方法にて測定する。まず、本実施形態の正極活物質と導電助剤及びポリフッ化ビニリデン(PVDF)を含む電極を準備する。なお、電極は後述の方法にて作製する。次いでこの電極を所定量秤量した後、アルミニウム製の容器に入れ、電解液を所定量添加し、同じくアルミニウム製の蓋を被せ、かしめる。この測定容器をDSC分析装置(RIGAKU製 Thermo Plus DSC8230)にセットし、5℃/分の昇温速度にて測定する。DSC測定によって得られたピークのうち、150℃から260℃の範囲に出現するピークについて半値幅を算出する。
(Measurement of DSC analysis (differential scanning thermal analysis))
DSC analysis (differential scanning calorimetry) is measured by the following method. First, an electrode including a positive electrode active material, a conductive additive, and polyvinylidene fluoride (PVDF) according to the present embodiment is prepared. The electrode is produced by the method described later. Next, after weighing a predetermined amount of this electrode, it is placed in an aluminum container, a predetermined amount of electrolyte is added, and the same is covered with an aluminum lid and caulked. This measurement container is set in a DSC analyzer (Thermo Plus DSC8230 manufactured by RIGAKU) and measured at a heating rate of 5 ° C./min. Of the peaks obtained by DSC measurement, the full width at half maximum is calculated for a peak appearing in the range of 150 ° C. to 260 ° C.

本実施形態の第二の化合物は、第一の化合物の重量と第二の化合物の重量の総和に対して1〜30wt%含有することが好ましい。また、その範囲としては2.5〜30.0wt%であることがより好ましい。これにより更にサイクル特性が向上する。更に5〜30.0wt%であることがより好ましく、これにより更にサイクル特性が向上する。   It is preferable to contain 1-30 wt% of the 2nd compound of this embodiment with respect to the sum total of the weight of a 1st compound, and the weight of a 2nd compound. Moreover, as the range, it is more preferable that it is 2.5-30.0 wt%. This further improves cycle characteristics. Furthermore, it is more preferable that it is 5-30.0 wt%, and, thereby, cycling characteristics improve further.

第二の化合物の含有量が上記範囲を満たす場合、容量の高い第一の化合物と熱安定性に優れる第二の化合物がバランス良く混在するため、高いサイクル特性と優れた放電容量を両立することができる。   When the content of the second compound satisfies the above range, the high-capacity first compound and the second compound having excellent thermal stability are mixed in a well-balanced manner, so that both high cycle characteristics and excellent discharge capacity are compatible. Can do.

本実施形態の第一の化合物はその一次粒子の表面の少なくとも一部が第二の化合物で被覆され、被覆層を形成していることが好ましい。   It is preferable that at least a part of the surface of the primary particles of the first compound of the present embodiment is coated with the second compound to form a coating layer.

第一の化合物は第二の化合物に比べ、DSC分析(示差走査熱分析)において、低温側で発熱しやすく、且つその発熱量も多く、更に発熱速度も高い傾向にある。第一の化合物の表面に第二の化合物が被覆されていると、第一の化合物が持つ不安定要因が、第二の化合物の特殊な機能により直接作用し、急激な熱発生を抑制するものと考えられる。その結果活物質の構造不安定化が更に抑制され、優れたサイクル特性を示す。   Compared to the second compound, the first compound tends to generate heat on the low temperature side in DSC analysis (differential scanning calorimetry), has a large amount of heat generation, and tends to have a higher heat generation rate. When the surface of the first compound is coated with the second compound, the instability factor of the first compound acts directly by the special function of the second compound and suppresses rapid heat generation it is conceivable that. As a result, structural destabilization of the active material is further suppressed, and excellent cycle characteristics are exhibited.

上記第一の化合物Li(NiMa1−y)O表面に上記第二の化合物LiVOPOを被覆させる方法としては、ジルコニアボールやアルミナボールが入ったポットミルによる乾式混合、らいかい機を使用した乾式混合、流動層装置によるコーティング、メカノフュージョンによる粒子複合化等が挙げられる。また、上記被覆処理を行った後に、適宜熱処理することでその被覆安定性を向上させることもできる。なお、熱処理条件としては、300℃から500℃の温度範囲が好ましく、雰囲気としては空気中もしくは酸素雰囲気中が好ましい。 As a method of coating the second compound LiVOPO 4 on the surface of the first compound Li x (Ni y Ma 1-y ) O 2 , dry mixing using a pot mill containing zirconia balls or alumina balls, or a rough machine is used. Examples thereof include dry mixing, coating using a fluidized bed apparatus, and particle combination using mechanofusion. Moreover, the coating stability can also be improved by performing an appropriate heat treatment after the coating treatment. The heat treatment condition is preferably a temperature range of 300 ° C. to 500 ° C., and the atmosphere is preferably in air or an oxygen atmosphere.

本実施形態の第一の化合物はその一次粒子が凝集して二次粒子を形成し、且つ二次粒子の表面の少なくとも一部が第二の化合物で被覆され、被覆層を形成していることが好ましい。   In the first compound of the present embodiment, the primary particles aggregate to form secondary particles, and at least a part of the surface of the secondary particles is coated with the second compound to form a coating layer. Is preferred.

上前記第一の化合物が二次粒子を形成することでエネルギー密度及びサイクル特性に優れた正極活物質を得る事ができる。   In addition, since the first compound forms secondary particles, a positive electrode active material excellent in energy density and cycle characteristics can be obtained.

