JP2001266872A - Secondary power source and its manufacturing method - Google Patents

Secondary power source and its manufacturing method

Info

Publication number
JP2001266872A
JP2001266872A JP2000072717A JP2000072717A JP2001266872A JP 2001266872 A JP2001266872 A JP 2001266872A JP 2000072717 A JP2000072717 A JP 2000072717A JP 2000072717 A JP2000072717 A JP 2000072717A JP 2001266872 A JP2001266872 A JP 2001266872A
Authority
JP
Japan
Prior art keywords
secondary power
power supply
graphite
negative electrode
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000072717A
Other languages
Japanese (ja)
Inventor
Manabu Tsushima
学 對馬
Takeshi Morimoto
剛 森本
Isamu Kuruma
勇 車
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000072717A priority Critical patent/JP2001266872A/en
Publication of JP2001266872A publication Critical patent/JP2001266872A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary power source that has a high voltage resistance, a high capacity and is excellent in rapid charge and discharge cycle characteristics. SOLUTION: The secondary power source comprises a positive electrode composed mainly of activated charcoal, a negative electrode composed mainly of a graphite which has a surface space of 0.335-0.336 nm at (002) face as measured by X-rays diffraction and a crystallite size of Lc of 10-100 nm, La of 10-100 nm and which stores and separates lithium ion, and an organic electrolyte containing lithium salt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐電圧が高く、容
量が大きく、急速充放電サイクル信頼性の高い二次電源
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary power supply having a high withstand voltage, a large capacity, and a high rapid charge / discharge cycle reliability.

【0002】[0002]

【従来の技術】従来の電気二重層キャパシタの電極に
は、正極、負極ともに活性炭を主体とする分極性電極が
使用されている。電気二重層キャパシタの耐電圧は、水
系電解液を使用すると1.2V、有機系電解液を使用す
ると2.5〜3.3Vである。電気二重層キャパシタの
エネルギは耐電圧の2乗に比例するので、耐電圧の高い
有機電解液の方が水系電解液より高エネルギである。し
かし、有機電解液を使用した電気二重層キャパシタでも
そのエネルギ密度は鉛蓄電池等の二次電池の1/10以
下であり、さらなるエネルギ密度の向上が必要とされて
いる。
2. Description of the Related Art Polarizable electrodes mainly composed of activated carbon are used for both positive and negative electrodes of conventional electric double layer capacitors. The withstand voltage of the electric double layer capacitor is 1.2 V when an aqueous electrolyte is used, and 2.5 to 3.3 V when an organic electrolyte is used. Since the energy of the electric double layer capacitor is proportional to the square of the withstand voltage, the organic electrolyte having a higher withstand voltage has higher energy than the aqueous electrolyte. However, even an electric double layer capacitor using an organic electrolyte has an energy density of 1/10 or less of a secondary battery such as a lead storage battery, and further improvement in energy density is required.

【0003】これに対し、特開昭64−14882に
は、活性炭を主体とする電極を正極とし、X線回折によ
る[002]面の面間隔が0.338〜0.356nm
である炭素材料にあらかじめリチウムイオンを吸蔵させ
た電極を負極とする上限電圧3Vの二次電源が記載され
ている。また、特開平8−107048には、リチウム
イオンを吸蔵、脱離しうる炭素材料にあらかじめ化学的
方法又は電気化学的方法でリチウムイオンを吸蔵させた
炭素材料を負極に用いる電池が記載されている。また、
特開平9−55342には、リチウムイオンを吸蔵、脱
離しうる炭素材料をリチウムと合金を形成しない多孔質
集電体に担持させる負極を有する、上限電圧4Vの二次
電源が提案されている。しかしこれらの二次電源は、負
極の炭素材料にあらかじめリチウムイオンを吸蔵させる
工程を必要とする問題があった。
On the other hand, Japanese Patent Application Laid-Open No. 64-14882 discloses that an electrode mainly composed of activated carbon is used as a positive electrode, and the [002] plane spacing by X-ray diffraction is 0.338 to 0.356 nm.
A secondary power supply having an upper limit voltage of 3 V using an electrode in which lithium ions are previously absorbed in a carbon material as a negative electrode is described. Japanese Patent Application Laid-Open No. 8-107048 describes a battery in which a carbon material which can occlude and desorb lithium ions by absorbing lithium ions in advance by a chemical method or an electrochemical method is used as a negative electrode. Also,
Japanese Patent Application Laid-Open No. 9-55342 proposes a secondary power supply having an upper limit voltage of 4 V and having a negative electrode in which a carbon material capable of absorbing and releasing lithium ions is supported on a porous current collector that does not form an alloy with lithium. However, these secondary power supplies have a problem that a step of previously storing lithium ions in the carbon material of the negative electrode is required.