(正極集電体)
正極集電体12は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
(Positive electrode current collector)
The positive electrode current collector 12 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as aluminum, an alloy thereof, or stainless steel can be used.

(正極バインダー)
バインダーは、上記の正極活物質と導電材とを集電体12に結着することができれば特に限定されず、公知の結着剤を使用できる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ化ビニリデン―ヘキサフルオロプロピレン共重合体等のフッ素樹脂が挙げられる。
(Positive electrode binder)
The binder is not particularly limited as long as the positive electrode active material and the conductive material can be bound to the current collector 12, and a known binder can be used. Examples thereof include fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and vinylidene fluoride-hexafluoropropylene copolymer.

(正極導電助剤)
正極導電助剤も、正極活物質層14の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック、グラフェン等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。
(Positive electrode conductive aid)
The positive electrode conductive auxiliary agent is not particularly limited as long as it improves the conductivity of the positive electrode active material layer 14, and a known conductive auxiliary agent can be used. Examples thereof include carbon-based materials such as graphite, carbon black, and graphene, metal fine powders such as copper, nickel, stainless steel, and iron, a mixture of carbon materials and metal fine powders, and conductive oxides such as ITO.

(負極活物質層)
負極活物質層24は、負極活物質、バインダー、及び、必要に応じた量の導電助剤から主に構成されるものである。
(Negative electrode active material layer)
The negative electrode active material layer 24 is mainly composed of a negative electrode active material, a binder, and a conductive auxiliary agent in an amount as required.

(負極活物質)
負極活物質としては、例えば、リチウムイオンを吸蔵・放出可能な黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属、SiO、SiO、SnO、Fe等の酸化物を主体とする非晶質の化合物、LiTi12等を含む粒子が挙げられる。
(Negative electrode active material)
As the negative electrode active material, for example, carbon materials such as graphite capable of inserting and extracting lithium ions, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, and lithium such as Al, Si, Sn, etc. Examples thereof include a metal, an amorphous compound mainly composed of an oxide such as SiO, SiO 2 , SnO 2 , and Fe 2 O 3, and particles containing Li 4 Ti 5 O 12 and the like.

(負極集電体)
負極集電体22は、導電性の板材であればよく、例えば、銅、ニッケル、ステンレス又はそれらの合金の金属薄板(金属箔)を用いることができる。
(Negative electrode current collector)
The negative electrode current collector 22 may be any conductive plate material, and for example, a metal thin plate (metal foil) of copper, nickel, stainless steel, or an alloy thereof can be used.

(負極バインダー)
バインダーには、正極バインダーとして例示した上述の材料に加え、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアクリル酸等を用いても良い。
(Negative electrode binder)
In addition to the above-described materials exemplified as the positive electrode binder, cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide resin, polyamideimide resin, polyacrylic acid, or the like may be used as the binder.

(負極導電助剤)
負極導電助剤は特に限定されず、公知の導電助剤を使用できる。例えば、カーボンブラックのような熱分解炭素、コークス類、ガラス状炭素類、有機高分子化合物焼成材料、炭素繊維、あるいは活性炭などの炭素材が挙げられる。また、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛などの負極活物質材料を、形状を変えて添加してもよい。
(Negative conductive auxiliary)
A negative electrode conductive support agent is not specifically limited, A well-known conductive support agent can be used. Examples thereof include carbon materials such as pyrolytic carbon such as carbon black, cokes, glassy carbons, organic polymer compound fired materials, carbon fibers, and activated carbon. Moreover, you may add negative electrode active material materials, such as non-graphitizable carbon, easily graphitizable carbon, and graphite, changing a shape.

上述した構成要素により、電極は、通常用いられる方法により作製できる。例えば、活物質(正極活物質または負極活物質)、バインダー(正極バインダーまたは負極バインダー)、溶媒、及び、導電助剤(正極導電助剤または負極導電助剤)を含む塗料を集電体上に塗布し、集電体上に塗布された塗料中の溶媒を除去することにより製造することができる。   With the components described above, the electrode can be produced by a commonly used method. For example, a paint containing an active material (a positive electrode active material or a negative electrode active material), a binder (a positive electrode binder or a negative electrode binder), a solvent, and a conductive additive (a positive electrode conductive additive or a negative electrode conductive aid) is placed on the current collector. It can manufacture by apply | coating and removing the solvent in the coating material apply | coated on the electrical power collector.

溶媒としては、例えば、Nメチル−2−ピロリドン、N,N−ジメチルホルムアミド、水等を用いることができる。   As the solvent, for example, N methyl-2-pyrrolidone, N, N-dimethylformamide, water or the like can be used.

塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。   There is no restriction | limiting in particular as an application | coating method, The method employ | adopted when producing an electrode normally can be used. Examples thereof include a slit die coating method and a doctor blade method.

集電体上に塗布された塗料中の溶媒を除去する方法は特に限定されず、塗料が塗布された集電体を、例えば80℃〜150℃の雰囲気下で乾燥させればよい。   The method for removing the solvent in the paint applied on the current collector is not particularly limited, and the current collector applied with the paint may be dried, for example, in an atmosphere of 80 ° C. to 150 ° C.

そして、このようにして活物質層が形成された電極を、その後、必要に応じて例えば、ロールプレス装置等によりプレス処理すればよい。ロールプレスの線圧は例えば、100〜2,000kgf/cmとすることができる。   Then, the electrode on which the active material layer has been formed in this way may be then pressed by a roll press device or the like, if necessary. The linear pressure of the roll press can be, for example, 100 to 2,000 kgf / cm.

次に、リチウムイオン二次電池100の他の構成要素を説明する。   Next, other components of the lithium ion secondary battery 100 will be described.

(セパレータ)
セパレータ18は、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。
(Separator)
The separator 18 only needs to be formed of an electrically insulating porous structure, for example, a single layer of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or cellulose, polyester And a fiber nonwoven fabric made of at least one constituent material selected from the group consisting of polypropylene.

(電解質)
電解質は、正極活物質層14、負極活物質層24、及び、セパレータ18の内部に含有させるものである。電解質としては、特に限定されず、例えば、本実施形態では、リチウム塩を含む電解質を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いことにより、充電時の耐用電圧が低く制限されるので、有機溶媒を使用する電解質であることが好ましい。電解質としては、リチウム塩を有機溶媒に溶解したものが好適に使用される。リチウム塩としては、例えば、LiPF、LiClO、LiBF、LiAsF、LiCFSO、LiCF、CFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。
(Electrolytes)
The electrolyte is contained in the positive electrode active material layer 14, the negative electrode active material layer 24, and the separator 18. The electrolyte is not particularly limited. For example, in the present embodiment, an electrolyte containing a lithium salt can be used. However, the electrolyte aqueous solution is preferably an electrolyte that uses an organic solvent because the electrochemical decomposition voltage is low and the withstand voltage during charging is limited to be low. As the electrolyte, a lithium salt dissolved in an organic solvent is preferably used. Examples of the lithium salt include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 , CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , A salt such as LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , or LiBOB can be used. In addition, these salts may be used individually by 1 type, and may use 2 or more types together.

また、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、及び、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。   Moreover, as an organic solvent, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate etc. are mentioned preferably, for example. These may be used alone or in combination of two or more at any ratio.

なお、本実施形態において、電解質の例を挙げて説明したが、ゲル化剤を添加されたゲル状電解質を用いてもよい。また、これらの電解質に代えて、固体電解質を用いることもできる。   In the present embodiment, an example of the electrolyte has been described, but a gel electrolyte to which a gelling agent is added may be used. Moreover, it can replace with these electrolytes and can also use a solid electrolyte.

(ケース)
ケース50は、その内部に積層体30及び電解質を密封するものである。ケース50は、電解質の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、ケース50として、図1に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミニウム箔を、合成樹脂膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子例えばポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン、ポリプロピレン等が好ましい。
(Case)
The case 50 seals the laminated body 30 and the electrolyte therein. The case 50 is not particularly limited as long as it can prevent leakage of the electrolyte to the outside and entry of moisture and the like into the lithium ion secondary battery 100 from the outside. For example, as the case 50, as shown in FIG. 1, a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used. As the metal foil 52, for example, an aluminum foil can be used, and as the synthetic resin film 54, a film such as polypropylene can be used. For example, the material of the outer polymer film 54 is preferably a polymer having a high melting point such as polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is preferably polyethylene or polypropylene.

(リード)
リード60、62は、アルミ等の導電材料から形成されている。そして、公知の方法により、リード62、60を正極集電体12、負極集電体22にそれぞれ溶接し、正極10の正極活物質層14と負極20の負極活物質層24との間にセパレータ18を挟んだ状態で、電解液と共にケース50内に挿入し、ケース50の入り口をシールすればよい。
(Lead)
The leads 60 and 62 are made of a conductive material such as aluminum. Then, the leads 62 and 60 are respectively welded to the positive electrode current collector 12 and the negative electrode current collector 22 by a known method, and a separator is provided between the positive electrode active material layer 14 of the positive electrode 10 and the negative electrode active material layer 24 of the negative electrode 20. 18 may be inserted into the case 50 together with the electrolytic solution with the 18 interposed therebetween, and the entrance of the case 50 may be sealed.

本実施形態のリチウムイオン二次電池は正極と、負極活物質を有する負極と、前記正極と前記負極との間に介在されるセパレータと非水電解質と、を備えることが好ましい。   The lithium ion secondary battery of the present embodiment preferably includes a positive electrode, a negative electrode having a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.

前記正極を電解質と負極とを組み合わせることで放電容量及びサイクル特性に優れたリチウムイオン二次電池を得ることができる。   A lithium ion secondary battery excellent in discharge capacity and cycle characteristics can be obtained by combining the positive electrode with an electrolyte and a negative electrode.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、リチウムイオン二次電池は図1に示した形状のものに限定されず、コイン形状に打ち抜いた電極とセパレータとを積層したコインタイプや、電極シートとセパレータとをスパイラル状に巻回したシリンダータイプ等であってもよい。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, the lithium ion secondary battery is not limited to the shape shown in FIG. It may be a type or the like.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
(正極活物質の作製)
第一の化合物として二次粒子を形成しているLi1.00(Ni0.85Co0.10Al0.05)O100gに対し、第二の化合物としてLiVOPOを、第一の化合物の重量と第二の化合物の重量の総和に対する第二の化合物の重量が5.0重量%という重量比率になるよう添加した後、ホソカワミクロン製のメカノフュージョンを用いて回転数1,500rpmの条件下で粒子複合化処理を行った。次いで、酸素気流中で350℃の条件で10分熱処理し、実施例1の正極活物質を得た。
Example 1
(Preparation of positive electrode active material)
For Li 1.00 (Ni 0.85 Co 0.10 Al 0.05 ) O 2 100 g forming secondary particles as the first compound, LiVOPO 4 as the second compound, After adding the second compound so that the weight of the second compound is 5.0% by weight with respect to the sum of the weight of the second compound and the weight of the second compound, using a mechanofusion made by Hosokawa Micron The particle composite treatment was performed. Subsequently, it heat-processed for 10 minutes on 350 degreeC conditions in oxygen stream, and the positive electrode active material of Example 1 was obtained.