【0004】また、電気二重層キャパシタ以外に大電流
充放電可能な電源にはリチウムイオン二次電池がある。
リチウムイオン二次電池は電気二重層キャパシタに比べ
て高電圧かつ高容量であるが、抵抗が高く、急速充放電
サイクルによる寿命が電気二重層キャパシタに比べ著し
く短い問題があった。
In addition to the electric double layer capacitor, a power source capable of charging and discharging a large current is a lithium ion secondary battery.
A lithium ion secondary battery has a higher voltage and a higher capacity than an electric double layer capacitor, but has a problem that it has a high resistance and has a significantly shorter life due to a rapid charge / discharge cycle than an electric double layer capacitor.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、急速
充放電が可能で高耐電圧かつ高容量でエネルギ密度が高
い二次電源であって、特に充放電サイクル信頼性の高い
二次電源を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention is directed to a secondary power supply capable of rapid charging and discharging, having a high withstand voltage, a high capacity and a high energy density. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明は、活性炭を主体
とする正極と、リチウムイオンを吸蔵、脱離しうる炭素
材料を主体とする負極と、リチウム塩を含む有機電解液
と、を備える二次電源において、前記炭素材料はX線回
折によって得られる[002]面の面間隔d00 2が0.
335〜0.336nmであり、結晶子サイズLcが1
0〜100nmであり、かつ結晶子サイズLaが10〜
100nmである黒鉛からなることを特徴とする二次電
源を提供する。
According to the present invention, there is provided a positive electrode mainly composed of activated carbon, a negative electrode mainly composed of a carbon material capable of inserting and extracting lithium ions, and an organic electrolyte containing a lithium salt. in the next power, wherein the carbon material surface separation d 00 2 of [002] plane obtained by X-ray diffraction is 0.
Is a 335~0.336nm, crystallite size L c is 1
Is 0 to 100 nm, and the crystallite size L a is 10
A secondary power source is provided, which is made of 100 nm graphite.

【0007】また、本発明は、活性炭を主体とする正極
と、リチウムイオンを吸蔵、脱離しうる炭素材料を主体
とする負極と、リチウム塩を含む有機電解液と、を備え
る二次電源の製造方法において、前記炭素材料は、X線
回折によって得られる[002]面の面間隔d002
0.335〜0.336nmでありかつ結晶子サイズL
c及びLaがいずれも200nm超である黒鉛を濃硫酸と
反応させ、水洗、乾燥した後、200〜800℃に急激
に加熱することにより得ることを特徴とする二次電源の
製造方法を提供する。
Further, the present invention provides a method of manufacturing a secondary power supply including a positive electrode mainly composed of activated carbon, a negative electrode mainly composed of a carbon material capable of absorbing and desorbing lithium ions, and an organic electrolyte containing a lithium salt. In the method, the carbon material has a [002] plane spacing d 002 obtained by X-ray diffraction of 0.335 to 0.336 nm and a crystallite size L.
c and L a is reacted with concentrated sulfuric acid graphite all at 200nm greater, washed with water, dried, provide a method of manufacturing a secondary power source, characterized in that obtained by rapidly heating the 200 to 800 ° C. I do.

【0008】本明細書において、リチウムイオンを吸
蔵、脱離しうる炭素材料を主体とする負極と集電体とを
接合して一体化させたものを負極体という。正極体につ
いても同様の定義とする。また、二次電池も電気二重層
キャパシタも二次電源の1種であるが、本明細書では、
正極が活性炭を主体とし、負極がリチウムイオンを吸
蔵、脱離しうる炭素材料を主体とする特定の構成の二次
電源を単に二次電源という。
In the present specification, a negative electrode body is formed by joining and integrating a negative electrode mainly composed of a carbon material capable of occluding and releasing lithium ions with a current collector. The same definition applies to the positive electrode body. Further, both the secondary battery and the electric double layer capacitor are one type of secondary power supply, but in this specification,
A secondary power supply having a specific configuration in which the positive electrode is mainly made of activated carbon and the negative electrode is mainly made of a carbon material capable of absorbing and desorbing lithium ions is simply called a secondary power supply.

【0009】一般に、黒鉛粉末を100〜150℃で濃
硫酸(質量濃度95〜98%)と濃硝酸(比重1.33
3)とをモル比で95:5〜70:30の範囲で混合し
た混酸と反応させると、黒鉛層間に硫酸が吸蔵される。
これを充分水洗して乾燥させると、黒鉛層間に吸蔵され
た硫酸のほとんどは脱離するが、これをさらに200〜
800℃の温度まで急激に加熱すると、わずかに黒鉛層
間に残存する硫酸が分解すると思われ、そのときに発生
するガスの圧力で膨張化黒鉛が得られることが知られて
いる。
Generally, graphite powder is concentrated at 100 to 150 ° C. with concentrated sulfuric acid (mass concentration 95 to 98%) and concentrated nitric acid (specific gravity 1.33).
When 3) is reacted with a mixed acid mixed in a molar ratio of 95: 5 to 70:30, sulfuric acid is absorbed between graphite layers.
When this is sufficiently washed with water and dried, most of the sulfuric acid occluded between the graphite layers is desorbed.
It is known that when heated rapidly to a temperature of 800 ° C., sulfuric acid remaining between the graphite layers slightly decomposes, and it is known that expanded graphite can be obtained by the pressure of the gas generated at that time.