(正極の作製)
実施例1の正極活物質と、バインダーであるポリフッ化ビニリデン(PVDF)とアセチレンブラックを混合したものを、溶媒であるNメチル−2−ピロリドン(NMP)中に分散させてスラリーを調製した。なお、スラリーにおいて正極活物質とアセチレンブラックとPVDFとの重量比が92:3:5となるように、スラリーを調製した。このスラリーを正極集電体であるアルミニウム箔上に塗布し、乾燥させた後、圧延を行い、正極活物質を含む活物質層が形成された正極を得た。
(Preparation of positive electrode)
A mixture of the positive electrode active material of Example 1, polyvinylidene fluoride (PVDF) as a binder, and acetylene black was dispersed in N-methyl-2-pyrrolidone (NMP) as a solvent to prepare a slurry. Note that the slurry was prepared so that the weight ratio of the positive electrode active material, acetylene black, and PVDF was 92: 3: 5 in the slurry. This slurry was applied on an aluminum foil as a positive electrode current collector, dried, and then rolled to obtain a positive electrode on which an active material layer containing a positive electrode active material was formed.

(負極の作製)
負極活物質として黒鉛と、バインダーとしてスチレン・ブタジエンゴム及びセルロースと、導電助剤としてカーボンブラックを混合したものを、溶媒である純水中に分散させてスラリーを調整した。このスラリーを負極集電体である銅箔上に塗布し、乾燥させた後、圧延を行い、負極活物質を含む活物質層が形成された負極を得た。
(Preparation of negative electrode)
A mixture of graphite as a negative electrode active material, styrene / butadiene rubber and cellulose as a binder, and carbon black as a conductive additive was dispersed in pure water as a solvent to prepare a slurry. This slurry was applied on a copper foil as a negative electrode current collector, dried, and then rolled to obtain a negative electrode on which an active material layer containing a negative electrode active material was formed.

(評価用セルの作製)
上述したとおり準備した正極、及び負極と、ポリエチレン多孔膜からなるセパレータとを所定の寸法に切断し、負極、セパレータ、正極、セパレータ、負極の順序で、負極4層、正極3層となるよう積層した。この積層体を、アルミラミネートパックに入れ、電解質溶液を注入した後、真空シールし、実施例1の正極活物質を用いたリチウムイオン二次電池を作製した。なお、電解質溶液としては、エチレンカーボンネート(EC)とジエチルカーボネート(DEC)の混合溶媒にLiPFを濃度1M(1mol/L)で溶解させたものを用いた。混合溶媒におけるECとDECとの体積比は、EC:DEC=30:70とした。
(Production of evaluation cell)
The positive electrode and negative electrode prepared as described above and a separator made of a polyethylene porous film are cut into predetermined dimensions, and laminated in such a sequence as negative electrode, separator, positive electrode, separator, and negative electrode to form four negative electrodes and three positive electrodes. did. This laminate was put in an aluminum laminate pack, an electrolyte solution was injected, and then vacuum-sealed to produce a lithium ion secondary battery using the positive electrode active material of Example 1. As the electrolyte solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 M (1 mol / L) in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) was used. The volume ratio of EC to DEC in the mixed solvent was EC: DEC = 30: 70.

(実施例2)
第二の化合物の重量比率を2.5重量%としたことを除いて、実施例1と同様の方法で評価用セルを作製した。
(Example 2)
An evaluation cell was produced in the same manner as in Example 1 except that the weight ratio of the second compound was 2.5% by weight.

(実施例3)
第二の化合物の重量比率を7.5重量%としたことを除いて、実施例1と同様の方法で評価用セルを作製した。
(Example 3)
An evaluation cell was produced in the same manner as in Example 1 except that the weight ratio of the second compound was 7.5% by weight.

(実施例4)
第二の化合物の重量比率を1.0重量%としたことを除いて、実施例1と同様の方法で評価用セルを作製した。
Example 4
An evaluation cell was produced in the same manner as in Example 1 except that the weight ratio of the second compound was 1.0% by weight.

(実施例5)
第二の化合物の重旅費率を10.0重量%としたことを除いて、実施例1と同様の方法で評価用セルを作製した。
(Example 5)
An evaluation cell was produced in the same manner as in Example 1 except that the heavy travel expense ratio of the second compound was 10.0% by weight.

(実施例6)
第二の化合物の重量比率が15.0重量%となるよう変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 6)
An evaluation cell was produced in the same manner as in Example 1 except that the weight ratio of the second compound was changed to 15.0% by weight.