【0010】ところが、上記黒鉛粉末の処理において、
混酸のかわりに濃硫酸のみを用いる等の方法により黒鉛
の膨張を緩やかに起こさせると、完全には膨張化せず
に、X線回折によって得られる[002]面の面間隔d
002が0.335〜0.336nm、結晶子サイズLc
10〜100nm、Laが10〜100nmの黒鉛が得
られる。通常黒鉛といわれるものは、[002]面の面
間隔d002が0.335〜0.336nmの場合、結晶
子サイズLc及びLaは200nmより大きい。すなわ
ち、上記処理等により黒鉛の面間隔をほとんど変化させ
ずに結晶子サイズを小さくできる。
However, in the treatment of the graphite powder,
If the expansion of the graphite is gently caused by a method such as using only concentrated sulfuric acid instead of the mixed acid, the [002] plane spacing d obtained by X-ray diffraction does not completely expand.
002 0.335~0.336Nm, crystallite size L c is 10 to 100 nm, L a is 10 to 100 nm of the graphite is obtained. What usually referred to as graphite, if the surface spacing d 002 of [002] plane is 0.335~0.336Nm, crystallite size L c and L a is greater than 200 nm. That is, the crystallite size can be reduced by the above-described processing without changing the surface spacing of graphite.

【0011】本発明では、例えば上記処理を施すことに
より得られる、[002]面の面間隔d002が0.33
5〜0.336nmであり、結晶子サイズLc及びLa
いずれも10〜100nmである黒鉛を二次電源の負極
の主体としている。前記黒鉛を使用することにより、本
発明の二次電源は充放電サイクルによる劣化が少なくな
っている。一般に、二次電源を充放電するとリチウムイ
オンの吸蔵、脱離にともなって黒鉛の結晶構造が変化す
る。そして黒鉛のリチウムイオンの吸蔵、脱離サイト
は、大部分はエッジ面にあって、充放電を繰り返すとエ
ッジ面の固体電解質界面が破損すると考えられている。
In the present invention, for example, the [002] plane spacing d 002 obtained by performing the above processing is 0.33.
A 5~0.336Nm, crystallite size L c and L a is a negative electrode of the main graphite secondary power is both a 10 to 100 nm. By using the graphite, the secondary power supply of the present invention has less deterioration due to charge / discharge cycles. Generally, when a secondary power supply is charged and discharged, the crystal structure of graphite changes as lithium ions are absorbed and desorbed. Most of the lithium ion occlusion and desorption sites of graphite are on the edge surface, and it is considered that the solid electrolyte interface on the edge surface is damaged by repeated charging and discharging.

【0012】本発明の二次電源では、負極の黒鉛の結晶
子サイズが小さいため、みかけのリチウムイオンの吸
蔵、脱離サイトが少なくなっていると考えられる。その
ためリチウムイオンの吸蔵、脱離にともなう上記結晶構
造の変化が相対的に小さくなり、充放電サイクルにとも
なう負極の劣化が少なくなると考えられる。その結果、
二次電源の充放電サイクル耐久性は高まり、長期的に信
頼性が高くなると考えられる。
In the secondary power supply of the present invention, it is considered that the apparent lithium ion occlusion and desorption sites are reduced due to the small crystallite size of graphite of the negative electrode. Therefore, it is considered that the change in the crystal structure due to occlusion and desorption of lithium ions is relatively small, and the deterioration of the negative electrode due to the charge / discharge cycle is reduced. as a result,
It is considered that the charge / discharge cycle durability of the secondary power supply is improved, and the reliability is improved in the long term.

【0013】一般に、リチウムイオン二次電池の場合
は、正極はリチウム含有遷移金属酸化物を主体とする電
極、負極はリチウムイオンを吸蔵、脱離しうる炭素材料
を主体とする電極であり、充電によりリチウムイオンが
正極のリチウム含有遷移金属酸化物から脱離し、負極の
リチウムイオンを吸蔵、脱離しうる炭素材料へ吸蔵さ
れ、放電により負極からリチウムイオンが脱離し、正極
にリチウムイオンが吸蔵される。したがって、本質的に
は電解液中のリチウムイオンは電池の充放電に関与しな
い。
In general, in the case of a lithium ion secondary battery, the positive electrode is an electrode mainly composed of a transition metal oxide containing lithium, and the negative electrode is an electrode mainly composed of a carbon material capable of absorbing and desorbing lithium ions. Lithium ions are desorbed from the lithium-containing transition metal oxide of the positive electrode, are stored in a carbon material capable of occluding and desorbing lithium ions of the negative electrode, lithium ions are desorbed from the negative electrode by discharging, and lithium ions are stored in the positive electrode. Therefore, lithium ions in the electrolyte do not essentially participate in charging and discharging of the battery.

【0014】一方、本発明の二次電源は、充電により電
解液中のアニオンが正極の活性炭に吸着し、電解液中の
リチウムイオンが負極のリチウムイオンを吸蔵、脱離し
うる炭素材料へ吸蔵される。そして放電により負極から
リチウムイオンが脱離し、正極では前記アニオンが脱着
される。すなわち、本発明の二次電源では充放電に電解
液の溶質が本質的に関与しており、リチウムイオン電池
とは充放電の機構が異なっている。また、リチウムイオ
ン二次電池のように正極活物質自体にリチウムイオンが
吸蔵、脱離することがないため、本発明の二次電源は充
放電サイクル信頼性に優れている。
On the other hand, in the secondary power supply of the present invention, the anions in the electrolytic solution are adsorbed on the activated carbon of the positive electrode by charging, and the lithium ions in the electrolytic solution are stored in a carbon material capable of storing and releasing lithium ions in the negative electrode. You. Then, lithium ions are desorbed from the negative electrode by discharging, and the anions are desorbed in the positive electrode. That is, in the secondary power supply of the present invention, the solute of the electrolytic solution is essentially involved in the charging and discharging, and the charging and discharging mechanism is different from that of the lithium ion battery. Further, unlike the lithium ion secondary battery, since the lithium ion is not inserted or extracted from the positive electrode active material itself, the secondary power supply of the present invention has excellent charge / discharge cycle reliability.