(実施例7)
第二の化合物の重量比率が30.0重量%となるよう変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 7)
An evaluation cell was produced in the same manner as in Example 1 except that the weight ratio of the second compound was changed to 30.0% by weight.

(実施例8)
第一の化合物をLi1.00(Ni0.80Co0.10Mn0.10)Oに変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 8)
An evaluation cell was produced in the same manner as in Example 1 except that the first compound was changed to Li 1.00 (Ni 0.80 Co 0.10 Mn 0.10 ) O 2 .

(実施例9)
第一の化合物をLi1.00(Ni0.80Co0.10Mn0.10)Oに変更し、第二の化合物の重量比率が2.5重量%となるよう変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
Example 9
Except for changing the first compound to Li 1.00 (Ni 0.80 Co 0.10 Mn 0.10 ) O 2 and changing the weight ratio of the second compound to 2.5% by weight. An evaluation cell was prepared in the same manner as in Example 1.

(実施例10)
第一の化合物をLi1.00(Ni0.80Co0.10Mn0.10)Oに変更し、第二の化合物の重量比率が7.5重量%となるよう変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 10)
Except for changing the first compound to Li 1.00 (Ni 0.80 Co 0.10 Mn 0.10 ) O 2 and changing the weight ratio of the second compound to 7.5% by weight. An evaluation cell was prepared in the same manner as in Example 1.

(実施例11)
第一の化合物をLi1.00(Ni0.80Co0.10Mn0.10)Oに変更し、第二の化合物の重量比率を1.0重量としたことを除いて、実施例1と同様の方法で評価用セルを作製した。
(Example 11)
Example 1 except that the first compound was changed to Li 1.00 (Ni 0.80 Co 0.10 Mn 0.10 ) O 2 and the weight ratio of the second compound was 1.0 weight. An evaluation cell was produced in the same manner as in Example 1.

(実施例12)
第一の化合物をLi1.00(Ni0.80Co0.10Mn0.10)Oに変更し、第二の化合物の重量比率を10.0重量%としたことを除いて、実施例1と同様の方法で評価用セルを作製した。
Example 12
Except that the first compound was changed to Li 1.00 (Ni 0.80 Co 0.10 Mn 0.10 ) O 2 and the weight ratio of the second compound was 10.0% by weight. An evaluation cell was produced in the same manner as in Example 1.

(実施例13)
第一の化合物をLi1.00(Ni0.80Co0.10Mn0.10)Oに変更し、第二の化合物の重量比率が15.0重量%となるよう変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 13)
Except for changing the first compound to Li 1.00 (Ni 0.80 Co 0.10 Mn 0.10 ) O 2 and changing the weight ratio of the second compound to 15.0 wt%. An evaluation cell was prepared in the same manner as in Example 1.

(実施例14)
第一の化合物をLi1.00(Ni0.80Co0.10Mn0.10)Oに変更し、第二の化合物の重量比率が30.0重量%となるよう変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 14)
Except that the first compound was changed to Li 1.00 (Ni 0.80 Co 0.10 Mn 0.10 ) O 2 and the weight ratio of the second compound was changed to 30.0% by weight. An evaluation cell was prepared in the same manner as in Example 1.

(実施例15)
第一の化合物と第二の化合物のメカノフュージョン処理及び熱処理を実施しなかったこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 15)
An evaluation cell was prepared in the same manner as in Example 1 except that the mechanofusion treatment and heat treatment of the first compound and the second compound were not performed.

(実施例16)
第一の化合物と第二の化合物のメカノフュージョン処理及び熱処理を実施せず、第二の化合物の重量比率が2.5重量%となるよう変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 16)
The same method as in Example 1 except that the mechanofusion treatment and the heat treatment of the first compound and the second compound were not carried out and the weight ratio of the second compound was changed to 2.5% by weight. An evaluation cell was produced.

(実施例17)
第一の化合物と第二の化合物のメカノフュージョン処理及び熱処理を実施せず、第二の化合物の重量比率が7.5重量%となるよう変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 17)
In the same manner as in Example 1, except that the mechanofusion treatment and heat treatment of the first compound and the second compound were not carried out, and the weight ratio of the second compound was changed to 7.5% by weight. An evaluation cell was produced.

(実施例18)
第一の化合物と第二の化合物のメカノフュージョン処理及び熱処理を実施せず、第二の化合物の重量比率が1.0重量%となるよう変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 18)
The same method as in Example 1 except that the mechanofusion treatment and heat treatment of the first compound and the second compound were not carried out, and the weight ratio of the second compound was changed to 1.0% by weight. An evaluation cell was produced.

(実施例19)
第一の化合物と第二の化合物のメカノフュージョン処理及び熱処理を実施せず、第二の化合物の重量比率が10.0重量%となるよう変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 19)
The same method as in Example 1 except that the mechanofusion treatment and the heat treatment of the first compound and the second compound were not carried out and the weight ratio of the second compound was changed to 10.0% by weight. An evaluation cell was produced.

(実施例20)
第一の化合物と第二の化合物のメカノフュージョン処理及び熱処理を実施せず、第二の化合物の重量比率が15.0重量%となるよう変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 20)
The same method as in Example 1 except that the mechanofusion treatment and the heat treatment of the first compound and the second compound were not carried out and the weight ratio of the second compound was changed to 15.0% by weight. An evaluation cell was produced.

(実施例21)
第一の化合物と第二の化合物のメカノフュージョン処理及び熱処理を実施せず、第二の化合物の重量比率が30.0重量%となるよう変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 21)
The same method as in Example 1 except that the mechanofusion treatment and heat treatment of the first compound and the second compound were not carried out and the weight ratio of the second compound was changed to 30.0% by weight. An evaluation cell was produced.

(実施例22)
第一の化合物の粒子形態を二次粒子ではなく、一次粒子としたこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 22)
An evaluation cell was produced in the same manner as in Example 1 except that the particle form of the first compound was not primary particles but primary particles.

(実施例23)
第一の化合物の粒子形態を二次粒子ではなく、一次粒子とし、第二の化合物の重量比率が1.0重量%となるよう変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 23)
For evaluation in the same manner as in Example 1, except that the particle form of the first compound is not secondary particles but primary particles, and the weight ratio of the second compound is changed to 1.0% by weight. A cell was produced.

(実施例24)
第一の化合物の粒子形態を二次粒子ではなく、一次粒子とし、第二の化合物の重量比率が30.0重量%となるよう変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 24)
For evaluation in the same manner as in Example 1 except that the particle form of the first compound is not secondary particles but primary particles, and the weight ratio of the second compound is changed to 30.0% by weight. A cell was produced.

(実施例25)
第二の化合物の重量比率が50重量%となるよう変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 25)
An evaluation cell was produced in the same manner as in Example 1 except that the weight ratio of the second compound was changed to 50% by weight.

(実施例26)
第一の化合物をLi1.00(Ni0.80Co0.10Mn0.10)Oに変更し、第二の化合物の重量比率が40.0重量%となるよう変更したこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Example 26)
Except for changing the first compound to Li 1.00 (Ni 0.80 Co 0.10 Mn 0.10 ) O 2 and changing the weight ratio of the second compound to 40.0 wt%. An evaluation cell was prepared in the same manner as in Example 1.

(比較例1)
第二の化合物を添加しなかったこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Comparative Example 1)
An evaluation cell was produced in the same manner as in Example 1 except that the second compound was not added.

(比較例2)
第一の化合物をLi1.00(Ni0.80Co0.10Mn0.10)Oに変更し、第二の化合物を添加しなかったこと以外は、実施例1と同様の方法で評価用セルを作製した。
(Comparative Example 2)
In the same manner as in Example 1 except that the first compound was changed to Li 1.00 (Ni 0.80 Co 0.10 Mn 0.10 ) O 2 and the second compound was not added. An evaluation cell was produced.

(DSC分析(示差走査熱分析)の測定)
実施例及び比較例で作製した正極及び電解質溶液を用いてDSCの測定を行った。まず、電極を10mg秤量し、アルミニウム製の容器に入れ、電解質溶液を1μl添加した後、アルミニウム製の蓋を被せ、かしめた。この測定容器をDSC分析装置(RIGAKU製 Thermo Plus DSC8230)にセットし、5℃/分の昇温速度にて測定した。次いで、DSC測定によって得られたピークより半値幅を算出した。図2に実施例1及び比較例1のDSCピークを示す。
(Measurement of DSC analysis (differential scanning thermal analysis))
DSC measurement was performed using the positive electrode and the electrolyte solution prepared in Examples and Comparative Examples. First, 10 mg of the electrode was weighed, put into an aluminum container, 1 μl of an electrolyte solution was added, and then an aluminum lid was put on and caulked. This measurement container was set in a DSC analyzer (Thermo Plus DSC8230 manufactured by RIGAKU) and measured at a heating rate of 5 ° C./min. Next, the full width at half maximum was calculated from the peak obtained by DSC measurement. FIG. 2 shows the DSC peaks of Example 1 and Comparative Example 1.

(0.1C放電容量の測定)
実施例及び比較例で作製した評価用リチウムイオン二次電池について、二次電池充放電試験装置(北斗電工株式会社製)を用い、放電レートを0.1C(25℃で定電流放電を行ったときに10時間で放電終了となる電流値)とした場合の活物質重量あたりの放電容量(単位:mAh/g)を測定した。
(Measurement of 0.1C discharge capacity)
About the lithium ion secondary battery for evaluation produced in the Example and the comparative example, the discharge rate was 0.1 C (constant current discharge was performed at 25 degreeC) using the secondary battery charge / discharge test apparatus (made by Hokuto Denko Co., Ltd.) The discharge capacity per unit weight of the active material (unit: mAh / g) was measured when the current value was set to end discharge in 10 hours.

(サイクル特性の評価方法)
実施例及び比較例で作製した評価用リチウムイオン二次電池について、二次電池充放電試験装置(北斗電工株式会社製)を用い、25℃の環境下でサイクル特性の測定を行った。0.5Cで4.2Vまで定電流定電圧充電し、1Cで2.8Vまで定電流放電する充放電サイクルを100サイクル繰り返し、100サイクル後の容量維持率を測定し、サイクル特性をサイクル維持率(単位:%)として評価した。なお、サンプルは各水準についてそれぞれn=5で測定を実施し、その平均値を評価値とした。
(Evaluation method of cycle characteristics)
About the lithium ion secondary battery for evaluation produced by the Example and the comparative example, the cycle characteristic was measured in the environment of 25 degreeC using the secondary battery charging / discharging test apparatus (made by Hokuto Denko Co., Ltd.). Charge / discharge cycle of constant current and constant voltage charge to 4.2V at 0.5C, constant current discharge to 2.8V at 1C, repeat capacity cycle after 100 cycles, measure capacity retention after 100 cycles, cycle characteristics as cycle retention ratio It was evaluated as (unit:%). In addition, the sample measured by n = 5 about each level, respectively, and made the average value the evaluation value.