【0015】正極には活性炭を主体として用い、負極に
はリチウムイオンを吸蔵、脱離しうる炭素材料を主体と
して用いた二次電源では、電解液に溶解しているイオン
が充放電に関与する。したがって、電解液の溶質濃度が
低い場合には充分に充電できなくなるおそれがある。電
解液の溶質濃度としては0.5〜2.0モル/L、特に
0.75〜1.5モル/Lが好ましい。
In a secondary power supply mainly using activated carbon for the positive electrode and a carbon material capable of occluding and releasing lithium ions for the negative electrode, ions dissolved in the electrolyte participate in charging and discharging. Therefore, when the solute concentration of the electrolytic solution is low, there is a possibility that the battery cannot be sufficiently charged. The solute concentration of the electrolyte is preferably 0.5 to 2.0 mol / L, particularly preferably 0.75 to 1.5 mol / L.

【0016】本発明の二次電源では、1度目の充放電サ
イクルにおける負極のサイクル効率は必ずしも100%
ではなく、吸蔵されたリチウムイオンで脱離しないもの
もある。その場合、電解液中のリチウムイオン濃度が減
少し、次の充電から充分に充電できないおそれがあるの
で、正極にリチウム含有遷移金属酸化物を添加して特性
劣化を防ぐことが好ましい。この方法により、負極から
脱離できないリチウムイオンを補うことができる。この
場合、正極中に含まれるリチウム含有遷移金属酸化物
は、正極全質量の0.1〜20%、特に3〜15%が好
ましい。0.1%未満ではその効果が小さく、一方、2
0%超ではリチウム含有遷移金属酸化物の容量が大きい
ため、活性炭電極の特徴の高出力かつ高信頼性という二
次電源性能が得られなくなる。
In the secondary power supply of the present invention, the cycle efficiency of the negative electrode in the first charge / discharge cycle is not necessarily 100%.
Instead, some occluded lithium ions do not desorb. In this case, since the lithium ion concentration in the electrolyte decreases and charging may not be sufficiently performed from the next charging, it is preferable to add a lithium-containing transition metal oxide to the positive electrode to prevent characteristic deterioration. By this method, lithium ions that cannot be eliminated from the negative electrode can be supplemented. In this case, the content of the lithium-containing transition metal oxide contained in the positive electrode is preferably 0.1 to 20%, more preferably 3 to 15% of the total weight of the positive electrode. If it is less than 0.1%, the effect is small.
If it exceeds 0%, the capacity of the lithium-containing transition metal oxide is large, so that the secondary power supply performance of high output and high reliability, which is a characteristic of the activated carbon electrode, cannot be obtained.

【0017】上記リチウム含有遷移金属酸化物として
は、V、Mn、Fe、Co、Ni、Zn及びWからなる
群から選ばれる1種以上の遷移金属とリチウムとの複合
酸化物が好ましい。特に、Mn、Co及びNiからなる
群から選ばれる1種以上とリチウムとの複合酸化物が好
ましく、なかでもLixCoyNi(1-y)2又はLiz
24(ただし、0<x<2、0≦y≦1、0<z<
2。)で表される化合物が好ましい。
The lithium-containing transition metal oxide is preferably a composite oxide of lithium and at least one transition metal selected from the group consisting of V, Mn, Fe, Co, Ni, Zn and W. In particular, a composite oxide of lithium and at least one selected from the group consisting of Mn, Co, and Ni is preferable. Among them, Li x Co y Ni (1-y) O 2 or Li z M
n 2 O 4 (however, 0 <x <2, 0 ≦ y ≦ 1, 0 <z <
2. ) Is preferred.

【0018】本発明において、正極の主体とされる活性
炭は、比表面積が800〜3000m2/gであること
が好ましい。活性炭の原料、賦活条件は限定されない
が、例えば原料としてはやしがら、フェノール樹脂、石
油コークス等が挙げられ、賦活方法としては水蒸気賦活
法、溶融アルカリ賦活法等が挙げられる。本発明では特
に、水蒸気賦活したやしがら系活性炭又は水蒸気賦活し
たフェノール樹脂系活性炭が好ましい。また、正極の抵
抗を低くするために、正極中に導電材として導電性のカ
ーボンブラック又は黒鉛を含ませておくのも好ましく、
このとき導電材は正極全質量中に0.1〜20%含まれ
ることが好ましい。
In the present invention, the activated carbon used as the main component of the positive electrode preferably has a specific surface area of 800 to 3000 m 2 / g. The raw material and activation conditions of the activated carbon are not limited. For example, the raw material includes bean, phenol resin, petroleum coke and the like, and the activation method includes a steam activation method and a molten alkali activation method. In the present invention, steam activated activated carbon or phenolic resin activated carbon activated with steam is particularly preferred. In addition, in order to reduce the resistance of the positive electrode, it is preferable to include conductive carbon black or graphite as a conductive material in the positive electrode,
At this time, it is preferable that the conductive material is contained in an amount of 0.1 to 20% in the total mass of the positive electrode.

【0019】正極体の作製方法としては、例えば活性炭
粉末にバインダとしてポリテトラフルオロエチレンを混
合し、混練した後シート状に成形して正極とし、これを
集電体に導電性接着剤を用いて固定する方法がある。ま
た、バインダとしてポリフッ化ビニリデン、ポリアミド
イミド、ポリイミド等を用い、これらを溶媒に溶解した
溶液に活性炭粉末を分散させ、この液をドクターブレー
ド法等によって集電体上に塗工し、乾燥して得てもよ
い。正極中に含まれるバインダの量は、正極体の強度と
容量等の特性とのバランスから、正極全質量の1〜20
%であることが好ましい。
As a method of manufacturing a positive electrode body, for example, polytetrafluoroethylene as a binder is mixed with activated carbon powder, kneaded, and then formed into a sheet to obtain a positive electrode, which is used as a current collector with a conductive adhesive. There is a way to fix. Further, using polyvinylidene fluoride, polyamide imide, polyimide or the like as a binder, the activated carbon powder is dispersed in a solution in which these are dissolved in a solvent, and this solution is coated on a current collector by a doctor blade method or the like, and dried. You may get it. The amount of the binder contained in the positive electrode may be 1 to 20 times the total weight of the positive electrode, based on the balance between the strength of the positive electrode body and characteristics such as capacity.
%.

【0020】本発明における負極体は、ポリフッ化ビニ
リデン、ポリアミドイミド又はポリイミドをバインダと
し、バインダとなる樹脂又はその前駆体を有機溶媒に溶
解させた溶液に前記炭素材料を分散させ、集電体に塗工
し、乾燥させて得ることが好ましい。上記方法におい
て、バインダとなる樹脂又はその前駆体を溶解させる溶
媒は限定されないが、バインダを構成する樹脂又はその
前駆体を容易に溶解でき、入手も容易であることからN
−メチル−2−ピロリドン(以下、NMPという)が好
ましい。ここで、ポリアミドイミドの前駆体又はポリイ
ミドの前駆体とは、加熱することにより重合してそれぞ
れポリアミドイミド又はポリイミドとなるものをいう。
The negative electrode body of the present invention is obtained by dispersing the carbon material in a solution obtained by dissolving a resin serving as a binder or a precursor thereof in an organic solvent, using polyvinylidene fluoride, polyamideimide or polyimide as a binder. It is preferable to obtain by coating and drying. In the above method, the solvent for dissolving the resin serving as the binder or the precursor thereof is not limited. However, the resin constituting the binder or the precursor thereof can be easily dissolved and is easily available.
-Methyl-2-pyrrolidone (hereinafter referred to as NMP) is preferred. Here, the term “polyamide imide precursor” or “polyimide precursor” refers to those which are polymerized by heating to form polyamide imide or polyimide, respectively.

【0021】上に挙げたバインダは、加熱することによ
り硬化し、耐薬品性、機械的性質、寸法安定性に優れ
る。熱処理の温度は200℃以上であることが好まし
い。200℃以上であれば、ポリアミドイミドの前駆体
又はポリイミドの前駆体であっても通常重合して、それ
ぞれポリアミドイミド又はポリイミドとなる。また、熱
処理する雰囲気は窒素、アルゴン等の不活性雰囲気又は
133Pa以下の減圧下が好ましい。ポリアミドイミド
又はポリイミドは、本発明で使用される有機電解液に対
する耐性があり、また負極から水分を除去するために3
00℃程度の高温加熱又は減圧下の加熱をしても充分耐
性がある。
The above-mentioned binders are cured by heating and are excellent in chemical resistance, mechanical properties and dimensional stability. The temperature of the heat treatment is preferably 200 ° C. or higher. If the temperature is 200 ° C. or higher, even if it is a polyamideimide precursor or a polyimide precursor, it is usually polymerized to be a polyamideimide or a polyimide, respectively. The atmosphere for the heat treatment is preferably an inert atmosphere such as nitrogen or argon or a reduced pressure of 133 Pa or less. Polyamide imide or polyimide is resistant to the organic electrolyte used in the present invention, and is used to remove water from the negative electrode.
It is sufficiently resistant to high temperature heating of about 00 ° C. or heating under reduced pressure.

【0022】本発明における有機電解液に含まれるリチ
ウム塩は、LiPF6、LiBF4、LiClO4、Li
N(SO2CF32、CF3SO3Li、LiC(SO2
3 3、LiAsF6及びLiSbF6からなる群から選
ばれる1種以上が好ましい。溶媒はエチレンカーボネー
ト、プロピレンカーボネート、ブチレンカーボネート、
ジメチルカーボネート、エチルメチルカーボネート、ジ
エチルカーボネート、スルホラン及び1,2−ジメトキ
シエタンからなる群から選ばれる1種以上が好ましい。
これらのリチウム塩と溶媒とからなる電解液は耐電圧が
高く、電気伝導度も高い。
The lithium contained in the organic electrolyte according to the present invention
Um salt is LiPF6, LiBFFour, LiClOFour, Li
N (SOTwoCFThree)Two, CFThreeSOThreeLi, LiC (SOTwoC
FThree) Three, LiAsF6And LiSbF6Selected from the group consisting of
One or more types are preferred. Solvent is ethylene carbonate
G, propylene carbonate, butylene carbonate,
Dimethyl carbonate, ethyl methyl carbonate, di
Ethyl carbonate, sulfolane and 1,2-dimethoxy
One or more selected from the group consisting of cyethanes is preferred.
The electrolyte consisting of these lithium salts and solvents has a withstand voltage.
High electrical conductivity.