(結果の判定)
0.1C定電流放電の放電容量が170mAh/g以上且つ、100サイクル後容量維持率が80%以上のものを『良好』とし、0.1C定電流放電の放電容量が170mAh/g未満且つ、100サイクル後容量維持率が80%未満であるものを『不良』と判定した。
(Judgment of results)
The discharge capacity of 0.1 C constant current discharge is 170 mAh / g or more and the capacity maintenance rate after 100 cycles is 80% or more, “good”, the discharge capacity of 0.1 C constant current discharge is less than 170 mAh / g, and Those having a capacity retention rate of less than 80% after 100 cycles were judged as “bad”.

表1に第一の化合物、第二の化合物とその添加量、0.1C放電容量及びサイクル維持率を示す。   Table 1 shows the first compound, the second compound and the amount added, 0.1 C discharge capacity, and cycle retention.

Figure 2017188424
Figure 2017188424

表1に示す通り、実施例1〜24のリチウムイオン二次電池はDSCピーク半値幅が所定の範囲内であったため、100サイクル後の容量維持率に優れるといった本発明の効果が確認された。一方、比較例1〜2はDSCピーク半値幅が所定の範囲外であったため、所望の特性を得ることができなかった。また、第二の化合物を、第一の化合物と第二の化合物の総和に対して1〜30wt%含有する場合、特に優れたサイクル特性と放電容量を得られることが確認された。   As shown in Table 1, since the lithium ion secondary batteries of Examples 1 to 24 had a DSC peak half width within a predetermined range, the effect of the present invention was confirmed that the capacity retention rate after 100 cycles was excellent. On the other hand, since the DSC peak half width was outside the predetermined range in Comparative Examples 1 and 2, the desired characteristics could not be obtained. Moreover, when 1-30 wt% of 2nd compounds were contained with respect to the sum total of a 1st compound and a 2nd compound, it was confirmed that especially outstanding cycling characteristics and discharge capacity can be obtained.

10・・・正極、12・・・正極集電体、14・・・正極活物質層、18・・・セパレータ、20・・・負極、22・・・負極集電体、24・・・負極活物質層、30・・・積層体、50・・・ケース、52・・・金属箔、54・・・高分子膜、60,62・・・リード、100・・・リチウムイオン二次電池。   DESCRIPTION OF SYMBOLS 10 ... Positive electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 20 ... Negative electrode, 22 ... Negative electrode collector, 24 ... Negative electrode Active material layer, 30 ... laminate, 50 ... case, 52 ... metal foil, 54 ... polymer film, 60, 62 ... lead, 100 ... lithium ion secondary battery.

Claims (6)

化学式Li(NiMa1-y)O(0.95≦x≦1.05、0.70≦y≦0.95、MaはCo、Mn、V、Ti、Fe、Zr、Nb、Mo、Al、Wから選ばれる少なくとも1種の元素)で表される第一の化合物と、化学式LiVOPOで表される第二の化合物と、を含有し、前記第一の化合物と第二の化合物の混合物を5℃/分の条件で測定したDSC分析(示差走査熱分析)において、150℃から260℃の発熱ピークの半値幅をWとした場合、W>5.0℃であるリチウムイオン二次電池用正極活物質。 Chemical formula Li x (Ni y Ma 1-y ) O 2 (0.95 ≦ x ≦ 1.05, 0.70 ≦ y ≦ 0.95, Ma is Co, Mn, V, Ti, Fe, Zr, Nb, At least one element selected from Mo, Al, and W) and a second compound represented by the chemical formula LiVOPO 4 , the first compound and the second compound In DSC analysis (differential scanning calorimetry) of a mixture of compounds measured at 5 ° C./min, lithium ions satisfying W> 5.0 ° C. where W is the half width of an exothermic peak from 150 ° C. to 260 ° C. Positive electrode active material for secondary battery. 前記第二の化合物は、前記第一の化合物の重量と前記第二の化合物の重量の総和に対して1〜30wt%含有する請求項1に記載のリチウムイオン二次電池用正極活物質。   2. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the second compound is contained in an amount of 1 to 30 wt% with respect to the sum of the weight of the first compound and the weight of the second compound. 前記第一の化合物の一次粒子の表面の少なくとも一部が前記第二の化合物で被覆され、被覆層を形成している請求項1または2に記載のリチウムイオン二次電池用正極活物質。   The positive electrode active material for a lithium ion secondary battery according to claim 1 or 2, wherein at least a part of the surface of primary particles of the first compound is coated with the second compound to form a coating layer. 前記第一の化合物の一次粒子が凝集して二次粒子を形成し、且つ前記二次粒子の表面の少なくとも一部が前記第二の化合物で被覆され、被覆層を形成している請求項1または2に記載のリチウムイオン二次電池用正極活物質。   The primary particles of the first compound aggregate to form secondary particles, and at least a part of the surface of the secondary particles is coated with the second compound to form a coating layer. Or the positive electrode active material for lithium ion secondary batteries of 2. 請求項1乃至4のいずれか一項に記載の正極活物質を含有するリチウムイオン二次電池用正極。   The positive electrode for lithium ion secondary batteries containing the positive electrode active material as described in any one of Claims 1 thru | or 4. 請求項5に記載のリチウムイオン二次電池用正極と、負極活物質を有する負極と、前記正極と前記負極との間に介在されるセパレータと非水電解質と、を備えてなるリチウムイオン二次電池。
A lithium ion secondary comprising the positive electrode for a lithium ion secondary battery according to claim 5, a negative electrode having a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte. battery.
JP2016250327A 2016-03-30 2016-12-26 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery Pending JP2017188424A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/438,011 US10211456B2 (en) 2016-03-30 2017-02-21 Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery positive electrode and lithium ion secondary battery using the same
CN201710193768.9A CN107275584A (en) 2016-03-30 2017-03-28 Positive electrode active material for lithium ion secondary battery and use its lithium ion secondary battery anode and lithium rechargeable battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016067805 2016-03-30
JP2016067805 2016-03-30