【0023】[0023]

【実施例】次に、実施例(例1)及び比較例(例2)に
より本発明をさらに具体的に説明するが、本発明はこれ
らにより限定されない。なお、例1〜3におけるセルの
作製及び測定はすべて露点が−60℃以下のアルゴング
ローブボックス中で行った。
Next, the present invention will be described more specifically with reference to Examples (Example 1) and Comparative Examples (Example 2), but the present invention is not limited thereto. The production and measurement of the cells in Examples 1 to 3 were all performed in an argon glove box having a dew point of −60 ° C. or less.

【0024】[例1]フェノール樹脂を原料として水蒸
気賦活法によって得られた比表面積2000m2/gの
活性炭、導電性カーボンブラック、及びバインダとして
のポリテトラフルオロエチレンが質量比で8:1:1で
含まれる混合物に、エタノールを加えて混練し、圧延し
た後、200℃で2時間真空乾燥して電極シートを得
た。この電極シートから大きさ6cm×3cm、厚さ1
50μmの電極を得て、ポリアミドイミドをバインダと
する導電性接着剤を用いてアルミニウム箔に接合し、減
圧下で300℃で2時間熱処理し、正極体とした。
Example 1 Activated carbon having a specific surface area of 2000 m 2 / g, conductive carbon black, and polytetrafluoroethylene as a binder obtained by a steam activation method using a phenol resin as a raw material, and polytetrafluoroethylene as a binder were 8: 1: 1 by mass ratio. Was added to the mixture contained in the above, kneaded by adding ethanol, rolled, and then vacuum dried at 200 ° C. for 2 hours to obtain an electrode sheet. From this electrode sheet, size 6cm x 3cm, thickness 1
A 50 μm electrode was obtained, joined to an aluminum foil using a conductive adhesive having polyamideimide as a binder, and heat-treated at 300 ° C. for 2 hours under reduced pressure to obtain a positive electrode body.

【0025】次に、リチウムイオンを吸蔵、脱離しうる
炭素材料として、X線回折による[002]面の面間隔
002が0.3357nm、Laが350nm、Lcが3
40nmの黒鉛を用い、質量濃度98%の濃硫酸と混合
し、120℃で5時間保持した。次いで充分に水洗し、
300℃に急激に加熱して、X線回折による[002]
面の面間隔d002が0.3357nm、Laが70nm、
cが70nmの、リチウムイオンを吸蔵、脱離しうる
黒鉛を得た。
Next, occluding lithium ions, as a carbon material capable of desorbed surface spacing d 002 of the X-ray diffraction [002] plane is 0.3357nm, L a is 350 nm, L c is 3
Using 40 nm graphite, it was mixed with concentrated sulfuric acid having a mass concentration of 98%, and kept at 120 ° C. for 5 hours. Then wash thoroughly with water,
Heated rapidly to 300 ° C. and analyzed by X-ray diffraction [002]
Plane spacing d 002 of face 0.3357nm, L a is 70 nm,
L c is obtained of 70 nm, it absorbs lithium ions, a graphite capable eliminated.

【0026】次に、得られた黒鉛と、d002が0.33
7nmの黒鉛化した気相成長炭素繊維(以下、気相成長
炭素繊維をVGCFという)とを、ポリフッ化ビニリデ
ンをNMPに溶解した溶液に分散させて、銅からなる集
電体に塗布し乾燥して集電体上に負極層が形成された負
極体を得た。負極層中の黒鉛:黒鉛化したVGCF:ポ
リフッ化ビニリデンは質量比で8:1:1であった。こ
の負極体をさらにロールプレス機でプレスした。得られ
た負極層は大きさが6cm×3cm、厚さが15μmで
あった。
Next, the obtained graphite and d 002 were 0.33
A 7 nm graphitized vapor grown carbon fiber (hereinafter referred to as VGCF) is dispersed in a solution of polyvinylidene fluoride in NMP, applied to a current collector made of copper, and dried. Thus, a negative electrode body having a negative electrode layer formed on a current collector was obtained. The mass ratio of graphite: graphitized VGCF: polyvinylidene fluoride in the negative electrode layer was 8: 1: 1. This negative electrode body was further pressed by a roll press. The obtained negative electrode layer had a size of 6 cm × 3 cm and a thickness of 15 μm.

【0027】上記のように得られた正極体と負極体をポ
リプロピレン製のセパレータを介して対向させ、1モル
/LとなるようにLiBF4をエチレンカーボネートと
ジエチルカーボネートとの混合溶媒(体積比で1:1)
に溶解させた電解液に充分な時間含浸させて二次電源を
得た。この二次電源の初期容量を測定後、充放電電流1
80mAで4.2Vから2.75Vまでの範囲で充放電
サイクル試験を行い、2000サイクル後の容量を測定
し、容量変化率を算出した。結果を表1に示す。
The positive electrode body and the negative electrode body obtained as described above are opposed to each other with a polypropylene separator interposed therebetween, and LiBF 4 is mixed with ethylene carbonate and diethyl carbonate in a mixed solvent (volume ratio of 1 mol / L) so as to be 1 mol / L. 1: 1)
The battery was impregnated with the electrolytic solution dissolved in a sufficient amount of time to obtain a secondary power source. After measuring the initial capacity of this secondary power supply, charge and discharge current 1
A charge / discharge cycle test was performed at a range of 4.2 V to 2.75 V at 80 mA, the capacity after 2,000 cycles was measured, and the capacity change rate was calculated. Table 1 shows the results.

【0028】[例2]リチウムイオンを吸蔵、脱離しう
る炭素材料として、X線回折による[002]面の面間
隔d002が0.3357nm、Laが350nm、Lc
340nmの黒鉛系炭素材料を硫酸で処理せずに用いた
以外は例1と同様にして、負極層の大きさが6cm×3
cm、厚さが26μmの負極体を得た。上記負極体を用
いた以外は例1と同様にして二次電源を作製し、例1と
同様に評価した。結果を表1に示す。
[Example 2] As a carbon material capable of inserting and extracting lithium ions, graphite-based carbon having a [002] plane spacing d 002 of 0.3357 nm, La of 350 nm, and L c of 340 nm as determined by X-ray diffraction. A negative electrode layer having a size of 6 cm × 3 was obtained in the same manner as in Example 1 except that the material was not treated with sulfuric acid.
cm and a thickness of 26 μm. A secondary power supply was prepared in the same manner as in Example 1 except that the above-mentioned negative electrode body was used, and evaluated in the same manner as in Example 1. Table 1 shows the results.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】本発明によれば、耐電圧が高く、容量が
大きく、かつ急速充放電サイクル信頼性の高い二次電源
を提供できる。
According to the present invention, it is possible to provide a secondary power supply having a high withstand voltage, a large capacity, and a high reliability of a rapid charge / discharge cycle.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ05 AK08 AL07 AM03 AM04 AM05 AM07 CJ02 CJ12 CJ14 CJ28 DJ17 HJ13 HJ14 5H050 AA07 BA17 CA16 CB08 DA02 DA03 GA02 GA12 GA14 HA13 HA14  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ05 AK08 AL07 AM03 AM04 AM05 AM07 CJ02 CJ12 CJ14 CJ28 DJ17 HJ13 HJ14 5H050 AA07 BA17 CA16 CB08 DA02 DA03 GA02 GA12 GA14 HA13 HA14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】活性炭を主体とする正極と、リチウムイオ
ンを吸蔵、脱離しうる炭素材料を主体とする負極と、リ
チウム塩を含む有機電解液と、を備える二次電源におい
て、前記炭素材料はX線回折によって得られる[00
2]面の面間隔d002が0.335〜0.336nmで
あり、結晶子サイズLcが10〜100nmであり、か
つ結晶子サイズLaが10〜100nmである黒鉛から
なることを特徴とする二次電源。
1. A secondary power supply comprising: a positive electrode mainly composed of activated carbon; a negative electrode mainly composed of a carbon material capable of inserting and extracting lithium ions; and an organic electrolyte containing a lithium salt, wherein the carbon material is [00] obtained by X-ray diffraction
Plane spacing d 002 of 2] surface is 0.335~0.336Nm, and wherein the crystallite size L c is 10 to 100 nm, and the crystallite size L a is made of graphite is 10 to 100 nm Secondary power supply.
【請求項2】活性炭を主体とする正極と、リチウムイオ
ンを吸蔵、脱離しうる炭素材料を主体とする負極と、リ
チウム塩を含む有機電解液と、を備える二次電源の製造
方法において、前記炭素材料は、X線回折によって得ら
れる[002]面の面間隔d 002が0.335〜0.3
36nmでありかつ結晶子サイズLc及びLaがいずれも
200nm超である黒鉛を濃硫酸と反応させ、水洗、乾
燥した後、200〜800℃に急激に加熱することによ
り得ることを特徴とする二次電源の製造方法。
2. A positive electrode mainly composed of activated carbon, and a lithium ion
A negative electrode mainly composed of a carbon material capable of occluding and releasing ions;
Manufacture of a secondary power supply comprising: an organic electrolytic solution containing a titanium salt
In the method, the carbon material is obtained by X-ray diffraction.
[002] plane spacing d 002Is 0.335-0.3
36 nm and crystallite size LcAnd LaBut both
React graphite with over 200 nm with concentrated sulfuric acid, wash with water, dry
After drying, heat rapidly to 200-800 ° C.
A method for manufacturing a secondary power supply, comprising:
【請求項3】前記炭素材料はX線回折によって得られる
[002]面の面間隔d002が0.335〜0.336
nmであり、結晶子サイズLcが10〜100nmであ
り、かつ結晶子サイズLaが10〜100nmである黒
鉛である請求項2に記載の二次電源の製造方法。
3. The carbon material has a [002] plane spacing d 002 obtained by X-ray diffraction of 0.335 to 0.336.
is nm, the crystallite size L c is 10 to 100 nm, and the secondary power supply method according to claim 2 crystallite size L a is graphite is 10 to 100 nm.
JP2000072717A 2000-03-15 2000-03-15 Secondary power source and its manufacturing method Withdrawn JP2001266872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000072717A JP2001266872A (en) 2000-03-15 2000-03-15 Secondary power source and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000072717A JP2001266872A (en) 2000-03-15 2000-03-15 Secondary power source and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001266872A true JP2001266872A (en) 2001-09-28