Publications (1)

Publication Number Publication Date
JP2017188424A true JP2017188424A (en) 2017-10-12

Family

ID=60045676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016250327A Pending JP2017188424A (en) 2016-03-30 2016-12-26 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP2017188424A (en)
CN (1) CN107275584A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183612A1 (en) * 2019-03-12 2020-09-17 本田技研工業株式会社 Positive electrode for lithium ion batteries, and lithium ion battery
JP2023502845A (en) * 2020-10-12 2023-01-26 ビーティーアール ナノ テック カンパニー リミテッド Cathode material and its preparation method, lithium ion secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108461740A (en) * 2018-03-26 2018-08-28 西北工业大学 A kind of LiVOPO4Nickelic tertiary cathode material of lithium ion battery of cladding and its preparation method and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070009447A (en) * 2005-07-14 2007-01-18 마츠시타 덴끼 산교 가부시키가이샤 Positive electrode for lithium secondary cell and lithium secondary cell using the same
JP4317571B2 (en) * 2007-04-27 2009-08-19 Tdk株式会社 Active material, electrode, battery, and method for producing active material
CN104620425B (en) * 2012-09-03 2017-12-01 日本贵弥功株式会社 Electrode for lithium ion secondary battery material, the manufacture method of the electrode material and lithium rechargeable battery
US10629896B2 (en) * 2016-02-25 2020-04-21 Tdk Corporation Positive electrode and lithium ion secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183612A1 (en) * 2019-03-12 2020-09-17 本田技研工業株式会社 Positive electrode for lithium ion batteries, and lithium ion battery
JPWO2020183612A1 (en) * 2019-03-12 2021-11-18 本田技研工業株式会社 Positive electrode for lithium-ion batteries and lithium-ion batteries
JP7179956B2 (en) 2019-03-12 2022-11-29 本田技研工業株式会社 Cathodes for lithium-ion batteries and lithium-ion batteries
JP2023502845A (en) * 2020-10-12 2023-01-26 ビーティーアール ナノ テック カンパニー リミテッド Cathode material and its preparation method, lithium ion secondary battery
JP7381733B2 (en) 2020-10-12 2023-11-15 ビーティーアール ナノ テック カンパニー リミテッド Positive electrode material and its preparation method, lithium ion secondary battery

Also Published As

Publication number Publication date
CN107275584A (en) 2017-10-20

Similar Documents

Publication Publication Date Title
US20180366729A1 (en) Electric storage device and positive electrode
US8178238B2 (en) Positive-electrode active material for lithium-ion secondary battery, positive electrode, manufacturing method thereof, and lithium-ion secondary battery
JP7028164B2 (en) Lithium ion secondary battery
JP6188158B2 (en) Negative electrode for lithium ion secondary battery, negative electrode slurry for lithium ion secondary battery, and lithium ion secondary battery
KR20130035911A (en) Positive electrode material, lithium ion secondary battery using thereof, and manufacturing method of positive electrode material
US9979012B2 (en) Lithium ion secondary battery and method for manufacturing the same
JP2015118742A (en) Nonaqueous electrolyte secondary battery
JP2019160782A (en) Negative electrode and lithium ion secondary battery
JP2017188424A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery
TWI600195B (en) Nonaqueous electrolyte secondary battery and battery module using the same
JP2013134921A (en) Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP3732654B2 (en) Graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
WO2015046394A1 (en) Negative-electrode active material, negative electrode using same, and lithium-ion secondary battery
KR101439630B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
JP6613952B2 (en) Positive electrode active material, and positive electrode and lithium ion secondary battery using the same
JP2017183048A (en) Positive electrode active material, positive electrode arranged by use thereof, and lithium ion secondary battery
JP2015187929A (en) Nonaqueous electrolyte secondary battery
US10211456B2 (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery positive electrode and lithium ion secondary battery using the same
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP2014238946A (en) Method for manufacturing nonaqueous electrolyte secondary battery, and battery manufactured thereby
JP2019160576A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2014072062A (en) Nonaqueous electrolyte secondary battery and battery pack
WO2024142825A1 (en) Non-aqueous electrolyte secondary battery
WO2024127668A1 (en) Non-aqueous electrolyte battery and battery pack
JP2012221799A (en) Nonaqueous electrolyte secondary battery