Family

ID=18591079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000072717A Withdrawn JP2001266872A (en) 2000-03-15 2000-03-15 Secondary power source and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001266872A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063902A1 (en) * 2007-11-12 2009-05-22 Hitachi Maxell, Ltd. Electrode for nonaqueous secondary battery, nonaqueous secondary battery using the same, and method for producing electrode
WO2010095716A1 (en) * 2009-02-20 2010-08-26 三菱化学株式会社 Carbon material for lithium ion secondary batteries
JP2010287641A (en) * 2009-06-10 2010-12-24 Nec Tokin Corp Energy storage device
CN110752368A (en) * 2018-07-24 2020-02-04 中国科学院物理研究所 Carbon negative electrode material of sodium ion battery, preparation method, application and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274360A (en) * 1988-04-27 1989-11-02 Mitsubishi Petrochem Co Ltd Secondary battery
JPH08335460A (en) * 1995-06-07 1996-12-17 Hitachi Chem Co Ltd Manufacture of carbon material for lithium secondary battery and lithium secondary battery using carbon material for lithium secondary battery
JPH0955342A (en) * 1994-12-27 1997-02-25 Asahi Glass Co Ltd Electric double layer capacitor
JPH09237638A (en) * 1995-12-25 1997-09-09 Sharp Corp Nonaqueous secondary battery
JPH11111297A (en) * 1993-03-10 1999-04-23 Toshiba Corp Lithium secondary battery
JPH11310405A (en) * 1995-11-14 1999-11-09 Osaka Gas Co Ltd Negative electrode material for lithium secondary battery
JPH11312525A (en) * 1998-04-27 1999-11-09 Tdk Corp Electrode for nonaqueous electrolyte battery
JP2000003729A (en) * 1998-06-15 2000-01-07 Asahi Glass Co Ltd Manufacture of secondary power supply

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274360A (en) * 1988-04-27 1989-11-02 Mitsubishi Petrochem Co Ltd Secondary battery
JPH11111297A (en) * 1993-03-10 1999-04-23 Toshiba Corp Lithium secondary battery
JPH0955342A (en) * 1994-12-27 1997-02-25 Asahi Glass Co Ltd Electric double layer capacitor
JPH08335460A (en) * 1995-06-07 1996-12-17 Hitachi Chem Co Ltd Manufacture of carbon material for lithium secondary battery and lithium secondary battery using carbon material for lithium secondary battery
JPH11310405A (en) * 1995-11-14 1999-11-09 Osaka Gas Co Ltd Negative electrode material for lithium secondary battery
JPH09237638A (en) * 1995-12-25 1997-09-09 Sharp Corp Nonaqueous secondary battery
JPH11312525A (en) * 1998-04-27 1999-11-09 Tdk Corp Electrode for nonaqueous electrolyte battery
JP2000003729A (en) * 1998-06-15 2000-01-07 Asahi Glass Co Ltd Manufacture of secondary power supply

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063902A1 (en) * 2007-11-12 2009-05-22 Hitachi Maxell, Ltd. Electrode for nonaqueous secondary battery, nonaqueous secondary battery using the same, and method for producing electrode
JPWO2009063902A1 (en) * 2007-11-12 2011-03-31 日立マクセル株式会社 Non-aqueous secondary battery electrode, non-aqueous secondary battery using the same, and electrode manufacturing method
WO2010095716A1 (en) * 2009-02-20 2010-08-26 三菱化学株式会社 Carbon material for lithium ion secondary batteries
JP2010219036A (en) * 2009-02-20 2010-09-30 Mitsubishi Chemicals Corp Carbon material for lithium ion secondary battery
US8647776B2 (en) 2009-02-20 2014-02-11 Mitsubishi Chemical Corporation Carbon material for lithium ion secondary battery
JP2010287641A (en) * 2009-06-10 2010-12-24 Nec Tokin Corp Energy storage device
CN110752368A (en) * 2018-07-24 2020-02-04 中国科学院物理研究所 Carbon negative electrode material of sodium ion battery, preparation method, application and application thereof
CN110752368B (en) * 2018-07-24 2020-12-01 中国科学院物理研究所 Carbon negative electrode material of sodium ion battery, preparation method, application and application thereof

Similar Documents

Publication Publication Date Title
JP3689948B2 (en) Electric double layer capacitor
US6294292B1 (en) Secondary power source
US6558846B1 (en) Secondary power source
JP4096438B2 (en) Secondary power supply
JP3658517B2 (en) Non-aqueous electrolyte secondary battery
JP2002270175A (en) Secondary power source
JP2003031220A (en) Secondary power source
JP2000036325A (en) Secondary power supply
JP2000228222A (en) Secondary power supply
WO2011034163A1 (en) Electrochemical cell and electrochemical capacitor
JP2000306609A (en) Secondary power supply
JP2001345122A (en) Secondary power source and method of manufacturing secondary power source
JPH1131637A (en) Electric double-layer capacitor, carbon material for it and electrode
JP2000090971A (en) Secondary power source
JP3367060B2 (en) Negative electrode for lithium secondary battery
JP3440705B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH1154384A (en) Electric double layer capacitor
JP2000138074A (en) Secondary power supply
JP4284934B2 (en) Secondary power supply
JP2001266872A (en) Secondary power source and its manufacturing method
JP4099970B2 (en) Secondary power supply
JP4352532B2 (en) Secondary power supply
JP2001236960A (en) Method of manufacturing secondary power supply
JP2001338679A (en) Secondary electric power source
JP2000223368A (en) Secondary power source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100517